CUSAT 2022: Shift 1

Solved Paper

Question 1

Force	between	two	charges	is	given	by
			J J - J - J			,

Options:

- A. $\frac{Qq}{4\pi\epsilon_0 r^2}$
- $B.~\frac{Qq}{4\pi\epsilon_0 r^3}$
- C. $\frac{Qq}{4\pi\epsilon_0 r}$
- D. Zero

Answer: A

Solution:

Solution:

.....

Question 2

Which quantity is same when resistances are connected in parallel?

Options:

- A. Current
- B. Potential difference and Current
- C. Potential difference
- D. Capacitance

Answer: C

Solution:

Solution:

Question 3

How much power is dissipated when 2 A current passes through a wire

of 10 Ohm resistance?
Options:
A. 40 watt
B. 30 watt
C. 20 watt
D. 10 watt
Answer: A
Solution:
Solution:
Question 4
Magnetic field is produced by
Options:
A. rest charge alone
B. moving charge alone
C. moving charge with intrinsic magnetic moment
D. intrinsic magnetic moment alone
Answer: C
Solution:
Solution:
Question 5
Which magnetism shows Curie temperature?
Options:

- A. Diamagnetism
- B. Paramagnetism
- C. Ferromagnetism
- D. Ferrimagnetism

Answer: C

Solution:	
Solution:	
Question 6	
Inconsistency of Ampere's circuit law is	s due to
Options:	
A. standard current	
B. flow of current	
C. displacement current	
O. zero current	
Answer: C	
Solution:	
Solution:	
Question 7	
What are the components present in el	ectromagnetic waves?
Options:	
A. Electric field	
B. Electric field and velocity	
C. Magnetic field	
D. Electric field and Magnetic field	
Answer: D	
Solution:	
Solution:	
Question 8	

Which radiation is having higher energy in electromagnetic spectrum?

Options:

A. X-ray
B. Gamma ray
C. Microwave
D. Radio wave
Answer: B
Solution:
Solution:
Question 9
What is the frequency of LC circuit?
Options:
A. $\frac{1}{2\pi\sqrt{LC}}$
B. $\frac{1}{2\pi LC}$
C. 2π√ <u>LC</u>
D. 2π LC
Answer: A
Solution:
Solution:
Question 10
If the focal length of a lens is 2 cm, then its power is
Options:
A. 3 dioptre
B. 0.4 dioptre
C. 0.7 dioptre
D. 0.5 dioptre
Answer: D
Solution:

Question 11	
The angle of incidence at which reflected light is totally polarised for reflection from air to glass (refractive index n), is	r
Options:	
A. $tan^{-1}(1 / n)$	
B. $\sin^{-1}(1 / n)$	
C. $\sin^{-1}(n)$	
D. tan ⁻¹ (n)	
Answer: D	
Solution:	
Solution:	
Question 12	
The number of electron in M shell is limited to	
Options:	
A. 2	
B. 10	
C. 18	
D. 32	
Answer: C	
Solution:	
Solution:	
Question 13	
Which of the following ray is emitted during the radioactive decay process?	

Solution:

Options:

B. Gamma Ray
C. Beta ray
D. All the above
Answer: D
Solution:
Solution:
Question 14
Formation of shadows can be explained by
Options:
A. rectilinear propagation of light
B. curvilinear propagation of light
C. the total internal reflection
D. refraction
Answer: A
Solution:
Solution:
Question 15
When the temperature of the semiconductor is increased, its
Options:
A. resistivity increases
B. charge carrier reduces
C. conductivity increases
D. temperature coefficient becomes zero
Answer: C
Solution:

Solution:

A. Alpha ray

Question 16 Which of the following is an active device? **Options:** A. Electric bulb B. Transformer C. Silicon controlled rectifier D. Loud speaker **Answer: C Solution: Solution: Question 17** The material suitable for making electromagnets should have **Options:** A. high retentivity and high coercivity B. low retentivity and low coercivity C. high retentivity and low coercivity D. low retentivity and high coercivity **Answer: C Solution: Solution: Question 18** A carbon resistor has color code as Brown, Black, Blue and Silver. The resistance and tolerance values are **Options:** A. $10M\Omega \pm 10\%$

B. $20M\Omega \pm 5\%$

C. $10M\Omega \pm 5\%$
D. $20k\Omega \pm 10\%$
Answer: A
Solution:
Solution:
Question 19
Which unit is appropriate for specifying magnetic induction?
Options:
A. Tesla
B. V / m
C. A / m^2
D. Henry
Answer: A
Solution:
Solution:
Question 20
Two particles A and B initially at rest move towards each other by mutual forces of attraction. At an instant when the speed of A is V and the speed for B is $2V$, then the speed of centre of mass is
Options:
A. 1V
B. 2V
C. 3V
D. Zero
Answer: D
Solution:
Solution:

Question 21 The blue colour of the sky is due to **Options:** A. reflection of sunlight B. polarization of sunlight C. scattering of sunlight D. refraction of sunlight **Answer: C Solution: Solution: Question 22** Which of the following statements is wrong? **Options:** A. Sound travels in a straight line B. Sound travels as waves C. Sound is a form of energy D. Sound travels faster in vacuum than that in air **Answer: D Solution: Solution: Question 23** A proton and an electron are accelerated through the same accelerating potential. Which one of these two has the greater momentum? **Options:** A. Proton B. Electron

D. Zero momentum	
Answer: A	
Solution:	
Solution:	
Question 24	
In a circuit containing inductor and resistor, as applied alternating current increases, the imped	_ ~
Options:	
A. remain constant	
B. decreases	
C. first increases and then decreases	
D. increases	
Answer: D	
Solution:	
Solution:	
0 11 05	
Question 25	
Question 25 How many electron flow per second in 1 Ampere	e of current?
How many electron flow per second in 1 Ampere Options:	e of current?
How many electron flow per second in 1 Ampere Options:	e of current?
How many electron flow per second in 1 Ampere Options: A. 6.25×10^{18}	e of current?
How many electron flow per second in 1 Ampere Options: A. 6.25×10^{18} B. 6×10^{18}	e of current?
How many electron flow per second in 1 Ampere Options: A. 6.25×10^{18} B. 6×10^{18} C. 1.6×10^{19}	e of current?
How many electron flow per second in 1 Ampere Options: A. 6.25×10^{18} B. 6×10^{18} C. 1.6×10^{19} D. 1.6×10^{23}	e of current?
How many electron flow per second in 1 Ampere	e of current?

If copper and silicon are heated, then their resistance will

On	tio	ns:
VΡ	CIO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- A. increase and decrease respectively
- B. increase and increase respectively
- C. decrease and increase respectively
- D. decrease and decrease respectively

Answer: A

Solution:

Solution:

Question 27

The unit of Universal Gravitational constant is

Options:

- A. Nm^2 / kg^2
- B. Nm / kg^2
- C. Unit less
- D. m $/ s^2$

Answer: A

Solution:

Solution:

Question 28

Adiabatic expansion of a gas results in

Options:

- A. heating
- B. cooling
- C. no change in temperature
- D. initial cooling and then heating

Answer: B
Solution:
Solution:
Question 29
The function of the moderator in the nuclear reactor is to
Options:
A. decrease the speed of neutron
B. increase the speed of neutron
C. fuel the reactor
D. increase the temperature of the reactor
Answer: A
Solution:
Solution:
Question 30
$\int \frac{dx}{\sqrt{2ax-x^2}} = a^n \sin^{-1} \left(\frac{x}{a} - 1 \right), \text{ then the value of n is}$
Options:
A. 0
B1
C. 1
D2
Answer: A
Solution:
Solution:

A raindrop falls near the surface of the earth with almost uniform velocity because
Options:
A. its weight is negligible
3. the force of surface tension balances its weight
C. the force of viscosity of air balances its weight
O. the drops are charged and atmospheric electric field balances its weight
Answer: C
Solution:
Solution:
Question 32
The susceptibility of magnesium at 300K is 1.2×10^{-5} . At what temperature will the susceptibility increase to 1.8×10^{-5} ?
Options:
A. 400K
3. 300K
C. 600K
D. 200K
Answer: D
Solution:
Solution:
Question 33
A convex lens is placed 8 cm from a light source and it makes a sha mage on a screen, kept 8 cm from the lens. Now a glass block

(refractive index 1.5) of 1.2 cm thickness is placed in contact with the light source. To get the sharp image again, the screen is shifted by a distance d. Then d is

Options:

A. 0.44 cm towards the lens

B. 1.6 cm away from the lens
C. 0.44 cm away from the lens
D. 0
Answer: C
Solution:
Solution:
Question 34
The resistance of 3Ω and 6Ω are joined in series are connected across a battery of emf 10V and internal resistance $1\Omega.$ The power dissipated by the battery is
Options:
A. 3W
B. 8W
C. 9W
D. 10W
Answer: D
Solution:
Solution:
Question 35
Consider two light sources of wavelength λ_1 and $\lambda_2(\lambda_2 > \lambda_1)$ which are emitting n_1 and n_2 photons respectively, in a given time. Assume equal power for both sources, then
Options:
A. $n_1 > n_2$
B. $n_1 < n_2$
C. $n_1 = n_2$

