Chapter : 10. QUADRATIC EQUATIONS

Exercise : 10A

Question: 1 A

Which of the foll

Solution:

The given equation $x^2 - x + 3 = 0$ is a quadratic equation.

Explanation - It is of degree 2, it is in the form $ax^2 + bx + c = 0$ (a \neq 0, a, b, c are real numbers)

where a = 1, b = -1, c = 3.

Question: 1 B

Which of the foll

Solution:

The given equation $2x^2 + \frac{5}{2}x - \sqrt{3} = 0$ equation is a quadratic equation.

Explanation - It is of degree 2, it is in the form $ax^2 + bx + c = 0$ (a \neq 0, a, b, c are real numbers)

where a = 2, b = $\frac{5}{2}$, c = $-\sqrt{3}$

Question: 1 C

Which of the foll

Solution:

The given equation $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$ is a quadratic equation.

Explanation - It is of degree 2, it is in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers) where a = $\sqrt{2}$, b = 7, c = $5\sqrt{2}$.

Question: 1 D

Which of the foll

Solution:

The given equation $\frac{1}{3}x^2 + \frac{1}{5}x - 2 = 0$ is a quadratic equation.

Explanation - It is of degree 2, it is in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers)

where a = 1/3, b = 1/5, c = -2.

Question: 1 E

Which of the foll

Solution:

The given equation $x^2 - 3x - \sqrt{x} + 4 = 0$ is not a quadratic equation.

Explanation - It is not in the form of ax^2 + bx + c = 0 because it has an extra term - \sqrt{x} with power 1/2

Question: 1 F

Which of the foll

Solution:

The given equation $x - \frac{6}{x} = 3$ is a quadratic equation.

Explanation - Given $x - \frac{6}{x} = 3$

On solving the equation it gets reduced to $x^2 - 6 = 3x$; $x^2 - 3x - 6 = 0$; It is of degree 2 and it is in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers) where a = 1, b = -3, c = -6.

Question: 1 G

Which of the foll

Solution:

The given equation $x + \frac{2}{x} = x^2$ is not a quadratic equation.

Explanation - Given $x + \frac{2}{x} = x^2$

On getting reduced it becomes $x^2 + 2 = x^3$, it has degree = 3, it is not in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers).

Question: 1 H

Which of the foll

Solution:

The given equation $x^2 - \frac{1}{x^2} = 5$ is not a quadratic equation.

Explanation - Given $x^2 - \frac{1}{x^2} = 5$

On getting reduced it becomes $x^4 - 1 = 5x^2$; $x^4 - 5x^2 - 1 = 0$

It is not in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers)

Question: 1 I

Which of the foll

Solution:

The given equation $(x + 2)^3 = x^3 - 8$ is a quadratic equation.

Explanation Given $(x + 2)^3 = x^3 - 8$

On getting reduced it becomes $x^3 + 8 + 6x^2 + 12x = x^3 - 8$

 $= 6x^2 + 12x + 16 = 0$

Now, using $(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

where a = 6, b = 12, c = 16

It is in the form $ax^2 + bx + c = 0$ (a \neq 0, a, b, c are real numbers)

Question: 1 J

Which of the foll

Solution:

The given (2x + 3)(3x + 2) = 6(x - 1)(x - 2)equation is not a quadratic equation.

Explanation - Given (2x + 3)(3x + 2) = 6(x - 1)(x - 2)

On getting reduced it becomes $6x^2 + 4x + 9x + 6 = 6(x^2 - 2x - x + 2)$

 $6x^2 + 13x + 6 = 6x^2 - 18x + 12$

31x-6 = 0

It is not in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers)

Question: 1 K

Which of the foll

Solution:

The given equation $\left(x + \frac{1}{x}\right)^2 = 2\left(x + \frac{1}{x}\right) + 3$ is not a quadratic equation. Explanation - Given $\left(x + \frac{1}{x}\right)^2 = 2\left(x + \frac{1}{x}\right) + 3$ On getting reduced it becomes $-\left(\frac{x^2+1}{x}\right)^2 = 2\left(\frac{x^2+1}{x}\right)^2 + 3$ $(x^2 + 1)^2 = 2x(x^2 + 1) + 3x^2$ $x^4 + 2x^2 + 1 = 2x^3 + 2x + 3x^2$ $x^4 - 2x^3 - x^2 - 2x + 1 = 0$ It is not in the form $ax^2 + bx + c = 0$ (a $\neq 0$, a, b, c are real numbers)

Question: 2

Which of the foll

Solution:

(i) - 1 is the root of given equation.

Explanation - Substituting value - 1 in LHS

$$= 3(-1)^2 + 2(-1) - 1$$

$$= 3 - 3 = 0 = RHS$$

Value satisfies the equation or LHS = RHS.

(ii) $\frac{1}{2}$ is the root of the given euation $3x^2 + 2x - 1 = 0$

Explanation - Substituting value in LHS

$$= 3\left(\frac{1}{3}\right)^{2} + 2\left(\frac{1}{3}\right) - 1$$
$$= \frac{1}{3} + \frac{2}{3} - 1$$

= 1 - 1 = 0 = RHS

Value satisfies the equation or LHS = RHS.

(iii) $\frac{-1}{2}$ is not the root of given equation $3x^2 + 2x - 1 = 0$

Explanation - Substituting value in LHS

$$= 3\left(\frac{-1}{2}\right)^2 + 2\left(\frac{-1}{2}\right) - 1 = 0$$
$$= \frac{3}{4} - 2$$
$$= \frac{-5}{4} \neq 0 \neq \text{RHS}$$

Value does not satisfy the equation or LHS \neq RHS.

Question: 3

Find the value of

Solution:

Given x = 1 is a root of the equation $x^2 + kx + 3 = 0$ it means it satisfies the equation.

Substituting x = 1 in equation -

 $1^2 + k(1) + 3 = 0$

4 + k = 0

k = -4

Putting the value of k in the given equation : $x^2 + kx + 3 = 0$

This reduced to the quadratic equation $x^2 - 4x + 3 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = -4 c = 3= 1.3 = 3 And either of their sum or difference = b = - 4 Thus the two terms are - 1 and - 3 Sum = - 1 - 3 = - 4 Product = -1. - 3 = 3 $x^2 - 4x + 3 = 0$ $x^2 - x - 3x + 3 = 0$ x(x-1)-3(x-1) = 0(x-1)(x-3) = 0x = 1 or x = 3Thus other root is 3. **Question: 4** Find the values o Solution: Given x = 3/4 or x = -2 are the roots of the equation $ax^2 + bx - 6 = 0$ Putting $x = \frac{3}{4}$ in the equation gives -

$$a\left(\frac{3}{4}\right)^{2} + b\left(\frac{3}{4}\right) - 6 = 0$$

$$\frac{9a + 12b - 96}{16} = 0;$$

$$9a + 12b - 96 = 0$$

$$3a + 4b - 32 = 0 - \dots (1)$$

putting x = - 2 in equation gives

$$a(-2)^{2} + b(-2) - 6 = 0$$

$$4a - 2b - 6 = 0$$

2a-b-3 = 0 $2a-3 = b - \dots (2)$ Substituting (2) in (1) 3a + 4(2a-3)-32 = 0 $\Rightarrow 11a-44 = 0$ $\Rightarrow a = 4$ $\Rightarrow b = 2(4)-3 = 5$ Thus for a - 4 when $5 = -\frac{3}{2}$ and 2 we there should also a fill be reaction 2 when 5

Thus for a = 4 or b = 5; x = $\frac{3}{4}$ or x = -2 are the roots of the equation $ax^2 + bx - 6 = 0$

Question: 5

Solve each of the

Solution:

(2x-3)(3x+1) = 0

 $6x^2 + 2x - 9x - 3 = 0$

2x(3x + 1)-3(3x + 1) = 0 taking common from first two terms and last two terms

(2x-3)(3x + 1) = 0

(2x-3) = 0 or (3x + 1) = 0

x = 3/2 or x = (-1)/3

Roots of equation are 3/2, (-1)/3

Question: 6

Solve each of the

Solution:

 $4x^2 + 5x = 0$

x(4x + 5) = 0 (On taking x common)

x = 0 or (4x + 5) = 0

 $\mathbf{x}=(-5)/4$

Roots of equation are 0, (-5)/4

Question: 7

Solve each of the

Solution:

 $3x^{2} - 243 = 0$ $3x^{2} = 243$ $x^{2} = 81$ $x = \sqrt{81}$ $x = \pm 9$

Roots of equation are 9, - 9

Question: 8

Solve each of the

Solution:

 $2x^2 + x - 6 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

```
Product = a.c
For the given equation a = 2; b = 1; c = -6
= 2. - 6
= - 12
And either of their sum or difference = b
= 1
Thus the two terms are 4 and - 3
Difference = 4 - 3 = 1
Product = 4. - 3 = -12
2x^2 + x - 6 = 0
2x^2 + 4x - 3x - 6 = 0
2x(x + 2) - 3(x + 2) = 0
(2x-3)(x + 2) = 0
(2x-3) = 0 or (x + 2) = 0
x = 3/2, x = -2
Roots of equation are 3/2, - 2
```

Question: 9

Solve each of the

Solution:

 $x^2 + 6x + 5 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1, b = 6, c = 5

= 1.5 = 5

And either of their sum or difference = b

= 6

Thus the two terms are 1 and 5

Sum = 5 + 1 = 6 Product = 5.1 = 5 $x^{2} + 6x + 5 = 0$ $x^{2} + x + 5x + 5 = 0$ x(x + 1) + 5(x + 1) = 0 (x + 1)(x + 5) = 0 (x + 1) = 0 or (x + 5) = 0x = -1, x = -5 Roots of equation are - 1, - 5

Question: 10

Solve each of the

Solution:

 $9x^2 - 3x - 2 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9; b = -3; c = -2

= 9. - 2 = - 18

And either of their sum or difference = b

Thus the two terms are - $6 \mbox{ and } 3$

- Sum = -6 + 3 = -3Product = -6.3 = -18 $9x^2 - 3x - 2 = 0$ $9x^2 - 6x + 3x - 2 = 0$ 3x(3x-2) + 1(3x-2) = 0
- (3x + 1)(3x-2) = 0
- (3x + 1) = 0 or (3x-2) = 0

x = (-1)/3 or x = 2/3

Roots of equation are (-1)/3, 2/3

Question: 11

Solve each of the

Solution:

 $x^2 + 12x + 35 = 0$

x(x + 7) + 5(x + 7) = 0

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1; b = 12; c = 35 = 1.35 = 35 And either of their sum or difference = b = 12 Thus the two terms are 7 and 5 Sum = 7 + 5 = 12 Product = 7.5 = 35 x^2 + 12x + 35 = 0 x^2 + 7x + 5x + 35 = 0 (x + 5)(x + 7) = 0(x + 5) = 0 or (x + 7) = 0x = -5 or x = -7

Roots of equation are - 5, - 7

Question: 12

Solve each

Solution:

 $x^{2} = 18x - 77$ $x^{2} - 18x + 77 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1; b = -18; c = 77

= 1.77 = 77

And either of their sum or difference = b

= - 18

Thus the two terms are - 7 and - 11 $\,$

Sum = - 7 - 11 = - 18

Product = -7. -11 = 77

 $x^2 - 18x + 77 = 0$

 $x^2 - 7x - 11x + 77 = 0$

x(x-7)-11(x-7) = 0

(x-7)(x-11) = 0

(x-7) = 0 or (x-11) = 0

$$x = 7 \text{ or } x = 11$$

Roots of equation are 7, 11

Question: 13

Solve each of the

Solution:

 $6x^2 + 11x + 3 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 6; b = 11; c = 3

= 6.3 = 18

And either of their sum or difference = b

= 11

Thus the two terms are $9 \mbox{ and } 2$

Sum = 9 + 2 = 11

Product = 9.2 = 18 $6x^2 + 11x + 3 = 0$ $6x^2 + 9x + 2x + 3 = 0$ 3x(2x + 3) + 1(2x + 3) = 0 (3x + 1)(2x + 3) = 0 (3x + 1) = 0 or (2x + 3) = 0 x = (-1)/3 or x = (-3)/2Roots of equation are $\frac{-1}{2}, \frac{-3}{2}$

Question: 14

Solve each of the

Solution:

 $6x^2 + x - 12 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 6; b = 1; c = -12

= 6. - 12 = - 72

And either of their sum or difference = b

= 1

Thus the two terms are 9 and - 8 $\,$

Difference = 9 - 8 = 1

Product = 9. - 8 = -72

$$6x^2 + x - 12 = 0$$

 $6x^2 + 9x - 8x - 12 = 0$

3x(2x + 3) - 4(2x + 3) = 0

(2x + 3)(3x-4) = 0

(2x + 3) = 0 or (3x-4) = 0

x = (-3)/2 or x = 4/3

Roots of equation are $\frac{-3}{2}$, $\frac{4}{3}$

Question: 15

Solve each of the

Solution:

 $3x^2 - 2x - 1 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 3; b = -2; c = -1

= 3. - 1 = - 3

And either of their sum or difference = b = - 2 Thus the two terms are - 3 and 1 Difference = - 3 + 1 = - 2 Product = - 3.1 = - 3 $3x^2 - 2x - 1 = 0$ $3x^2 - 3x + x - 1 = 0$ 3x(x-1) + 1(x-1) = 0 (x-1)(3x + 1) = 0 (x-1) = 0 or (3x + 1) = 0 x = 1 or x = (-1)/3Roots of equation are 1, (-1)/3 Question: 16

Solve each of the

Solution:

 $4x^{2} - 9x = 100$ $4x^{2} - 9x - 100 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 4; b = -9; c = -100= 4. - 100 = -400And either of their sum or difference = b = -9Thus the two terms are - 25 and 16 Difference = -25 + 16 = -9Product = -25.16 = -400 $4x^2 - 9x - 100 = 0$ $4x^2 - 25x + 16x - 100 = 0$ x(4x-25) + 4(4x-25) = 0(4x-25)(x+4) = 0(4x-25) = 0 or (x + 4) = 0x = 25/4 or x = -4Roots of equation are 25/4, - 4 **Question: 17** Solve each of the Solution: $15x^2 - 28 = x$

 $15x^2 - x - 28 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 15; b = -1; c = -28= 15. - 28 = -420And either of their sum or difference = b = - 1 Thus the two terms are - 21 and 20 Difference = -21 + 20 = -1Product = -21.20 = -420 $15x^2 - x - 28 = 0$ $15x^2 - 21x + 20x - 28 = 0$ 3x(5x-7) + 4(5x-7) = 0(5x-7)(3x+4) = 0(5x-7) = 0 or (3x + 4) = 0x = 7/5 or x = (-4)/3Roots of equation are 7/5, - 4/3 **Question: 18**

Solve each of the

Solution:

 $4-11x = 3x^2$

 $3x^2 + 11x - 4 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 3; b = 11; c = -4

= 3. - 4 = - 12

And either of their sum or difference = b

= 11

Thus the two terms are 12 and - 1

Difference = 12 - 1 = 11Product = 12 - 1 = -12 $3x^{2} + 11x - 4 = 0$ $3x^{2} + 12x - 1x - 4 = 0$ 3x(x + 4) - 1(x + 4) = 0 (x + 4)(3x - 1) = 0(x + 4) = 0 or (3x - 1) = 0

x = -4 or x = 1/3

Roots of equation are - 4, 1/3

Question: 19

Solve each of the

Solution:

 $48x^2 - 13x - 1 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 48; b = -13; c = -1

 $= 48 \times -1 = -48$

And either of their sum or difference = b

Thus the two terms are - 16 and 3 $\,$

- Difference = -16 + 3 = -13
- Product = -16.3 = -48
- $48x^2 13x 1 = 0$
- $48x^2 16x + 3x 1 = 0$
- 16x(3x-1) + 1(3x-1) = 0
- (16x + 1)(3x-1) = 0
- (16x + 1) = 0 or (3x-1) = 0

$$x = (-1)/6$$
 or $x = 1/3$

Roots of equation are $\frac{-1}{6}$ or $\frac{1}{3}$

Question: 20

Solve each of the

Solution:

 $x^2 + 2\sqrt{2}x - 6 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1; $b = 2\sqrt{2}$; c = -6

= 1. - 6 = - 6

And either of their sum or difference = b

 $= 2\sqrt{2}$

Thus the two terms are $3\sqrt{2}$ and $-\sqrt{2}$

Difference = $3\sqrt{2}-\sqrt{2} = 2\sqrt{2}$

Product = $3\sqrt{2}$.- $\sqrt{2}$ = 3.-2 = -6

 $x^2 + 2\sqrt{2}x - 6 = 0$

 $x^{2} + 3\sqrt{2}x - \sqrt{2}x - 3\sqrt{2}\sqrt{2} = 0$ using $2 = \sqrt{2}\sqrt{2}$

 $x(x + 3\sqrt{2}) - \sqrt{2}(x + 3\sqrt{2}) = 0$ (x-\sqrt{2})(x + 3\sqrt{2}) = 0 (x-\sqrt{2}) = 0 or (x + 3\sqrt{2}) = 0 x = \sqrt{2} or x = -3\sqrt{2}

Roots of equation are $\sqrt{2}$ or $-3\sqrt{2}$

Question: 21

Solve each of the

Solution:

 $\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{3}$; b = 10; $c = 7\sqrt{3}$

 $=\sqrt{3.7}\sqrt{3}=21$

(using $3 = \sqrt{3} \times \sqrt{3}$)

And either of their sum or difference = b

Thus, the two terms are 7 and 3

Sum = 7 + 3 = 10 Product = 7.3 = 21 $\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0$ $\sqrt{3}x^2 + 7x + 3x + 7\sqrt{3} = 0$ (using 3 = $\sqrt{3}.\sqrt{3}$) $x(\sqrt{3}x + 7) + \sqrt{3}(\sqrt{3}x + 7) = 0$ $(x + \sqrt{3})(\sqrt{3}x + 7) = 0$ $(x + \sqrt{3}) = 0$ or $(\sqrt{3}x + 7) = 0$ $x = -\sqrt{3}$ or $x = \frac{-7}{\sqrt{3}}$

Roots of equation are $-\sqrt{3}$ or $\frac{-7}{\sqrt{3}}$

Question: 22

Solve each of the

Solution:

 $\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{(3;)} b = 11; c = 6\sqrt{3}$

 $=\sqrt{3.6}\sqrt{3} = 3.6 = 18$

(using $3 = \sqrt{3}.\sqrt{3}$

And either of their sum or difference = b = 11 Thus the two terms are 9 and 2 Sum = 9 + 2 = 11 Product = 9.2 = 18 $\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0$ $\sqrt{3}x^2 + 9x + 2x + 6\sqrt{3} = 0$ $\sqrt{3}x(x + 3\sqrt{3}) + 2(x + 3\sqrt{3}) = 0$ (using 9 = 3.3 = $3\sqrt{3}\sqrt{3}$) $(\sqrt{3}x + 2)(x + 3\sqrt{3}) = 0$ $(\sqrt{3}x + 2)(x + 3\sqrt{3}) = 0$ $x = -3\sqrt{3} \text{ or } x = \frac{-2}{\sqrt{3}}$

Roots of equation are $-3\sqrt{3}$ or $\frac{-2}{\sqrt{3}}$

Question: 23

Solve each of the

Solution:

 $3\sqrt{7}x^2 + 4x - \sqrt{7} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 3\sqrt{7}$; b = 4; $c = -\sqrt{7}$

 $= 3\sqrt{7} \cdot \sqrt{7} = 3 \cdot 7 = -21$

(using $7 = \sqrt{7}.\sqrt{7}$)

And either of their sum or difference = b

= 4

Thus the two terms are 7 and - 3

Difference = 7 - 3 = 4

 $Product = 7 \times -3 = -21$

 $3\sqrt{7}x^2 + 4x - \sqrt{7} = 0$

$$3\sqrt{7}x^2 + 7x - 3x - \sqrt{7} = 0$$

(using $7 = \sqrt{7}.\sqrt{7}$)

 $\sqrt{7}x(3x + \sqrt{7}) - 1(3x + \sqrt{7}) = 0$

 $(\sqrt{7} \text{ x-1})(3x + \sqrt{7}) = 0$

 $(\sqrt{7} \text{ x-1}) = 0 \text{ or } (3x + \sqrt{7}) = 0$

$$x = 1/\sqrt{7} \text{ or } x = (-7)/\sqrt{3}$$

Roots of equation are $x = \frac{1}{\sqrt{7}}$ or $x = \frac{-7}{\sqrt{3}}$

Question: 24

Solve each of the

Solution:

 $\sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

$$Product = a.c$$

For the given equation $a = \sqrt{7}$; b = -6; $c = -13\sqrt{7}$

 $=\sqrt{7.-13}\sqrt{7} = -13.7 = -91$

And either of their sum or difference = b

Thus the two terms are 7 and - 13 $\,$

Difference = -13 + 7 = -6

Product = 7. - 13 = -91

 $\sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$

$$\sqrt{7}x^2 - 13x + 7x - 13\sqrt{7} = 0$$

$$\sqrt{7}x^2 - 13x + 7x - 13\sqrt{7} = 0$$

 $x(\sqrt{7} x-13) + \sqrt{7} (\sqrt{7} x-13) = 0$

$$(x + \sqrt{7})(\sqrt{7} x - 13) = 0$$

 $(x + \sqrt{7}) = 0$ or $(\sqrt{7} x-13) = 0$

$$x = -\sqrt{7} \text{ or } x = \frac{13}{\sqrt{7}}$$

Roots of equation are $-\sqrt{7}$ or $\frac{13}{\sqrt{7}}$

Question: 25

Solve each of the

Solution:

 $4\sqrt{6}x^2 - 13x - 2\sqrt{6} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 4\sqrt{6}$; b = -13; $c = -2\sqrt{6}$

$$= 4\sqrt{6} - 2\sqrt{6} = -48$$

And either of their sum or difference = b

= - 13

Thus the two terms are - 16 and 3

Difference = -16 + 3 = -13

Product = -16.3 = -48

$$4\sqrt{6}x^2 - 13x - 2\sqrt{6} = 0$$

 $4\sqrt{6}x^2 - 16x + 3x - 2\sqrt{6} = 0$

 $4\sqrt{2}x(\sqrt{3}x - 2\sqrt{2}) + \sqrt{3}(\sqrt{3}x - 2\sqrt{2}) = 0$

(On using $\sqrt{6} = \sqrt{3} \sqrt{2}$ and $16 = 4.2.\sqrt{2} \sqrt{2}$) $\Rightarrow (4\sqrt{2} x + \sqrt{3})(\sqrt{3} x \cdot 2\sqrt{2}) = 0$ $\Rightarrow (4\sqrt{2} x + \sqrt{3}) = 0$ or $(\sqrt{3} x \cdot 2\sqrt{2}) = 0$ $x = (-\sqrt{3})/(4\sqrt{2})$ or $x = (2\sqrt{2})/\sqrt{3}$ Roots of equation are $\frac{-\sqrt{3}}{4\sqrt{2}}$ or $\frac{2\sqrt{2}}{\sqrt{3}}$

Question: 26

Solve each of the

Solution:

 $3x^2 - 2\sqrt{6}x + 2 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 3; b = $-2\sqrt{(6;)}$ c = 2 = 3.2 = 6 And either of their sum or difference = b = $-2\sqrt{6}$ Thus the two terms are $-\sqrt{6}$ and $-\sqrt{6}$ Sum = $-\sqrt{6} - \sqrt{6} = -2\sqrt{6}$ Product = $-\sqrt{6} - \sqrt{6} = -6$ 6 = $\sqrt{6} - \sqrt{6}$ $3x^2 - 2\sqrt{6}x + 2 = 0$ $3x^2 - \sqrt{6}x - \sqrt{6}x + 2 = 0$ (On using 3 = $\sqrt{3} \cdot \sqrt{3}$ and $\sqrt{6} = \sqrt{3} \cdot \sqrt{2}$) $\sqrt{3}x(\sqrt{3}x - \sqrt{2}) - \sqrt{2}(\sqrt{3}x - \sqrt{2}) = 0$ $(\sqrt{3}x - \sqrt{2})(\sqrt{3}x - \sqrt{2}) = 0$ $x = \frac{\sqrt{2}}{\sqrt{3}}$ or $x = \frac{\sqrt{2}}{\sqrt{3}}$ Equation has repeated roots $\frac{\sqrt{2}}{\sqrt{3}}$

Question: 27

Solve each of the

Solution:

 $\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{3} b = -2\sqrt{2} c = -2\sqrt{3}$

$$=\sqrt{3.-2\sqrt{3}} = -2.3 = -6$$

And either of their sum or difference = b

 $= -2\sqrt{2}$

Thus the two terms are $-3\sqrt{2}$ and $\sqrt{2}$ Difference = $-3\sqrt{2} + \sqrt{2} = -2\sqrt{2}$ Product = $-3\sqrt{2} \times \sqrt{2} = -3.2 = -6$ $\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$ $\sqrt{3}x^2 - 3\sqrt{2}x + \sqrt{2}x + 2\sqrt{3} = 0$ (On using $3\sqrt{2} = \sqrt{3}\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{6}$) $\sqrt{3}x(x - \sqrt{6}) + \sqrt{2}(x - \sqrt{6}) = 0$ ($\therefore 2\sqrt{3} = \sqrt{2}\sqrt{2}\sqrt{3} = \sqrt{2}\sqrt{6}$) $(x - \sqrt{6})(\sqrt{3}x + \sqrt{2}) = 0$ $x = \sqrt{6}$ or $x = -\frac{\sqrt{2}}{\sqrt{3}}$

Roots of equation are $\sqrt{6}$ or $-\frac{\sqrt{2}}{\sqrt{3}}$

Question: 28

Solve each of the

Solution:

 $x^2 - 3\sqrt{5}x + 10 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1; $b = -3\sqrt{5}$; c = 10= 1.10 = 10And either of their sum or difference = b $= -3\sqrt{5}$ Thus the two terms are -2 $\sqrt{5}$ and - $\sqrt{5}$ $Sum = -2\sqrt{5} - \sqrt{5} = -3\sqrt{5}$ Product = $-2\sqrt{5}$. $-\sqrt{5} = 2.5 = 10$ using $5 = \sqrt{5}$. $\sqrt{5}$ $x^2 - 3\sqrt{5}x + 10 = 0$ $x^2 - 2\sqrt{5}x - \sqrt{5}x + 10 = 0$ (On using: $10 = 2.5 = 2.\sqrt{5}\sqrt{5}$) $x(x-2\sqrt{5})-\sqrt{5}(x-2\sqrt{5}) = 0$ $(x-\sqrt{5})(x-2\sqrt{5}) = 0$ $(x-\sqrt{5}) = 0$ or $(x-2\sqrt{5}) = 0$ $x = \sqrt{5}$ or $x = 2\sqrt{5}$ Hence the roots of equation are $\sqrt{5}$ or $2\sqrt{5}$ **Question: 29** Solve each of the Solution:

 $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$

 $x^2 - \sqrt{3}x - x + \sqrt{3} = 0$

On taking x common from first two terms and - 1 from last two

 $\mathbf{x}(\mathbf{x} \cdot \sqrt{3}) \cdot \mathbf{1}(\mathbf{x} \cdot \sqrt{3}) = \mathbf{0}$

 $(x-\sqrt{3})(x-1) = 0$

 $(x-\sqrt{3}) = 0 \text{ or } (x-1) = 0$

$$x = \sqrt{3}$$
 or $x = 1$

Roots of equation are $\sqrt{3}$ or 1

Question: 30

Solve each of the

Solution:

 $x^2 + 3\sqrt{3}x - 30 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1; b = $3\sqrt{3}$; c = -30 = 1. - 30 = - 30 And either of their sum or difference = b = $3\sqrt{3}$ Thus, the two terms are $5\sqrt{3}$ and $-2\sqrt{3}$ Difference = $5\sqrt{3} - 2\sqrt{3} = 3\sqrt{3}$ Product = $5\sqrt{3} - 2\sqrt{3} = -10.3 = -30$ $x^{2} + 3\sqrt{3}x - 30 = 0$ $x^{2} + 5\sqrt{3}x - 2\sqrt{3}x - 30 = 0$ $x(x + 5\sqrt{3}) - 2\sqrt{3}(x + 5\sqrt{3}) = 0.3 = \sqrt{3}\sqrt{3}$ $(x + 5\sqrt{3})(x - 2\sqrt{3}) = 0$ $(x + 5\sqrt{3}) = 0 \text{ or } (x - 2\sqrt{3}) = 0$ $x = -5\sqrt{3} \text{ or } x = 2\sqrt{3}$ Hence the roots of equation are $-5\sqrt{3}$ or $2\sqrt{3}$

Question: 31

Solve each of the

Solution:

 $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{2}$; b = 7; $c = 5\sqrt{2}$

 $=\sqrt{2}.5\sqrt{2} = 2.5 = 10$ And either of their sum or difference = b = 7 Thus the two terms are 5 and 2 Sum = 5 + 2 = 7Product = 5.2 = 10 $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$ $\sqrt{2}x^2 + 5x + 2x + 5\sqrt{2} = 0$ $x(\sqrt{2}x + 5) + \sqrt{2}(\sqrt{2}x + 5) = 0$ $(\sqrt{2}x + 5)(x + \sqrt{2}) = 0$ $(\sqrt{2}x + 5) = 0 \text{ or } (x + \sqrt{2}) = 0$ $x = \frac{-5}{\sqrt{2}} \text{ or } x = -\sqrt{2}$

Hence the roots of equation are $\frac{-5}{\sqrt{2}}$ or $-\sqrt{2}$

Question: 32

Solve each of the

Solution:

 $5x^2 + 13x + 8 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 5; b = 13; c = 8

= 5.8 = 40

And either of their sum or difference = b

= 13

~

Thus the two terms are 5 and 8

Sum = 5 + 8 = 13
Product = 5.8 = 40
$$5x^{2} + 5x + 8x + 8 = 0$$

$$5x(x + 1) + 8(x + 1) = 0$$

(x + 1)(5x + 8) = 0

(x + 1) = 0 or (5x + 8) = 0

$$x = -1 \text{ or } x = \frac{-8}{5}$$

Hence the roots of equation are $-1 \text{ or } \frac{-8}{5}$

Question: 33

Solve each of the

Solution:

$$x^{2} - (1 + \sqrt{2})x + \sqrt{2} = 0$$
$$x^{2} - x - \sqrt{2}x + \sqrt{2} = 0$$

On taking x common from first two terms and - 1 from last two

$$x(x-1) - \sqrt{2}(x-1) = 0$$

(x - \sqrt{2})(x - 1) = 0
(x - \sqrt{2}) = 0 or (x - 1) = 0
x = -1 or x = \sqrt{2}

Hence the roots of equation are $-1 \text{ or } \sqrt{2}$

Question: 34

Solve each of the

Solution:

 $9x^2 + 6x + 1 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9; b = 6; c = 1

$$= 9.1 = 9$$

And either of their sum or difference = b

= 6

Thus the two terms are $3 \mbox{ and } 3$

Sum = 3 + 3 = 6

Product = 3.3 = 9

```
9x^2 + 6x + 1 = 0
```

 $9x^2 + 3x + 3x + 1 = 0$

3x(3x + 1) + 1(3x + 1) = 0

(3x + 1)(3x + 1) = 0

(3x + 1) = 0 or (3x + 1) = 0

$$x = \frac{-1}{3} \text{ or } x = \frac{-1}{3}$$

Hence the equation has repeated roots $x = \frac{-1}{3}$

Question: 35

Solve each of the

Solution:

 $100x^2 - 20x + 1 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 100; b = -20; c = 1 = 100.1 = 100 And either of their sum or difference = b = -20 Thus the two terms are - 10 and - 10 Sum = -10 - 10 = -20 Product = -10. - 10 = 100 100x² - 20x + 1 = 0 100x² - 10x - 10x + 1 = 0 10x(10x-1)-1(10x-1) = 0 (10x-1)(10x-1) = 0 (10x-1) = 0 or (10x-1) = 0 x = $\frac{1}{2}$ or x = $\frac{1}{2}$

$$x = \frac{1}{10} \text{ or } x = \frac{1}{10}$$

Roots of equation are repeated $\frac{1}{10}$

Question: 36

Solve each of the

Solution:

$$2x^2 - x + \frac{1}{8} = 0$$

$$16x^2 - 8x + 1 = 0$$
 (taking LCM)

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 16; b = -8; c = 1

= 16.1 = 16

And either of their sum or difference = b

= - 8

Thus the two terms are - 4 and - 4

```
Sum = -4 - 4 = -8

Product = -4 - 4 = 16

16x^2 - 8x + 1 = 0

16x^2 - 4x - 4x + 1 = 0

4x(4x-1)-1(4x-1) = 0

(4x-1)(4x-1) = 0

(4x-1) = 0 \text{ or } (4x-1) = 0

x = \frac{1}{4} \text{ or } x = \frac{1}{4}
```

The equation has repeated roots $\frac{1}{4}$

Question: 37

Solve each of the

Solution:

 $10x - \frac{1}{x} = 3 \text{ taking LCM}$ $10x^2 - 1 - 3x = 0$ $10x^2 - 3x - 1 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 10; b = -3; c = -1 = 10. -1 = -10 And either of their sum or difference = b = -3 Thus the two terms are - 5 and 2 Difference = -5 + 2 = -3 Product = -5.2 = -10 $10x^2 - 3x - 1 = 0$ $10x^2 - 5x + 2x - 1 = 0$ 5x(2x-1) + 1(2x-1) = 0 (5x + 1)(2x-1) = 0 (5x + 1) = 0 or (2x-1) = 0 $x = \frac{-1}{5}$ or $x = \frac{1}{2}$

Question: 38

Solve each of the

Solution:

 $\frac{2}{x^2} - \frac{5}{x} + 2 = 0$ 2 - 5x + 2x² = 0 2x² - 5x + 2 = 0

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2; b = -5; c = 2

= 2.2 = 4

And either of their sum or difference = b

= - 5

Thus the two terms are - 4 and - 1

Difference = -4 - 1 = -5Product = -4 - 1 = 4 $2x^2 - 5x + 2 = 0$ $2x^2 - 4x - x + 2 = 0$ 2x(x-2)-1(x-2) = 0 (2x-1)(x-2) = 0 (2x-1) = 0 or (x-2) = 0 $x = 2 \text{ or } x = \frac{1}{2}$

Hence the roots of equation are2 or $\frac{1}{2}$

Question: 39

Solve each of the

Solution:

 $2x^2 + ax - a^2 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2; b = a; $c = -a^2$

$$= -2.a^2 = -2 a^2$$

And either of their sum or difference = b

= a

Thus the two terms are 2a and - a

Difference =
$$2a - a = a$$

Product = $2a - a = -2a^2$
 $2x^2 + ax - a^2 = 0$
 $2x^2 + 2ax - ax - a^2 = 0$
 $2x (x + a) - a (x + a) = 0$
 $(2x-a) (x + a) = 0$
 $(2x-a) = 0 \text{ or } (x + a) = 0$
 $x = \frac{a}{2} \text{ or } x = -a$

Hence the roots of equation are $\frac{a}{2}$ or -a

Question: 40

Solve each of the

Solution:

 $4x^2 + 4bx - (a^2 - b^2) = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 4 b = 4b c = -(a^2 - b^2)$ = 4. - (a² - b²) = -4a² + 4b² And either of their sum or difference = b = 4b Thus the two terms are 2(a + b) and - 2(a - b) Difference = 2a + 2b - 2a + 2b = 4b Product = 2(a + b). - 2(a - b) = -4(a² - b²) using a² - b² = (a + b) (a - b) 4x² + 4bx - (a² - b²) = 0 $\Rightarrow 4x^2 + 2(a + b)x - 2(a - b) - (a + b) (a - b) = 0$ $\Rightarrow 2x[2x + (a + b)] - (a - b) [2x + (a + b)] = 0$ $\Rightarrow [2x + (a + b)] [2x - (a - b)] = 0$ $\Rightarrow [2x + (a + b)] = 0 \text{ or } [2x - (a - b)] = 0$ $x = \frac{-(a + b)}{2} \text{ or } x = \frac{a - b}{2}$

Hence the roots of equation are $\frac{-(a+b)}{2}$ or $\frac{a-b}{2}$

Question: 41

Solve each of the

Solution:

 $4x^2 - 4a^2x + (a^4 - b^4) = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 4; $b = -4a^2$; $c = (a^4 - b^4)$

$$= 4. (a^4 - b^4)$$

 $= 4a^4 - 4b^4$

And either of their sum or difference = b

$$= -4a^{2}$$

Thus the two terms are - $2(a^2 + b^2)$ and - $2(a^2 - b^2)$

Difference =
$$-2(a^2 + b^2) - 2(a^2 - b^2)$$

= $-2a^2 - 2b^2 - 2a^2 + 2b^2$
= $-4a^2$
Product = $-2(a^2 + b^2) - 2(a^2 - b^2)$
= $4(a^2 + b^2)(a^2 - b^2)$
= $4. (a^4 - b^4)$
(\therefore using $a^2 - b^2 = (a + b) (a - b)$)
= $4x^2 - 4a^2x + (a^4 - b^4) = 0$

$$\Rightarrow 4x^{2} - 4a^{2}x + ((a^{2})^{2} - (b^{2})^{2}) = 0$$

(: using $a^{2} - b^{2} = (a + b) (a - b))$
$$\Rightarrow 4x^{2} - 2(a^{2} + b^{2}) x - 2(a^{2} - b^{2}) x + (a^{2} + b^{2}) (a^{2} - b^{2}) = 0$$

$$\Rightarrow 2x [2x - (a^{2} + b^{2})] - (a^{2} - b^{2}) [2x - (a^{2} + b^{2})] = 0$$

$$\Rightarrow [2x - (a^{2} + b^{2})] [2x - (a^{2} - b^{2})] = 0$$

$$\Rightarrow [2x - (a^{2} + b^{2})] = 0 \text{ or } [2x - (a^{2} - b^{2})] = 0$$

$$x = \frac{a^{2} + b^{2}}{2} \text{ or } x = \frac{a^{2} - b^{2}}{2}$$

Hence the roots of given equation are $\frac{a^2 + b^2}{2}$ or $\frac{a^2 - b^2}{2}$

Question: 42

Solve each of the

Solution:

 $x^2 + 5x - (a^2 + a - 6) = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1; b = 5; $c = -(a^2 + a - 6)$

= 1. - (a² + a - 6)= - (a² + a - 6)

And either of their sum or difference = b

Thus the two terms are (a + 3) and - (a - 2)

Difference = a + 3 - a + 2

= 5

Product = (a + 3). - (a - 2)

= - [(a + 3)(a - 2)]

 $= - (a^2 + a - 6)$

 $x^2 + 5x - (a^2 + a - 6) = 0$

 $\Rightarrow x^{2} + (a + 3)x - (a - 2)x - (a + 3)(a - 2) = 0$

 $\Rightarrow x[x + (a + 3)] - (a - 2) [x + (a + 3)] = 0$

 \Rightarrow [x + (a + 3)] [x - (a - 2)] = 0

 \Rightarrow [x + (a + 3)] = 0 or [x - (a - 2)] = 0

 \Rightarrow x = - (a + 3) or x = (a - 2)

Hence the roots of given equation are -(a + 3) or (a - 2)

Question: 43

Solve each of the

Solution:

 $x^2 - 2ax - (4b^2 - a^2) = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation $a = 1 b = -2a c = -(4b^2 - a^2)$ $= 1. - (4b^2 - a^2)$ $= -(4b^2 - a^2)$ And either of their sum or difference = b = - 2a Thus the two terms are (2b - a) and -(2b + a)Difference = 2b - a - 2b - a= - 2a Product = (2b - a) - (2b + a)(∵ using $a^2 - b^2 = (a + b) (a - b))$ $= -(4b^2 - a^2)$ $x^2 - 2ax - (4b^2 - a^2) = 0$ $\Rightarrow x^{2} + (2b - a)x - (2b + a)x - (2b - a)(2b + a) = 0$ $\Rightarrow x[x + (2b - a)] - (2b + a)[x + (2b - a)] = 0$ $\Rightarrow [x + (2b - a)] [x - (2b + a)] = 0$ \Rightarrow [x + (2b - a)] = 0 or [x - (2b + a)] = 0 \Rightarrow x = (a - 2b) or x = (a + 2b)

Hence the roots of given equation are (a - 2b) or x = (a + 2b)

Question: 44

Solve each of the

Solution:

 $x^2 - (2b - 1)x + (b^2 - b - 20) = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1; b = -(2b - 1); $c = b^2 - b - 20$

$$= 1(b^2 - b - 20)$$

 $= (b^2 - b - 20)$

And either of their sum or difference = b

= -(2b - 1)

Thus the two terms are -(b - 5) and -(b + 4)

Sum = -(b - 5) - (b + 4)

= -b + 5 - b - 4

= -2b + 1

= - (2b - 1)

Product = -(b - 5) - (b + 4)

= (b - 5) (b + 4) $= b^{2} - b - 20$ $x^{2} - (2b - 1)x + (b^{2} - b - 20) = 0$ $\Rightarrow x^{2} - (b - 5)x - (b + 4)x + (b - 5)(b + 4) = 0$ $\Rightarrow x[x - (b - 5)] - (b + 4)[x - (b - 5)] = 0$ $\Rightarrow [x - (b - 5)] [x - (b + 4)] = 0$ $\Rightarrow [x - (b - 5)] = 0 \text{ or } [x - (b + 4)] = 0$ $\Rightarrow x = (b - 5) \text{ or } x = (b + 4)$

Hence the roots of equation are (b - 5) or (b + 4)

Question: 45

Product = a.c

Solve each of the

Solution:

 $x^2 + 6x - (a^2 + 2a - 8) = 0$

 $abx^{2} + (b^{2} - ac)x - bc = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

For the given equation a = 1; b = 6; $c = -(a^2 + 2a - 8)$ $= 1. - (a^2 + 2a - 8)$ $= -(a^2 + 2a - 8)$ And either of their sum or difference = b = 6Thus the two terms are (a + 4) and - (a - 2)Difference = a + 4 - a + 2= 6Product = (a + 4) - (a - 2) $= -(a^2 + 2a - 8)$ $\Rightarrow x^{2} + 6x - (a^{2} + 2a - 8) = 0$ $\Rightarrow x^{2} + (a + 4)x - (a - 2)x - (a + 4)(a - 2) = 0$ $\Rightarrow x [x + (a + 4)] - (a - 2) [x + (a + 4)] = 0$ \Rightarrow [x + (a + 4)] [x - (a - 2)] = 0 \Rightarrow [x + (a + 4)] = 0 or [x - (a - 2)] = 0 x = -(a + 4) or x = (a - 2)Hence the roots of equation are -(a + 4) or (a - 2)**Question: 46** Solve each of the Solution: $abx^{2} + (b^{2} - ac)x - bc = 0$

 $abx^2 + b^2x - acx - bc = 0$

bx (ax + b) - c (ax + b) = 0 taking bx common from first two terms and -c from last two

(ax + b) (bx - c) = 0

(ax + b) = 0 or (bx - c) = 0

$$x = \frac{-b}{a} \text{ or } x = \frac{c}{a}$$

Hence the roots of equation are $\frac{-b}{a}$ or $\frac{c}{a}$

Question: 47

Solve each of the

Solution:

 $x^{2} - 4ax - b^{2} + 4a^{2} = 0$ $x^{2} - 4ax - ((b)^{2} - (2a)^{2}) = 0$ {using $a^{2} - b^{2} = (a + b)(a - b)$ } $x^{2} - (b + 2a)x + (b - 2a)x - (b + 2a)(b - 2a) = 0$ $\Rightarrow x [x - (b + 2a)] + (b - 2a) [x - (b + 2a)] = 0$ $\Rightarrow [x - (b + 2a)] [x + (b - 2a)] = 0$ $\Rightarrow [x - (b + 2a)] = 0 \text{ or } [x + (b - 2a)] = 0$ $\Rightarrow x = (b + 2a) \text{ or } x = -(b - 2a)$ $\Rightarrow x = (2a + b) \text{ or } x = (2a - b)$

Hence the roots of equation are (2a + b) or (2a - b)

Question: 48

Solve each of the

Solution:

 $4x^{2} - 2a^{2}x - 2b^{2}x + a^{2}b^{2} = 0$ 2x (2x - a²) - b²(2x - a²) = 0

(On taking 2x common from first two terms and $-b^2$ from last two)

0

$$\Rightarrow (2x - a^{2}) (2x - b^{2}) = 0$$

$$\Rightarrow (2x - a^{2}) = 0 \text{ or } (2x - b^{2}) =$$

$$\Rightarrow x = \frac{a^{2}}{2} \text{ or } x = \frac{b^{2}}{2}$$

Hence the roots of equation are $\frac{a^2}{2}$ or $\frac{b^2}{2}$

Question: 49

Solve each of the

Solution:

 $12abx^2 - (9a^2 - 8b^2)x - 6ab = 0$

$$12abx^2 - 9a^2 x + 8b^2 x - 6ab = 0$$

3ax(4bx - 3a) + 2b(4bx - 3a) = 0 taking 3ax common from first two terms and 2b from last two (4bx - 3a) (3ax + 2b) = 0 (4bx - 3a) = 0 or (3ax + 2b) = 0

$$x = \frac{3a}{4b} \text{ or } x = \frac{-2b}{3a}$$

Hence the roots of equation are $x = \frac{3a}{4b}$ or $x = \frac{-2b}{3a}$

Question: 50

Solve each of the

Solution:

 $a^2b^2x^2 + b^2x - a^2x - 1 = 0$

 $b^2x(a^2x + 1) - 1(a^2x + 1) = 0$ taking b^2x common from first two terms and - 1 from last two

 $(a^2x + 1)(b^2x - 1) = 0$

 $(a^2x + 1) = 0$ or $(b^2x - 1) = 0$

$$x = \frac{-1}{a^2} \text{ or } x = \frac{1}{b^2}$$

Hence the roots of equation are $\frac{-1}{a^2}$ or $\frac{1}{b^2}$

Question: 51

Solve each of the

Solution:

 $9x^2 - 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$

Using the splitting middle term - the middle term of the general equation $Ax^2 + Bx + C$ is divided in two such values that:

Product = AC

For the given equation A = 9, B = -9(a + b), $C = 2a^2 + 5ab + 2b^2$

 $= 9(2a^{2} + 5ab + 2b^{2}) = 9(2a^{2} + 4ab + ab + 2b^{2}) = 9[2a(a + 2b) + b(a + 2b)] = 9(a + 2b)(2a + b) = 3(a + 2b)3(2a + b)$ Also, 3(a + 2b) + 3(2a + b) = 9(a + b)Therefore, 9x² - 9 (a + b) x + (2 a² + 5ab + 2b²) = 0 9x² - 3(2a + b)x - 3(a + 2b)x + (a + 2b) (2a + b) = 0

3x[3x - (2a + b)] - (a + 2b)[3x - (2a + b)] = 0

[3x - (2a + b)][3x - (a + 2b)] = 0

[3x - (a + 2b)] = 0 or [3x - (2a + b)] = 0

$$x = \frac{a+2b}{3} \text{ or } x = \frac{2a+b}{3}$$

Hence the roots of equation are $\frac{a+2b}{3}$ or $\frac{2a+b}{3}$

Question: 52

Solve each of the

Solution:

 $\frac{\frac{16}{x} - 1}{\frac{15}{x+1}} = \frac{15}{x+1} = 1$

 $\frac{16x+16-15x}{x(x+1)} = 1 \text{ taking LCM}$ $\frac{x + 16}{x^2 + x} = 1$ $x^2 + x = x + 16 \text{ cross multiplying}$ $x^2 - 16 = 0$ $x^2 - (4)^2 = 0 \text{ using } a^2 - b^2 = (a + b)(a - b)$ (x + 4) (x - 4) = 0 (x + 4) = 0 or (x - 4) = 0 x = 4 or x = -4

Hence the roots of equation are 4, - 4.

Question: 53

Solve each of the

Solution:

 $\frac{4}{x} - 3 = \frac{5}{2x+3}$ $\frac{4}{x} - \frac{5}{2x+3} = 3$ $\frac{8x+12-5x}{x(2x+3)} = 3 \text{ taking LCM}$ $\frac{3x+12}{2x^2+3x} = 3$ $\frac{3(x+4)}{2x^2+3x} = 3$ $\frac{x+4}{2x^2+3x} = 1$ $x+4 = 2x^2 + 3x \text{ cross multiplying}$ $2x^2 + 2x - 4 = 0 \text{ taking 2 common}$ $x^2 + x - 2 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 1 c = -2

And either of their sum or difference = b

= 1

Thus the two terms are 2 and - 1 $\,$

Difference = 2 - 1 = 1

Product = 2. - 1 = -2

 $\mathbf{x}^2 + \mathbf{x} - 2 = 0$

 $x^2 + 2x - x - 2 = 0$

x(x + 2) - (x + 2) = 0

(x + 2) (x - 1) = 0(x + 2) = 0 or (x - 1) = 0x = -2 or x = 1

Hence the roots of equation are - 2 or 1.

Question: 54

Solve each of the

Solution:

 $\frac{3}{x+1} - \frac{2}{3x-1} = \frac{1}{2}, x \neq -1, \frac{1}{3}$ $\frac{3}{x+1} - \frac{2}{3x-1} = \frac{1}{2}$ $\frac{9x-3-2x-2}{(x+1)(3x-1)} = \frac{1}{2} \text{ taking LCM}$ $\frac{7x-5}{3x^2+2x-1} = \frac{1}{2}$

 $3x^2 + 2x - 1 = 14x - 10$ cross multiplying

 $3x^2 - 12x + 9 = 0$ taking 3 common

 $x^2 - 4x + 3 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -4 c = 3

= 1.3 = 3

And either of their sum or difference = b

= - 4

Thus the two terms are - 3 and - 1

Sum = - 3 - 1 = - 4

Product = -3. -1 = 3

 $x^2 - 4x + 3 = 0$

 $x^2 - 3x - x + 3 = 0$

x(x - 3) - 1(x - 3) = 0

(x - 3) (x - 1) = 0

(x - 3) = 0 or (x - 1) = 0

x = 3 or x = 1

Hence the roots of equation are 3 or 1.

Question: 55

Solve each of the

Solution:

 $\frac{1}{x-1} - \frac{1}{x+5} = \frac{6}{7}$ $\frac{x+5-x+1}{(x-1)(x+5)} = \frac{6}{7} \text{ taking LCM}$

 $\frac{6}{(x-1)(x+5)} = \frac{6}{7}$ $\frac{6}{x^2+4x-5} = \frac{6}{7}$ $x^2 + 4x - 5 = 7 \text{ cross multiplying}$ $x^2 + 4x - 12 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 4 c = -12

= 1. - 12 = - 12

And either of their sum or difference = b

```
= 4
```

Thus the two terms are 6 and - 2 $\,$

Difference = 6 - 2 = 4

Product = 6. - 2 = -12

 $x^2 + 4x - 12 = 0$

 $x^2 + 6x - 2x - 12 = 0$

x(x + 6) - 2(x + 6) = 0

(x + 6)(x - 2) = 0

(x + 6) = 0 or (x - 2) = 0

x = -6 or x = 2

Hence the roots of equation are - 6 or 2.

Question: 56

Solve each of the

Solution:

 $\frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$ $\frac{1}{2a+b+2x} - \frac{1}{2x} = \frac{1}{2a} + \frac{1}{b}$ $\frac{2x-2a-b-2x}{2x(2a+b+2x)} = \frac{1}{2a} + \frac{1}{b} \text{ taking LCM}$ $\frac{-(2a+b)}{4x^2 + 4ax + 2bx} = \frac{2a+b}{2ab}$ $4x^2 + 4ax + 2bx = -2ab \text{ cross multiplying}$ $4x^2 + 4ax + 2bx + 2ab = 0$ 4x(x+a) + 2b(x+a) = 0 taking 4x common from first two terms and 2b from last two (x+a) (4x+2b) = 0 (x+a) = 0 or (4x+2b) = 0 $x = -a \text{ or } x = \frac{-b}{2}$

Hence the roots of equation are $-a \text{ or } \frac{-b}{2}$

Question: 57

Solve each of the

Solution:

 $\frac{x+3}{x-2} - \frac{1-x}{x} = 4\frac{1}{4}$ $\frac{x(x+3) - (1-x)(x-2)}{x(x-2)} = \frac{17}{4} \text{ taking LCM}$ $\frac{x^2 + 3x - (x-2-x^2+2x)}{x^2-2x} = \frac{17}{4}$ $\frac{x^2 + 3x + x^2 - 3x + 2}{x^2 - 2x} = \frac{17}{4}$ $\frac{2x^2 + 2}{x^2 - 2x} = \frac{17}{4}$ $8x^2 + 8 = 17x^2 - 34x \text{ cross multiplying}$ $-9x^2 + 34x + 8 = 0$ $9x^2 - 34x - 8 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9 b = -34 c = -8

= 9. - 8 = - 72

And either of their sum or difference = b

= - 34

Thus the two terms are - 36 and 2 $\,$

Difference = -36 + 2 = -34

Product = -36.2 = -72

 $9x^2 - 34x - 8 = 0$

 $9x^2 - 36x + 2x - 8 = 0$

9x(x - 4) + 2(x - 4) = 0

(9x + 2)(x - 4) = 0

$$x = 4 \text{ or } x = \frac{-2}{9}$$

Hence the roots of equation are 4 or $\frac{-2}{2}$

Question: 58

Solve each of the

Solution:

Given: $\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}$, $x \neq \frac{4}{3}$ $\frac{(3x-4)^2 + 49}{7(3x-4)} = \frac{5}{2}$ taking LCM $\frac{9x^2 - 24x + 16 + 49}{7(3x - 4)} = \frac{5}{2} \text{ using } (a - b)^2 = a^2 + b^2 - 2ab$ $\frac{9x^2 - 24x + 65}{21x - 28} = \frac{5}{2} \text{ cross multiplying}$ $18x^2 - 48x + 130 = 105x - 140$

 $18x^2 - 153x + 270 = 0$ taking 9 common

 $2x^2 - 17x + 30 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2 b = -17 c = 30

= 2.30 = 60

And either of their sum or difference = b

= - 17

Thus the two terms are - 12 and - 5 $\,$

Sum = - 12 - 5 = - 17

Product = -12. - 5 = 60

 $2x^2 - 17x + 30 = 0$

 $2x^2 - 12x - 5x + 30 = 0$

2x(x - 6) - 5(x - 6) = 0

(x - 6) (2x - 5) = 0

(x - 6) = 0 or (2x - 5) = 0

$$x = 6 \text{ or } x = \frac{5}{2}$$

Hence the roots of equation are $6 \text{ or } x = \frac{5}{2}$

Question: 59

Solve each of the

Solution:

Given: $\frac{x}{x-1} + \frac{x-1}{x} = 4\frac{1}{4}$ $\frac{(x-1)^2}{x(x-1)} = \frac{17}{4}$ taking LCM $\frac{x^2 + x^2 - 2x + 1}{x(x-1)} = \frac{17}{4}$ using $(a - b)^2 = a^2 + b^2 - 2ab$ $\frac{2x^2 - 2x + 1}{x^2 - 1} = \frac{17}{4}$ $8x^2 - 8x + 4 = 17x^2 - 17x$ cross multiplying

$$9x^2 - 9x - 4 = 0$$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9 b = -9 c = -4

= 9. - 4 = - 36 And either of their sum or difference = b = - 9 Thus the two terms are - 12 and 3 Sum = - 12 + 3 = - 9 Product = - 12.3 = - 36 9x² - 9x - 4 = 0 9x² - 12x + 3x - 4 = 0 3x(3x - 4) + 1(3x - 4) = 0 (3x - 4) (3x + 1) = 0 (3x - 4) = 0 or (3x + 1) = 0 $x = \frac{4}{3} \text{ or } x = \frac{-1}{3}$