D. None of the above

Answer: A

Solution:
Solution:
Question 36
As the orbit number increases, the distance between two consecutive orbits in an atom
Options:
A. increases
3. decreases
C. remains the same
D. first increases and then becomes constant
Answer: A
Solution:
Solution:
Question 37
For audible sound, the time interval between two words should be
Options:
A. 0.1 s
3. 3 s
C. 0.4 s
D. 2 s
Answer: A
Solution:
Solution:
Ouestion 39

If S is stress and Y is Young's modulus of material of a wire, the energy stored in the wire per unit volume is $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-$

Options:
A. $2S^2Y$
B. $S^2 / 2Y$
$C. 2Y / S^2$
D. S / 2Y
Answer: B
Solution:
Solution:
Question 39
If a charge Q is to be divided into two parts q and $(Q-q)$, such that the force between them is maximum at a certain distance, then the value of q must be
Options:
A. Q / 3
B. Q / 2
C. Q / 4
D. 3Q / 4
Answer: B
Solution:
Solution:
Question 40
If the electric field in a region of space is given by 5i + 4j + 9k. The electric flux through a surface of area 20 units lying in the y – z plane is
Options:
A. 100 units

B. 4 units

C. 500 units

D. 44 units

Answer: A	
Solution:	
Solution:	
Question 41	
A 25 Watt –220V bulb and 100W att-220 V bulb are connected across 220V line. Which bulb will glow more brightly?	in series
Options:	
A. 25 Watt bulb	
B. 100W att bulb	
C. Both will glow with equal brightness	
D. Each bulb will glow bright alternatively	
Answer: A	
Solution:	
Solution:	
Question 42	
A proton is projected horizontally eastward in a uniform magne which is horizontal and southward in direction. The proton will deflected	
Options:	
A. upward	
B. downward	
C. southward	
D. northward	
Answer: B	
Solution:	

Two long parallel wires separated by a distance 'r' have equal current 'I' flowing in each. The magnetic field of one exerts a force 'F' on the other. If the distance between them is doubled and the current in each wire is halved, the force between them will become

ptions:
. 4F
. unchanged
. F / 4
. F / 8
nswer: D
olution:
plution:
Question 44
he magnetic field energy in an inductor changes from maximum value minimum value in 2.5 ms, when connected to an AC source. The requency of the source is
ptions:
. 100 Hz
. 400 Hz
. 50 Hz
. 25 Hz
nswer: A
olution:
plution:
)uestion 45

Alternating current / e.m.f measuring instrument measures its

Options:

A. peak value

B. r.m.s value
C. average value
D. square of current and voltage
Answer: B
Solution:
Solution:
Question 46
In vacuum, the speed of electromagnetic waves depend up on
Options:
A. wavelength
B. frequency
C. electric and magnetic field
D. None of the above
Answer: D
Solution:
Solution:
Question 47
A convex mirror has a focal length ' f '. A real object placed at a distance ' f ' in front of it from the pole produces an image at
Options:
A. infinity
B. f
C. f / 2
D. 2f
Answer: C
Solution:

Solution:

Question 48	
The refracting angle of a prism is A and refractive index of the mater of the prism is cot A / 2. Then, the angle of minimum deviation is	ial
Options:	
A. 180 - 3A	
B. 180 + 2A	
C. $90 - A$	
D. 180 – 2A	
Answer: D	
Solution:	
Solution:	
Question 49	
Which one of the following cannot be polarised?	
Options:	
A. Radio waves	
B. Ultraviolet rays	
C. Infrared rays	
D. Ultrasonic waves	
Answer: D	
Solution:	
Solution:	

Options:

Α. 4λ

Β. 2λ
C. λ
D. λ / 2
Answer: B
Solution:
Solution:
Question 51
Bohr's atomic model cannot explain
Options:
A. quantization of the angular momentum of the orbiting electrons
B. emission of photon due to the transition of electron from one orbit to other
C. intensity of spectral lines
D. spectral series of hydrogen like atom
Answer: C
Solution:
Solution:
Question 52
The process underlying β-decay is the
Options:
A. conversion of neutron to proton
B. conversion of proton to neutron
C. emission of gamma rays
D. emission of helium nucleus
Answer: A
Solution:
Solution:

A sample of radioactive element has a mass of $10\mathrm{gm}$ at an instant $t=0$. The approximate mass of the element in the sample after two mean live is	
Options:	

Solution:		
Solution:		
Answer: D		
D. 1.35 gm		
C. 6.30 gm		
B. 3.7 gm		
A. 2.5 gm		
P		

Question 54

A potential difference of V is applied at the ends of a copper wire of length ' 1 ' and diameter 'd'. On doubling the 'd' value , the drift velocity

Options:

- A. becomes two times
- B. becomes half
- C. becomes one fourth
- D. does not change

Answer: D

Solution:

C -	lution	_
20	IIITIAN	-

Question 55

If a resistance is introduced in series with the cell in the secondary circuit of a potentiometer, the balancing length

Options:

A. increases

B. decreases
C. remains the same
D. cannot be found
Answer: C
Solution:
Solution:
Question 56
A vernier calliper has its main scale of 10 cm equally divided into 200 equal parts. Its vernier scale of 25 divisions coincides with 12 mm on the main scale. The least count of the instrument is
Options:
A. 0.020 cm
B. 0.002 cm
C. 0.010 cm
D. 0.001 cm
Answer: B
Solution:
Solution:
Question 57
A body starts from rest and with a uniform acceleration of 10ms^{-2} for 5 seconds. During the next 10 seconds, it moves with uniform velocity. The total distance traveled by the body is
Options:
A. 100m
B. 125m
C. 500m
D. 625m
Answer: D

Solution:

Solution:
Question 58
Two capacitors of equal capacity are first connected in parallel and then in series. The ratio of the total capacities in the two cases will be
Options:
A. 2:1
3. 1 : 2
C. 4:1
D. 1:4
Answer: C
Solution:
Solution:
Question 59
The strength of the magnetic field of a vibration magnetometer is increased to 4 times its original value. The frequency of oscillation of the magnet would then become
Options:
A. twice
3. four times
C. half
O. one-fourth
Answer: A
Solution:
Solution:

An endoscope is employed by a physician to view the internal parts of a body organ. It is based on the principle of

Options:
A. refraction
B. reflection
C. total internal reflection
D. dispersion
Answer: C
Solution:
Solution:
Question 61
What will be the direction in the following reaction upon increasing pressure of the system? $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
Options:
A. Formation of N_2O_4 favored
B. Formation of NO_2 favored
C. No change in reaction
D. Increase in equilibrium constant
Answer: A
Solution:
Solution:
Question 62
When solid $\mathrm{NH_4Cl}$ is added to $\mathrm{NH_4OH}$ solution, the equilibrium shifts to the left, due to
Options:
A. common ion effect

B. buffer formation

D. keep pH constant

C. neutralization

Answer: A	
Solution:	
Solution:	
Question 63	
The obtained slope in the Arrhenius plot of log kVs $\frac{1}{T}$ is equal to	
Options:	
A. $\frac{E_a}{R}$	
$B \frac{E_a}{R}$	
C. $\frac{E_a}{(2.303)R}$	
D. $-\frac{E_a}{(2.303)R}$	
Answer: D	
Solution:	
Solution:	
Question 64	
If the first order rate constant for a reaction is $6.93 \times 10^{-4} \ s^{-1}$, calcuthe half life for the reaction.	ılate
Options:	
A. 100 s	
B. 200 s	
C. 500 s	
D. 1000 s	
Answer: D	
Solution:	
Solution:	

The standard $E_{\text{red values of}}^{0}A$, B and C are 0V, +0.68V and -0.50V, respectively. The order of their power as reducing agent is

Options:

Answer: C

Solution:

Solution:

Question 66

If the ratio of composition of oxidised and reduced species in an electrochemical cell is given as $\frac{[O]}{[R]}$ = e^2 , the correct potential difference will be

Options:

A.
$$E - E^0 = + \frac{2RT}{nF}$$

B.
$$E - E^0 = -\frac{2RT}{nF}$$

C. E – E⁰ = +
$$\frac{RT}{nF}$$

D. E – E⁰ = –
$$\frac{RT}{nF}$$

Answer: A

Solution:

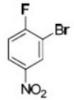
Solution:

Question 67

If we pass 1 Coulomb of charge in an electrolytic cell, then 10 mg of substance will get deposited. Calculate the gram equivalent of the substance.

(1 Faraday = 96500C)	
Options:	
A. 9.65	
B. 96.5	
C. 965	
D. 9650	
Answer: C	
Solution:	
Solution:	
Question 68	
The packing fraction efficiency	of a simple cubic lattice is close to
Options:	
A. 34.0%	
B. 52.4%	
C. 68.0%	
D. 74.0%	
Answer: B	
Solution:	
Solution:	
Question 69	
How many NaCl are in the unit	cell of sodium chloride crystal?
Options:	
A. 1	
B. 2	
C. 3	
D. 4	

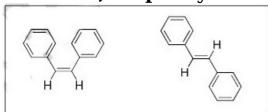
Answer: D


Solution:
Solution:
Question 70
Alkali halides do not show Frenkel defect because
Options:
A. cations and anions have high coordination number
B. cations and anions have low coordination number
C. anions cannot be accommodated in voids
D. cations and anions have almost equal size
Answer: D
Solution:
Solution:
Question 71
Coordination number for body centered cubic is
Options:
A. 2
B. 4
C. 6
D. 8
Answer: D
Solution:
Solution:
Ougstion 72

Which one of the following is NOT applicable to chemisorption?

Options:

A. Its heat of adsorption is high B. It takes place at high temperature C. It is reversible D. It forms mono-molecular layers **Answer: C Solution: Solution: Question 73** Lyophilic colloids are stable due to **Options:** A. small size of the particle B. large size of the particle C. layer of dispersion medium on the particle D. high Tyndall effect **Answer: C Solution: Solution: Question 74**


IUPAC name for the following compound is

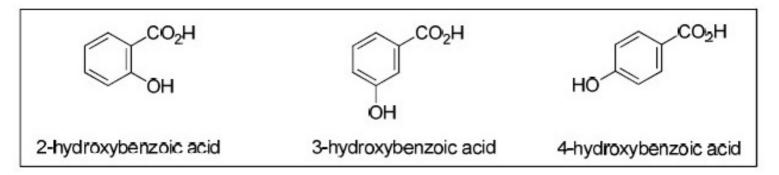
Options:

- A. 2-bromo-1-fluoro-4-nitrobenzene
- B. 3-bromo-4-fluoro-1-nitrobenzene
- C. 2-fluoro-5-nitro-1-bromobenzene
- D. 1-bromo-6-fluoro-3-nitrobenzene

Answer: A
Solution:
Solution:
Question 75
Dumas method is preferred over Kjeldahl's method for determining nitrogen quantitatively in
Options:
A. explosives such as trinitrotoluene
B. aminoacids
C. amides
D. compounds containing both sulfur and nitrogen
Answer: A
Solution:
Solution:
Question 76
Pick the statement that is NOT true for a pair of cis and trans isomers such as 1,2-diphenylethene (stilbene).

Options:

- A. trans isomer has a higher melting point
- B. trans isomer has higher heat of combustion
- C. trans isomer has a higher retardation factor (\mathbf{R}_{f}) in adsorption chromatography over silica gel
- D. planarity is better maintained in the trans isomer


Answer: B

Solution:

Solution:
Question 77
How will you selectively convert 2-bromopropane to 1-bromopropane?
Br Br
Options:
A. Treatment with alcoholic potassium chloride followed by reaction with HBr
B. Reaction with metallic sodium followed by reaction with bromine
C. Reaction with magnesium metal followed by treatment with HOBr
D. Reaction with alcoholic potassium hydroxide followed by heating with HBr in the presence of benzoyl peroxide.
Answer: D
Solution:
Solution:
Question 78
Pick the WRONG statement about propyne.
Options:
A. Addition of excess HBr to propyne gives 1,2-dibromopropane
B. It is less acidic than acetylene
C. Upon reaction with dilute sulfuric acid in the presence of mercuric sulfate, it gives acetone as the major product
D. It reacts with sodamide (NaNH ₂) to give sodium propynide
Answer: A
Solution:
Solution:
Question 79

In aromatic electrophilic substitution reactions carried out under kinetically controlled conditions
Options:
A. all activating groups are meta orienting
B. all deactivating groups are ortho-para orienting
C. all deactivating groups are meta orienting
D. deactivating groups possessing unshared pair of electrons on atoms directly attached to aromatic ring are ortho-para orienting
Answer: D
Solution:
Solution:
Question 80 Compounds possessing certain distinct structural features give a yellow precipitate of iodoform on reacting with iodine in the presence of a base. This question is based on the ability of alcohols having no other functional groups to undergo iodoform reaction. Pick the WRONG statement.
Options:
A. Ethanol is the only primary alcohol that gives a positive iodoform test
B. Several secondary alcohols give positive iodoform test
C. All tertiary alcohols test negative for iodoform reaction
D. All alcohols test negative for iodoform reaction
Answer: D
Solution:
Solution:

Acidity of compounds is decided by several factors including electrometric effects, H -bonding, aromaticity etc. for acids and their conjugate bases. Pick the correct statement. pK $_{\rm a}$ of

Options:

- A. 2-hydroxybenzoic acid > 3-hydroxybenzoic acid >4-hydroxybenzoic acid
- B. 4-hydroxybenzoic acid > 3-hydrox ybenzoic acid > 2-hydroxybenzoic acid
- C. 3-hydroxybenzoic acid > 2-hydroxybenzoic acid > 4-hydroxybenzoic acid
- D. 4-hydroxybenzoic acid ≈ 2-hydroxybenzoic acid > 3-hydroxybenzoic acid

Answer: B

Solution:

Solution:			

Question 82

The following statements are on the reactivity of phenols. Pick the WRONG statement.

Options:

- A. Bubbling carbon dioxide through a solution of phenol in aqueous sodium hydroxide followed by acidification gives 2-hydroxybenzoic acid (salicylic acid)
- B. Treatment of phenol with chloroform in the presence of sodium hydroxide followed by acidification of the reaction mixture gives 2-hydroxybenzaldehyde (salicylaldehyde)
- C. Phenol on treatment with concentrated nitric acid gives 4-nitrophenol as the only product
- D. Phenol on oxidation with sodium dichromate in the presence of concentrated sulfuric acid gives 1,4-benzoquinone

Answer: C

Solution:

Solution:

On refluxing with constant boiling hydroiodic acid (57\% HI in water), most methyl ethers are cleaved to give methyl iodide and an alcohol as the products. Which among the following methyl ethers is most likely to give methanol instead of methyl iodide upon treatment with constant boiling HI?

Options:

- A. anisole
- B. methoxyethane
- C. 2-methoxypropane
- D. 2-methoxy-2-methylpropane

Answer: D

Solution:

Solution:

Question 84

Carbonyl compounds can be separated from aliphatic hydrocarbons by

Options:

Λ	extraction	TAZİTA	hine
Α.	exilaciion	VV II.II	aciu

- B. extraction with base
- C. as bisulfite addition compounds by treating with sodium bisulfite
- D. as picrates by treating with picric acid

Answer: C

Solution:

Solution:

Which among the following methods is NOT suitable for the preparation of hydrocarbons?

$\mathbf{\Omega}$	~ +	•		_	
O	μι	JU	Ш	5	ë

- A. Meerwein-Verley-Ponndorf reduction of aldehydes
- B. Clemmensen reduction of ketones
- C. Wolff-Kishner reduction of aldehydes
- D. Treatment of alkyl chlorides with metallic sodium in dry ether

Answer: A

Solution :

3014 CIOII.	So	lu	ti	o	n	:
-------------	----	----	----	---	---	---

Question 86

An organic compound gave positive tests with 2,4-DNP reagent, Tollens reagent and Fehling solution. Upon treatment with iodine in the presence of sodium hydroxide it gave iodoform and methanoic acid. The compound most probably is

Options:

- A. methanal
- B. ethanal
- C. ethanoic acid
- D. acetone

Answer: B

Solution:

Solution:

Question 87

Gabriel phthalimide synthesis is NOT a viable method for the direct synthesis of

Options:
A. benzylamine
B. cyclohexanamine
C. aniline
D. 2-methylpropan-2-amine
Answer: C
Solution:
Solution:
Question 88
While H_2S and H_2 Se are gases, H_2O is liquid due to
Options:
A. smaller size of oxygen
B. arrangement of molecules
C. presence of H-bonding
D. difference in bonding of their molecule
Answer: C
Solution:
Solution:
Question 89
Cd and Cu can be separated and analyzed using
Options:
A. KCN

D. H₂SO₄

 $B.\ H_2S$

Answer: A

 ${\rm C.~NH_4OH}$

Solution:

Solution:
Question 90
What will be the product of the reaction $_{26}\mathrm{Fe}^{58}$ (d, p)?
Options:
A. ₂₅ Mn ⁵⁹
B. $_{26}{\rm Fe}^{60}$
C. ₂₆ Fe ⁵⁹
D. ₂₅ Mn ⁶⁰
Answer: C
Solution:
Solution:
Question 91
$[Cu(NH_3)_4]^{2+}$ ion has a structure.
Options:
A. square planar
B. trigonal
C. pyramidal
D. tetrahedral
Answer: A
Solution:
Solution:
Question 92
In Ellingham diagram, the slope obtained is equal to
Options:

A. ΔG

Β. ΔΗ
C. ΔS
D. ΔE
Answer: C
Solution:
Solution:
Question 93
How many 2c-2e centered bonds are present in diborane?
Options:
A. 5
B. 6
C. 4
D. 7
Answer: C
Solution:
Solution:
Question 94
Choose the correct structure for Caro's acid.
Options:
A.
0

В.