Hence the roots of equation are $\frac{4}{3}$ or $\frac{-1}{3}$

Question: 60

Solve each of the

Solution:

Given: $\frac{x}{x+1} + \frac{x+1}{x} = 2\frac{4}{15}$ taking LCM $\frac{x^2 + x^2 + 2x + 1}{x(x+1)} = \frac{34}{15}$ $\frac{2x^2 + 2x + 1}{x^2 + x} = \frac{34}{15}$ $30x^2 + 30x + 15 = 34x^2 + 34x$ cross multiplying

 $4x^2 + 4x - 15 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 4 b = 4 c = -15

= 4. - 15 = - 60

And either of their sum or difference = b

= 4

Thus the two terms are 10 and - 6

Difference = 10 - 6 = 4

Product = 10. - 6 = -60

 $4x^2 + 4x - 15 = 0$

 $4x^2 + 10x - 6x - 15 = 0$

2x(2x + 5) - 3(2x + 5) = 0

(2x + 5)(2x - 3) = 0

(2x + 5) = 0 or (2x - 3) = 0

$$x = \frac{-5}{2} \text{ or } x = \frac{3}{2}$$

Hence the roots of equation are $\frac{-5}{2}$ or $\frac{3}{2}$

Question: 61

Solve each of the

Solution:

Given: $\frac{x-4}{x-5} + \frac{x-6}{x-7} = 3\frac{1}{3}$, $x \neq 5,7$ $\frac{(x-7)(x-4) + (x-5)(x-6)}{(x-5)(x-7)} = \frac{10}{3}$ taking LCM $\frac{x^2 - 11x + 28 + x^2 - 11x + 30}{x^2 - 12x + 35} = \frac{10}{3}$ $\frac{2x^2 - 22x + 58}{x^2 - 12x + 35} = \frac{10}{3}$ $\frac{x^2 - 11x + 29}{x^2 - 12x + 35} = \frac{5}{3}$ $3x^2 - 33x + 87 = 5x^2 - 60x + 175$ cross multiplying $2x^2 - 27x + 88 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2 b = -27 c = 88

= 2.88 = 176

And either of their sum or difference = b

= - 27

Thus the two terms are - 16 and - 11 $\,$

Sum = - 16 - 11 = - 27

Product = -16. - 11 = 176

 $2x^2 - 27x + 88 = 0$

 $2x^2 - 16x - 11x + 88 = 0$

2x(x - 8) - 11(x - 8) = 0

$$(x - 8)(2x - 11) = 0$$

(x - 8) = 0 or (2x - 11) = 0

$$x = 8 \text{ or } x = \frac{11}{2} = 5\frac{1}{2}$$

Hence the roots of equation are 8 or $5\frac{1}{2}$

Question: 62

Solve each of the

Solution:

Given: $\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}$

 $\frac{(x-1)(x-4) + (x-2)(x-3)}{(x-2)(x-4)} = \frac{10}{3} \text{ taking LCM}$ $\frac{x^2 - 5x + 4 + x^2 - 5x + 6}{x^2 - 6x + 8} = \frac{10}{3}$ $\frac{2x^2 - 10x + 10}{x^2 - 6x + 8} = \frac{10}{3}$ $\frac{x^2 - 5x + 5}{x^2 - 6x + 8} = \frac{5}{3} \text{ cross multiplying}$ $3x^2 - 15x + 15 = 5x^2 - 30x + 40$ $2x^2 - 15x + 25 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 2 b = -15 c = 25 = 2.25 = 50 And either of their sum or difference = b = -15 Thus the two terms are - 10 and - 5 Sum = -10 - 5 = -15 Product = -10. - 5 = 50 $2x^2 - 15x + 25 = 0$ $2x^2 - 10x - 5x + 25 = 0$ 2x(x - 5) - 5(x - 5) = 0 (x - 5)(2x - 5) = 0 (x - 5) = 0 or (2x - 5) = 0 $x = 5 \text{ or } x = \frac{5}{2}$

Hence the roots of equation are 5 or $\frac{5}{2}$

Question: 63

Solve each of the

Solution:

Given: $\frac{1}{x-2} + \frac{2}{x-1} = \frac{6}{x}$, $x \neq 0, 1, 2$ $\frac{(x-1)+2(x-2)}{(x-2)(x-1)} = \frac{6}{x}$ taking LCM $\frac{3x-5}{x^2-3x+2} = \frac{6}{x}$ cross multiplying $3x^2 - 5x = 6x^2 - 18x + 12$ $3x^2 - 13x + 12 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 3 b = -13 c = 12

= 3.12 = 36And either of their sum or difference = b = -13 Thus the two terms are - 9 and - 4 Sum = -9 - 4 = -13 Product = -9. - 4 = 36 $3x^2 - 13x + 12 = 0$ $3x^2 - 9x - 4x + 12 = 0$ 3x (x - 3) - 4(x - 3) = 0(x - 3) (3x - 4) = 0 $x = 3 \text{ or } x = \frac{4}{3}$

Hence the roots of equation are 3 or $\frac{4}{3}$

Question: 64

Solve each of the

Solution:

Given: $\frac{1}{x+1} + \frac{2}{x+2} = \frac{5}{x+4}$ $\frac{(x+2)+2(x+1)}{(x+2)(x+1)} = \frac{5}{x+4}$ taking LCM $\frac{3x+4}{x^2+3x+2} = \frac{5}{x+4}$ $(3x+4)(x+4) = 5x^2 + 15x + 10$ cross multiplying $3x^2 + 16x + 16 = 5x^2 + 15x + 10$ $2x^2 - x - 6 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2 b = -1 c = -6

= 2. - 6 = - 12

And either of their sum or difference = b

```
= - 1
```

Thus the two terms are - $4 \mbox{ and } 3$

Difference = -4 + 3 = -1

Product = -4.3 = 12

 $2x^2 - x - 6 = 0$

 $2x^{2} - 4x + 3x - 6 = 0$ 2x(x - 2) + 3(x - 2) = 0

(x - 2) (2x + 3) = 0

(x - 2) = 0 or (2x + 3) = 0

$$x = 2 \text{ or } x = \frac{-3}{2}$$

Hence the roots of equation are 2 or $\frac{-3}{2}$

Question: 65

Solve each of the

Solution:

Given: $3\left(\frac{3x-1}{2x+3}\right) - 2\left(\frac{2x+3}{3x-1}\right) = 5$ $\frac{3(3x-1)^2 - 2(2x+3)^2}{(2x+3)(3x-1)} = 5$ taking LCM $\frac{3(9x^2 - 6x+1) - 2(4x^2 + 12x+9)}{(2x+3)(3x-1)} = 5$ using $(a + b)^2 = a^2 + b^2 + 2ab$; $(a - b)^2 = a^2 + b^2 - 2ab$ $\frac{27x^2 - 18x + 3 - 8x^2 - 24x - 18}{6x^2 + 7x - 3} = 5$ $\frac{19x^2 - 42x - 15}{6x^2 + 7x - 3} = 5$ $19x^2 - 42x - 15 = 30x^2 + 35x - 15$ cross multiplying $11 x^2 + 77x = 0$ 11x(x + 7) = 0 taking 11x common 11x = 0 or (x + 7) = 0x = 0 or x = -7

Hence the roots of equation are 0, - 7

Question: 66

Solve each of the

Solution:

Given: $3\left(\frac{7x+1}{5x-3}\right) - 4\left(\frac{5x-3}{7x+1}\right) = 11$ $\frac{3(7x+1)^2 - 4(5x-3)^2}{(7x+1)(5x-3)} = 11 \text{ taking LCM; using } (a + b)^2 = a^2 + b^2 + 2ab$ $\frac{3(49x^2 + 14x + 1) - 4(25x^2 - 30x + 9)}{(7x+1)(5x-3)} = 11$ $\frac{147x^2 + 42x + 3 - 100x^2 + 120x - 36}{35x^2 - 16x - 3} = 11$ $\frac{47x^2 + 162x - 33}{35x^2 - 16x - 3} = 11$ $47x^2 + 162x - 33 = 385x^2 - 176x - 33 \text{ cross multiplying}$ $338x^2 - 338x = 0$ 338x(x - 1) = 0 taking 338x common 338x = 0 or (x - 1) = 0 x = 1 or x = 0Hence the roots of equation are 1, 0

Question: 67

Solve each of the

Solution:

Given: $\left(\frac{4x-3}{2x+1}\right) - 10\left(\frac{2x+1}{4x-2}\right) = 3$ $\frac{(4x-3)^2-10(2x+1)^2}{(2x+1)(4x-3)} = 3 \text{ taking LCM; using } (a+b)^2 = a^2 + b^2 + 2ab$ $\frac{(16x^2 - 24x + 9) - 10(4x^2 + 4x + 1)}{8x^2 - 6x + 4x - 3} = 3$ $\frac{16x^2 - 24x + 9 - 40x^2 - 40x - 10}{8x^2 - 6x + 4x - 3} = 3$ $\frac{-24x^2 - 64x - 1}{8x^2 - 6x + 4x - 3} = 3$ $-24x^2 - 64x - 1 = 3(8x^2 - 2x - 3)$ cross multiplying $-24x^2 - 64x - 1 = 24x^2 - 6x - 9$ $48 x^2 + 58x - 8 = 0$ taking 2 common $24 x^2 + 29x - 4 = 0$ Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that: Product = a.cFor the given equation a = 24 b = 29 c = -4= 24. - 4 = - 96 And either of their sum or difference = b = 29Thus the two terms are 32 and - 3 Difference = 32 - 3 = 29Product = 32. - 3 = -96 $24 x^2 + 29x - 4 = 0$ $24 x^2 + 32x - 3x - 4 = 0$ 8x(3x + 4) - 1(3x + 4) = 0(3x + 4)(8x - 1) = 0(3x + 4) = 0 or (8x - 1) = 0 $x = \frac{-4}{3}$ or $x = \frac{1}{8}$ Hence the roots of equation are $\frac{-4}{3}$ or $\frac{1}{8}$ **Ouestion: 68** Solve each of the Solution:

Given:
$$\left(\frac{x}{x+1}\right)^2 - 5\left(\frac{x}{x+1}\right) + 6 = 0 \cdots \cdots (1)$$

Let $\frac{x}{x+1} = y$
 $y^2 - 5y + 6 = 0$ substituting value for y in (1)

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = -5 c = 6= 1.6 = 6And either of their sum or difference = b= - 5 Thus the two terms are - 3 and - 2 Difference = -3 - 2 = -5Product = -3. -2 = 6 $y^2 - 5y + 6 = 0$ $y^2 - 3y - 2y + 6 = 0$ y(y - 3) - 2(y - 3) = 0(y - 3)(y - 2) = 0(y - 3) = 0 or (y - 2) = 0y = 3 or y = 2Case I: if y = 3 $\frac{x}{x+1} = 3$ x = 3x + 32x + 3 = 0x = -3/2Case II: if y = 2 $\frac{x}{x+1} = 2$ x = 2x + 2x = - 2 $x = \frac{-3}{2}$ or = -2Hence the roots of equation are $\frac{-3}{2}$ or -2

Question: 69

Solve each of the

Solution:

Given:
$$\frac{a}{(x-b)} + \frac{b}{(x-a)} = 2$$

 $\frac{a}{(x-b)} + \frac{b}{(x-a)} - 2 = 0$
 $\left[\frac{a}{(x-b)} - 1\right] + \left[\frac{b}{(x-a)} - 1\right] = 0$

taking - 1 with both terms

$$\frac{a - (x - b)}{(x - b)} + \frac{b - (x - a)}{(x - a)} = 0$$

taking LCM

$$(a-x+b)\left[\frac{1}{(x-b)}+\frac{1}{(x-a)}\right] = 0$$

taking common (a - x - b)

$$(a-x + b)\left[\frac{(x-a) + (x-b)}{(x-b)(x-a)}\right] = 0$$

taking LCM

(a - x + b)[2x - (a + b)] = 0(a - x + b) = 0 or [2x - (a + b)] = 0 $x = a + b \text{ or } x = \frac{a + b}{2}$

Hence the roots of equation are a + b or $\frac{a+b}{2}$

Question: 70

Solve each of the

Solution:

Given:
$$\frac{a}{(ax-1)} + \frac{b}{(bx-1)} = (a + b)$$

 $\frac{a}{(ax-1)} + \frac{b}{(bx-1)} - a - b = 0$
 $\left[\frac{a}{(ax-1)} - b\right] + \left[\frac{b}{(bx-1)} - a\right] = 0$
 $\frac{a - b(ax-1)}{(ax-1)} + \frac{b - a(bx-1)}{(bx-1)} = 0$

taking LCM

$$\frac{a - bax + b}{(ax - 1)} + \frac{b - abx + a}{(bx - 1)} = 0$$

(a + b - abx) $\left[\frac{1}{(ax - 1)} + \frac{1}{(bx - 1)}\right] = 0$

taking common (a + b - abx)

$$(a + b - abx) \left[\frac{(bx - 1) + (ax - 1)}{(ax - 1)(bx - 1)} \right] = 0$$

taking LCM

$$(a + b - abx)\left[\frac{(a + b)x - 2}{(ax - 1)(bx - 1)}\right] = 0$$

(a + b - abx)[(a + b)x - 2] = 0
(a + b - abx) = 0 or [(a + b)x - 2] = 0
$$x = \frac{a + b}{ab} \text{ or } x = \frac{2}{a + b}$$

Hence the roots of equation are $\frac{a+b}{ab}$ or $\frac{2}{a+b}$

Question: 71

Solve each of the

Solution:

Given: $3^{(x + 2)} + 3^{-x} = 10$ $3^x \cdot 3^2 + \frac{1}{3^x} = 10 - \dots + (1)$ Let $3^x = y - \dots + (2)$ $9y + \frac{1}{y} = 10$ substituting for y in (1) $9y^2 - 10y + 1 = 0$ Using the splitting middle term - the middle term - te

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9 b = -10 c = 1

= 9.1 = 9

And either of their sum or difference = b

= - 10

Thus the two terms are - 9 and - 1 $\,$

Sum = - 9 - 1 = - 10

Product = -9. -1 = 9

 $9y^2 - 9y - 1y + 1 = 0$

9y(y - 1) - 1(y - 1) = 0

(y - 1) (9y - 1) = 0

$$(y - 1) = 0 \text{ or } (9y - 1) = 0$$

y = 1 or y = 1/9

 $3^{x} = 1$ or $3^{x} = 1/9$

On putting value of y in equation (2)

 $3^{x} = 3^{0}$ or $3^{x} = 3^{-2}$

x = 0 or x = -2

Hence the roots of equation are 0, - 2

Question: 72

Solve each of the

Solution:

Given: $4^{(x + 1)} + 4^{(1 - x)} = 10$ $4^{x} \cdot 4 + 4 \cdot \frac{1}{4^{x}} = 10 \cdot \dots \cdot (1)$ Let $4^{x} = y \cdot \dots \cdot (2)$ $4y + \frac{4}{y} = 10$ substituting for y in (1) $4y^{2} \cdot 10y + 4 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is

divided in two such values that: Product = a.cFor the given equation a = 4 b = -10 c = 4= 4.4 = 16And either of their sum or difference = b = -10Thus the two terms are - 8 and - 2 Sum = - 8 - 2 = - 10 Product = -8. -2 = 16 $4y^2 - 10y + 4 = 0$ $4y^2 - 8y - 2y + 4 = 0$ 4y(y - 2) - 2(y - 2) = 0(y - 2) (4y - 2) = 0(y - 2) = 0 or (4y - 2) = 0y = 2 or y = 1/2substituting the value of y in (2) $4^{x} = 2 \text{ or } 4^{x} = 2^{-1}$ $2^{2x} = 2^1$ or $2^{2x} = 2^{-1}$ 2x = 1 or 2x = -1 $x = \frac{1}{2} \text{ or } x = \frac{-1}{2}$

Hence the roots of equation are $\frac{1}{2}$ or $\frac{-1}{2}$

Question: 73

Solve each of the

Solution:

Given: $2^{2x} - 3 \cdot 2^{(x+2)} + 32 = 0$ $(2^x)^2 - 3 \cdot 2^x \cdot 2^2 + 32 = 0 - \dots - (1)$

Let $2^{x} = y - \dots + (2)$

substituting for y in (1)

 $y^2 - 12y + 32 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -12 c = 32

= 1.32 = 32

And either of their sum or difference = b

= - 12

Thus the two terms are - 8 and - 4 $\,$

Sum = - 8 - 4 = - 12

Product = -8. -4 = 32 $y^2 - 8y - 4y + 32 = 0$ y(y - 8) - 4(y - 8) = 0 (y - 8) (y - 4) = 0 (y - 8) = 0 or (y - 4) = 0 y = 8 or y = 4 $2^x = 8$ or $2^x = 4$ substituting the value of y in (2) $2^x = 2^3$ or $2^x = 2^2$ x = 2 or x = 3Hence the roots of equation are 2, 3

Exercise : 10B

Question: 1

Solve each of the

Solution:

Given: $x^2 - 6x + 3 = 0$ $x^2 - 6x = -3$ $x^2 - 2.x.3 + 3^2 = -3 + 3^2$ (adding 3² on both sides) $(x - 3)^2 = -3 + 9 = 6$ using $a^2 - 2ab + b^2 = (a - b)^2$ $x - 3 = \pm \sqrt{6}$ (taking square root on both sides) $x - 3 = \sqrt{6}$ or $x - 3 = -\sqrt{6}$

 $x = 3 + \sqrt{6} \text{ or } x = 3 - \sqrt{6}$

Hence the roots of equation are $3 + \sqrt{6}$ or $3 - \sqrt{6}$

Question: 2

Solve each of the

Solution:

Given: $x^2 - 4x + 1 = 0$ $x^2 - 4x = -1$ $x^2 - 2.x.2 + 2^2 = -1 + 2^2$ (adding 2^2 on both sides) $(x - 2)^2 = -1 + 4 = 3$ using $a^2 - 2ab + b^2 = (a - b)^2$ $x - 2 = \pm\sqrt{3}$ (taking square root on both sides)

$$x - 2 = \sqrt{3} \text{ or } x - 2 = -\sqrt{3}$$

$$x = 2 + \sqrt{3} \text{ or } x = 2 - \sqrt{3}$$

Hence the roots of equation are 2 + $\sqrt{3}$ or 2 - $\sqrt{3}$

Question: 3

Solve each of the

Given: $x^2 + 8x - 2 = 0$ $x^2 + 8x = 2$ $x^2 + 2.x.4 + 4^2 = 2 + 4^2$ (adding 4² on both sides) $(x + 4)^2 = 2 + 16 = 18$ using a² + 2ab + b² = (a + b)² $x + 4 = \pm\sqrt{18} = \pm 3\sqrt{2}$ (taking square root on both sides) $x + 4 = 3\sqrt{2}$ or $x + 4 = -3\sqrt{2}$ $x = -4 + 3\sqrt{2}$ or $x = -4 - 3\sqrt{2}$ Hence the roots of equation are $-4 + 3\sqrt{2}$ or $-4 - 3\sqrt{2}$

Question: 4

Solve each of the

Solution:

Given: $4x^2 + 4\sqrt{3}x + 3 = 0$ $4x^2 + 4\sqrt{3}x = -3$ $(2x)^2 + 2.2x.\sqrt{3} + (\sqrt{3})^2 = -3 + (\sqrt{3})^2$ (adding $(\sqrt{3})^2$ on both sides) $(2x + \sqrt{3})^2 = -3 + 3$ using $a^2 + 2ab + b^2 = (a + b)^2$ $(2x + \sqrt{3})^2 = 0$ $(2x + \sqrt{3})(2x + \sqrt{3}) = 0$ $x = \frac{-\sqrt{3}}{2}$ or $x = \frac{-\sqrt{3}}{2}$

Hence the equation has repeated roots $\frac{-\sqrt{3}}{2}$

Question: 5

Solve each of the

Solution:

Given: $2x^2 + 5x - 3 = 0$

 $4x^2 + 10x - 6 = 0$ (multiplying both sides by 2)

$$4x^2 + 10x = 6$$

 $(2x)^{2} + 2.2x \cdot \frac{5}{2} + \left(\frac{5}{2}\right)^{2} = 6 + \left(\frac{5}{2}\right)^{2} (adding \left(\frac{5}{2}\right)^{2} on both sides)$ $\left(2x + \frac{5}{2}\right)^{2} = 6 + \frac{25}{4} using a^{2} + 2ab + b^{2} = (a + b)^{2}$ $\left(2x + \frac{5}{2}\right)^{2} = \frac{25 + 24}{4} = \frac{49}{4} = \left(\frac{7}{2}\right)^{2}$ $2x + \frac{5}{2} = \pm \frac{7}{2} (taking square root on both sides)$ $2x + \frac{5}{2} = \frac{7}{2} \text{ or } 2x + \frac{5}{2} = -\frac{7}{2}$

$$2x = \frac{7}{2} - \frac{5}{2} \text{ or } 2x = -\frac{7}{2} - \frac{5}{2}$$
$$2x = 1 \text{ or } 2x = -6$$
$$x = \frac{1}{2} \text{ or } x = -3$$

Hence the roots of equation are $x = \frac{1}{2}$ or x = -3

Question: 6

Solve each of the

Solution:

Given: $3x^2 - x - 2 = 0$ $9x^2 - 3x - 6 = 0$ (multiplying both sides by 3)

 $9x^2 - 3x = 6$

$$(3x)^{2} - 2.3x \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^{2} = 6 + \left(\frac{1}{2}\right)^{2} (adding \left(\frac{1}{2}\right)^{2} on both sides)$$

$$\left(3x - \frac{1}{2}\right)^{2} = 6 + \frac{1}{4} = \frac{25}{4} = \left(\frac{5}{2}\right)^{2} using a^{2} - 2ab + b^{2} = (a - b)^{2}$$

$$3x - \frac{1}{2} = \pm \frac{5}{2} (taking square root on both sides)$$

$$3x - \frac{1}{2} = \frac{5}{2} \text{ or } 3x - \frac{1}{2} = -\frac{5}{2}$$

$$3x = \frac{5}{2} + \frac{1}{2} = \frac{6}{2} = 3 \text{ or } 3x = -\frac{5}{2} + \frac{1}{2} = -\frac{4}{2} = -2$$

$$x = 1 \text{ or } x = \frac{-2}{3}$$

Hence the roots of equation are1 or $\frac{-2}{3}$

Question: 7

Solve each of the

Solution:

Given: $8x^2 - 14x - 15 = 0$

 $16x^2 - 28x - 30 = 0$ (multiplying both sides by 2)

$$16x^2 - 28x = 30$$

$$(4x)^{2} - 2.4x \cdot \frac{7}{2} + \left(\frac{7}{2}\right)^{2} = 30 + \left(\frac{7}{2}\right)^{2} (adding \left(\frac{7}{2}\right)^{2} on both sides)$$

$$\left(4x - \frac{7}{2}\right)^{2} = 30 + \frac{49}{4} = \frac{169}{4} = \left(\frac{13}{2}\right)^{2} using a^{2} - 2ab + b^{2} = (a - b)^{2}$$

$$4x - \frac{7}{2} = \pm \frac{13}{2} (taking square root on both sides)$$

$$4x - \frac{7}{2} = \frac{13}{2} \text{ or } 4x - \frac{7}{2} = -\frac{13}{2}$$

$$4x = \frac{13}{2} + \frac{7}{2} = \frac{20}{2} = 10 \text{ or } 4x = -\frac{13}{2} + \frac{7}{2} = -\frac{6}{2} = -3$$

$$x = \frac{5}{2} \text{ or } x = \frac{-3}{4}$$

Hence the roots of equation are $\frac{5}{2}$ or $\frac{-3}{4}$

Question: 8

Solve each of the

Solution:

Given: $7x^2 + 3x - 4 = 0$

 $49x^2 + 21x - 28 = 0$ (multiplying both sides by 7)

$$(7x)^{2} + 2.7x \cdot \frac{3}{2} + \left(\frac{3}{2}\right)^{2} = 28 + \left(\frac{3}{2}\right)^{2} (adding \left(\frac{3}{2}\right)^{2} on both sides)$$

$$\left(7x + \frac{3}{2}\right)^{2} = 28 + \frac{9}{4} = \frac{121}{4} = \left(\frac{11}{2}\right)^{2} using a^{2} + 2ab + b^{2} = (a + b)^{2}$$

$$7x + \frac{3}{2} = \pm \frac{11}{2} (taking square root on both sides)$$

$$7x + \frac{3}{2} = \frac{11}{2} \text{ or } 7x + \frac{3}{2} = -\frac{11}{2}$$

$$7x = \frac{11}{2} - \frac{3}{2} = \frac{8}{2} = 4 \text{ or } 7x = -\frac{11}{2} - \frac{3}{2} = \frac{-14}{2} = -7$$

$$x = -1 \text{ or } x = \frac{4}{7}$$

Hence the roots of equation are $-1 \text{ or } \frac{4}{7}$

Question: 9

Solve each of the

Solution:

Given: $3x^2 - 2x - 1 = 0$ $9x^2 - 6x = 3$ (multiplying both sides by 3) $(3x)^2 - 2.3x \cdot 1 + (1)^2 = 3 + (1)^2$ (adding (1)² on both sides) $(3x-1)^2 = 3 + 1 = 4 = (2)^2 using a^2 - 2ab + b^2 = (a - b)^2$ $3x - 1 = \pm 2$ (taking square root on both sides) 3x - 1 = 2 or 3x - 1 = -23x = 3 or 3x = -1 $x = -1 \text{ or } x = \frac{-1}{3}$ Hence the roots of equation are -1 or $\frac{-1}{3}$ **Ouestion: 10**

Solve each of the

Solution:

Given: $5x^2 - 6x - 2 = 0$ $25x^2 - 30x - 10 = 0$ (multiplying both sides by 5) $25x^2 - 30x = 10$ $(5x)^2 - 2.5x.3 + (3)^2 = 10 + (3)^2$ (adding (3)²on both sides) $(5x-2)^2 = 10 + 9 = 19$ using $a^2 - 2ab + b^2 = (a - b)^2$

 $5x - 3 = \pm \sqrt{19}$ (taking square root on both sides)

$$5x - 3 = \sqrt{19} \text{ or } 5x - 3 = -\sqrt{19}$$
$$5x = 3 + \sqrt{19} \text{ or } 5x = 3 - \sqrt{19}$$
$$x = \frac{3 + \sqrt{19}}{5} \text{ or } x = \frac{3 - \sqrt{19}}{5}$$

Hence the roots of equation are $\frac{3+\sqrt{19}}{5}$ or $\frac{3-\sqrt{19}}{5}$

Question: 11

Solve each of the

Solution:

Given: $\frac{2}{x^2} - \frac{5}{x} + 2 = 0$ $\frac{2 - 5x + 2x^2}{x^2} = 0$ $2x^2 - 5x + 2 = 0$ $4x^2 - 10x + 4 = 0$ $4x^2 - 10x = -4$ (multiplying both sides by 2) $(2x)^2 - 2.2x \cdot \frac{5}{2} + (\frac{5}{2})^2 = -4 + (\frac{5}{2})^2$ (adding $(\frac{5}{2})^2$ on both sides) $(2x - \frac{5}{2})^2 = -4 + \frac{25}{4} = \frac{9}{4} = (\frac{3}{2})^2$ using $a^2 - 2ab + b^2 = (a - b)^2$ $2x - \frac{5}{2} = \pm \frac{3}{2}$ (taking square root on both sides) $2x - \frac{5}{2} = \frac{3}{2}$ or $2x - \frac{5}{2} = -\frac{3}{2}$ $2x = \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4$ or $2x = -\frac{3}{2} + \frac{5}{2} = \frac{2}{2} = 1$ x = 2 or $x = \frac{1}{2}$

Hence the roots of equation are 2 or $\frac{1}{2}$

Question: 12

Solve each of the

Solution:

 $4x^{2} + 4bx = (a^{2} - b^{2})$ $(2x)^{2} + 2.2x \cdot b + b^{2} = a^{2} - b^{2} + b^{2} \text{ (adding b}^{2}\text{ on both sides)}$ $(2x + b)^{2} = a^{2} \text{ using } a^{2} + 2ab + b^{2} = (a + b)^{2}$ $2x + b = \pm a \text{ (taking square root on both sides)}$ 2x + b = -a or 2x + b = a

$$x = \frac{-(a+b)}{2} \text{ or } x = \frac{a-b}{2}$$

Hence the roots of equation are $\frac{-(a+b)}{2}$ or $\frac{a-b}{2}$

Question: 13

Solve each of the

Solution:

Given :
$$x^2 - (\sqrt{2} + 1)x + \sqrt{2} = 0$$

 $x^2 - (\sqrt{2} + 1)x = -\sqrt{2}$
 $x^2 - 2.x.(\frac{\sqrt{2}+1}{2}) + (\frac{\sqrt{2}+1}{2})^2 = -\sqrt{2} + (\frac{\sqrt{2}+1}{2})^2 (adding(\frac{\sqrt{2}+1}{2})^2 on both sides)$
 $\left(x - (\frac{\sqrt{2}+1}{2})\right)^2 = \frac{-4\sqrt{2}+2+1+2\sqrt{2}}{4} = \frac{2-2\sqrt{2}+1}{4} = (\frac{\sqrt{2}-1}{2})^2 using a^2 - 2ab + b^2 = (a - b)^2$
 $x - (\frac{\sqrt{2}+1}{2}) = (\frac{\sqrt{2}+1}{2}) or x - (\frac{\sqrt{2}+1}{2}) = -(\frac{\sqrt{2}+1}{2}) taking square root on both sides$
 $x = (\frac{\sqrt{2}+1}{2}) + (\frac{\sqrt{2}-1}{2}) or x = (\frac{\sqrt{2}+1}{2}) - (\frac{\sqrt{2}-1}{2})$
 $x = \sqrt{2} or x = 1$

Hence the roots of equation are $\sqrt{2}$ or 1

Question: 14

Solve each of the

Solution:

Given: $\sqrt{2}x^2 - 3x - 2\sqrt{2} = 0$ $2x^2 - 3\sqrt{2}x - 4 = 0$ (multiplying both sides by $\sqrt{2}$) $2x^2 - 3\sqrt{2}x = 4$ $(\sqrt{2}x)^2 - 2.\sqrt{2}x.\frac{3}{2} + (\frac{3}{2})^2 = 4 + (\frac{3}{2})^2$ [Adding $(\frac{3}{2})^2$ on both sides] $(\sqrt{2}x - \frac{3}{2})^2 = 4 + \frac{9}{4} = \frac{25}{4} = (\frac{5}{2})^2$ using $a^2 - 2ab + b^2 = (a - b)^2$ $\sqrt{2}x - \frac{3}{2} = \pm \frac{5}{2}$ (taking square root on both sides) $\sqrt{2}x - \frac{3}{2} = \frac{5}{2}$ or $\sqrt{2}x - \frac{3}{2} = -\frac{5}{2}$ $\sqrt{2}x = \frac{5}{2} + \frac{3}{2} = \frac{8}{2} = 4$ or $\sqrt{2}x = -\frac{5}{2} + \frac{3}{2} = -1$ $\sqrt{2}x = 4$ or $\sqrt{2}x = -1$ $x = \frac{4}{\sqrt{2}} = 2\sqrt{2}$ or $x = \frac{-1}{\sqrt{2}}$

Hence the roots of equation are $2\sqrt{2}$ or $\frac{-1}{\sqrt{2}}$

Question: 15

Solve each of the

Solution:

Given: $\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0$

 $3x^2$ + $10\sqrt{3}x$ + 21 = 0 (multiplying both sides with $\sqrt{3}$)

 $3x^{2} + 10\sqrt{3}x = -21$ $(\sqrt{3}x)^{2} + 2.\sqrt{3}x.5 + 5^{2} = -21 + 5^{2} [Adding 5^{2}on both sides]$ $(\sqrt{3}x + 5)^{2} = -21 + 25 = 4 = 2^{2} using a^{2} + 2ab + b^{2} = (a + b)^{2}$ $\sqrt{3}x + 5 = \pm 2 (taking square root on both sides)$ $\sqrt{3}x + 5 = 2 \text{ or } \sqrt{3}x + 5 = -2$ $\sqrt{3}x = 2 - 5 \text{ or } \sqrt{3}x = -2 - 5$ $\sqrt{3}x = -3 \text{ or } \sqrt{3}x = -7$ $x = -\sqrt{3} \text{ or } x = \frac{-7}{\sqrt{3}}$

Hence the roots of equation are $-\sqrt{3}$ or $\frac{-7}{\sqrt{3}}$

Question: 16

By using the meth

Solution:

 $2x^{2} + x + 4 = 0$ $4x^{2} + 2x + 8 = 0 \text{ (multiplying both sides by 2)}$ $4x^{2} + 2x = -8$ $(2x)^{2} + 2.2x \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^{2} = -8 + \left(\frac{1}{2}\right)^{2} [\text{Adding} \left(\frac{1}{2}\right)^{2} \text{ on both sides}]$ $\left(2x + \frac{1}{2}\right)^{2} = -8 + \frac{1}{4} = -\frac{31}{4} < 0 \text{ using } a^{2} + 2ab + b^{2} = (a + b)^{2}$ But $\left(2x + \frac{1}{2}\right)^{2}$ cannot be negative for any real value of x So there is no real value of x satisfying the given equation. Hence the given equation has no real roots.

Exercise : 10C

Question: 1 A

Find the discrimi

Solution:

Given: $2x^2 - 7x + 6 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 2, b = - 7, c = 6

Discriminant D = $b^2 - 4ac$

 $= (-7)^2 - 4.2.6$

= 49 - 48 = 1

Question: 1 B

Find the discrimi

Solution:

Given: $3x^2 - 2x + 8 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 3, b = - 2, c = 8

Discriminant D = $b^2 - 4ac$

 $= (-2)^2 - 4.3.8$

= 4 - 96 = - 92

Question: 1 C

Find the discrimi

Solution:

Given: $2x^2 - 5\sqrt{2}x + 4 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2b = -5\sqrt{2}c = 4$$

Discriminant D = $b^2 - 4ac$

$$=(-5\sqrt{2})^2-4.2.4$$

= 50 - 32 = 18

Question: 1 D

Find the discrimi

Solution:

Given: $\sqrt{3}x^2 + 2\sqrt{2}x - 2\sqrt{3} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = \sqrt{3} b = 2\sqrt{2} c = -2\sqrt{3}$$

Discriminant D = $b^2 - 4ac$

$$=(2\sqrt{2})^2-4.\sqrt{3}.-2\sqrt{3}$$

= 8 + 24 = 32

Question: 1 E

Find the discrimi

Solution:

Given: (x - 1)(2x - 1) = 0

 $2x^2 - 3x + 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 2, b = -3, c = -1

Discriminant D = $b^2 - 4ac$

 $= (-3)^2 - 4.2.1$

= 9 - 8 = 1

Question: 1 F

Find the discrimi

Solution:

Given: $1 - x = 2x^2$

 $2x^2 + x - 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

 $= (1)^2 - 4.2. - 1$

= 1 + 8 = 9

Question: 2

Find the roots of

Solution:

Given: $x^2 - 4x - 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

$$= (-4)^2 - 4.1. - 1$$

$$= 16 + 4 = 20 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-4) + \sqrt{20}}{2 \times 1} = \frac{4 + 2\sqrt{5}}{2} = \frac{2(2 + \sqrt{5})}{2} = (2 + \sqrt{5})$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-4) - \sqrt{20}}{2 \times 1} = \frac{4 - 2\sqrt{5}}{2} = \frac{2(2 - \sqrt{5})}{2} = (2 - \sqrt{5})$$
$$x = (2 + \sqrt{5}) \text{ or } x = (2 - \sqrt{5})$$

Hence the roots of equation are $(2 + \sqrt{5})$ or $(2 - \sqrt{5})$

Question: 3

Find the roots of

Solution:

Given: $x^2 - 6x + 4 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

$$= (6)^2 - 4.1.4$$

$$= 36 - 16 = 20 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-6) + \sqrt{20}}{2 \times 1} = \frac{6 + 2\sqrt{5}}{2} = \frac{2(3 + \sqrt{5})}{2} = (3 + \sqrt{5})$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-6) - \sqrt{20}}{2 \times 1} = \frac{6 - 2\sqrt{5}}{2} = \frac{2(3 - \sqrt{5})}{2} = (3 - \sqrt{5})$$
$$x = (3 + \sqrt{5}) \text{ or } x = (3 - \sqrt{5})$$

Hence the roots of equation are $(3 + \sqrt{5})$ or $(3 - \sqrt{5})$

Question: 4

Find the roots of

Solution:

Given: $2x^2 + x - 4 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2, b = 1, c = -4$$

Discriminant D = $b^2 - 4ac$

$$= (1)^2 - 4.2. - 4$$

$$= 1 + 32 = 33 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-1 + \sqrt{33}}{2 \times 2} = \frac{-1 + \sqrt{33}}{4}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-1 - \sqrt{33}}{2 \times 2} = \frac{-1 - \sqrt{33}}{4}$$
$$x = \frac{-1 + \sqrt{33}}{4} \text{ or } x = \frac{-1 - \sqrt{33}}{4}$$

Hence the roots of equation are $\frac{-1+\sqrt{33}}{4}$ or $\frac{-1-\sqrt{33}}{4}$

Question: 5

Find the roots of

Solution:

Given: $25x^2 + 30x + 7 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 25, b = 30, c = 7

Discriminant D = $b^2 - 4ac$

$$= (30)^2 - 4.25.7$$

$$= 900 - 700 = 200 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-30 + \sqrt{200}}{2 \times 25} = \frac{-30 + 10\sqrt{2}}{50} = \frac{10(-3 + \sqrt{2})}{50} = \frac{(-3 + \sqrt{2})}{50}$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-30 - \sqrt{200}}{2 \times 25} = \frac{-30 - 10\sqrt{2}}{50} = \frac{10(-3 - \sqrt{2})}{50}$$
$$= \frac{(-3 - \sqrt{2})}{5}$$
$$x = \frac{(-3 + \sqrt{2})}{5} \text{ or } x = \frac{(-3 - \sqrt{2})}{5}$$

Hence the roots of equation are $\frac{(-3+\sqrt{2})}{5}$ or $\frac{(-3-\sqrt{2})}{5}$

Question: 6

Find the roots of

Solution:

Given: $16x^2 = 24x + 1$

 $16x^2 - 24x - 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

$$= (-24)^2 - 4.16. - 1$$

$$= 576 + 64 = 640 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-24) + \sqrt{640}}{2 \times 16} = \frac{24 + 8\sqrt{10}}{32} = \frac{8(3 + \sqrt{10})}{32}$$
$$= \frac{(3 + \sqrt{10})}{4}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-24) - \sqrt{640}}{2 \times 16} = \frac{24 - 8\sqrt{10}}{32} = \frac{8(3 - \sqrt{10})}{32}$$
$$= \frac{(3 - \sqrt{10})}{4}$$
$$x = \frac{(3 + \sqrt{10})}{4} \text{ or } x = \frac{(3 - \sqrt{10})}{4}$$

Hence the roots of equation are $\frac{(3+\sqrt{10})}{4}$ or $\frac{(3-\sqrt{10})}{4}$

Question: 7

Find the roots of

Solution:

Given: $15x^2 - 28 = x$

 $15x^2 - x - 28 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

 $= (-1)^2 - 4.15. - 28$

= 1 + 1680 = 1681 > 0

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-1) + \sqrt{1681}}{2 \times 15} = \frac{1 + 41}{30} = \frac{42}{30} = \frac{7}{5}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-1) - \sqrt{1681}}{2 \times 15} = \frac{1 - 41}{30} = \frac{-40}{30} = \frac{-4}{30}$$
$$x = \frac{7}{5} \text{ or } x = \frac{-4}{3}$$

Hence the roots of equation are $\frac{7}{5}$ or $\frac{-4}{3}$

Question: 8

Find the roots of

Solution:

Given: $2x^2 - 2\sqrt{2}x + 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2b = -2\sqrt{2}c = 1$$

Discriminant D = $b^2 - 4ac$

$$=(-2\sqrt{2})^2-4.2.1$$

$$= 8 - 8 = 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-2\sqrt{2})}{2 \times 2} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{1}{\sqrt{2}}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-2\sqrt{2})}{2 \times 2} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{1}{\sqrt{2}}$$
$$x = \frac{1}{\sqrt{2}} \text{ or } x = \frac{1}{\sqrt{2}}$$

Hence these are the repeated roots of the equation $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

Question: 9

Find the roots of

Solution:

Given: $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = \sqrt{2}b = 7c = 5\sqrt{2}$$

Discriminant D = $b^2 - 4ac$

$$= (7)^2 - 4.\sqrt{2}.5\sqrt{2}$$

$$= 49 - 40 = 9 > 0$$

Hence the roots of equation are real.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-7 + \sqrt{9}}{2 \times \sqrt{2}} = \frac{-7 + 3}{2 \times \sqrt{2}} = \frac{-4}{2\sqrt{2}} = -\sqrt{2}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-7 - \sqrt{9}}{2 \times \sqrt{2}} = \frac{-7 - 3}{2 \times \sqrt{2}} = \frac{-10}{2\sqrt{2}} = \frac{-5\sqrt{2}}{2}$$
$$x = -\sqrt{2} \text{ or } x = \frac{-5\sqrt{2}}{2}$$

Hence the roots of equation are $-\sqrt{2}$ or $\frac{-5\sqrt{2}}{2}$

Question: 10

Find the roots of

Solution:

Given: $\sqrt{3}x^2 + 10x - 8\sqrt{3} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = \sqrt{3} b = 10 c = -8\sqrt{3}$$

Discriminant D = $b^2 - 4ac$

$$= (10)^2 - 4.\sqrt{3}.-8\sqrt{3}$$

$$= 100 + 96 = 196 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{196} = 14$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-10 + \sqrt{196}}{2 \times \sqrt{3}} = \frac{-10 + 14}{2 \times \sqrt{3}} = \frac{4}{2\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{2\sqrt{3}}{3}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-10 - \sqrt{196}}{2 \times \sqrt{3}} = \frac{-10 - 14}{2 \times \sqrt{3}} = \frac{-24}{2\sqrt{3}} = \frac{-12}{\sqrt{3}}$$
$$= \frac{-12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{-12\sqrt{3}}{3} = -4\sqrt{3}$$
$$x = \frac{2\sqrt{3}}{3} \text{ or } x = -4\sqrt{3}$$

Hence the roots of equation are $\frac{2\sqrt{3}}{3}$ or $-4\sqrt{3}$

Question: 11

Find the roots of

Solution:

Given:
$$\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = \sqrt{3} b = -2\sqrt{2} c = -2\sqrt{3}$$

$$=(-2\sqrt{2})^2-4.\sqrt{3}.-2\sqrt{3}$$

= 8 + 24 = 32 > 0

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{32} = 4\sqrt{2}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-2\sqrt{2}) + 4\sqrt{2}}{2 \times \sqrt{3}} = \frac{6\sqrt{2}}{2 \times \sqrt{3}} = \frac{2\sqrt{3}\sqrt{3}\sqrt{2}}{2 \times \sqrt{3}} = \sqrt{6}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-2\sqrt{2}) - 4\sqrt{2}}{2 \times \sqrt{3}} = \frac{-2\sqrt{2}}{2 \times \sqrt{3}} = \frac{-\sqrt{2}}{\sqrt{3}}$$
$$x = \sqrt{6} \text{ or } x = \frac{-\sqrt{2}}{\sqrt{3}}$$

Hence the roots of equation are $\sqrt{6}$ or $\frac{-\sqrt{2}}{\sqrt{3}}$

Question: 12

Find the roots of

Solution:

Given: $2x^2 + 6\sqrt{3}x - 60 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2b = 6\sqrt{3}c = -60$$

Discriminant D = $b^2 - 4ac$

$$= (6\sqrt{3})^2 - 4.2. -60$$

$$= 180 + 480 = 588 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{588} = 14\sqrt{3}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(6\sqrt{3}) + 14\sqrt{3}}{2 \times 2} = \frac{8\sqrt{3}}{4} = 2\sqrt{3}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(6\sqrt{3}) - 14\sqrt{3}}{2 \times 2} = \frac{-20\sqrt{3}}{4} = -5\sqrt{3}$$
$$x = 2\sqrt{3} \text{ or } x = -5\sqrt{3}$$

Hence the roots of equation are $2\sqrt{3}$ or $-5\sqrt{3}$

Question: 13

Find the roots of

Solution:

Given $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 4\sqrt{3}b = 5c = -2\sqrt{3}$$

$$=(5)^2-4.4\sqrt{3}.-2\sqrt{3}$$

= 25 + 96 = 121 > 0

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{121} = 11$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-5 + 11}{2 \times 4\sqrt{3}} = \frac{6}{8 \times \sqrt{3}} = \frac{3}{4 \times \sqrt{3}} = \frac{\sqrt{3}}{4}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-5 - 11}{2 \times 4\sqrt{3}} = \frac{-16}{8 \times \sqrt{3}} = \frac{-2}{\sqrt{3}}$$
$$x = \frac{\sqrt{3}}{4} \text{ or } x = \frac{-2}{\sqrt{3}}$$

Hence the roots of equation are $\frac{\sqrt{3}}{4}$ or $\frac{-2}{\sqrt{3}}$

Question: 14

Find the roots of

Solution:

Given: $3x^2 - 2\sqrt{6}x + 2 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 3b = -2\sqrt{6}c = 2$$

Discriminant D = $b^2 - 4ac$

$$= (-2\sqrt{6})^2 - 4.3.2$$

$$= 24 - 24 = 0$$

$$\sqrt{D} = 0$$

Hence the roots of equation are real and repeated.

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-2\sqrt{6}) + 0}{2 \times 3} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3} = \frac{\sqrt{2}\sqrt{3}}{\sqrt{2}\sqrt{3}} = \sqrt{\frac{2}{3}}$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-2\sqrt{6}) - 0}{2 \times 3} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3} = \frac{\sqrt{2}\sqrt{3}}{\sqrt{2}\sqrt{3}} = \sqrt{\frac{2}{3}}$$

Hence the roots of equation are $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$

Question: 15

Find the roots of

Solution:

Given: $2\sqrt{3}x^2 - 5x + \sqrt{3} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2\sqrt{3}b = -5c = \sqrt{3}$$

 $= (-5)^2 - 4.2\sqrt{3}.\sqrt{3}$ = 25 - 24 = 1 > 0

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{1} = 1$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-5) + 1}{2 \times 2\sqrt{3}} = \frac{6}{4 \times \sqrt{3}} = \frac{\sqrt{3}}{2}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-5) - 1}{2 \times 2\sqrt{3}} = \frac{4}{4 \times \sqrt{3}} = \frac{1}{\sqrt{3}}$$
$$x = \frac{\sqrt{3}}{2} \text{ or } x = \frac{1}{\sqrt{3}}$$

Hence the roots of equation are $\frac{\sqrt{3}}{2}$ or $\frac{1}{\sqrt{3}}$

Question: 16

Find the roots of

Solution:

Given: $x^2 + x + 2 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

 $= (1)^2 - 4.1.2$

= 1 - 8 = - 7 < 0

Hence the roots of equation do not exist

Question: 17

Find the roots of

Solution:

Given: $2x^2 + ax - a^2 = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 2, B = a, C = -a^2$$

Discriminant D = $B^2 - 4AC$

$$= (a)^2 - 4.2. - a^2$$

$$= a^2 + 8 a^2 = 9a^2 \ge 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{9a^2} = 3a$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-a + 3a}{2 \times 2} = \frac{2a}{4} = \frac{a}{2}$$

$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-a - 3a}{2 \times 2} = \frac{-4a}{4} = -a$$
$$x = \frac{a}{2} \text{ or } x = -a$$

Hence the roots of equation are $\frac{a}{2}$ or -a

Question: 18

Find the roots of

Solution:

Given: $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 1b = -(\sqrt{3} + 1)c = \sqrt{3}$$

Discriminant D = $b^2 - 4ac$

$$D = \left[-\left(\sqrt{3} + 1\right) \right]^2 - 4.1 \cdot \sqrt{3} = 3 + 1 + 2\sqrt{3} - 4\sqrt{3} = 3 - 2\sqrt{3} + 1$$
$$D = \left(\sqrt{3} - 1\right)^2 > 0$$
Using a² - 2ab + b² = (a - b)²

Thus the roots of given equation are real.

$$\sqrt{D} = \sqrt{3} - 1$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-[-(\sqrt{3} + 1)] + (\sqrt{3} - 1)}{2 \times 1} = \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2}$$
$$= \frac{2\sqrt{3}}{2} = \sqrt{3}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-[-(\sqrt{3} + 1)] - (\sqrt{3} - 1)}{2 \times 1} = \frac{\sqrt{3} + 1 - \sqrt{3} + 1}{2} = \frac{2}{2}$$

 $x = 1 \text{ or } x = \sqrt{3}$

Hence the roots of equation are 1, $\sqrt{3}$

Question: 19

Find the roots of

Solution:

Given: $2x^2 + 5\sqrt{3}x + 6 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 2b = 5\sqrt{3}c = 6$$

Discriminant D = $b^2 - 4ac$

$$=(5\sqrt{3})^2-4.2.6$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{27} = 3\sqrt{3}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(5\sqrt{3}) + 3\sqrt{3}}{2 \times 2} = \frac{-2\sqrt{3}}{4} = \frac{-\sqrt{3}}{2}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(5\sqrt{3}) - 3\sqrt{3}}{2 \times 2} = \frac{-8\sqrt{3}}{4} = -2\sqrt{3}$$
$$x = \frac{-\sqrt{3}}{2} \text{ or } x = -2\sqrt{3}$$

Hence the roots of equation are $\frac{-\sqrt{3}}{2}$, $-2\sqrt{3}$

Question: 20

Find the roots of

Solution:

Given: $3x^2 - 2x + 2 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 3, b = -2, c = 2$$

Discriminant D = $b^2 - 4ac$

$$= (-2)^2 - 4.3.2$$

= 4 - 24 = -20 < 0

Hence the roots of equation do not exist

Question: 21

Find the roots of

Solution:

Given: $x + \frac{1}{x} = 3$

taking LCM

$$\frac{x^2 + 1}{x} =$$

cross multiplying

3

$$x^2 + 1 = 3x$$

$$x^2 - 3x + 1 = 0$$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

 $= (-3)^2 - 4.1.1$

$$= 9 - 4 = 5 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{5}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-3) + \sqrt{5}}{2 \times 1} = \frac{3 + \sqrt{5}}{2}$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-3) - \sqrt{5}}{2 \times 1} = \frac{3 - \sqrt{5}}{2}$$
$$x = \frac{3 + \sqrt{5}}{2} \text{ or } x = \frac{3 - \sqrt{5}}{2}$$

Hence the roots of equation are $\frac{3+\sqrt{5}}{2}$, $\frac{3-\sqrt{5}}{2}$

Question: 22

Find the roots of

Solution:

Given: $\frac{1}{x} - \frac{1}{x-2} = 3$ $\frac{x-2-x}{x(x-2)} = 3$ taking LCM $\frac{-2}{x^2 - 2x} = 3$

 $3x^2 - 6x + 2 = 0$ cross multiplying

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 3, b = -6, c = 2$$

Discriminant D = $b^2 - 4ac$

$$= (-6)^2 - 4.3.2$$
$$= 36 - 24 = 12 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{12} = 2\sqrt{3}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-6) + 2\sqrt{3}}{2 \times 3} = \frac{6 + 2\sqrt{3}}{6} = \frac{3 + \sqrt{3}}{3}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-6) - 2\sqrt{3}}{2 \times 3} = \frac{6 - 2\sqrt{3}}{6} = \frac{3 - \sqrt{3}}{3}$$
$$x = \frac{3 + \sqrt{3}}{3} \text{ or } x = \frac{3 - \sqrt{3}}{3}$$

Hence the roots of equation are $\frac{3+\sqrt{3}}{3}$ or $\frac{3-\sqrt{3}}{3}$

Question: 23

Find the roots of

Solution:

Given: $x - \frac{1}{x} = 3, x \neq 0$

 $\frac{x^2-1}{x} = 3$ taking LCM

 $x^2 - 3x - 1 = 0$ cross multiplying

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 1, b = - 3, c = - 1

 $= (-3)^2 - 4.1. - 1$

= 9 + 4 = 13 > 0

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{13}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(-3) + \sqrt{13}}{2 \times 1} = \frac{3 + \sqrt{13}}{2}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(-3) - \sqrt{13}}{2 \times 1} = \frac{3 - \sqrt{13}}{2}$$
$$x = \frac{3 + \sqrt{13}}{2} \text{ or } \frac{3 - \sqrt{13}}{2}$$

Hence the roots of equation are $\frac{3+\sqrt{13}}{2}$ or $\frac{3-\sqrt{13}}{2}$

Question: 24

Find the roots of

Solution:

Given:
$$\frac{m}{n}x^2 + \frac{n}{m} = 1 - 2x$$
$$\frac{m^2x^2 + n^2}{mn} = 1 - 2x$$

taking LCM $m^2x + n^2 = mn - 2mnx$

On cross multiplying

$$m^2x + 2mnx + n^2 - mn = 0$$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = m^2$$
, $b = 2mn$, $c = n^2 - mn$

Discriminant D = $b^2 - 4ac$

$$= (2mn)^2 - 4.m^2. (n^2 - mn)$$

$$= 4m^2n^2 - 4m^2n^2 + 4m^3n > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{4m^3n} = 2m\sqrt{mn}$$

Roots α and β are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(2mn) + 2m\sqrt{mn}}{2 \times m^2} = \frac{2m(-n + \sqrt{mn})}{2 \times m^2} = \frac{(-n + \sqrt{mn})}{m}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(2mn) - 2m\sqrt{mn}}{2 \times m^2} = \frac{2m(-n - \sqrt{mn})}{2 \times m^2} = \frac{(-n - \sqrt{mn})}{m}$$
$$x = \frac{(-n + \sqrt{mn})}{m} \text{ or } x = \frac{(-n - \sqrt{mn})}{m}$$

Hence the roots of equation are $\frac{(-n+\sqrt{mn})}{m}$ or $\frac{(-n-\sqrt{mn})}{m}$

Question: 25

Given: $36x^2 - 12ax + (a^2 - b^2) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 36, B = -12a, C = a^2 - b^2$$

Discriminant D = $B^2 - 4AC$

 $= (-12a)^2 - 4.36.(a^2 - b^2)$

$$= 144a^2 - 144a^2 + 144b^2 = 144b^2 > 0$$

Hence the roots of equation are real.