C.

D.

Answer: A

Solution:

Solution:

Question 95

Balmer lines are observed in

Options:

- A. UV region
- B. IR region
- C. microwave region
- D. visible region

Answer: D

Solution:

Solution:

Question 96

Hybridization of Mn in KMnO_4 is

Options:

- A. sp^2
- B. sp^2d
- C. dsp^2
- D. sp^3

Answer: D

Solution:
Solution:
Question 97
The magnetic moment for the complex $[CoF_6]^{3-}$ is
Options:
A. 4.89 BM
3. 1.73 BM
C. 0 BM
D. 5.90 BM
Answer: A
Solution:
Solution:
Question 98
With respect to diamond and graphite, which of the following statement is CORRECT?
Options:
A. Graphite is lower thermal conductor than diamond
3. Graphite is harder than diamond
C. Graphite is lower bond order than diamond
D. Graphite has higher electrical conductivity than diamond
Answer: D
Solution:
Solution:

The hybridisation and magnetic behavior of complexes $[Ni(CO)_4]$ and

$[Ni(CN)_4]^{2-}$ is
Options:
A. dsp ² and sp ³ , both are paramagnetic
B. dsp ² and sp ³ , both are diamagnetic
C. sp ³ and dsp ² , paramagnetic and diamagnetic
D. sp ³ and dsp ² , both are diamagnetic
Answer: D
Solution:
Solution:
Question 100
Two electrons occupying the same orbital are distinguished by
Options:
A. Magnetic quantum number
B. Azimuthal quantum number
C. Spin quantum number
D. Principal quantum number
Answer: C
Solution:
Solution:
Question 101
The number of onto functions from {1, 2,, n} to itself is
Options:
A

A. n

B. n – 1

C. (n-1)!

D. n!

Answer: D

Solution:
Solution:
Question 102
$\lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} \text{ is equal to}$
Options:
A. 3
В3
C. 6
D. 0
Answer: B
Solution:
Solution:
Question 103
For any complex number z, the minimum value of $ z + z - 2i $ is
Options:
A. 0
B. 1
C. 2
D. $\sqrt{3}$
Answer: C
Solution:
Solution:
Question 104

Let $f(x) = a + bx | + cx|^2$, where a, b and c are real constants. Then f'(0)

exists if

Options:

A.
$$b = 0$$

B.
$$c = 0$$

C.
$$a = 0$$

$$D. b = c$$

Answer: A

Solution:

Solution:

Question 105

The equation of the circle passing through (1, -3) and the points common to the two circles $x^2 + y^2 - 6x + 8y - 16 = 0$ and $x^2 + y^2 + 4x - 2y - 8 = 0$ is

Options:

A.
$$x^2 + y^2 - 4x + 6y + 24 = 0$$

B.
$$2x^2 + 2y^2 + 3x + y - 20 = 0$$

C.
$$3x^2 + 3y^2 - 5x + 7y - 19 = 0$$

D.
$$x^2 + y^2 + 4x - 6y + 24 = 0$$

Answer: B

Solution:

Solution:

Question 106

Let $f(x) = \int_{1}^{x} \sqrt{2-t^2} dt$. Then the roots of the equation $x^2 - f'(x) = 0$ are

Options:

$$(A)$$
 ± 1

(B)
$$\pm \frac{1}{\sqrt{2}}$$

(D) 0 and 1

Answer: A

Solution:

Question 107

If $(\vec{i} + \vec{j} - \vec{k}) \times (3\vec{i} + a\vec{j} + b\vec{k}) = 0$, then the values of a and b are

Options:

A.
$$a = 1$$
, $b = 3$

B.
$$a = -3$$
, $b = 3$

C.
$$a = 3$$
, $b = -3$

D. a =
$$\frac{1}{3}$$
, b = $\frac{-1}{3}$

Answer: C

Solution:

Solution:

Question 108

The number of ways that a ring can be made out of 6 black and 4 white men standing on a ring, so that all the white men come together is

Options:

A. 8564

B. 8640

C. 8644

D. 8665

Answer: B

Solution:

Solution:

Question 109 In the interval 0 < x < 2, the function $f(x) = x^2$ has **Options:** A. maximum = 2 and minimum = 0B. maximum = 4 and minimum = 0C. no maximum and no minimum D. some maximum but no minimum **Answer: C Solution: Solution:** **Question 110** For the curve $y = 5x - 2x^3$, if x increases at the rate of 2 units/sec then at x = 3, the slope of the curve is changing at **Options:** A. 12 units/sec B. -49 units/sec C. -72 units/sec D. 72 units/sec **Answer: C Solution:**

Solution:

Question 111

The LCM of smallest two digit composite number and the smallest composite number is

Options:

A. 12

B. 4

C. 20
D. 44
Answer: C
Solution:
Solution:
Question 112
The number of binary operations on a set $\{1, 2, 3\}$ is
Options:
A. 3
B. 3^2
C. 3 ³
D. 3 ⁹
Answer: D
Solution:
Solution:
Question 113
The angle between two vectors \vec{a} and \vec{b} with respective magnitude 2 and 3 such that $\vec{a} \cdot \vec{b} = 3$ is
Options:
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$
Answer: D
Solution:
Solution:

The mean of n observation is \overline{x} . If the first observation is increased by 1 , second by 2 , the third by 3 , and so on, then the new mean is

Options:

A.
$$\frac{1}{x}$$
 + (2n + 1)

B.
$$\overline{x} + \frac{n+1}{2}$$

C.
$$\frac{1}{x}$$
 + (n + 1)

D.
$$\frac{-}{x} - \frac{n+1}{2}$$

Answer: B

Solution:

Solution:

0 11 115

Question 115

The domain of the function f (t) = $\sqrt{t - \frac{t}{1-t}}$ is

Options:

B.
$$(-\infty, 1)$$

C.
$$(-\infty, 1]$$

D.
$$(1, ∞) \cup \{0\}$$

Answer: D

Solution:

Solution:

Question 116

For every natural number n, $2^{3n} - 1$ is divisible by

Options:

A. 6
B. 16
C. 8
D. 7
Answer: D
Solution:
Solution:
Question 117
If x, y and z be greater than 1 , then the
Options:
$A. \log x \log y \log z$
B. $\log x + \log y + \log z$
C. 0
D. 1- $(\log x \log y \log z)$
Answer: C
Solution:
Solution:
Question 118
The first two terms of a geometric progression add to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is
Options:
A4
B12
C. 12

D. 4

Answer: B

Solution:

Question 119

Let P be a 2×2 matrix.

Statement-1: adj(adj P) = PStatement-2: |adj P| = |P|

Options:

A. Statement-1 is true, Statement-2 is false

B. Statement-1 is false, Statement-2 is true

C. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

D. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Answer: D

Solution:

Solution:

Question 120

If a line is equally inclined with the coordinate axes, then the angle of inclination is

Options:

A.
$$\cos^{-1}\left(\frac{1}{2}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

C.
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

D.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Answer: D

Solution:

Solution:

Question 121

Solution set of |2x-3| < |x+2| is

Options:

A.
$$\left(-\infty, \frac{1}{3}\right)$$

B.
$$\left[-\infty, \frac{1}{3}\right]$$

C.
$$(\frac{1}{3}, 5)$$

D.
$$\left(-\infty, -\frac{1}{3}\right)$$

Answer: C

Solution:

Solution:

Question 122

If $\sin^x \alpha + \cos^x \alpha \ge 1$, $0 < \alpha < \frac{\pi}{2}$, then

Options:

A.
$$x \in [2, \infty)$$

B.
$$x \in (-\infty, 2]$$

C.
$$x \in [-1, 1]$$

D.
$$x \in [0, 1]$$

Answer: B

Solution:

Solution:

Question 123

The maximum value of $8\cos x + 6\sin x$ is

Options:

A. 1

B. 5
C. 10
D. 100
Answer: C
Solution:
Solution:
Question 124
If $\tan x + \tan \left(x + \frac{\pi}{3}\right) + \tan \left(x + \frac{2\pi}{3}\right) = 3$, which of the following values is equal to 1?
Options:
A. tan x
B. tan 2 x
C. tan 3 x
D. tan 4 x
Answer: C
Solution:
Solution:
Question 125
The value of the expression $1 - \frac{\sin^2 y}{1 + \cos y} + \frac{1 + \cos y}{\sin y} - \frac{\sin y}{1 - \cos y}$ is equal to
Options:
A. 0
B. 1
C. sin y

D. cos y

E.

Answer: D
Solution:
Solution:
Question 126
The value of i ⁱ is
Options:
A. $e^{\frac{\pi}{2}}$
B. $e^{\frac{i\pi}{2}}$
C. $e^{\frac{-i\pi}{2}}$
D. $e^{\frac{-\pi}{2}}$
Answer: D
Solution:
Solution:
Question 127
The complex number $\sqrt{2}i$ equals
Options:
A. 2 + i
B. 1 + i
C. 1 – i
D. 2 – i
Answer: B
Solution:

Solution:

Question 128

If a = p + q, $b = p\omega + q\omega^2$, $c = p\omega^2 + q\omega$, where ω is the cube root of unity, then the product of a, b and c is equal to

Options:

A.
$$(p + q)^3$$

B.
$$p^3 + q^3$$

C.
$$p^{3} - q^{3}$$

D.
$$(p + q)^3 + 3pq(p + q)$$

Answer: B

Solution:

Solution:

Question 129

The equation $z\overline{z} + p\overline{z} + \overline{p}z + q = 0$, $q \in []$ represents a circle, if

Options:

A.
$$|p|^2 = q$$

B.
$$|p|^2 > q$$

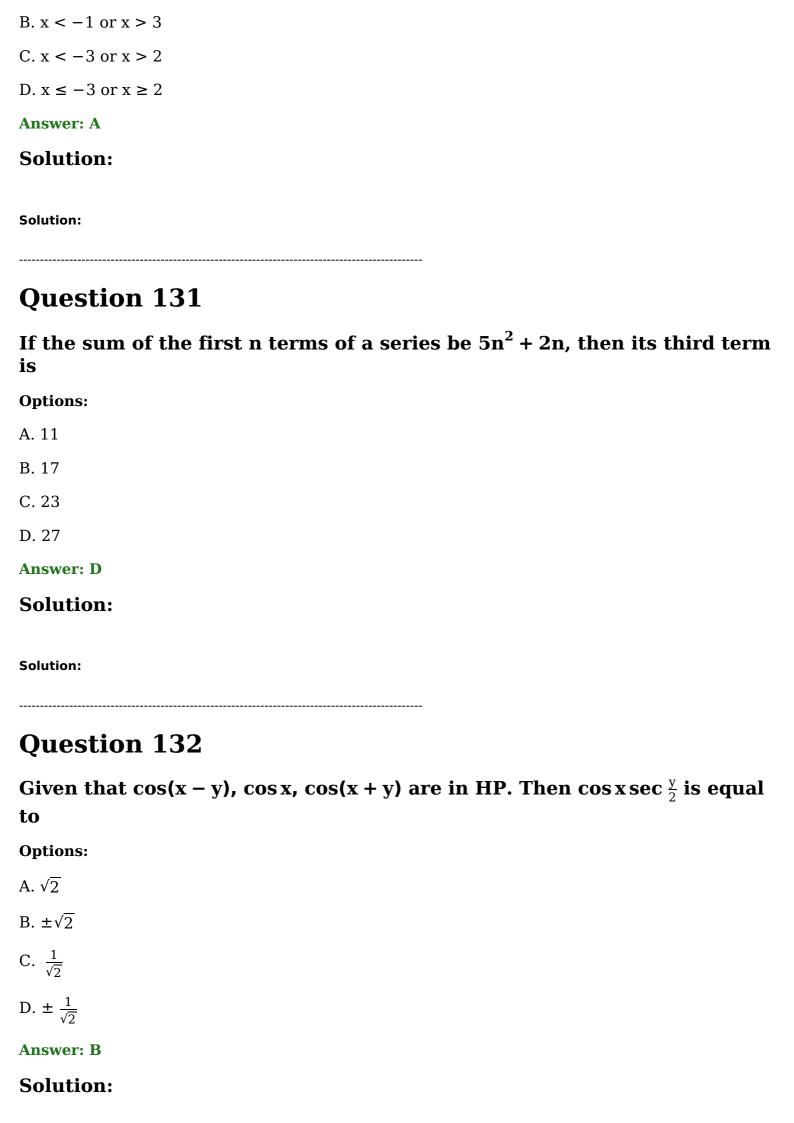
C.
$$|q|^2 = b$$

D.
$$pq = 1$$

Answer: B

Solution:

Solution:



Question 130

Let a, b, c be three distinct real numbers and they are in a Geometric Progression. If a + b + c = xb, then

Options:

A. $x \le -1$ or $x \ge 3$

Question 133

Let $x^2 + y^2 = t + \frac{1}{t}$ and $x^4 + y^4 = t^2 + \frac{1}{t^2}$. Then $\frac{dy}{dx}$ is equal to

Options:

- A. $\frac{y}{x}$
- B. $\frac{x}{y}$
- $C. \frac{y}{x}$
- D. $-\frac{x}{y}$

Answer: C

Solution:

Solution:

Question 134

Let $f(x) = \sin x$, g(x) = 2x and $h(x) = \cos x$. If $\phi(x) = [g \circ f \circ h](x)$, then $\varphi''\left(\frac{\pi}{4}\right)$ is equal to

Options:

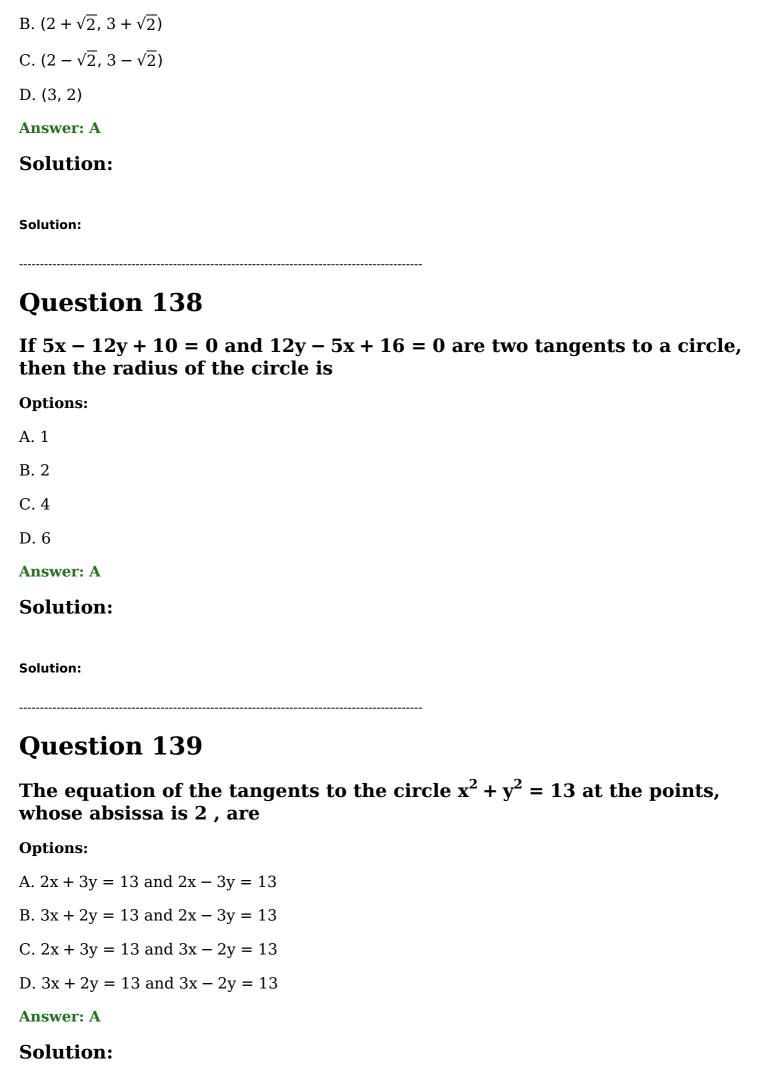
- A. -4
- B. 4
- C. 1
- D. 0

Answer: A

Solution:

Solution:

Question 135


If $y = \cos^2 \frac{3x}{2} - \sin^2 \frac{3x}{2}$, then $\frac{d^2y}{dx^2}$ equals

Options:
A. $-3\sqrt{1-y^2}$
B. 9y
C9y
D. $3\sqrt{1-y^2}$
Answer: C
Solution:
Solution:
Question 136
A rectangle ABCD, where $A = (0, 0)$, $B = (4, 0)$, $C = (4, 2)$, $D = (0, 2)$, undergoes the following transformations successively. (i) $f_1(x, y) \rightarrow (y, x)$ (ii) $f_2(x, y) \rightarrow (x + 3y, y)$
(iii) $f_3(x, y) \rightarrow \left(\frac{x-y}{2}, \frac{x+y}{2}\right)$ The final figure will be
Options:
A. a square
B. a rhombus
C. a rectangle
D. a parallelogram
Answer: D
Solution:
Solution:

If a point P(1, 2) is shifted by a distance $\sqrt{2}$ unit parallel to the line y=x, then coordinates of P in the new position are

Options:

A. (2, 3)

Solution:
Question 140
The equation of a common tangent to the circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ is
Options:
A. y = x + 1
B. $y = x + 2$
C. $y = x - 2$
D. $y = -x + 2$
Answer: B
Solution:
Solution:
Question 141
The latus rectum of an ellipse is equal to one-half of its minor axis. The eccentricity of the ellipse is
Options:
A. $\frac{1}{\sqrt{6}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{\sqrt{3}}{4}$
D. $\frac{1}{2}$
Answer: B
Solution:
Solution:

The image of the interval [1, 3] under the mapping $f: [] \rightarrow []$, given by

$f(x) = 2x^3 - 24x + 107$ is
Options:
A. [0, 89]
B. [75, 89]
C. [85, 89]
D. [75, 0]
Answer: B
Solution:
Solution:
Question 143
Question 143
Question 143 The value of $\lim_{x \to 0} \left(\frac{1+5x^2}{1+3x^2} \right)^{\frac{1}{x^2}}$ is equal to
Question 143 The value of $\lim_{x\to 0} \left(\frac{1+5x^2}{1+3x^2}\right)^{\frac{1}{x^2}}$ is equal to Options:

C. e^{-1}

D. e^{-2}

Answer: A

Solution:

Solution:

Question 144

$$\lim_{n \to \infty} \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} \right]$$
 is equal to

Options:

A. 1

B. -1

C. 0

D	7

Answer: A

Solution:

Solution:

Question 145

If
$$\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^2 + 1} - (ax + b) \right) = 2$$
, then

Options:

A. a = 1 and b = 1

B. a = 1 and b = -1

C. a = 1 and b = -2

D. a = 1 and b = 2

Answer: C

Solution:

Solution:

Question 146

If $f'(x) = \frac{1}{1+x^2}$ for all real x and f(0) = 0, then

Options:

A. f(2) < 0.4

B. f(2) > 2

C. 0.4 < f(2) < 2

D. f(2) = 2

Answer: C

Solution:

Solution:

 $\int \frac{x^4 + x^2 + 1}{x^2 - x + 1} dx \text{ is equal to}$

Options:

A.
$$\frac{x^3}{3} - \frac{x^2}{2} + x + c$$

B.
$$\frac{x^3}{3} + \frac{x^2}{2} + x + c$$

C.
$$\frac{x^3}{3} - \frac{x^2}{2} - x + c$$

D.
$$\frac{x^3}{3} + \frac{x^2}{2} - x + c$$

Answer: B

Solution:

Solution:

Question 148

 $\int \, \frac{\sin^{-1}x}{\sqrt{1-x^2}} \, dx$ is equal to

Options:

A.
$$\log(\sin^{-1}x) + c$$

B.
$$\frac{1}{2}(\sin^{-1}x)^2 + c$$

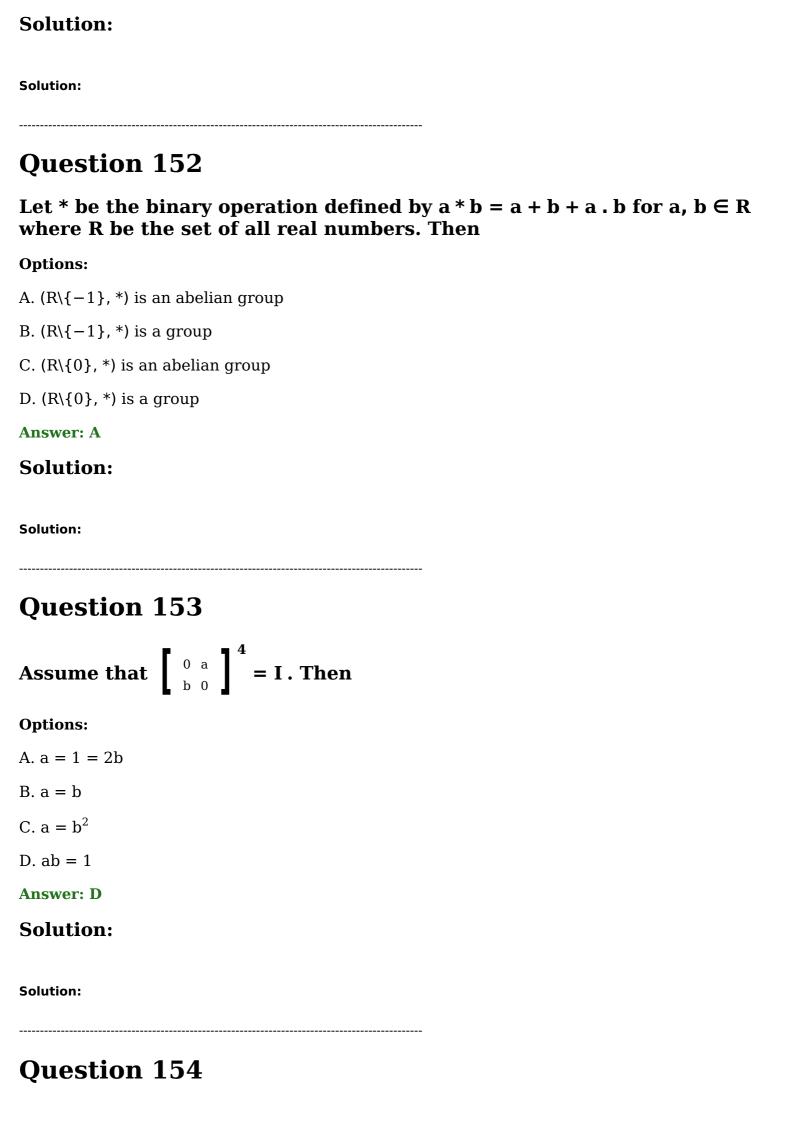
C.
$$\log(\sqrt{1-x^2}) + c$$

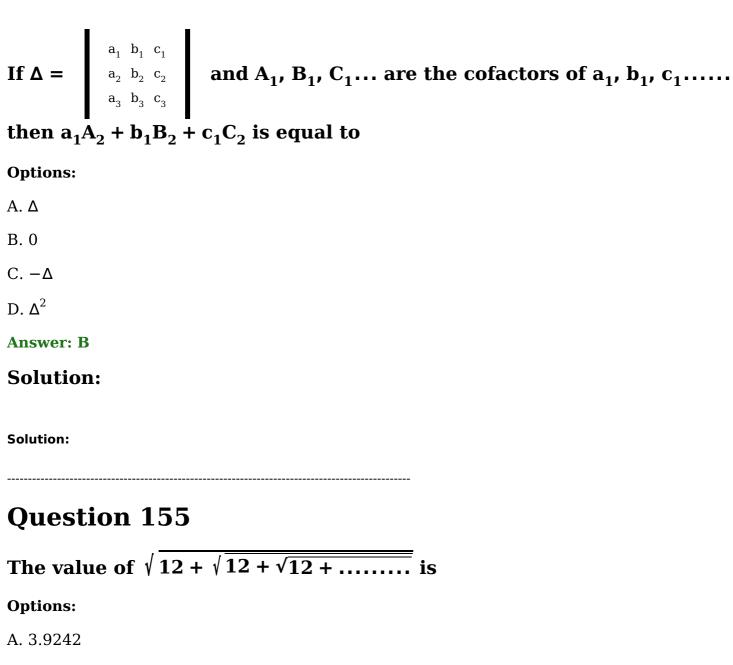
D.
$$\sin(\cos^{-1}x) + c$$

Answer: B

Solution:

Solution:




Question 149

The solution of the differential equation $\frac{d^2y}{dx^2} = e^{-2x}$ is $y = c_1e^{-2x} + c_2x + c_3$, where c_1 is

Options:

A. 1
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 2
Answer: B
Solution:
Solution:
Question 150
The area of the triangle having vertices as $\hat{i} - 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} - \hat{k}$, $4\hat{i} - 7\hat{j} + 7\hat{k}$ is
Options:
A. 36 sq unit
B. 0 sq unit
C. 39 sq unit
D. 11 sq unit
Answer: B
Solution:
Solution:
Question 151
If the position vectors of A, B and C are respectively $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$, and $3\hat{i} - 4\hat{j} - 4\hat{k}$, then $\cos^2\!A$ is equal to
Options:
A. 0
B. $\frac{6}{41}$
C. $\frac{35}{41}$
D. 1
Answer: C

B. 3.4646

C. 2.0000

D. 4.0000

Answer: D

Solution:

Solution:

Question 156

If cos x is an integrating factor of the differential equation $\frac{dy}{dx}$ + Py = Q, then P =

Options:

 $A. - \cot x$

_	
В.	cotx

C. tan x

Answer: D

Solution:

Solution:

Question 157

The particular integral of $f(D)y = 2^x + 2^2$ is

Options:

A.

$$\frac{1}{f(0)}x^2 + \frac{1}{f(1)}2^2$$
, where $f(0), f(1) \neq 0$

В.

$$\frac{1}{f(\log 2)}2^x + \frac{1}{f(0)}2^2$$
, where $f(\log 2), f(0) \neq 0$

C.

$$\frac{1}{f(0)}2^x + \frac{1}{f(\log 2)}2^2$$
, where $f(\log 2), f(0) \neq 0$

D.