 $\sqrt{D} = \sqrt{144b^2} = 12b$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(-12a) + 12b}{2 \times 36} = \frac{12(a+b)}{72} = \frac{(a+b)}{6}$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(-12a) - 12b}{2 \times 36} = \frac{12(a-b)}{72} = \frac{(a-b)}{6}$$
$$x = \frac{(a+b)}{6} \text{ or } x = \frac{(a-b)}{6}$$

Hence the roots of equation are $\frac{(a+b)}{6}$ or $\frac{(a-b)}{6}$

Question: 26

Find the roots of

Solution:

Given: $x^2 - 2ax + (a^2 - b^2) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 1, B = -2a, C = a^2 - b^2$$

Discriminant D = $B^2 - 4AC$

$$= (-2a)^{2} - 4.1.(a^{2} - b^{2})$$
$$= 4a^{2} - 4a^{2} + 4b^{2} = 4b^{2} > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{4b^2} = 2b$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(-2a) + 2b}{2 \times 1} = \frac{2(a + b)}{2} = a + b$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(-2a) - 2b}{2 \times 1} = \frac{2(a - b)}{2} = a - b$$
$$x = (a + b) \text{ or } x = (a - b)$$

Hence the roots of equation are (a + b) or (a - b)

Question: 27

Find the roots of

Solution:

Given: $x^2 - 2ax - (4b^2 - a^2) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 1, B = -2a, C = -(4b^2 - a^2)$$

Discriminant D = $B^2 - 4AC$

$$= (-2a)^2 - 4.1. - (4b^2 - a^2)$$

$$= 4a^2 - 4a^2 + 16b^2 = 16b^2 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{16b^2} = 4b$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(-2a) + 4b}{2 \times 1} = \frac{2(a + 2b)}{2} = a + 2b$$

$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(-2a) - 4b}{2 \times 1} = \frac{2(a - 2b)}{2} = a - 2b$$

x = (a + 2b) or x = (a - 2b)

Hence the roots of equation are (a + 2b) or (a - 2b)

Question: 28

Find the roots of

Solution:

Given: $x^2 + 6x - (a^2 + b^2 - 8) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

A = 1, B = 6, C =
$$-(a^2 + b^2 - 8)$$

Discriminant D = B² - 4AC
= $(6)^2 - 4.1. - (a^2 + b^2 - 8)$
= $36 + 4a^2 + 8a - 32 = 4a^2 + 8a + 4$
= $4(a^2 + 2a + 1)$
= $4(a + 1)^2 > 0$ Using $a^2 + 2ab + b^2 = (a + b)^2$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{4(a + 1)^2}$$

= 2(a + 1)

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-6 + 2(a + 1)}{2 \times 1} = \frac{2a - 4}{2} = a - 2$$

$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-6 - 2(a + 1)}{2 \times 1} = \frac{-2a - 8}{2} = -a - 4 = -(a + 4)$$

$$x = (a - 2) \text{ or } x = -(4 + a)$$

Hence the roots of equation are (a - 2) or -(4 + a)

Question: 29

Given: $x^2 + 5x - (a^2 + a - 6) = 0$ Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$ $A = 1, B = 5, C = -(a^2 + a - 6)$ Discriminant $D = B^2 - 4AC$ $= (5)^2 - 4.1. - (a^2 + a - 6)$ $= 25 + 4a^2 + 4a - 24 = 4a^2 + 4a + 1$ $= (2a + 1)^2 > 0$ Using $a^2 + 2ab + b^2 = (a + b)^2$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{(2a + 1)^2}$$

= (2a + 1)

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-5 + (2a + 1)}{2 \times 1} = \frac{2a - 4}{2} = a - 2$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-5 - (2a + 1)}{2 \times 1} = \frac{-2a - 6}{2} = -a - 3 = -(a + 3)$$
$$x = (a - 2) \text{ or } x = -(a + 3)$$

Hence the roots of equation are (a - 2) or x = -(a + 3)

Question: 30

Find the roots of

Solution:

Given: $x^2 - 4ax - b^2 + 4a^2 = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 1, B = -4a, C = -b^2 + 4a^2$$

Discriminant D = $B^2 - 4AC$

$$= (-4a)^2 - 4.1. (-b^2 + 4a^2)$$

$$= 16a^2 + 4b^2 - 16a^2 = 4b^2 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{4b^2} = 2b$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(-4a) + 2b}{2 \times 1} = \frac{4a + 2b}{2} = 2a + b$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(-4a) - 2b}{2 \times 1} = \frac{4a - 2b}{2} = 2a - b$$
$$x = (2a - b) \text{ or } x = (2a + b)$$

Hence the roots of equation are (2a - b) or (2a + b)

Question: 31

Given: $4x^2 - 4a^2x + (a^4 - b^4) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 4, B = -4a^2, C = (a^4 - b^4)$$

Discriminant D = $B^2 - 4AC$

$$= (-4a^2)^2 - 4.4. (a^4 - b^4)$$

$$= 16a^4 + 16b^4 - 16a^4 = 16b^4 > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{16b^4} = 4b^2$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(-4a^2) + 4b^2}{2 \times 4} = \frac{4(a^2 + b^2)}{8} = \frac{a^2 + b^2}{2}$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(-4a^2) - 4b^2}{2 \times 4} = \frac{4(a^2 - b^2)}{8} = \frac{a^2 - b^2}{2}$$
$$x = \frac{a^2 + b^2}{2} \text{ or } x = \frac{a^2 - b^2}{2}$$

Hence the roots of equation are $\frac{a^2 + b^2}{2}$, $\frac{a^2 - b^2}{2}$

Question: 32

Find the roots of

Solution:

Given: $4x^2 + 4bx - (a^2 - b^2) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 4, B = 4b, C = -(a^2 - b^2)$$

Discriminant D = $B^2 - 4AC$

$$= (4b)^{2} - 4.4. - (a^{2} - b^{2})$$
$$= 16b^{2} + 16a^{2} - 16b^{2} = 16 a^{2} > 0$$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{16a^2} = 4a$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-(4b) + 4a}{2 \times 4} = \frac{4(a - b)}{8} = \frac{a - b}{2}$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-(4b) - 4a}{2 \times 4} = \frac{-4(a + b)}{8} = \frac{-(a + b)}{2}$$
$$x = \frac{-(a + b)}{2} \text{ or } x = \frac{a - b}{2}$$

Hence the roots of equation are $\frac{-(a+b)}{2}$ or $\frac{a-b}{2}$

Question: 33

Given: $x^2 - (2b - 1)x + (b^2 - b - 20) = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 1, B = -(2b - 1), C = (b^2 - b - 20)$$

Discriminant D = $B^2 - 4AC$

=
$$[-(2b-1)^2] - 4.1$$
. $(b^2 - b - 20)$ Using $a^2 - 2ab + b^2 = (a - b)^2$

 $= 4b^2 - 4b + 1 - 4b^2 + 4b + 80 = 81 > 0$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{81} = 9$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-[-(2b-1)] + 9}{2 \times 1} = \frac{2b + 8}{2} = b + 4$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-[-(2b-1] - 9}{2 \times 1} = \frac{2b - 10}{2} = b - 5$$
$$x = (b + 4) \text{ or } x = (b - 5)$$

Hence the roots of equation are (b + 4) or (b - 5)

Question: 34

Find the roots of

Solution:

Given: $3a^2x^2 + 8abx + 4b^2 = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 3a^2$$
, $B = 8ab$, $C = 4b^2$

Discriminant D = $B^2 - 4AC$

$$= (8ab)^2 - 4.3a^2 \cdot 4b^2$$

 $= 64 a^2b^2 - 48a^2b^2 = 16a^2b^2 > 0$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{16a^2b^2}$$
$$= 4ab$$

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-8ab + 4ab}{2 \times 3a^2} = \frac{-4ab}{6a^2} = \frac{-2b}{3a}$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-8ab - 4ab}{2 \times 3a^2} = \frac{-12ab}{6a^2} = \frac{-2b}{a}$$
$$x = \frac{-2b}{3a} \text{ or } x = \frac{-2b}{a}$$

Hence the roots of equation are $\frac{-2b}{3a}$ or $x = \frac{-2b}{a}$

Question: 35

Given:
$$a^{2}b^{2}x^{2} - (4b^{4} - 3a^{4})x - 12a^{2}b^{2} = 0$$

Comparing with standard quadratic equation $Ax^{2} + Bx + C =$
 $A = a^{2}b^{2}, B = -(4b^{4} - 3a^{4}), C = -12a^{2}b^{2}$
Discriminant $D = B^{2} - 4AC$
 $= [-(4b^{4} - 3a^{4})]^{2} - 4a^{2}b^{2}. - 12a^{2}b^{2}$
 $= 16b^{8} - 24a^{4}b^{4} + 9a^{8} + 48a^{4}b^{4}$
 $= 16b^{8} + 24a^{4}b^{4} + 9a^{8}$
 $= (4b^{4} + 3a^{4})^{2} > 0$ Using $a^{2} + 2ab + b^{2} = (a + b)^{2}$
Hence the roots of equation are real.

0

$$\sqrt{D} = \sqrt{(4b^4 + 3a^4)^2}$$

= 4b⁴ + 3a⁴

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-[-(4b^4 - 3a^4)] + (4b^4 + 3a^4)}{2 \times a^2 b^2} = \frac{8b^4}{2a^2 b^2} = \frac{4b^2}{a^2}$$
$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-[-(4b^4 - 3a^4)] - (4b^4 + 3a^4)}{2 \times a^2 b^2} = \frac{-6a^4}{2a^2 b^2} = \frac{-3a^2}{b^2}$$
$$x = \frac{4b^2}{a^2} \text{ or } x = \frac{-3a^2}{b^2}$$

Hence the roots of equation are $\frac{4b^2}{a^2}$ or $\frac{-3a^2}{b^2}$

Question: 36

Find the roots of

Solution:

Given: $12abx^2 - (9a^2 - 8b^2)x - 6ab = 0$

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

$$A = 12ab, B = -(9a^2 - 8b^2), C = -6ab$$

Discriminant D =
$$B^2 - 4AC$$

$$= [-(9a^2 - 8b^2)]^2 - 4.12ab. - 6ab$$

$$= 81a^4 - 144a^2b^2 + 64b^4 + 288a^2b^2$$

$$= 81a^4 + 144a^2b^2 + 64b^4$$

$$= (9a^{2} + 8b^{2})^{2} > 0$$
 Using $a^{2} + 2ab + b^{2} = (a + b)^{2}$

Hence the roots of equation are real.

$$\sqrt{D} = \sqrt{(9a^2 + 8b^2)^2}$$

= 9a² + 8b²

Roots α and β are given by

$$\alpha = \frac{-B + \sqrt{D}}{2A} = \frac{-[-(9a^2 - 8b^2)] + (9a^2 + 8b^2)}{2 \times 12ab} = \frac{18a^2}{24ab} = \frac{3a}{4b}$$

$$\beta = \frac{-B - \sqrt{D}}{2A} = \frac{-[-(9a^2 - 8b^2)] - (9a^2 + 8b^2)}{2 \times 12ab} = \frac{-16a^2}{24ab} = \frac{-2b}{3a}$$
$$x = \frac{3a}{4b} \text{ or } x = \frac{-2b}{3a}$$

Hence the roots of equation are $\frac{3a}{4b}$ or $\frac{-2b}{3a}$

Exercise : 10D

Question: 1 A

Find the nature o

Solution:

Given: $2x^2 - 8x + 5 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

$$= (-8)^2 - 4.2.5$$

= 64 - 40 = 24 > 0

Hence the roots of equation are real and unequal.

Question: 1 B

Find the nature o

Solution:

Given: $3x^2 - 2\sqrt{6}x + 2 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

 $a = 3b = -2\sqrt{6}c = 2$

Discriminant D = $b^2 - 4ac$

$$= (-2\sqrt{6})^2 - 4.3.2$$

= 24 - 24 = 0

Hence the roots of equation are real and equal.

Question: 1 C

Find the nature o

Solution:

Given: $5x^2 - 4x + 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 5, b = -4, c = 1$$

Discriminant D = $b^2 - 4ac$

$$= (-4)^2 - 4.5.1$$

$$= 16 - 20 = -4 < 0$$

Hence the equation has no real roots.

Question: 1 D

Find the nature o

Solution:

Given: 5x(x-2) + 6 = 0

 $5x^2 - 10x + 6 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

Discriminant D = $b^2 - 4ac$

$$= (-10)^2 - 4.5.6$$

= 100 - 120 = -20 < 0

Hence the equation has no real roots.

Question: 1 E

Find the nature o

Solution:

Given: $12x^2 - 4\sqrt{15}x + 5 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 12, b = -4\sqrt{15}, c = 5$$

Discriminant D = $b^2 - 4ac$

$$= (-4\sqrt{15})^2 - 4.12.5$$

$$= 240 - 240 = 0$$

Hence the equation has real and equal roots.

Question: 1 F

Find the nature o

Solution:

Given: $x^2 - x + 2 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 1, b = - 1, c = 2

Discriminant D = $b^2 - 4ac$

 $= (-1)^2 - 4.1.2$

= 1 - 8 = - 7 < 0

Hence the equation has no real roots.

Question: 2

If a and b are di

Solution:

Given: $2(a^2 + b^2)x^2 + 2(a + b)x + 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

 $a = 2 (a^2 + b^2), b = 2(a + b), c = 1$

$$= [2(a + b)]^{2} - 4 \cdot 2 (a^{2} + b^{2}) \cdot 1$$

= 4(a² + b² + 2ab) - 8 a² - 8b²
= 4a² + 4b² + 8ab - 8a² - 8b²
= - 4a² - 4b² + 8ab
= - 4(a² + b² - 2ab)
= - 4(a - b)² < 0

Hence the equation has no real roots.

Question: 3

Show that the roo

Solution:

Given equation $x^2 + px - q^2 = 0$

$$a = 1 b = p x = -q^2$$

Discriminant D = $b^2 - 4ac$

$$= (p)^{2} - 4.1. - q^{2}$$
$$= (p^{2} + 4q^{2}) > 0$$

Thus the roots of equation are real.

Question: 4

For what values o

Solution:

Given: $3x^2 + 2kx + 27 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 3 b = 2k c = 27

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

 $(2k)^2 - 4.3.27 = 0$

 $4k^2 - 324 = 0$

$$4k^2 = 324$$

 $k^2 = 81$ taking square root on both sides

k = 9 or k = -9

The values of k are 9, – 9 for which roots of the quadratic equation are real and equal.

Question: 5

For what value of

Solution:

Given equation is $kx(x - 2\sqrt{5}) + 10 = 0$

$$kx^2 - 2\sqrt{5}kx + 10 = 0$$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

 $a = kb = -2\sqrt{5}kc = 10$

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

$$(-k2\sqrt{5})^2 - 4.k.10 = 0$$

 $20k^2 - 40k = 0$

20k(k-2) = 0

20k = 0 or (k - 2) = 0

k = 0 or k = 2

The values of k are 0, 2 for which roots of the quadratic equation are real and equal.

Question: 6

For what values o

Solution:

Given equation is $4x^2 + px + 3 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 4 b = p c = 3$$

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

 $(p)^2 - 4.4.3 = 0$

$$p^2 = 48$$

$$p = \pm 4\sqrt{3}$$

$$\mathbf{p} = 4\sqrt{3} \, \mathrm{or} \, \mathbf{p} = \mathbf{p} = -4\sqrt{3}$$

The values of p are $4\sqrt{3}$, $-4\sqrt{3}$ for which roots of the quadratic equation are real and equal.

Question: 7

Find the nonzero

Solution:

Given equation is $9x^2 - 3kx + k = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 9 b = -3k c = k$$

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

 $(-3k)^2 - 4.9.k = 0$

 $9 k^2 - 36k = 0$

9k(k-4)=0

9k = 0 or(k - 4) = 0

k = 0 or k = 4

But given k is non zero hence k = 4 for which roots of the quadratic equation are real and equal.

Question: 8

Find the values o

Solution:

Given equation is $(3k + 1) x^2 + 2(k + 1)x + 1 = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = (3k + 1) b = 2(k + 1) c = 1

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

 $(2k + 2)^2 - 4.(3k + 1).1 = 0$ using $(a + b)^2 = a^2 + 2ab + b^2$

 $4k^2 + 8k + 4 - 12k - 4 = 0$

 $4\mathbf{k}^2 - 4\mathbf{k} = 0$

4k(k-1)=0

k = 0 (k - 1) = 0

$$k = 0 k = 1$$

The values of k are 0, 1 for which roots of the quadratic equation are real and equal.

Question: 9

Find the values o

Solution:

Given equation is $(2p + 1)x^2 - (7p + 2)x + (7p - 3) = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = (2p + 1) b = -(7p + 2) c = (7p - 3)

Given that the roots of equation are real and equal

Thus D = 0

Discriminant D = b² - 4ac = 0 $[-(7p + 2)]^{2} - 4.(2p + 1).(7p - 3) = 0 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$ $(49p^{2} + 28p + 4) - 4(14p^{2} + p - 3) = 0$ $49p^{2} + 28p + 4 - 56p^{2} - 4p + 12 = 0$ $- 7p^{2} + 24p + 16 = 0$ $7p^{2} - 24p - 16 = 0$ $7p^{2} - 28p + 4p - 16 = 0$ 7p(p - 4) + 4(p - 4) = 0 (7p + 4)(p - 4) = 0 (7p + 4) = 0 or (p - 4) = 0 $p = \frac{-4}{7} \text{ or } p = 4$ The values of p are $\frac{-4}{7}$ or 4 for which roots of the quadratic equation are real and equal.

Question: 10

Find the values o

Solution:

Given equation is $(p + 1)x^2 - 6 (p + 1) x + 3 (p + 9) = 0$ Comparing with standard quadratic equation $ax^2 + bx + c = 0$ a = (p + 1) b = -6(p + 1) c = 3(p + 9)Given that the roots of equation are equal Thus D = 0Discriminant $D = b^2 - 4ac = 0$ $[-6(p + 1)]^2 - 4.(p + 1).3(p + 9) = 0$ 36(p + 1)(p + 1) - 12(p + 1)(p + 9) = 0 12(p + 1)[3(p + 1) - (p + 9)] = 0 12(p + 1)[3p + 3 - p - 9] = 0 12(p + 1)[2p - 6] = 0 (p + 1) = 0 or [2p - 6] = 0p = -1 or p = 3

The values of p are – 1, 3 for which roots of the quadratic equation are real and equal.

Question: 11

If - 5 is a root

Solution:

Given that – 5 is a root of the quadratic equation $2x^2 + px - 15 = 0$

 $2(-5)^2 - 5p - 15 = 0$ 5p = 35 p = 7Given equation is $p(x^2 + x) + k = 0$

 $px^2 + px + k = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = p b = p c = k$$

Given that the roots of equation are equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

$$[p]^2 - 4.p.k = 0$$

 $7^2 - 28k = 0$

49 - 28k = 0

$$k = \frac{49}{28} = \frac{7}{4}$$

The value of k is $\frac{7}{4}$ for which roots of the quadratic equation are equal.

Question: 12

If 3 is a root of $% \left[{{\left[{{\left[{{\left[{\left({1 \right) }} \right]_{{\rm{T}}}}} \right]_{{\rm{T}}}}} \right]_{{\rm{T}}}} \right]} \right]$

Solution:

Given 3 is a root of the quadratic equation $x^2 - x + k = 0$

 $(3)^2 - 3 + k = 0$

k + 6 = 0

k = - 6

Given equation is $x^2 + k(2x + k + 2) + p = 0$

 $x^2 + 2kx + (k^2 + 2k + p) = 0$

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 1 b = 2k c = k^2 + 2k + p$$

Given that the roots of equation are equal

Thus D = 0

Discriminant D = $b^2 - 4ac = 0$

 $(2k)^2 - 4.1.(k^2 + 2k + p) = 0$

 $4k^2 - 4k^2 - 8k - 4p = 0$

-8k - 4p = 0

4p = -8k

p = - 2k

p = -2. - 6 = 12

p = 12

The value of $p\ is$ – 12 for which roots of the quadratic equation are equal.

Question: 13

If - 4 is a root

Solution:

Given - 4 is a root of the equation $x^2 + 2x + 4p = 0$

 $(-4)^2 + 2(-4) + 4p = 0$

8 + 4p = 0

The quadratic equation $x^2 + px (1 + 3k) + 7(3 + 2k) = 0$ has equal roots

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = 1 b = p(1 + 3k) c = 7(3 + 2k)$$

Thus D = 0
Discriminant D = b² - 4ac = 0

$$[p(1 + 3k)]^{2} - 4.1.7(3 + 2k) = 0$$

$$[- 2(1 + 3k)]^{2} - 4.1.7(3 + 2k) = 0$$

$$4(1 + 6k + 9k^{2}) - 4.7(3 + 2k) = 0 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$4(1 + 6k + 9k^{2} - 21 - 14k) = 0$$

 $9k^{2} - 8k - 20 = 0$ $9k^{2} - 18k - 10k - 20 = 0$ 9k(k - 2) + 10(k - 2) = 0 (9k + 10)(k - 2) = 0 $k = \frac{-10}{9} \text{ or } k = 2$

The value of k is $\frac{-10}{9}$ or 2 for which roots of the quadratic equation are equal.

Question: 14

If the quadratic

Solution:

The quadratic equation $(1 + m^2) x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots Comparing with standard quadratic equation $ax^2 + bx + c = 0$ $a = (1 + m^2) b = 2mc c = c^2 - a^2$ Thus D = 0 Discriminant D = b² - 4ac = 0 $(2mc)^2 - 4.(1 + m^2)(c^2 - a^2) = 0$ $4 m^2c^2 - 4c^2 + 4a^2 - 4 m^2c^2 + 4 m^2a^2 = 0$ $- 4c^2 + 4a^2 + 4m^2a^2 = 0$ $a^2 + m^2a^2 = c^2$ $c^2 = a^2 (1 + m^2)$ Hence proved Question: 15

If the roots of t

Solution:

Given that the roots of the equation $(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0$ are real and equal Comparing with standard quadratic equation $ax^2 + bx + c = 0$

 $a = (c^{2} - ab) b = -2(a^{2} - bc) c = (b^{2} - ac)$ Thus D = 0 Discriminant D = b² - 4ac = 0 $[-2(a^{2} - bc)]^{2} - 4(c^{2} - ab) (b^{2} - ac) = 0$ $4(a^{4} - 2a^{2}bc + b^{2}c^{2}) - 4(b^{2}c^{2} - ac^{3} - ab^{3} + a^{2}bc) = 0$ using (a - b)² = a² - 2ab + b² a⁴ - 2a^{2}bc + b^{2}c^{2} - b^{2}c^{2} + ac^{3} + ab^{3} - a^{2}bc = 0 $a^{4} - 3a^{2}bc + ac^{3} + ab^{3} = 0$ $a (a^{3} - 3abc + c^{3} + b^{3}) = 0$ Hence proved a = 0 or a³ + c³ + b³ = 3abc

Question: 16

Find the values o

Solution:

Given that the quadratic equation $2x^2 + px + 8 = 0$ has real roots

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 2 b = p c = 8 Thus D = 0 Discriminant D = b² - 4ac ≥ 0 (p)² - 4.2.8 ≥ 0 (p)² - 64 ≥ 0 p² \geq 64 taking square root on both sides p ≥ 8 or p ≤ -8 The roots of equation are real for p ≥ 8 or p ≤ -8 **Question: 17**

Find the value of

Solution:

Given that the quadratic equation $(a - 12)x^2 + 2(a - 12)x + 2 = 0$ has equal roots

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$

A = (a - 12) B = 2(a - 12) C = 2Thus D = 0 Discriminant D = B² - 4AC ≥ 0 $[2(a - 12)]^{2} - 4(a - 12)2 \ge 0$ $4(a^{2} + 144 - 24a) - 8a + 96 = 0 \text{ using } (a - b)^{2} = a^{2} - 2ab + b^{2}$ $4a^{2} + 576 - 96a - 8a + 96 = 0$ $4a^{2} - 104a + 672 = 0$ $a^{2} - 26a + 168 = 0$ $a^{2} - 14a - 12a + 168 = 0$ a(a - 14) - 12(a - 14) = 0 (a - 14)(a - 12) = 0 a = 14 or a = 12for a = 12 the equation will become non quadratic - - (a - 12)x^{2} + 2(a - 12)x + 2 = 0

A, B will become zero

Thus value of a = 14 for which the equation has equal roots.

Question: 18

Find the value of

Solution:

Given that the quadratic equation $9x^2 + 8kx + 16 = 0$ roots are real and equal.

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

a = 9 b = 8k c = 16Thus D = 0Discriminant D = $b^2 - 4ac = 0$ $(8k)^2 - 4.9.16 = 0$ $64k^2 - 576 = 0$ $k^2 = 9$ taking square root both sides k = +3Thus k = 3 or k = -3 for which the roots are real and equal. **Ouestion: 19** Find the values o Solution: (i) Given: $kx^2 + 6x + 1 = 0$ Comparing with standard quadratic equation $ax^2 + bx + c = 0$ a = k b = 6 c = 1For real and distinct roots: D > 0Discriminant D = $b^2 - 4ac > 0$ $6^2 - 4k > 0$ 36 - 4k > 04k < 36 **k** < 9 (ii) Given: $x^2 - kx + 9 = 0$ Comparing with standard guadratic equation $ax^2 + bx + c = 0$ a = 1 b = -k c = 9For real and distinct roots: D > 0Discriminant D = $b^2 - 4ac > 0$ $(-k)^2 - 4.1.9 = k^2 - 36 > 0$ $k^2 > 36$ k > 6 or k < -6 taking square root both sides (iii) $9x^2 + 3kx + 4 = 0$ Comparing with standard quadratic equation $ax^2 + bx + c = 0$ a = 9 b = 3k c = 4For real and distinct roots: D > 0Discriminant D = $b^2 - 4ac > 0$ $(3k)^2 - 4.4.9 = 9k^2 - 144 > 0$ $9k^2 > 144$ $k^2 > 16$

k > 4ork < -4 taking square root both sides

(iv) $5x^2 - kx + 1 = 0$

Comparing with standard guadratic equation $ax^2 + bx + c = 0$

a = 5 b = -k c = 1

For real and distinct roots: D > 0

Discriminant D = $b^2 - 4ac > 0$

 $(-k)^2 - 4.5.1 = k^2 - 20 > 0$

 $k^2 > 20$

 $k>2\sqrt{5}$ or $k<-2\sqrt{5}$ taking square root both sides

Question: 20

If a and b are re

Solution:

Comparing with standard quadratic equation $ax^2 + bx + c = 0$

$$a = (a - b) b = 5(a + b) c = -2(a - b)$$

Discriminant D = $b^2 - 4ac$

 $= [5(a + b)]^2 - 4(a - b)(-2(a - b))$

$$= 25(a + b)^2 + 8(a - b)^2$$

Since a and b are real and $a \neq b$ then $(a + b)^2 > 0$ $(a - b)^2 > 0$

 $8(a - b)^2 > 0 - - - - (1)$ product of two positive numbers is always positive

 $25(a + b)^2 > 0 - - - (2)$ product of two positive numbers is always positive

Adding (1) and (2) we get

 $8(a - b)^2 + 25(a + b)^2 > 0$ (sum of two positive numbers is always positive)

D > 0

Hence the roots of given equation are real and unequal.

Question: 21

If the roots of t

Solution:

Given the roots of the equation are equation $(a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0$ are equal. Comparing with standard quadratic equation $ax^2 + bx + c = 0$ $a = (a^2 + b^2)b = -2(ac + bd)c = (c^2 + d^2)$

For real and distinct roots:
$$D = 0$$

Discriminant D = $b^2 - 4ac = 0$

$$[-2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2) = 0$$

 $4(a^{2}c^{2} + b^{2}d^{2} + 2abcd) - 4(a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}) = 0$

using $(a + b)^2 = a^2 + 2ab + b^2$

$$4(a^2c^2 + b^2d^2 + 2abcd - a^2c^2 - a^2d^2 - b^2c^2 - b^2d^2) = 0$$

$$2abcd - a^2d^2 - b^2c^2 = 0$$

 $-(2abcd + a^2d^2 + b^2c^2) = 0$

 $(ad - bc)^2 = 0$ ad = bc

 $\frac{a}{b} = \frac{c}{d}$

Hence proved.

Question: 22

If the roots of t

Solution:

Given the roots of the equations $ax^2 + 2bx + c = 0$ are real.

Comparing with standard quadratic equation $Ax^2 + Bx + C = 0$ A = a B = 2b C = cDiscriminant D₁ = B² – 4AC ≥ 0 $= (2b)^2 - 4.a.c \ge 0$ $= 4(b^2 - ac) \ge 0$ $= (b^2 - ac) \ge 0 - - - - - (1)$ For the equation $bx^2 - 2\sqrt{acx} + b = 0$ Discriminant $D_2 = b^2 - 4ac \ge 0$ $= (-2\sqrt{ac})^2 - 4. b. b \ge 0$ $= 4(ac - b^2) \ge 0$ $= -4(b^2 - ac) \ge 0$ $= (b^2 - ac) \ge 0 - - - - - (2)$ The roots of the are simultaneously real if (1) and (2) are true together $b^2 - ac = 0$ $b^2 = ac$

Hence proved.