$$\frac{1}{f(\log 2)}(2^x+2^2)$$
, where $f(\log 2) \neq 0$

Answer: B

Solution:

Solution:

Question 158

$$\lim_{x \to \infty} \left(\begin{array}{c} \frac{4 - x^2}{x^2 - 1} \end{array} \right) \text{ is equal to}$$

Options:

A. 1
B. 0
C4
D1
Answer: D
Solution:
Solution:
Question 159
$\int \frac{1}{x \ln x} dx$ is equal to
Options:
A. $\frac{1}{\ln^2 x} + c$
B. $\frac{1}{x(\ln x)^2} + c$
C. $\ln(x \ln x) + c$
D. $\ln(\ln x) + c$
Answer: D
Solution:
Solution:
Question 160
The maximum value of the function $f(x) = \frac{e^{\sin x}}{e^{-\cos x}}$ is
Options:
A. $\sin(e^2)$
B. e
C. 1
D. $e^{\sqrt{2}}$
Answer: D
Solution:

Question 161

The solution of the equation |z| - z = 1 + i is

Options:

A. i

B. -i

C. 1 + i

D. 1 - i

Answer: B

Solution:

Solution:

Question 162

Let A be the set of all z satisfying $\log_{\frac{1}{3}}\log_{\frac{1}{2}}(|z|^2+4z|+3)<0$. Then A is

Options:

A. an empty set

B. an infinite set

C. $\{z: |z| = 0\}$

D. $-\frac{1}{\sqrt{3}}$

Answer: A

Solution:

Solution:

Question 163

If

$$\sin^{-1}\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+\dots\right)+\cos^{-1}\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^4}{8}+\dots\right)=\frac{\pi}{2}$$
 for $0<|x|<\sqrt{2}$, then x equals

Options:
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 0
D. 1
Answer: D
Solution:
Solution:
Question 164
Which of the following functions is differentiable at $x = 0$?
Which of the following functions is differentiable at $\mathbf{x} = 0$? Options:
Options:
Options: A. cos(x) + x
Options: A. $cos(x) + x $ B. $cos(x) - x $
Options: A. cos(x) + x B. cos(x) - x C. sin (x) + x
Options: A. $cos(x) + x $ B. $cos(x) - x $ C. $sin(x) + x $ D. $sin(x) - x $
Options: A. cos(x) + x B. cos(x) - x C. sin (x) + x D. sin (x) - x Answer: D

Question 165

If P(A cup B) = P(A) + P(B) - P(A)P(B), then

Options:

A.
$$P\left(\frac{B}{A}\right) = P(B) - P(A)$$

B.
$$P(A' \cup B') = P(B') - P(A')$$

C.
$$P((A \cup B')) = P(B')$$

D.
$$P\left(\frac{A}{B}\right) = P(A)$$

Answer: D

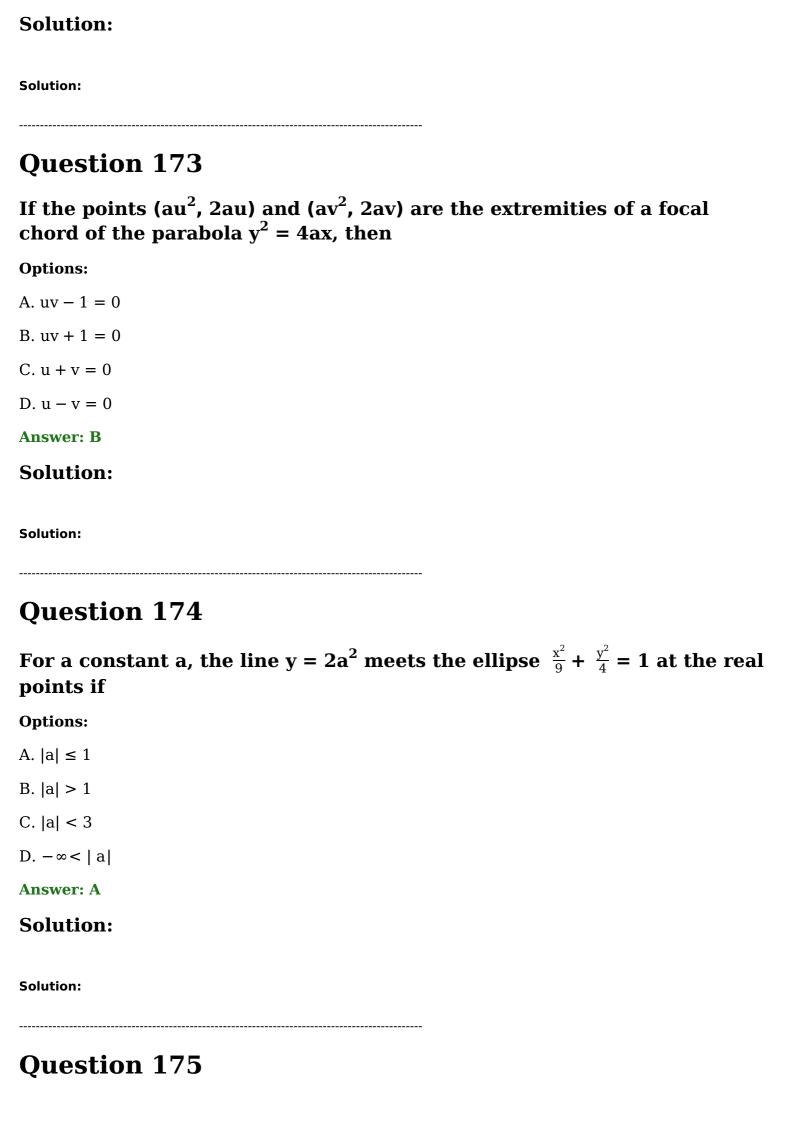
Solution:
Solution:
Question 166
If $A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$, $0 < x < \frac{\pi}{2}$ and $A + A' = I$, then the value of x is
Options:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{3}{\pi}$
D. $\frac{\pi}{2}$
Answer: A
Solution:
Solution:
Question 167
The maximum and minimum values of the function $f(x) = \sin 2x + 3 $ are respectively
Options:
A. (4, 2)
B. (2, 4)
C. $(2, -3)$
D. (2, 1)
Answer: A
Solution:
Solution:

The area of the region bounded by the curve $ x + y = 1$ and the axis of x is given by		
Options:		
A. 2		
B. 10		
C. 1		
D. 4		
Answer: C		
Solution:		
Solution:		
Question 169		
The ratio in which the area bounded by the curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the line $x = 3$, is		
Options:		
A. 19:49		
B. 15:49		
C. 12:37		
D. 1:3		

Answer: B

Solution:

Solution:


Question 170

The line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = $\frac{3}{2}$ and the curve $y = 1 + 4x - x^2$. The value of m is

Options:

A.
$$\frac{13}{6}$$

B. $\frac{13}{8}$	
C. $\frac{8}{13}$	
D. $\frac{6}{13}$	
Answer: A	
Solution:	
Solution:	
Question 1	71
The value of the	he integral $\int_{1}^{3} \sqrt{(2x+3)(3x^2+4)} dx$ cannot exceed
Options:	
A. $\sqrt{48}$	
B. √ 66	
C. √ 73	
D. $\sqrt{6}$	
Answer: B	
Solution:	
Solution:	
Question 1	72
	ary operation, on the set of all non-zero real numbers, $= \frac{ab}{5}$ for all a, $b \in R - \{0\}$. Then the value of 'x' such that , is
Options:	
A. 31	
B. 22	
C. 25	
D. 43	
Answer: C	

The mirror image of the directrix of the parabola $y^2 = 4(x + 1)$ in the line mirror $x + 2y = 3$ is
Options:
A. $x = -2$
B. $4y + 3x = 16$
C. $3x - 4y = -16$
D. $y = -1$
Answer: C
Solution:
Solution:
Question 176
The curve represented by $x = 3(\cos t + \sin t)$ and $y = 4(\cos t - \sin t)$ is
Options:
A. an ellipse
B. a parabola
C. a hyperbola
D. a circle
Answer: A
Solution:
Solution:
Question 177
Given E (X + c) = 8 and E (X - c) = 12 then the value of c is
Options:
A2
B. 4
C4
D. 2

Answer: A

Solution:

Solution:

Question 178

A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7	8
P(X = x)	а	3 <i>a</i>	5 <i>a</i>	7 <i>a</i>	9 <i>a</i>	11 <i>a</i>	13 <i>a</i>	15 <i>a</i>	17 <i>a</i>

The value of 'a' is

Options:

- A. $\frac{7}{81}$
- B. $\frac{5}{81}$
- C. $\frac{1}{81}$
- D. $\frac{2}{81}$

Answer: C

Solution:

Solution:

Question 179

If $\sin \left(\sin^{-1}\left(\frac{1}{5}\right) + \cos^{-1}x\right) = 1$, then the value of x is