Exercise : 10E

Question: 1

The sum of a natu

Solution:

Let the required number be x

According to given condition,

$$\mathbf{x} + \mathbf{x}^2 = 156$$

$$x^2 + x - 156 = 0$$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 1 c = -156

= 1. - 156 = -156

And either of their sum or difference = b = 1 Thus the two terms are 13 and - 12 Sum = 13 - 12 = 1 Product = 13. - 12 = - 156 $x^{2} + x - 156 = 0$ $x^{2} + 13x - 12x - 156 = 0$ x(x + 13) - 12 (x + 13) = 0(x - 12) (x + 13) = 0x = 12 or x = -13x cannot be negative Hence the required natural number is 12

Question: 2

The sum of a natu

Solution:

Let the required number be x

According to given condition,

 $x + \sqrt{x} = 132$

putting $\sqrt{x} = y \text{ or } x = y^2$ we get

 $y^2 + y = 132$

 $y^2 + y - 132 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 1 c = -132= 1. - 132 = -132 And either of their sum or difference = b = 1 Thus the two terms are 12 and - 11 Difference = 12 - 11 = 1 Product = 12. - 11 = -132 $y^2 + y - 132 = 0$ $y'^2 + 12y - 11y - 132 = 0$ y(y + 12) - 11(y + 12) = 0 (y + 12) (y - 11) = 0 (y + 12) = 0 or (y - 11) = 0 y = -12 or y = 11 but y cannot be negative Thus y = 11 Now $\sqrt{x} = y$

x = y squaring both sides

 $x = (11)^2 = 121$

Hence the required number is 121

Question: 3

The sum of two na

Solution:

Let the required number be $x \mbox{ and } 28$ – x

According to given condition,

x(28 - x) = 192

 $x^2 - 28x + 192 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -28 c = 192

= 1.192 = 192

And either of their sum or difference = b

= - 28

Thus the two terms are – 16 and – 12 $\,$

Sum = -16 - 12 = -28

Product = -16. - 12 = 192

 $x^2 - 28x + 192 = 0$

 $x^2 - 16x - 12x + 192 = 0$

x(x - 16) - 12(x - 16) = 0

(x - 16) (x - 12) = 0

(x - 16) = 0 or (x - 12) = 0

x = 16 or x = 12

Hence the required numbers are 16, 12

Question: 4

The sum of the sq

Solution:

Let the required two consecutive positive integers be $x \mbox{ and } x+1$

According to given condition,

$$x^{2} + (x + 1)^{2} = 365$$

$$x^{2} + x^{2} + 2x + 1 = 365 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$2x^{2} + 2x - 364 = 0$$

$$x^{2} + x - 182 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = 1 c = -182= 1. - 182 = -182And either of their sum or difference = b = 1 Thus the two terms are 14 and - 13 Difference = 14 - 13 = 1Product = 14. - 13 = -182 $x^2 + x - 182 = 0$ $x^2 + 14x - 13x - 182 = 0$ x(x + 14) - 13(x + 14) = 0(x + 14) (x - 13) = 0(x + 14) = 0 or (x - 13) = 0x = -14 or x = 13x = 13 (x is a positive integer) x + 1 = 13 + 1 = 14

Thus the required two consecutive positive integers are 13, 14

Question: 5

The sum of the sq

Solution:

Let the two consecutive positive odd numbers be x and x + 2

According to given condition,

 $x^2 + (x+2)^2 = 514$

 $x^{2} + x^{2} + 4x + 4 = 514$ using $(a + b)^{2} = a^{2} + 2ab + b^{2}$

 $2x^2 + 4x - 510 = 0$

 $x^2 + 2x - 255 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 2 c = -255

= 1. - 255 = - 255

And either of their sum or difference = b

= 2

Thus the two terms are 17 and – 15 $\,$

Difference = 17 - 15 = 2

Product = 17. - 15 = -255

 $x^2 + 2x - 255 = 0$

 $x^2 + 17x - 15x - 255 = 0$

x(x + 17) - 15(x + 17) = 0

(x + 17) (x - 15) = 0(x + 17) = 0 or (x - 15) = 0x = -17 or x = 15x = 15 (x is positive odd number)

$$x + 2 = 15 + 2 = 17$$

Thus the two consecutive positive odd numbers are 15 and 17

Question: 6

The sum of the sq

Solution:

Let the two consecutive positive even numbers be x and (x + 2)

According to given condition,

 $x^{2} + (x + 2)^{2} = 452$ $x^{2} + x^{2} + 4x + 4 = 452$ using $(a + b)^{2} = a^{2} + 2ab + b^{2}$ $2x^{2} + 4x - 448 = 0$

 $x^2 + 2x - 224 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 2 c = -224

= 1. - 224 = -224

And either of their sum or difference = b

= 2

Thus the two terms are 16 and – $14\,$

Difference = 16 - 14 = 2

Product = 16. - 14 = -224

 $x^2 + 2x - 224 = 0$

 $x^2 + 16x - 14x - 224 = 0$

x(x + 16) - 14(x + 16) = 0

(x + 16) (x - 14) = 0

(x + 16) = 0 or (x - 14) = 0

x = -16 or x = 14

x = 14 (x is positive odd number)

$$x + 2 = 14 + 2 = 16$$

Thus the two consecutive positive even numbers are 14 and 16

Question: 7

The product of tw

Solution:

Let the two consecutive positive integers be x and (x + 1)

According to given condition,

 $\mathbf{x}(\mathbf{x}+1) = 306$

 $x^2 + x - 306 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = 1 c = -306= 1. - 306 = -306And either of their sum or difference = b = 1 Thus the two terms are 18 and - 17 Difference = 18 - 17 = 1Product = 18. - 17 = -306 $x^2 + x - 306 = 0$ $x^2 + 18x - 17x - 306 = 0$ x(x + 18) - 17(x + 18) = 0(x + 18) (x - 17) = 0(x + 18) = 0 or (x - 17) = 0x = -18 or x = 17but x = 17 (x is a positive integers) x + 1 = 17 + 1 = 18

Thus the two consecutive positive integers are $17 \ \text{and} \ 18$

Question: 8

Two natural numbe

Solution:

Let the two natural numbers be x and (x + 3)

According to given condition,

 $\mathbf{x}(\mathbf{x}+3) = 504$

 $x^2 + 3x - 504 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 3 c = -504= 1. - 504 = - 504 And either of their sum or difference = b = 3 Thus the two terms are 24 and - 21 Difference = 24 - 21 = 3 Product = 24. - 21 = - 504 $x^2 + 3x - 504 = 0$ $x^{2} + 24x - 21x - 504 = 0$ x (x + 24) - 21(x + 24) = 0 (x + 24) (x - 21) = 0 (x + 24) = 0 or (x - 21) = 0 x = -24 or x = 21Case I: x = 21 x + 3 = 21 + 3 = 24The numbers are (21, 24) Case I: x = -24 x + 3 = -24 + 3 = -21The numbers are (-24, -21)

Question: 9

Find two consecut

Solution:

Let the required consecutive multiples of 3 be 3x and 3(x + 1)

According to given condition,

3x.3(x + 1) = 648 $9(x^{2} + x) = 648$ $x^{2} + x = 72$ $x^{2} + x - 72 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 1 c = -72

= 1. - 72 = - 72

And either of their sum or difference = b

= 1

Thus the two terms are 9 and - 8

Difference = 9 - 8 = 1

Product = 9. - 8 = -72

 $x^2 + 9x - 8x - 72 = 0$

x (x + 9) - 8(x + 9) = 0

(x + 9) (x - 8) = 0

(x + 9) = 0 or (x - 8) = 0

x = -9 or x = 8

x = 8 (rejecting the negative values)

$$3x = 3.8 = 24$$

3(x + 1) = 3(8 + 9) = 3.9 = 27

Hence, the required numbers are 24 and 27

Question: 10

Find two consecut

Solution:

Let the required consecutive positive odd integers be x and (x + 2)

According to given condition,

x(x + 2) = 483

 $x^2 + 2x - 483 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 2 c = -483

= 1. - 483 = - 483

And either of their sum or difference = b

= 2

Thus the two terms are 23 and – 21 $\,$

Difference = 23 - 21 = 2

Product = 23. - 21 = - 483

 $x^2 + 2x - 483 = 0$

 $x^2 + 23x - 21x - 483 = 0$

x (x + 23) - 21(x + 23) = 0

(x + 23) (x - 21) = 0

(x + 23) = 0 or (x - 21) = 0

x = -23 or x = 21

x = 21 (x is a positive odd integer)

$$x + 2 = 21 + 2 = 23$$

Hence, the required integers are 21 and 23

Question: 11

Find two consecut

Solution:

Let the two consecutive positive even integers be x and (x + 2)

According to given condition,

x(x + 2) = 288

 $x^2 + 2x - 288 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 2 c = -288

= 1. - 288 = - 288

And either of their sum or difference = b

= 2

Thus the two terms are 18 and – 16 $\,$

Difference = 18 - 16 = 2

Product = 18. - 16 = - 288

 $x^2 + 18x - 16x - 288 = 0$

x (x + 18) - 16(x + 18) = 0

(x + 18) (x - 16) = 0

(x + 18) = 0 or (x - 16) = 0

x = -18 or x = 16

x = 16 (x is a positive odd integer)

x + 2 = 16 + 2 = 18

Hence, the required integers are 16 and 18

Question: 12

The sum of two na

Solution:

Let the required natural numbers x and (9 - x)

According to given condition,

 $\frac{1}{x} + \frac{1}{9-x} = \frac{1}{2}$ $\frac{9-x+x}{x(9-x)} = \frac{1}{2} \text{ taking LCM}$ $\frac{9}{9x-x^2} = \frac{1}{2}$ $9x - x^2 = 18 \text{ cross multiplying}$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

 $x^2 - 9x + 18 = 0$

For the given equation a = 1 b = -9 c = 18

= 1.18 = 18

And either of their sum or difference = b

Thus the two terms are – $6 \mbox{ and }$ – $3 \mbox{ }$

Sum = -6 - 3 = -9

Product = -6. - 3 = 18

 $x^2 - 9x + 18 = 0$

 $x^{2} - 6x - 3x + 18 = 0$ x(x - 6) - 3(x - 6) = 0

(x - 6) (x - 3) = 0

(x - 6) = 0 or (x - 3) = 0

x = 6 or x = 3Case I: when x = 69 - x = 9 - 6 = 3Case II: when x = 39 - x = 9 - 3 = 6

Hence required numbers are 3 and 6.

Question: 13

The sum of two na

Solution:

Let the required natural numbers x and (15 - x)

According to given condition,

 $\frac{1}{x} + \frac{1}{15 - x} = \frac{3}{10}$

taking LCM

 $\frac{15 - x + x}{x(15 - x)} = \frac{3}{10}$

cross multiplying

 $\frac{15}{15x - x^2} = \frac{3}{10}$ $15x - x^2 = 50$ $x^2 - 15x + 50 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -15 c = 50

= 1.50 = 50

And either of their sum or difference = b

= - 15

Thus the two terms are – 10 and – 5

Sum = - 10 - 5 = - 15

Product = -10. - 5 = 50 $x^2 - 10x - 5x + 50 = 0$ x(x - 10) - 5(x - 10) = 0 (x - 5) (x - 10) = 0 (x - 5) = 0 or (x - 10) = 0 x = 5 or x = 10Case I: when x = 5

Case I: when x = 3

15 - x = 15 - 5 = 10

Case II: when x = 10

15 - x = 15 - 10 = 5

Hence required numbers are 5 and 10.

Question: 14

The difference of

Solution:

Let the required natural numbers x and (x + 3)

x < x + 3

Thus $\frac{1}{x} > \frac{1}{x+3}$

According to given condition,

 $\frac{1}{x} - \frac{1}{x+3} = \frac{3}{28}$

taking LCM

 $\frac{x+3-x}{x(x+3)} = \frac{3}{28}$

$$\frac{3}{x^2 + 3x} = \frac{3}{28}$$

cross multiplying

 $x^{2} + 3x = 28$ $x^{2} + 3x - 28 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 3 c = -28

= 1. - 28 = - 28

And either of their sum or difference = b

= 3

Thus the two terms are 7 and – $4\,$

Difference = 7 - 4 = 3

Product = 7. - 4 = -28

$$x^2 + 3x - 28 = 0$$

 $x^2 + 7x - 4x - 28 = 0$

x(x + 7) - 4(x + 7) = 0

(x - 4) (x + 7) = 0

(x - 4) = 0 or (x + 7) = 0

x = 4 or x = -7

x = 4 (x < x + 3)

$$x + 3 = 4 + 3 = 7$$

Hence required numbers are 4 and 7.

Question: 15

The difference of

Solution:

Let the required natural numbers x and (x + 5)

x < x + 5

Thus $\frac{1}{x} > \frac{1}{x+5}$

According to given condition,

$$\frac{1}{x} - \frac{1}{x+5} = \frac{5}{14}$$

taking LCM

$$\frac{x+5-x}{x(x+5)} = \frac{5}{14}$$
$$\frac{5}{x^2+5x} = \frac{5}{14}$$

cross multiplying

$$x^2 + 5x = 14$$

 $x^2 + 5x - 14 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 5 c = -14

= 1. - 14 = - 14

And either of their sum or difference = b

= 5

Thus the two terms are 7 and – 2 $\,$

Difference = 7 - 2 = 5

Product = 7. - 2 = -14

 $x^2 + 7x - 2x - 14 = 0$

x (x + 7) - 2(x + 7) = 0

(x - 2) (x + 7) = 0

(x - 2) = 0 or (x + 7) = 0

x = 2 or x = -7

x = 2 (x < x + 3)

x + 5 = 2 + 5 = 7

Hence required natural numbers are 2 and 7.

Question: 16

The sum of the sq

Solution:

Let the required consecutive multiples of 7 be 7x and 7(x + 1)

According to given condition,

 $(7x)^2 + [7(x + 1)]^2 = 1225$

 $49 x^{2} + 49(x^{2} + 2x + 1) = 1225 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$ $49 x^{2} + 49x^{2} + 98x + 49 = 1225$ $98x^{2} + 98x - 1176 = 0$

 $x^2 + x - 12 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 1 c = -12

= 1. - 12 = -12

And either of their sum or difference = b

```
= 1
```

Thus the two terms are $4 \mbox{ and } - 3$

Difference = 4 - 3 = 1

Product = 4. - 3 = -12

 $x^2 + 4x - 3x - 12 = 0$

x(x + 4) - 3(x + 4) = 0

(x - 3) (x + 4) = 0

(x - 3) = 0 or (x + 4) = 0

x = 3 or x = -4

when x = 3,

7x = 7.3 = 21

7(x + 1) = 7(3 + 1) = 7.4 = 28

Hence required multiples are 21, 28.

Question: 17

The sum of a natu

Solution:

Let the required natural numbers \boldsymbol{x}

According to given condition,

$$x + \frac{1}{x} = \frac{65}{8}$$
$$\frac{x^2 + 1}{x} = \frac{65}{8}$$
$$8x^2 + 8 = 65x$$

 $8x^2 - 65x + 8 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 8 b = -65 c = 8

= 8.8 = 64

And either of their sum or difference = b

= - 65 Thus the two terms are - 64 and - 1 Difference = - 64 - 1 = - 65 Product = - 64. - 1 = 64 $8x^2 - 64x - x + 8 = 0$ 8x (x - 8) - 1(x - 8) = 0 (x - 8) (8x - 1) = 0 (x - 8) = 0 or (8x - 1) = 0x = 8 or x = 1/8

x = 8 (x is a natural number)

Hence the required number is 8.

Question: 18

Divide 57 into tw

Solution:

Let the two consecutive positive even integers be x and (57 - x)

According to given condition,

x(57 - x) = 680

 $57x - x^2 = 680$

Product = a.c

 $x^2 - 57x - 680 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

For the given equation a = 1 b = -57 c = -680= 1. - 680 = - 680And either of their sum or difference = b = - 57 Thus the two terms are - 40 and - 17 Sum = - 40 - 17 = - 57 Product = -40. - 17 = -680 $x^2 - 57x - 680 = 0$ $x^2 - 40x - 17x - 680 = 0$ x (x - 40) - 17(x - 40) = 0(x - 40) (x - 17) = 0(x - 40) = 0 or (x - 17) = 0x = 40 or x = 17When x = 4057 - x = 57 - 40 = 17When x = 1757 - x = 57 - 17 = 40

Hence the required parts are 17 and 40.

Question: 19

Divide 27 into tw

Solution:

Let the two parts be x and (27 - x)

According to given condition,

$$\frac{1}{x} + \frac{1}{27 - x} = \frac{3}{20}$$
$$\frac{27 - x + x}{x(27 - x)} = \frac{3}{20}$$

On taking the LCM

$$\frac{27}{27x - x^2} = \frac{3}{20}$$

 $27x - x^2 = 180$

Product = a.c

On Cross multiplying

 $x^2 - 27x + 180 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

For the given equation a = 1 b = -27 c = 180= 1. - 180 = -180And either of their sum or difference = b= - 27 Thus the two terms are - 15 and - 12 Sum = - 15 - 12 = - 27 Product = -15. - 12 = 180 $x^2 - 15x - 12x + 180 = 0$ x (x - 15) - 12(x - 15) = 0(x - 15) (x - 12) = 0(x - 15) = 0 or (x - 12) = 0x = 15 or x = 12Case I: when x = 1227 - x = 27 - 12 = 15Case II: when x = 1527 - x = 27 - 15 = 12Hence required numbers are 12 and 15. **Ouestion: 20** Divide 16 into tw

Solution:

Let the larger and the smaller parts be x and y respectively.

According to the question

x + y = 16 - - - - (1) $2x^{2} = y^{2} + 164 - - - (2)$ From (1) x = 16 - y - - - (3) From (2) and (3) we get $2(16 - y)^{2} = y^{2} + 164$ $2(256 - 32y + y^{2}) = y^{2} + 164 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$ $512 - 64y + 2y^{2} = y^{2} + 164$ $y^{2} - 64y + 348 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

```
Product = a.c
For the given equation a = 1 b = -64 c = 348
= 1.348 = 348
And either of their sum or difference = b
= - 64
Thus the two terms are - 58 and - 6
Sum = -58 - 6 = -64
Product = -58. - 6 = 348
v^2 - 64v + 348 = 0
y^2 - 58y - 6y + 348 = 0
y(y - 58) - 6(y - 58) = 0
(y - 58) (y - 6) = 0
(y - 58) = 0 or (y - 6) = 0
y = 6 (y < 16)
putting the value of y in (3), we get
x = 16 - 6
= 10
Hence the two natural numbers are 6 and 10.
Question: 21
Find two natural
Solution:
Let the two natural numbers be x and y.
According to the question
```

$$x^{2} + y^{2} = 25(x + y) - - - - (1)$$

$$x^{2} + y^{2} = 50(x - y) - - - (2)$$

From (1) and (2) we get

$$25(x + y) = 50(x - y)$$

 $\mathbf{x} + \mathbf{y} = 2(\mathbf{x} - \mathbf{y})$

x + y = 2x - 2y y + 2y = 2x - x 3y = x - - - - (3)From (2) and (3) we get $(3y)^{2} + y^{2} = 50(3y - y)$ $9y^{2} + y^{2} = 50(3y - y)$ $10 y^{2} = 100y$ y = 10From (3) we have, x = 3y = 3.10 = 30

Hence the two natural numbers are 30 and 10.

Question: 22

The difference of

Solution:

Let the larger number be x and smaller number be y.

According to the question

$$x^{2} - y^{2} = 45 - - - - (1)$$

 $y^{2} = 4x - - - - - (2)$

From (1) and (2) we get

$$\mathbf{x}^2 - 4\mathbf{x} = 45$$

 $x^2 - 4x - 45 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -4 c = -45

= 1. - 45 = - 45

And either of their sum or difference = b

= - 4

Thus the two terms are – 9 and 5

Sum = -9 + 5 = -4

Product = -9.5 = -45

 $x^2 - 9x + 5x - 45 = 0$

x(x - 9) + 5(x - 9) = 0

(x + 5) (x - 9) = 0

(x + 5) = 0 or (x - 9) = 0

$$x = -5 \text{ or } x = 9$$

putting the value of x in equation (2), we get

 $y^2 = 4.9 = 36$

taking square root

y = 6

Hence the two numbers are $9 \ \text{and} \ 6$

Question: 23

Three consecutive

Solution:

Let the three consecutive positive integers be x, x + 1, x + 2

According to the given condition,

 $x^{2} + (x + 1)(x + 2) = 46$ $x^{2} + x^{2} + 3x + 2 = 46$

 $2x^2 + 3x - 44 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 2 b = 3 c = -44

= 2. - 44 = - 88

And either of their sum or difference = b

```
= 3
```

Thus the two terms are 11 and – 8

Sum = 11 - 8 = 3

Product = 11. - 8 = -88

 $2x^2 + 3x - 44 = 0$

 $2x^2 + 11x - 8x - 44 = 0$

x(2x + 11) - 4(2x + 11) = 0

(2x + 11)(x - 4) = 0

x = 4 or - 11/2

x = 4 (x is a positive integers)

When x = 4

x + 1 = 4 + 1 = 5

$$x + 2 = 4 + 2 = 6$$

Hence the required integers are 4, 5, 6

Question: 24

A two - digit num

Solution:

Let the digits at units and tens places be x and y respectively.

Original number = 10y + x

According to the question

10y + x = 4(x + y)

10y + x = 4x + 4y

3x - 6y = 0 x = 2y - - - (1)also, 10y + x = 2xyUsing (1) 10y + 2y = 2.2y.y $12y = 4y^2$ y = 3From (1) we get x = 2.3 = 6Original number = 10y + x= (10.3) + 6 = 36

Question: 25

A two - digit num

Solution:

Let the digits at units and tens place be x and y respectively

$$xy = 14$$

 $y = \frac{14}{x} - - - - (1)$

According to the question

(10y + x) + 45 = 10x + y 9y - 9x = -45 y - x = -5 - - - - (2)From (1) and (2) we get $\frac{14}{x} - x = -5$ $\frac{14 - x^2}{x} = -5$ $14 - x^2 = -5x$

 $x^2 - 5x - 14 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -5 c = -14

= 1. - 14 = - 14

And either of their sum or difference = b

= - 5

Thus the two terms are – $7 \mbox{ and } 2$

Difference = -7 + 2 = -5

Product = -7.2 = -14

 $x^{2} - 5x - 14 = 0$ $x^{2} - 7x + 2x - 14 = 0$ x(x - 7) + 2(x - 7) = 0 (x + 2)(x - 7) = 0 x = 7 or x = -2 x = 7 (neglecting the negative part)Putting x = 7 in equation (1) we get y = 2

Required number = 10.2 + 7 = 27

Question: 26

The denominator o

Solution:

Let the numerator be \boldsymbol{x}

Denominator = x + 3

Original number = $\frac{x}{x+3}$

$$\frac{x}{x+3} + \frac{1}{\frac{x}{x+3}} = 2\frac{9}{10}$$

On taking the LCM

 $\frac{x}{x+3} + \frac{x+3}{x} = \frac{29}{10}$ $\frac{x^2 + (x+3)^2}{x(x+3)} = \frac{29}{10}$ $\frac{x^2 + x^2 + 6x + 9}{x^2 + 3x} = \frac{29}{10} \{ \text{ using } (a+b)^2 = a^2 + 2ab + b^2 \}$ $\frac{2x^2 + 6x + 9}{x^2 + 3x} = \frac{29}{10}$ $29x^2 + 87x = 20x^2 + 60x + 90$ $9x^2 + 27x - 90 = 0$ $9(x^2 + 3x - 10) = 0$ $x^2 + 3x - 10 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 3 c = -10

= 1. - 10 = -10

And either of their sum or difference = b

= 3

Thus the two terms are 5 and – 2 $\,$

Difference = 5 - 2 = 3

Product = 5. - 2 = -10

 $x^{2} + 5x - 2x - 10 = 0$ x(x + 5) - 2(x + 5) = 0 (x + 5)(x - 2) = 0 (x + 5) = 0 or (x - 2) = 0 x = 2 or x = -5 x = 2 (rejecting the negative value) So numerator is 2 Denominator = x + 3 = 2 + 3 = 5So required fraction is 2/5

Question: 27

The numerator of

Solution:

Let the denominator of required fraction be x

Numerator of required fraction be = x - 3

Original number = $\frac{x-3}{x}$

If 1 is added to the denominator, then the new fraction will become $\frac{x-3}{x+1}$

According to the given condition,

$$\frac{x-3}{x+1} = \frac{x-3}{x} - \frac{1}{15}$$

$$\frac{x-3}{x+1} - \frac{x-3}{x} = \frac{1}{15}$$

$$\frac{(x-3)(x+1) - x(x-3)}{x(x+1)} = \frac{1}{15}$$

$$\frac{x^2 - 2x - 3 - x^2 + 3x}{x^2 + x} = \frac{1}{15}$$

$$\frac{x-3}{x^2 + x} = \frac{1}{15}$$

$$x^2 + x = 15x - 45$$

$$x^2 - 14x + 45 = 0$$
Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:
Product = a.c

For the given equation a = 1 b = -14 c = 45

= 1.45 = 45

And either of their sum or difference = b

= - 14

Thus the two terms are – 9 and – 5 $\,$

Sum = -9 - 5 = -14

Product = -9. - 5 = -45

 $x^2 - 14x + 45 = 0$

 $x^{2} - 9x - 5x + 45 = 0$ x(x - 9) - 5(x - 9) = 0 (x - 9)(x - 5) = 0 x = 9 or x = 5Case I: x = 5

 $\frac{x-3}{x} = \frac{5-3}{5} = \frac{2}{5}$

Case II: x = 9

 $\frac{x-3}{x} = \frac{9-3}{9} = \frac{6}{9} = \frac{2}{3}$ (Rejected because this does not satisfy the condition given)

Hence the required fraction is $\frac{2}{5}$

Question: 28

The sum of a numb

Solution:

Let the required number be x.