Options:

- A. $\frac{32}{31}$
- B. $\frac{31}{32}$
- C. $\frac{1}{2}$
- D. $\frac{1}{5}$

Answer: D
Solution:
Solution:
Question 180
The equation of the normal to the curve $y=1-2^{\frac{x}{2}}$ at the point of intersection with the y-axis is
Options:
$A. 2y - x \log 2 = 0$
$B. 2x - y \log 2 = 0$
$C. y - x \log 2 = 0$
D. $2y + x = 0$
Answer: B
Solution:
Solution:
Question 181
If $y = x^2 + ax + b$ attains the minimum value 5 at $x = 3$, then the values of a and b are
Options:
A. $a = 6$, $b = -14$
B. $a = -6$, $b = 14$
C. $a = 14$, $b = -6$
D. $a = -14$, $b = 6$
Answer: B
Solution:
Solution:

Question 182

The product (32)(32) $\frac{1}{6}$ (32) $\frac{1}{36}$... ∞ is equal to

Options:

A. 16

B. 32

C. 64

D. 0

Answer: C

Solution:

Solution:

Question 183

If the volume of a parallelepiped whose edges are represented by $-12\vec{i} + \lambda\vec{k}$, $3\vec{j} - \vec{k}$ and $2\vec{i} + \vec{j} - 15\vec{k}$ is 546, then the value of λ is

Options:

A. 3

В. -5

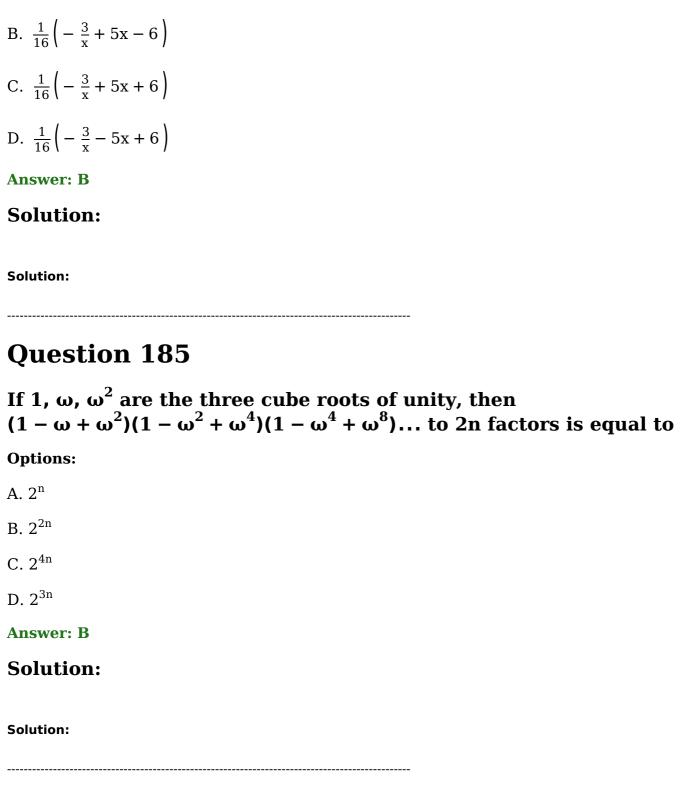
C. -179

D. 179

Answer: D

Solution:

Solution:



Question 184

If 3f(x) + 5f($\frac{1}{x}$) = $\frac{1}{x}$ - 3, $\forall x (\neq 0) \in \mathbb{R}$, then f(x) =

Options:

A.
$$\frac{1}{16} \left(\frac{3}{x} + 5x - 6 \right)$$

Question 186

For the equation $|x^2| + |x| - 6 = 0$, the roots are

Options:

- A. real and equal
- B. real with sum 0
- C. real with sum 1
- D. real with product 0

Answer: B

Solution:

Question 187

If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
, then det[adj(adj A)] is

Options:

- A. 14⁴
- B. 14³
- C. 14^2
- D. 14¹

Answer: A

Solution:

Solution:

Question 188

If
$$\Delta = \begin{bmatrix} 1 & 3\cos\theta & 1 \\ \sin\theta & 1 & 3\cos\theta \\ 1 & \sin\theta & 1 \end{bmatrix}$$
, then the maximum value of Δ is

Options:

- A. 10
- B. 11
- C. 12
- D. 14

Answer: A

Solution:

Solution:

The value of the sum of the series $14C_0 \cdot 15C_1 + 14C_1 \cdot 15C_2 + \dots 14C_{14} \cdot 15C_{15}$ is
Options:
A. 29C ₁₂
B. 29C ₁₀
C. 29C ₁₄
D. 29C ₁₆
Answer: C
Solution:
Solution:
Question 190
Let a_n be the n^{th} term of the G.P of positive numbers. Let $\sum_{n=1}^{100} a_{2n} = \alpha$ and $\sum_{n=1}^{100} a_{2n-1} = \beta$, such that $\alpha \neq \beta$. Then the common ratio is
Options:
A. $\frac{\alpha}{\beta}$
B. $\frac{\beta}{\alpha}$
C. $\sqrt{\frac{\alpha}{\beta}}$
D. $\sqrt{\frac{\beta}{\alpha}}$
Answer: A
Solution:
Solution:
Question 191
YY . O

 $\lim_{x\to 0} \frac{e^x + e^{-x} + 2\cos x - 4}{x^4} \text{ is equal to}$

Options:

A. 0
B. 1
C. $\frac{1}{6}$
D. $-\frac{1}{6}$
Answer: C
Solution:
Solution:
Question 192
The value of k so that the equations $x^2 - x - 12 = 0$ and $kx^2 + 10x + 3 = 0$ may have one root in common, is
Options:
A. 5
B2
C. 3
D. 2
Answer: C
Solution:
Solution:
Question 193
If f and g be differentiable functions satisfying $g'(a) = 2$, $g(a) = b$ and $f'(b)$ is equal to
Options:
A. 2
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer:	
AllSwer:	U

Solution:

Solution:

Question 194

 $\int \, \frac{\sqrt{1+\sqrt{x}}}{x} \, dx$ is equal to

Options:

A.
$$2\sqrt{1+\sqrt{x}}-2\log\left(\frac{\sqrt{1+\sqrt{x}}-1}{\sqrt{1+\sqrt{x}}+1}\right)+C$$

B.
$$4\sqrt{1+\sqrt{x}}-2\log\left(\frac{\sqrt{1+\sqrt{x}}-1}{\sqrt{1+\sqrt{x}}+1}\right)+C$$

C.
$$4\sqrt{1+\sqrt{x}}+2\log\left(\frac{\sqrt{1+\sqrt{x}}-1}{\sqrt{1+\sqrt{x}}+1}\right)+C$$

D.
$$2\sqrt{1+\sqrt{x}}+2\log\left(\frac{\sqrt{1+\sqrt{x}}-1}{\sqrt{1+\sqrt{x}}+1}\right)+C$$

Answer: C

Solution:

Solution:

Question 195

A book contains 1,000 pages. A page is chosen at random. The probabilities that the sum of the digits of the marked number on the page is equal to 9, is

Options:

A.
$$\frac{23}{500}$$

B.
$$\frac{11}{200}$$

C.
$$\frac{7}{100}$$

D.
$$\frac{7}{500}$$

Answer: B

Solution:
Solution:
Question 196
If $ \vec{a} = 10$, $ \vec{b} = 2$ and $\vec{a} \cdot \vec{b} = 12$, then the value of $ \vec{a} \times \vec{b} $ is
Options:
A. 5
B. 10
C. 14
D. 16
Answer: D
Solution:
Solution:
Question 197
A plane meets the coordinate axes in points A, B and C and the centroid of the triangle ABC is (α , β , γ). Then the equation of the plane is
Options:
A. $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$
B. $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$
C. $\alpha x + \beta y + \gamma = 3$
D. $\alpha x + \beta y + \gamma = \frac{1}{3}$
Answer: B
Solution:
Solution:

Question 198

Options:
A. $(\alpha, \beta, 0)$
Β. (0, 0, γ)
C. $(-\alpha, -\beta, \gamma)$
D. $(\alpha, \beta, -\gamma)$
Answer: D
Solution:
Solution:
Question 199
The mean and variance of a random variable X having binomial distribution are 3 and 2 respectively. Then the probability $P(X=2)$ is
Options:
A. $\frac{2^7}{3^7}$
B. $\frac{2^9}{3^7}$
C. $\frac{2^7}{3^9}$
D. $\frac{2^9}{3^9}$
Answer: B
Solution:
Solution:
Question 200
A flashlight has 8 batteries out of which 3 are dead. If 2 batteries are selected one after the other without replacement and tested, the probability that both are dead is
Options:

A. $\frac{33}{56}$

The reflection of the point (a, $\beta,\,\gamma$) in the XOY – plane is

B. $\frac{9}{64}$	
C. $\frac{1}{14}$	
D. $\frac{3}{28}$	

Answer: D

Solution:

Solution:	