According to the given condition,

 $x + \frac{1}{x} = 2\frac{1}{30}$ $\frac{x^2 + 1}{x} = \frac{61}{30}$

 $30x^2 + 30 = 61x$

 $30x^2 - 61x + 30 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 30 b = -61 c = 30 = 30.30 = 900 And either of their sum or difference = b = -61 Thus the two terms are - 36 and - 25 Sum = -36 - 25 = -61 Product = -36. - 25 = 900 $30x^2 - 36x - 25x + 30 = 0$ 6x(5x - 6) - 5(5x - 6) = 0 (5x - 6) (6x - 5) = 0 (5x - 6) = 0 or (6x - 5) = 0 $x = \frac{5}{6}$ or $x = \frac{6}{5}$ Hence the required number is $\frac{5}{6}$ or $\frac{6}{5}$

Question: 29

A teacher on atte

Solution:

Let there be x rows

Then the number of students in each row will also be x

Total number of students $x^2 + 24$

According to the question,

 $(x + 1)^2 - 25 = x^2 + 24$ using $(a + b)^2 = a^2 + 2ab + b^2$

 $x^2 + 2x + 1 - 25 - x^2 - 24 = 0$

$$2\mathbf{x} - 4\mathbf{8} = \mathbf{0}$$

Total number of students = $24^2 + 24 = 576 + 24 = 600$

Question: 30

300 apples are di

Solution:

Let the total number of students be x

According to the question

$$\frac{300}{x} - \frac{300}{x + 10} = 1$$

$$\frac{300(x + 10) - 300x}{x(x + 10)} = 1 \text{ taking LCM}$$

$$\frac{300x + 3000 - 300x}{x^2 + 10x} = 1$$

$$3000 = x^2 + 10x \text{ cross multiplying}$$

$$x^2 + 10x - 3000 = 0$$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 10 c = -3000= 1. -3000 = -3000And either of their sum or difference = b = 10 Thus the two terms are 60 and -50Difference = 60 -50 = 10Product = 60. -50 = -3000 $x^{2} + 60x - 50x - 3000 = 0$ x(x + 60) - 50(x + 60) = 0 (x + 60) (x - 50) = 0 (x - 50) = 0 or (x + 60) = 0x = 50 or x = -60

 \boldsymbol{x} cannot be negative thus total number of students = 50

Question: 31

In a class test,

Solution:

Let Kamal's marks in mathematics and English be x and y, respectively

According to the question

x + y = 40 - - - - - - (1)Also (x + 3)(y - 4) = 360(x + 3)(40 - x - 4) = 360 from (1) (x + 3)(36 - x) = 360 $36x - x^2 + 108 - 3x = 360$ $33x - x^2 - 252 = 0$ $x^2 - 33x + 252 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -33 c = 252

= 1. - 252 = 252

And either of their sum or difference = b

```
= - 33
```

Thus the two terms are - 21 and - 12

Sum = -21 - 12 = -33

Product = -21. - 12 = 252

 $x^2 - 33x + 252 = 0$

 $x^2 - 21x - 12x + 252 = 0$

x(x - 21) - 12(x - 21) = 0

(x - 21) (x - 12) = 0

(x - 21) = 0 or (x - 12) = 0

x = 21 or x = 12

if x = 21

```
y = 40 - 21 = 19
```

Kamal's marks in mathematics and English are 21 and 19

if x = 12

y = 40 - 12 = 28

Kamal's marks in mathematics and English are 12 and 28

Question: 32

Some students pla

Solution:

Let x be the number of students who planned picnic

Original cost of food for each member = Rs. $\frac{2000}{3}$

5 students failed to attend the picnic, so (x - 5) students attended the picnic

New cost of food for each member = Rs. $\frac{2000}{x-5}$

According to the question

 $\frac{2000}{x-5} - \frac{2000}{x} = 20$ $\frac{2000x - 2000x + 10000}{x(x-5)} = 20 \text{ taking LCM}$ $\frac{10000}{x^2 - 5x} = 20$ $x^2 - 5x = 500 \text{ cross multiplying}$ $x^2 - 5x - 500 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = -5 c = -500= 1. - 500 = -500And either of their sum or difference = b = -5Thus the two terms are - 25 and 20 Sum = -25 + 20 = -5Product = -25.20 = -500 $x^2 - 5x - 500 = 0$ $x^2 - 25x + 20x - 500 = 0$ x(x - 25) + 20(x - 25) = 0(x + 20) (x - 25) = 0(x + 20) = 0 or (x - 25) = 0x = -20 or x = 25x cannot be negative thus x = 25The number of students who planned picnic = x - 5 = 25 - 5 = 20Cost of food for each member = Rs. $\frac{2000}{25-5}$ = Rs. $\frac{2000}{20}$ = Rs. 100 **Question: 33** If the price of a Solution: Let the original price of the book be Rs x Number of books bought at original price for $600 = \frac{600}{100}$ If the price of a book is reduced by Rs. 5, then new price of book is Rs (x - 5)Number of books bought at reduced price = $\frac{600}{v-5}$

According to the question - -

 $\frac{600}{x-5} - \frac{600}{x} = 4$ $\frac{600x - 600x + 3000}{x(x-5)} = 4$ $\frac{3000}{x^2 - 5x} = 4$ $x^2 - 5x = 750$ $x^2 - 5x - 750 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -5 c = -750

= 1. - 750 = - 750

And either of their sum or difference = b

= - 5

Thus the two terms are – 30 and 25

Difference = -30 + 25 = -5

Product = -30.25 = -750

 $x^2 - 5x - 750 = 0$

 $x^2 - 30x + 25x - 750 = 0$

x(x - 30) + 25(x - 30) = 0

(x + 25) (x - 30) = 0

(x + 25) = 0 or (x - 30) = 0

```
x=-\,25 , x=\,30
```

x = 30 (Price cannot be negative)

Hence the original price of the book is Rs 30.

Question: 34

A person on tour

Solution:

Let the original duration of the tour be x days

Original daily expenses = Rs. $\frac{10800}{x}$

If he extends his tour by 4 days his daily expenses = Rs. $\frac{10800}{x+4}$

According to the question – –

```
\frac{10800}{x} - \frac{1080}{x+4} = 90
\frac{10800x + 43200 - 10800x}{x(x+4)} = 90 \text{ taking LCM}
\frac{43200}{x^2 + 4x} = 90
```

 $x^2 + 4x = 480$ cross multiplying

 $x^2 + 4x - 480 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 4 c = -480= 1. - 480 = - 480 And either of their sum or difference = b = 4 Thus the two terms are 24 and - 20 Difference = 24 - 20 = 4 Product = 24. - 20 = - 480 $x^2 + 24x - 20x - 480 = 0$ x(x + 24) - 20(x + 24) = 0 (x + 24) (x - 20) = 0 (x + 24) = 0 or (x - 20) = 0 x = -24, x = 20 x = 20 (number of days cannot be negative) Hence the original price of tour is 20 days

Question: 35

In a class test,

Solution:

Let the marks obtained by P in mathematics and science be x and (28 - x) respectively

According to the given condition,

(x + 3)(28 - x - 4) = 180(x + 3)(24 - x) = 180- x² + 21x + 72 = 180x² - 21x + 108 = 0

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -21 c = 108

= 1.108 = 108

And either of their sum or difference = b

= - 21

Thus the two terms are – 12 and – 9 $\,$

Difference = -12 - 9 = -21

Product = -12. - 9 = 108

 $x^2 - 12x - 9x + 108 = 0$

x (x - 12) - 9 (x - 12) = 0

(x - 12) (x - 9) = 0 (x - 12) = 0 or (x - 9) = 0 x = 12, x = 9When x = 12, 28 - x = 28 - 12 = 16When x = 9, 28 - x = 28 - 9 = 19

Hence he obtained 12 marks in mathematics and 16 science or

He obtained 9 marks in mathematics and 19 science.

Question: 36

A man buys a numb

Solution:

Let the total number of pens be \boldsymbol{x}

According to the question - -

$$\frac{180}{x} - \frac{180}{x+3} = 3$$

$$\frac{180(x+3) - 180x}{x(x+3)} = 3 \text{ taking LCM}$$

$$180x + 540 - 180x$$

 $\frac{180x + 540 - 180x}{x^2 + 3x} = 3$

 $540 = 3x^2 + 9x$ cross multiplying

 $3x^2 + 9x - 540 = 0$

 $x^2 + 3x - 180 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 3 c = -180

= 1. - 108 = - 180

And either of their sum or difference = b

= 3

Thus the two terms are 15 and – 12 $\,$

Difference = 15 - 12 = 3

Product = 15. - 12 = -180

 $x^2 + 15x - 12x - 180 = 0$

x(x + 15) - 12(x + 15) = 0

(x + 15)(x - 12) = 0

(x + 15) = 0 or (x - 12) = 0

$$x = -15, x = 12$$

x = 12 (Total number of pens cannot be negative)

Hence the Total number of pens is 12

Question: 37

A dealer sells an

Solution:

Let the cost price of the article be \boldsymbol{x}

Gain percent x%

According to the given condition,

 $x + \frac{x}{100}x = 75$ (cost price + gain = selling price)

 $\frac{100x + x^2}{100} = 75 \text{ taking LCM}$

by cross multiplying

 $x^2 + 100x = 7500$

 $x^2 + 100x - 7500 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 100 c = -7500

= 1. - 7500 = - 7500

And either of their sum or difference = b

= 100

Thus the two terms are 150 and – 50

Difference = 150 - 50 = 100

Product = 150. - 50 = -7500

 $x^2 + 150x - 50x - 7500 = 0$

x(x + 150) - 50(x + 150) = 0

(x + 150) (x - 50) = 0

(x + 150) = 0 or (x - 50) = 0

 $x = 50 (x \neq -150 as price cannot be negative)$

Hence the cost price of the article is $\mbox{Rs}\ 50$

Question: 38

One year ago, a m

Solution:

Let the present age of son be x years

The present age of man = x^2 years

One year ago age of son = (x - 1)years

age of man = $(x^2 - 1)$ years

According to given question, One year ago, a man was 8 times as old as his son

$$x^{2} - 1 = 8(x - 1)$$

 $x^{2} - 1 = 8x - 8$
 $x^{2} - 8x + 7 = 0$

 $x^{2} - 7x - x + 7 = 0$ x(x - 7) - 1(x - 7) = 0 (x - 7) (x - 1) = 0 x = 1 or x = 7Man's age cannot be 1 year Thus x = 7Thus the present age of son is 7 years

The present age of man is $7^2 = 49$ years

Question: 39

The sum of the re

Solution:

Let the present age of Meena be x years Meena's age three years ago = (x - 3) years Meena's age five years hence = (x + 5) years According to given question

 $\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$ $\frac{x+5+x-3}{(x-3)(x+5)} = \frac{1}{3}$ $\frac{2x+2}{(x^2+2x-15)} = \frac{1}{3}$ $x^2 + 2x - 15 = 6x + 6$ $x^2 - 4x - 21 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -4 c = -21

= 1. - 21 = - 21

And either of their sum or difference = b

= - 4

Thus the two terms are – 7 and 3 $\,$

Sum = -7 + 3 = -4

Product = -7.3 = -21

 $x^2 - 7x + 3x - 21 = 0$

x (x - 7) + 3(x - 7) = 0

(x - 7) (x + 3) = 0

x = -3 or x = 7

x = 7 age cannot be negative

Hence the present age of Meena is 7 years

Question: 40

The sum of the ag

Solution:

Let the present age of boy and his brother be x years and (25 - x) years

According to given question

x(25 - x) = 126 $25x - x^2 = 126$

 $x^2 - 25x + 126 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -25 c = 126

= 1.126 = 126

And either of their sum or difference = b

= - 25

Thus the two terms are – 18 and – 7

Sum = - 18 - 7 = - 25

Product = -18. - 7 = 126

 $x^2 - 18x - 7x + 126 = 0$

x (x - 18) - 7(x - 18) = 0

(x - 18) (x - 7) = 0

x = 18 or x = 7

x = 18 (Present age of boy cannot be less than his brother)

if x = 18

The present age of boy is 18 years and his brother is (25 - 18) = 7 years

Question: 41

The product of Ta

Solution:

Let the present age of Tanvy be x years

Tanvy's age five years ago = (x - 5) years

Tanvy's age eight years from now = (x + 8) years

(x - 5)(x + 8) = 30

 $x^2 + 3x - 40 = 30$

 $x^2 + 3x - 70 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 3 c = -70

= 1. - 70 = - 70

And either of their sum or difference = b

= 3

Thus the two terms are 10 and - 7 Difference = 10 - 7 = 3Product = 10 - 7 = -70 $x^{2} + 10x - 7x - 70 = 0$ x (x + 10) - 7(x + 10) = 0 (x + 10) (x - 7) = 0 x = -10 or x = 7 (age cannot be negative) x = 7The present age of Tanvy is 7 years

Question: 42

Two years ago, a

Solution:

Let son's age 2 years ago be x years, Then

man's age 2 years ago be $3x^2$ years

son's present age = (x + 2) years

man's present age = $(3x^2 + 2)years$

In three years' time :

son's age = (x + 2 + 3) = (x + 5) years

man's age = $(3x^2 + 2 + 3)$ years = $(3x^2 + 5)$ years

According to question

Man's age = 4 son's age

 $3x^2 + 5 = 4(x + 5)$

 $3x^2 + 5 = 4x + 20$

 $3x^2 - 4x - 15 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 3 b = -4 c = -15

= 3. - 15 = - 45

And either of their sum or difference = b

```
= - 4
```

Thus the two terms are -9 and 5 Difference = -9 + 5 = -4

Product = -9.5 = -45

 $3x^2 - 9x + 5x - 15 = 0$

3x(x - 3) + 5(x - 3) = 0

(x - 3) (3x + 5) = 0

(x - 3) = 0 or (3x + 5) = 0

x = 3 or x = -5/3 (age cannot be negative)

x = 3

son's present age = (3 + 2) = 5years

man's present age = $(3.3^2 + 2) = 29$ years

Question: 43

A truck covers a

Solution:

Let the first speed of the truck be x km/h

Time taken to cover 150 km = $\frac{150}{r}$ h

New speed of truck = x + 20 km/h

Time taken to cover 200 km = $\frac{200}{x+20}$ h

According to given question

$$\frac{150}{x} + \frac{200}{x+20} = 5$$

$$\frac{150x + 3000 + 200x}{x(x+20)} = 5$$

$$\frac{350x + 3000}{x(x+20)} = 5$$

$$350x + 3000 = 5(x^2 + 20x)$$

$$350x + 3000 = 5x^2 + 100x$$

$$5x^2 - 250x - 3000 = 0$$

$$x^2 - 50x - 600 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -50 c = -600

= 1. - 600 = - 600

And either of their sum or difference = b

= - 50

Thus the two terms are – $60 \mbox{ and } 10$

Difference = -60 + 10 = -50

Product = -60.10 = -600

 $x^2 - 60x + 10x - 600 = 0$

x (x - 60) + 10(x - 60) = 0

(x - 60) (x + 10) = 0

$$x = 60 \text{ or } x = -10$$

x = 60 (speed cannot be negative)

Hence the first speed of the truck is 60 km/hr

Question: 44

While boarding an

Solution:

Let the original speed of the plane be x km/h

Actual speed of the plane = (x + 100) km/h

Distance of journey = 1500km

Time taken to reach destination at original speed = $\frac{1500}{h}$

Time taken to reach destination at actual speed = $\frac{1500}{x+100}$ h

According to given question

30 mins = 1/2 hr $\frac{1500}{x} = \frac{1500}{x+100} + \frac{1}{2}$ $\frac{1500}{x} - \frac{1500}{x+100} = \frac{1}{2}$ $\frac{1500x + 150000 - 1500x}{x(x+100)} = \frac{1}{2}$ $\frac{150000}{x(x+100)} = \frac{1}{2}$ $x^{2} + 100x = 300000$ $x^{2} + 100x - 300000 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 100 c = -300000

= 1. - 300000 = - 300000

And either of their sum or difference = b

= 100

Thus the two terms are 600 and - 500

Difference = 600 - 500 = 100

Product = 600. - 500 = -300000

 $x^2 + 600x - 500x + 300000 = 0$

x (x + 600) - 500(x + 600) = 0

(x + 600)(x - 500) = 0

x = -600 or x = 500

x = 500 (speed cannot be negative)

Hence the original speed of the plane is 500 km/hr

Question: 45

A train covers a

Solution:

Let the usual speed of the train be x km/h

Reduced speed of the train = (x - 8) km/h

Distance of journey = 480km

Time taken to reach destination at usual speed = $\frac{480}{x}$ h

Time taken to reach destination at reduced speed = $\frac{480}{x-8}$ h

According to given question

$$\frac{480}{x-8} = \frac{480}{x} + 3$$

$$\Rightarrow \frac{480}{x-8} - \frac{480}{x} = 3$$

$$\Rightarrow \frac{480x - 480x + 3840}{x(x-8)} = 3$$

$$\Rightarrow \frac{3840}{x(x-8)} = 3$$

$$\Rightarrow x^2 - 8x = 1280$$

$$\Rightarrow x^2 - 8x - 1280 = 0$$

$$\Rightarrow x^2 - 40x + 32x - 1280 = 0$$

$$\Rightarrow x(x - 40) + 32(x - 40) = 0$$

$$\Rightarrow (x - 40)(x + 32) = 0$$

$$\Rightarrow x = 40 \text{ or } x = -32$$

$$\Rightarrow x = 40 \text{ (speed cannot be negative)}$$

Hence the usual speed of the train is 40 km/h

Question: 46

A train travels a

Solution:

Let the first speed of the train be x km/h

Time taken to cover 54 km = $\frac{54}{x}$ h

New speed of train = x + 6 km/h

Time taken to cover 63 km = $\frac{63}{x+6}$ h

According to given question

$$\Rightarrow \frac{54}{x} + \frac{63}{x+6} = 3$$

$$\Rightarrow \frac{54x+324+63x}{x(x+6)} = 3$$
Taking LCM

$$\Rightarrow 117x + 324 = 3(x^{2} + 6x)$$

$$\Rightarrow 117x + 324 = 3x^{2} + 18x$$

$$\Rightarrow 3x^{2} - 99x - 324 = 0$$

$$\Rightarrow x^{2} - 33x - 108 = 0$$

$$\Rightarrow x^{2} - 36x + 3x - 108 = 0$$

$$\Rightarrow x (x - 36) + 3(x - 36) = 0$$

 $\Rightarrow (x - 36) (x + 3) = 0$

 \Rightarrow x = 36 or x = -3

 \Rightarrow x = 36 (speed cannot be negative)

Hence the first speed of the train is 36 km/hr

Question: 47

A train travels 1

Solution:

Let the usual speed of the train be $x\ km/h$

Time taken to cover 180 km = $\frac{180}{x}$ h

New speed of train = x + 9 km/h

Time taken to cover 180 km = $\frac{180}{x+9}$ h

According to the question

$$\frac{180}{x} - \frac{180}{x+9} = 1$$

$$\frac{180(x+9-x)}{x(x+9)} = 1$$

$$\frac{180.9}{x(x+9)} = 1$$

$$\frac{1620}{x(x+9)} = 1$$

$$1620 = x^2 + 9x$$

$$x^2 + 9x - 1620 = 0$$
Using the splitting m

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

```
Product = a.c

For the given equation a = 1 b = 9 c = -1620

= 1. - 1620 = - 1620

And either of their sum or difference = b

= 9

Thus the two terms are 45 and - 36

Difference = - 36 + 45 = 9

Product = - 36.45 = - 1620

x^2 + 45x - 36x + 1620 = 0

x(x + 45) - 36(x + 45) = 0

(x + 45) (x - 36) = 0

x = -45 or x = 36 (but x cannot be negative)

x = 36

Hence the usual speed of the train is 36 km/h

Question: 48
```

A train covers a

Solution:

Let the original speed of the train be x km/h

Time taken to cover 90 km = $\frac{90}{x}$ h New speed of train = x + 15 km/h Time taken to cover 90 km = $\frac{90}{x+15}$ h According to the question $\frac{90}{x} - \frac{90}{x+15} = \frac{1}{2}$ $\frac{90(x+15)-90x}{x(x+15)} = \frac{1}{2}$ $\frac{90x+1350-90x}{x(x+15)} = \frac{1}{2}$ $\frac{1350}{x(x+15)} = \frac{1}{2}$

 $2700 = x^2 + 15x$

 $x^2 + 15x - 2700 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 15 c = -2700

= 1. - 2700 = - 2700

And either of their sum or difference = b

= 15

Thus the two terms are – $45 \ \text{and} \ 60$

Difference = 60 - 45 = 15

Product = 60. - 45 = -2700

 $x^2 + 60x - 45x - 2700 = 0$

x(x + 60) - 45(x + 60) = 0

(x + 60) (x - 45) = 0

x = -60 or x = 45 (but x cannot be negative)

Hence the original speed of the train is 45 km/h $\,$

Question: 49

A passenger train

Solution:

Let the usual speed of the train be $x\ km/h$

Time taken to cover 300 km = $\frac{300}{x}$ h

New speed of train = x + 5 km/h

Time taken to cover 90 km = $\frac{300}{x+5}$ h

According to the question

$$\frac{300}{x} - \frac{300}{x+5} = 2$$

$$\frac{300(x+5) - 300x}{x(x+5)} = 2$$

$$\frac{300x + 1550 - 300x}{x(x+5)} = 2$$

$$\frac{1550}{x(x+5)} = 2$$

$$750 = x^2 + 5x$$

$$x^2 + 5x - 750 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 5 c = -750

= 1. - 750 = - 750

And either of their sum or difference = b

```
= 5
```

Thus the two terms are – 25 and 30

Difference = 30 - 25 = 5

Product = 30. - 25 = -750

 $x^2 + 30x - 25x - 750 = 0$

x(x + 30) - 25(x + 30) = 0

(x + 30) (x - 25) = 0

x = -30 or x = 25 (but x cannot be negative)

x = 25

Hence the usual speed of the train is 25 km/h $\,$

Question: 50

The distance betw

Solution:

Let the speed of Deccan Queen be $x\ km/h$

Speed of another train = (x - 20)km/h

According to the question

$$\frac{192}{x-20} - \frac{192}{x} = \frac{48}{60}$$
$$\frac{4}{x-20} - \frac{4}{x} = \frac{1}{60}$$
$$\frac{4x-4(x-20)}{x(x-20)} = \frac{1}{60}$$
 taking LCM

 $\frac{4x - 4x + 80}{x(x - 20)} = \frac{1}{60}$ $\frac{80}{x(x - 20)} = \frac{1}{60}$

 $4800 = x^2 - 20x$ cross multiplying

 $x^2 - 20x - 4800 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -20 c = -4800

= 1. - 4800 = -4800

And either of their sum or difference = b

= - 20

Thus the two terms are – 80 and 60

Difference = -80 + 60 = -20

Product = -80.60 = -4800

 $x^2 - 80x + 60x - 4800 = 0$

x(x - 80) + 60(x - 80) = 0

(x - 80) (x + 60) = 0

x = 80 or x = -60 (but x cannot be negative)

Hence the speed of Deccan Queen is 80 km/hr

Question: 51

A motor boat whos

Solution:

Let the speed of stream be $x\ km/h$

Speed of boat is 18 km/hr

 \Rightarrow Speed of boat in downstream = (18 + x)km/h

 \Rightarrow Speed of boat in upstream = (18 - x)km/h

As, distance = spped × time \Rightarrow time = $\frac{\text{distance}}{\text{speed}}$ \Rightarrow Time taken by boat in downstream to travel

$$24 \text{ Km} = \frac{24}{18 + x} \text{ hours}$$

 $\Rightarrow \text{ Time taken by boat in upstream to travel 24 Km} = \frac{24}{18 - x} \quad \text{hours} \Rightarrow \frac{24}{18 - x} - \frac{24}{18 + x} = 1$

$$\Rightarrow \frac{1}{18 - x} - \frac{1}{18 + x} = \frac{1}{24}$$

$$\Rightarrow \frac{18 + x - (18 - x)}{(18 + x)(18 - x)} = \frac{1}{24}$$

$$\Rightarrow \frac{2x}{18^2 - x^2} = \frac{1}{24} \quad [\text{using } (a + b)(a - b) = a^2 - b^2]$$

$$\Rightarrow 324 - x^2 = 48x$$

$$\Rightarrow x^2 + 48x - 324 = 0$$

 $\Rightarrow x^{2} + 54x - 6x - 324 = 0$ $\Rightarrow x(x + 54) - 6(x + 54) = 0$ $\Rightarrow (x + 54)(x - 6) = 0$ $\Rightarrow x = -54 \text{ or } x = 6$ (but speed cannot be negative)

 $\Rightarrow x = 6$

Hence the speed of stream is 6 km/h $\,$

Question: 52

The speed of a bo

Solution:

Let the speed of stream be x km/h

Speed of boat is 8 km/hr

Speed downstream = (8 + x)km/h

Speed upstream = (8 - x)km/h

$$\frac{22}{8+x} + \frac{15}{8-x} = 5$$

$$\frac{22(8-x) + 15(8+x)}{(8-x)(8+x)} = 5$$

$$\frac{176 - 22x + 120 + 15x}{(8+x)(8-x)} = 5$$

$$\frac{296 - 7x}{8^2 - x^2} = 5$$

$$296 - 7x = 320 - 5x^2$$

$$5x^2 - 7x - 24 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 5 b = -7 c = -24

= 5. - 24 = - 120

And either of their sum or difference = b

Thus the two terms are 8 and – $15\,$

Difference = 8 - 15 = -7Product = 8 - 15 = -120 $5x^2 - 7x - 24 = 0$ $5x^2 - 15x + 8x - 24 = 0$ 5x(x - 3) + 8(x - 3) = 0 (5x + 8)(x - 3) = 0x = 3 or x = -8/5

(but x cannot be negative)

x = 3

Hence the speed of stream is 3 km/hr

Question: 53

A motorboat whose

Solution:

Let the speed of stream be $x\ km/h$

Speed of boat is 9km/hr

Speed downstream = (9 + x)km/h

Speed upstream = (9 - x)km/h

Distance covered downstream = Distance covered upstream = 15km

Total time taken = 3 hours 45 minutes = $3 + \frac{45}{60} = \frac{225}{60} = \frac{15}{4}$ hrs

$$\frac{15}{9+x} + \frac{15}{9-x} = \frac{15}{4}$$
$$\frac{1}{9+x} + \frac{1}{9-x} = \frac{1}{4}$$
$$\frac{9-x+9+x}{(9+x)(9-x)} = \frac{1}{4}$$
taking LCM
$$\frac{18}{(9+x)(9-x)} = \frac{1}{4}$$

 $81 - x^2 = 72$ cross multiplying

$$x^2 = 81 - 72$$

 $x^2 = 9$ taking square root

x = 3 or - 3 (rejecting negative value)

Hence the speed of stream is 3 km/hr

Question: 54

A takes 10 days l

Solution:

Let B take x days to complete the work

Work one by B in one day $\frac{1}{2}$

A will take (x - 10) days to complete the work

Work one by B in one day $\frac{1}{x-10}$

According to the question

$$\frac{1}{x} + \frac{1}{x - 10} = \frac{1}{12}$$
$$\frac{x - 10 + x}{(x)(x - 10)} = \frac{1}{12}$$
$$\frac{2x - 10}{(x^2 - 10x)} = \frac{1}{12}$$
$$x^2 - 10x = 12 (2x - 10)$$
$$x^2 - 10x = 24x - 120$$

 $x^2 - 34x + 120 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.cFor the given equation a = 1 b = -34 c = 120= 1.120 = 120And either of their sum or difference = b = -34Thus the two terms are - 30 and - 4 Sum = -30 - 4 = -34Product = -30. - 4 = 120 $x^2 - 30x - 4x + 120 = 0$ x(x - 30) - 4(x - 30) = 0(x - 30) (x - 4) = 0x = 30 or x = 4x = 30 (number of days to complete the work by B cannot be less than A) B completes the work in 30 days **Question: 55** Two pipes running Solution:

Let one pipe fills a cistern in x mins.

Other pipe fills the cistern in (x + 3) mins.

Running together can fill a cistern in $3\frac{1}{12}$ minutes = 40/13 mins

Part filled by one pipe in $1 \min = \frac{1}{2}$

Part filled by other pipe in $1 \min = \frac{1}{x+3}$

Part filled by both pipes Running together in $1\min = \frac{1}{x} + \frac{1}{x+3}$

$$\frac{1}{x} + \frac{1}{x+3} = \frac{13}{40}$$
$$\frac{x+3+x}{x(x+3)} = \frac{13}{40}$$
$$\frac{2x+3}{x(x+3)} = \frac{13}{40}$$
$$13x^2 + 39x = 80x + 120$$
$$13x^2 - 41x - 120 = 0$$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 13 b = -41 c = -120

= 13. - 120 = -1560

And either of their sum or difference = b = - 41 Thus the two terms are - 65 and 24 Difference = - 65 + 24 = - 41 Product = - 65.24 = - 1560 $13x^2 - 65x + 24x - 120 = 0$ 13x(x - 5) + 24(x - 5) = 0 (x - 5) (13x + 24) = 0 (x - 5) = 0 (13x + 24) = 0 x = 5 or x = -24/13x = 5 (speed cannot be negative fraction)

Hence one pipe fills a cistern in 5 minutes and other pipe fills the cistern in (5 + 3) = 8 minutes.

Question: 56

Two pipes running

Solution:

Let the time taken by one pipe to fill the tank be x minutes

The time taken by other pipe to fill the tank = x + 5 minutes

Volume of tank be V

Volume of tank filled by one pipe in x minutes = V

Volume of tank filled by one pipe in 1 minutes = V/x

Volume of tank filled by one pipe in $11\frac{1}{9}$ minutes $=\frac{V}{x} \cdot 11\frac{1}{9} = \frac{V}{x} \cdot \frac{100}{9}$

Volume of tank filled by other pipe in $11\frac{1}{9}$ minutes $=\frac{V}{x+5}$. $11\frac{1}{9} = \frac{V}{x+5}$. $\frac{100}{9}$

Volume of tank filled by one pipe in $11\frac{1}{9}$ minutes + Volume of tank filled by other pipe in $11\frac{1}{9}$ minutes = V

 $\frac{100}{9} V \left(\frac{1}{x} + \frac{1}{x+5}\right) = V$ $\frac{1}{x} + \frac{1}{x+5} = \frac{9}{100}$ $\frac{x+5+x}{x(x+5)} = \frac{9}{100}$ $\frac{5+2x}{x(x+5)} = \frac{9}{100}$ $200x + 500 = 9x^2 + 45x$ $9x^2 - 155x - 500 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 9 b = -155 c = -500

= 9. - 500 = - 4500

And either of their sum or difference = b

= - 155 Thus the two terms are - 180 and 25 Difference = - 180 + 25 = - 155 Product = - 180.25 = - 4500 $9x^2 - 180x + 25x - 500 = 0$ 9x(x - 20) + 25(x - 20) = 0 (x - 20) (9x + 25) = 0 (x - 20) = 0 (9x + 25) = 0 x = 20 or x = - 25/9x = 20 (time cannot be negative fraction)

Hence one pipe fills the tank in 20 mins. and other pipe fills the cistern in (20 + 5) = 25 mins

Question: 57

Two water taps to

Solution:

Let the time taken by tap of smaller diameter to fill the tank be x hours

The time taken by tap of larger diameter to fill the tank = x - 9 hours

Let the volume of the tank be \boldsymbol{V}

Volume of tank filled by tap of smaller diameter in x hours = V

 \Rightarrow Volume of tank filled by tap of smaller diameter in 1 hour = V/x

 \Rightarrow Volume of tank filled by tap of smaller diameter in 6 hours = $\frac{V}{V}$.6 = $\frac{6V}{V}$

Similarly, Volume of tank filled by tap of larger diameter in 6 hours = $\frac{V}{v=0}$. 6

Volume of tank filled by tap of smaller diameter in 6 hours + Volume of tank filled by tap of larger diameter in 6 hours = V

 $6V\left(\frac{1}{x} + \frac{1}{x+9}\right) = V$ $\Rightarrow \frac{1}{x} + \frac{1}{x-9} = \frac{1}{6}$ $\Rightarrow \frac{x-9+x}{x(x-9)} = \frac{1}{6}$ $\Rightarrow \frac{2x-9}{x(x-9)} = \frac{1}{6}$ $\Rightarrow 12x - 54 = x^2 - 9x$ $\Rightarrow x^2 - 21x + 54 = 0$ $\Rightarrow x^2 - 18x - 3x + 54 = 0$ $\Rightarrow x(x - 18) - 3(x - 18) = 0$ $\Rightarrow (x - 18)(x - 3) = 0 \Rightarrow (x - 18) = 0 \text{ and } (x - 3) = 0$ $\Rightarrow x = 18 \text{ or } x = 3$ For x = 3, time taken by tap of larger diameter is negative which is not possible Hence the time taken by tap of smaller diameter to fill the tank be $18\ hours$

The time taken by tap of larger diameter to fill the tank = 18 - 9 = 9 hours

Question: 58

The length of a r

Solution:

Let the length and breadth of a rectangle be 2x and x respectively

According to the question;

Area = 288 cm^2

Area = length.breadth

 $x(2x) = 288 \text{ cm}^2$

 $2x^2 = 288$

 $x^2 = 144$

x = 12 or x = -12

x = 12 (x cannot be negative)

length = 2.12 = 24 cm, breadth = 12 cm

Question: 59

The length of a r

Solution:

Let the length and breadth of a rectangle be 3x and x respectively

According to the question;

Area = 147cm^2

Area = length.breadth

$$x(3x) = 147 \text{cm}^2$$

 $3x^2 = 147$

 $x^2 = 49$

x = 7 or x = -7 taking square root both sides

x = 7 (x cannot be negative)

length = 3.7 = 21cm, breadth = 7cm

Question: 60

The length of a h

Solution:

Let the breadth of hall be x m

The length of hall will be (x + 3) m

According to the question;

Area = 238cm²

Area = length .breadth

 $x^2 + 3x - 238 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 3 c = - 238 = 1. - 238 = - 238 And either of their sum or difference = b = 3 Thus the two terms are 17 and - 14 Difference = 17 - 14 = 3Product = 17 - 14 = -238 $x^{2} + 17x - 14x - 238 = 0$ x(x + 17) - 14(x + 17) = 0 (x + 17) (x - 14) = 0 x = -17 or x = 14x = 14 (x cannot be negative)

Hence the breadth of hall is 14 m and the length of hall is (14 + 3) = 17 m

Question: 61

The perimeter of

Solution:

Let the length and breadth of rectangular plot be \boldsymbol{x} and \boldsymbol{y} respectively.

Perimeter = 2(x + y) = 62 - - - - (1)

Area = xy = 228

y = 228/x

Putting the value of y in 1

$$2\left(x + \frac{228}{x}\right) = 62$$
$$x + \frac{228}{x} = 31$$
$$\frac{x^2 + 228}{x} = 31 \text{ taking LCM}$$
$$x^2 + 228 = 31x \text{ cross multiplying}$$

$$x^2 - 31x + 288 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -31 c = 288

= 1.288 = 288

And either of their sum or difference = b

= - 31

Thus the two terms are – 19 and – 12 $\,$

Difference = -19 - 12 = -31

Product = -19. - 12 = 288

 $x^{2} - 19x - 12x + 288 = 0$ x(x - 19) - 12(x - 19) = 0 (x - 19) (x - 12) = 0 x = 19 or x = 12if x = 19 $y = \frac{228}{19} = 12$ if x = 12 $y = \frac{228}{12} = 19$

length is 19m and breadth is $12\ensuremath{m}$

length is 12m and breadth is 19m

Question: 62

A rectangular fie

Solution:

Let the width of the path be x m

Length of the field including the path = 16 + x + x = 16 + 2x

Breadth of the field including the path = 10 + x + x = 10 + 2x

Area of field including the path - Area of field excluding the path = Area of path

(16 + 2x) (10 + 2x) - (16.10) = 120

 $160 + 32x + 20x + 4x^2 - 160 = 120$

 $4x^2 + 52x - 120 = 0$

 $x^2 + 13x - 30 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 13 c = -30

= 1. - 30 = - 30

And either of their sum or difference = b

= 13

Thus the two terms are 15 and – 2 $\,$

Difference = 15 - 2 = 13

Product = 15. - 2 = -30

 $x^2 + 15x - 2x - 30 = 0$

x(x + 15) - 2(x + 15) = 0

(x + 15) (x - 2) = 0

$$x = 2 \text{ or } x = -15$$

x = 2 (width cannot be negative)

Thus the width of the path is 2 m

Question: 63

The sum of the ar

Solution:

Let the length of first and second square be x and y respectively

According to the question;

$$x^{2} + y^{2} = 640 - - - (1)$$

Also $4x - 4y = 64$
 $x - y = 16$
 $x = 16 + y$
Putting the value of x in(1) we get
 $(16 + y)^{2} + y^{2} = 640$ using $(a + b)^{2} = a^{2} + 2ab + b^{2}$
 $256 + 32y + y^{2} + y^{2} = 640$
 $2y^{2} + 32y - 384 = 0$
 $y^{2} + 16y - 192 = 0$
Using the splitting middle term - the middle term of the generic divided in two such values that:

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 16 c = -192

= 1. - 192 = - 192

And either of their sum or difference = b

= 16

Thus the two terms are 24 and -8

Difference = 24 - 8 = 16

Product = 24. - 8 = 192

 $y^2 + 24y - 8y - 192 = 0$

y(y + 24) - 8(y + 24) = 0

(y + 24) (y - 8) = 0

(y + 24) = 0 (y - 8) = 0

y = 8 or y = -24

y = 8 (y cannot be negative)

x = 16 + 8 = 24m

Hence the length of first square is 24m and second square is 8m.

Question: 64

The length of a r

Solution:

Let the breadth of a rectangle be x cm According to the question; Side of square = (x + 4) cm Length of a rectangle = [3(x + 4)] cm Area of rectangle and square are equal - - $3(x + 4)x = (x + 4)^{2}$ $3x^{2} + 12x = (x + 4)^{2}$ $3x^{2} + 12x = x^{2} + 8x + 16 \{ using (a + b)^{2} = a^{2} + 2ab + b^{2} \}$ $2x^{2} + 4x - 16 = 0$ $x^{2} + 2x - 8 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 2 c = -8

= 1. - 8 = - 8

And either of their sum or difference = b

```
= 2
```

Thus the two terms are 4 and – 2 $\,$

Difference = 4 - 2 = 2

Product = 4. - 2 = -8

 $x^2 + 4x - 2x - 8 = 0$

x(x + 4) - 2(x + 4) = 0

(x + 4) (x - 2) = 0

 \Rightarrow x = -4 or x = 2

x = 2 (width cannot be negative)

Thus the breadth of a rectangle = 2 cm

Length of a rectangle = [3(x + 4)] = 3(2 + 4) = 18 cm

Side of square = (x + 4) = 2 + 4 = 6cm

Question: 65

A farmer prepares

Solution:

Let the length and breadth of rectangular plot be x and y respectively.

Area =
$$xy = 180 \text{ sq m} - - - - (1)$$

 $2(x + y) - x = 39$
 $2x + 2y - x = 39$
 $2y + x = 39$
 $x = 39 - 2y$
Putting the value of x in (1) we get
 $(39 - 2y)y = 180$
 $39y - 2y^2 = 180$

 $2y^2 - 39y + 180 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

For the given equation a = 2 b = -39 c = 180= 2.180 = 360 And either of their sum or difference = b = - 39 Thus the two terms are - 24 and - 15 Difference = - 24 - 15 = - 39 Product = - 24. - 15 = 360 $2y^2 - 24y - 15y + 180 = 0$ 2y(y - 12) - 15(y - 12) = 0(y - 12)(2y - 15) = 0y = 12 or y = 15/2 = 7.5if y = 12 x = 39 - 2y = 39 - (2.12) = 39 - 24 = 15if y = 7.5 x = 39 - 2y = 39 - [(2)(7.5)] = 39 - 15 = 24Hence either l = 24 m, b = 7.5 m or l = 15 m, b = 12 m

Question: 66

The area of a rig

Solution:

Let the altitude of the given triangle $x \ cm$

Thus the base of the triangle will be (x + 10)cm

Area of triangle = $\frac{1}{2}x(x + 10) = 600$

x(x + 10) = 1200

 $x^2 + 10x - 1200 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 10 c = -1200

= 1. - 1200 = - 1200

And either of their sum or difference = b

= 10

Thus the two terms are 40 and – 30 $\,$

Difference = 40 - 30 = 10

Product = 40. - 30 = -1200

 $x^2 + 40x - 30x - 1200 = 0$

x(x + 40) - 30(x + 40) = 0

(x + 40)(x - 30) = 0

$$x = -40, 30$$

x = 30 (altitude cannot be negative)

Thus the altitude of the given triangle is 30cm and base of the triangle = 30 + 10 = 40cm

 $Hypotenuse^2 = altitude^2 + base^2$

 $Hypotenuse^2 = (30)^2 + (40)^2$ = 900 + 1600 = 2500Hypotenuse = 50 cmAltitude = 30cm Base = 40cm**Question: 67** The area of a rig Solution: Let the altitude of the triangle be x m The base will be 3x m Area of triangle = 1/2. Base. altitude 1/2.3x.x = 96 $\frac{x^2}{2} = 32$ $x^2 = 64$ x = 8 or - 8 taking square rootValue of x cannot be negative Thus the altitude of the triangle be 8 m The base will be 3.8 = 24m **Ouestion: 68**

The area of a rig

Solution:

Let the base be x m

The altitude will be x + 7 m

Area of triangle = 1/2 base. altitude

= 1/2 x (x + 7) = 165

 $\mathbf{x}^2 + 7\mathbf{x} = 330$

 $x^2 + 7x - 330 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c For the given equation a = 1 b = 7 c = -330= 1. - 330 = - 330 And either of their sum or difference = b = 7 Thus the two terms are 22 and - 15 Difference = 22 - 15 = 7 Product = 22. - 15 = - 330 $x^2 + 22x - 15x - 330 = 0$ x(x + 22) - 15(x + 22) = 0

(x + 22) (x - 15) = 0

x = -22 or x = 15

Value of x cannot be negative

Thus the base be 15m and altitude = 15 + 7 = 22m

Question: 69

The hypotenuse of

Solution:

Let one side of right – angled triangle be $x\ m$ and other side be $x\ +\ 4\ m$

On applying the Pythagoras theorem -

$$20^{2} = (x + 4)^{2} + x^{2}$$

$$400 = x^{2} + 8x + 16 + x^{2}$$

$$400 = 2x^{2} + 8x + 16$$

$$2x^{2} + 8x - 384 = 0$$

$$x^{2} + 4x - 192 = 0$$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = 4 c = -192

= 1. - 192 = - 192

And either of their sum or difference = b

= 4

Thus the two terms are 16 and – $12\,$

Difference = 16 - 12 = 4

Product = 16. - 12 = -192

 $x^2 + 16x - 12x - 192 = 0$

x(x + 16) - 12(x + 16) = 0

(x + 16) (x - 12) = 0

```
x = 16 \text{ or } x = 12
```

x cannot be negative

Base is 12m and other side is 12 + 4 = 16m

Question: 70

The length of the

Solution:

Let the base and altitude of the right angled triangle be \boldsymbol{x} and \boldsymbol{y} respectively.

Thus the hypotenuse of triangle will be x + 2 cm

 $(x + 2)^2 = y^2 + x^2 - - - (1)$

Also the hypotenuse exceeds twice the length of the altitude by 1 cm

h = 2y + 1 x + 2 = 2y + 1 x = 2y - 1Putting the value of x in (1) we get $(2y - 1 + 2)^{2} = y^{2} + (2y - 1)^{2}$ $(2y + 1)^{2} = y^{2} + 4y^{2} - 4y + 1$ $4y^{2} + 4y + 1 = 5y^{2} - 4y + 1 \text{ using } (a + b)^{2} = a^{2} + 2ab + b^{2}$ $-y^{2} + 8y = 0$ y(y - 8) = 0 y = 8 x = 16 - 1 = 15 cmh = 16 + 1 = 17 cm

Thus the base, altitude, hypotenuse of triangle are 15cm, 8cm, 17cm respectively.

Question: 71

The hypotenuse of

Solution:

Let the shortest side of triangle be xm

According to the question ;

Hypotenuse = 2x - 1 m

Third side = x + 1 m

Applying Pythagoras theorem

 $(2x - 1)^2 = (x + 1)^2 + x^2$

 $4x^2 - 4x + 1 = x^2 + 2x + 1 + x^2$ using $(a - b)^2 = a^2 - 2ab + b^2$

 $2 x^2 - 6x = 0$

2x(x-3)=0

x = 0 or x = 3

Length of side cannot be 0 thus the shortest side is 3m

Hypotenuse = 2x - 1 = 6 - 1 = 5m

Third side = x + 1 = 3 + 1 = 4m

Thus the dimensions of triangle are 3m, 4m and 5m.

Exercise : 10F

Question: 1

Which of the foll

Solution:

A quadratic equation is of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a \neq 0, a, b, c are real numbers)

A. $x^2 - 3\sqrt{x} + 2 = 0$ this is not of the form $ax^2 + bx + c = 0$ hence it is not quadratic equation. B. $x + \frac{1}{x} = x^2$ $x^2 + 1 = x^3 x^3 - x^2 - 1 = 0$

This is not of the form $ax^2 + bx + c = 0$ hence it is not quadratic equation.

C.
$$x^{2} + \frac{1}{x^{2}} = 5$$

 $x^{4} + 1 = 5x^{2}$
 $5x^{2} - x^{4} - 1 = 0$

This is not of the form $ax^2 + bx + c = 0$ hence it is not quadratic equation.

D.
$$2x^2 - 5x = (x - 1)^2$$
 using $(a - b)^2 = a^2 + b^2 - 2ab$
 $2x^2 - 5x = x^2 - 2x + 1$
 $2x^2 - 5x - x^2 + 2x - 1 = 0$
 $x^2 - 3x - 1 = 0$
 $a = 1b = -3c = -1$

This is of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a $\neq 0$, a, b, c are real numbers) Hence this is a quadratic equation.

Question: 2

Which of the foll

Solution:

A. $(x^{2} + 1) = (2 - x)^{2} + 3$ using $(a - b)^{2} = a^{2} + b^{2} - 2ab$ $x^{2} + 1 = 4 + x^{2} - 4x + 3$ $x^{2} + 1 - 4 - x^{2} + 4x - 3 = 0$ 4x - 6 = 0

This is not of the form $ax^2 + bx + c = 0$ hence it is not quadratic equation.

B. $x^{3} - x^{2} = (x - 1)^{3}$ using $(a - b)^{3} = a^{3} - b^{3} - 3a^{2}b + 3ab^{2}$ $x^{3} - x^{2} = x^{3} - 1 - 3x^{2} + 3x$ $x^{3} - x^{2} - x^{3} + 1 + 3x^{2} - 3x = 0$ $2x^{2} - 3x + 1 = 0$ a = 2b = -3c = 1

This is of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a $\neq 0$, a, b, c are real numbers) Hence this is a quadratic equation.

Question: 3

Which of the foll

Solution:

A.
$$3x - x^2 = x^2 + 5$$

 $3x - x^2 - x^2 - 5 = 0$
 $-2x^2 + 3x - 5 = 0$

This is a quadratic equation of the form $ax^2 + bx + c = 0$ hence i.e. of degree 2 (a \neq 0, a, b, c are real numbers).

B.
$$(x + 2)^2 = 2(x^2 - 5)$$

 $x^2 + 4 + 4x = 2x^2 - 10$ using $(a + b)^2 = a^2 + b^2 + 2ab$
 $x^2 + 4 + 4x - 2x^2 + 10 = 0$
 $-x^2 + 4x + 14 = 0$

This is a quadratic equation of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a \neq 0, a, b, c are real numbers).

C.
$$(\sqrt{2}x + 3)^2 = 2x^2 + 6$$
 using $(a + b)^2 = a^2 + b^2 + 2ab$
 $2x^2 + 9 + 6\sqrt{2}x = 2x^2 + 6$
 $6\sqrt{2}x + 3 = 0$

This is not quadratic since it is not of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a $\neq 0$, a, b, c are real numbers).

D.
$$(x-1)^2 = 3x^2 + x - 2$$

 $x^2 - 2x + 1 = 3x^2 + x - 2$ using $(a - b)^2 = a^2 + b^2 - 2ab$
 $x^2 - 2x + 1 - 3x^2 - x + 2 = 0$
 $-2x^2 - 3x + 3 = 0$

This is a quadratic equation of the form $ax^2 + bx + c = 0$ i.e. of degree 2 (a $\neq 0$, a, b, c are real numbers).

Question: 4

If x = 3 is a sol

Solution:

 $3x^2 + (k-1)x + 9 = 0$

x = 3 is a solution of the equation means it satisfies the equation

```
3(3)^{2} + (k-1)3 + 9 = 0
```

27 + 3k - 3 + 9 = 0

27 + 3k + 6 = 0

3k = -33

k = -11

Question: 5

If one root of th

Solution:

One root of the equation $2x^2 + ax + 6 = 0$ is 2 i.e. it satisfies the equation

$$2(2)^{2} + 2a + 6 = 0$$

 $8 + 2a + 6 = 0$
 $2a = -14$
 $a = -7$

Question: 6

The sum of the ro

Solution:

For the equation $x^2 - 6x + 2 = 0$

a = 1b = -6c = 2 comparing with general equation $ax^2 + bx + c = 0$

$$\alpha + \beta = \frac{-b}{a}$$
$$= \frac{-(-6)}{1} = 6$$

Where α and β are the roots of the equation.

Question: 7

If the product of

Solution:

Given that the product of the roots of the equation is - 2

$$x^{2} - 3x + k = 10$$

$$x^{2} - 3x + (k - 10) = 0$$

$$x^{2} - 3x + (k - 10) = 0$$

$$a = 1 b = -3 c = k - 10 \text{ comparing with general equation } ax^{2} + bx + c = 0$$

Product of the roots $= \frac{c}{a}$
 $= \frac{k - 10}{1} = k - 10$
 $k - 10 = -2$
 $k = -2 + 10$

$$k = 8$$

Question: 8

The ratio of the

Solution:

For the given equation $7x^2 - 12x + 18 = 0$

a = 7 b = -12 c = 18 comparing with $ax^2 + bx + c = 0$ Sum of the roots $\frac{-b}{a} = \frac{-(-12)}{7}$ Product of the roots $\frac{c}{a} = \frac{18}{7}$ Ratio of sum: product = $\frac{12}{7}$: $\frac{18}{7}$ = 12:18 = 2:3 Question: 9 If one root of th

Solution:

For the given equation $3x^2 - 10x + 3 = 0$

a = 3 b = -10 c = 3 comparing with $ax^2 + bx + c = 0$

Product of the roots $\frac{c}{a} = \frac{3}{3} = 1$

One root of the equation is $\frac{1}{3}$

Let other root be ${\boldsymbol{\alpha}}$

$$\alpha \frac{1}{3} = 1$$

 $\alpha = 3$

Question: 10

If one root of 5x

Solution:

Let the roots of equation be α than other root will be $\frac{1}{\alpha}$

Product of two roots $=\frac{1}{\alpha}\alpha = 1$

Product of the roots = $\frac{c}{a}$

For the given equation $5x^2 + 13x + k = 0$

a = 5 b = 13 c = k comparing with $ax^2 + bx + c = 0$

Product of the roots
$$=\frac{k}{5} = 1$$

Question: 11

If the sum of the

Solution:

For the given equation $kx^2 + 2x + 3k = 0$ a = k b = 2 c = 3k comparing with $ax^2 + bx + c = 0$ Sum of the roots $= \frac{-b}{a} = \frac{-2}{k}$ Product of the roots $\frac{c}{a} = \frac{3k}{k} = 3$ Sum of roots is equal to their product: $\frac{-2}{k} = 3$ $k = \frac{-2}{3}$

Question: 12

The roots of a qu

Solution:

The roots of a quadratic equation will satisfy the equation - start with option 1

A.
$$x^2 - 3x + 10 = 0$$

For $x = 5$
 $5^2 - (3.5) + 10$
 $25 - 15 + 10 = 20 \neq 0$
Hence this is not the equation
B. $x^2 - 3x - 10 = 0$

For x = 5

 $5^{2} - (3.5) - 10 = 25 - 15 - 10$ = 25 - 25 = 0For x = - 2 $= (-2)^{2} - (3. - 2) - 10$ = 4 + 6 - 10 = 10 - 10 = 0

This equation is satisfied for both the roots.

Question: 13

If the sum of the

Solution:

Sum = 6 and Product = 6

Quadratic equation = x^2 -Sum x + Product = 0

 $= x^2 - 6x + 6 = 0$

Question: 14

If α and β are th

Solution:

Given α and β are the roots of the equation $3x^2 + 8x + 2 = 0$

For the equation a = 3 b = 8 c = 2 comparing with $ax^2 + bx + c = 0$

Sum of roots = $\alpha + \beta = \frac{-b}{a} = \frac{-(8)}{3}$

Product of roots = $\alpha\beta = \frac{c}{a} = \frac{2}{3}$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{\frac{-(8)}{3}}{\frac{2}{3}} = -4$$

Question: 15

The roots of the

Solution:

Let the roots of equation be α and $\frac{1}{\alpha}$

- Product of roots $=\frac{1}{\alpha}\alpha = 1$
- Product of the roots $\frac{c}{a} = 1$

Hence c = a

Question: 16

If the roots of t

Solution:

If roots of the equation $ax^2 + bx + c = 0$ are equal

Then D = b² - 4ac = 0
b² = 4ac
c =
$$\frac{b^2}{4a}$$

Question: 17

If the equation 9

Solution:

The equation $9x^2 + 6kx + 4 = 0$ has equal roots

a = 9 b = 6k c = 4

Then $D = b^2 - 4ac = 0$

 $(6k)^2 - 4.9.4 = 0$

 $36k^2 = 144$

 $k^2 = 4$ taking square root both sides

k = 2 or k = -2

Question: 18

If the equation \boldsymbol{x}

Solution:

Given that the equation $x^2 + 2(k + 2)x + 9k = 0$ has equal roots.

$$a = 1 b = 2(k + 2) c = 9k$$

$$D = b^{2} - 4ac = 0$$

$$(2k + 4)^{2} - 4.1.9k = 0$$

$$4k^{2} + 16 + 16k - 36k = 0$$

$$4k^{2} - 20k + 16 = 0$$

$$k^{2} - 5k + 4 = 0$$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -5 c = 4

= 1.4 = 4

And either of their sum or difference = b

= - 5

Thus the two terms are - $4 \mbox{ and }$ - $1 \mbox{ }$

```
Difference = -4 - 1 = -5
```

Product = -4. -1 = 4

 $k^2 - 4k - k + 4 = 0$

k(k - 4) - 1(k - 4) = 0

(k - 4) (k - 1) = 0

k = 4 or k = 1

Question: 19

If the equation 4

Solution:

Given the equation $4x^2 - 3kx + 1 = 0$ has equal roots

For the given equation a = 4 b = -3k c = 1

$$D = b^{2} - 4ac = 0$$

(-3k)² - 4.4.1 = 0
9k² - 16 = 0
9k² = 16

 $k^2 = 16/9$

 $k = \pm 4/3$

Question: 20

The roots of ax

Solution:

The roots of equation are real and unequal, if $(b^2 - 4ac) > 0$

Question: 21

In the equation a

Solution:

If for the equation $ax^2 + bx + c = 0$, it is given that $D = (b^2 - 4ac) > 0$ then the roots are real and unequal.

Question: 22

The roots of the

Solution:

For the given equation $2x^2 - 6x + 7 = 0$

a = 2b = -6c = 7

 $D = b^2 - 4ac$

 $=(-6)^2 - 4.2.7$

= 36 - 56 = -20 < 0

Thus the roots of equation are imaginary.

Question: 23

The roots of the

Solution:

For the given equation $2x^2 - 6x + 3 = 0$

a = 2b = -6c = 3

 $D = b^2 - 4ac$

 $=(-6)^2 - 4.2.3$

= 36 - 24 = 12 > 0 this is not a perfect square hence the roots of the equation are real, unequal and irrational

Question: 24

If the roots of 5

Solution:

Given that the roots of $5x^2 - kx + 1 = 0$ are real and distinct

 $D = b^{2} - 4ac > 0$ = (-k)² - 4.5.1 = k² - 20 > 0 k² - 20

Roots are either $k > 2\sqrt{5}$ or $k < -2\sqrt{5}$

Question: 25

If the equation **x**

Solution:

Given the equation $x^2 + 5kx + 16 = 0$ has no real

a = 1 b = 5k c = 16Thus D = b²-4ac < 0 = (5k)²-4.1.16 < 0 = 25k²-64 < 0

 $\frac{25k^2}{5k^2} = 64$

$$k^{2} < \frac{64}{25}$$

 $\frac{-8}{5} < k < \frac{8}{5}$

Question: 26

If the equation x

Solution:

Given the equation $x^2 - kx + 1 = 0$ has no real roots

a = 1 b = -kc = 1

Thus D = $b^2 - 4ac < 0$

 $(-k)^2 - 4.1.1 < 0$

 $k^2 - 4 < 0$

 $k^2 - 4$

- 2 < k < 2

Question: 27

For what values o

Solution:

Given the equation $kx^2 - 6x - 2 = 0$ has real roots a = k b = -6 c = -2

Thus $D = b^2 - 4ac \ge 0$

 $(-6)^2 - 4.k. - 2 \ge 0$

36 + 8k ≥0

8k≥ - 36

 $k \ge \frac{-9}{2}$

Question: 28

The sum of a numb

Solution:

Let the required number be x

According to the question

$$\frac{x + \frac{1}{x} = \frac{41}{20}}{\frac{x^2 + 1}{x} = \frac{41}{20}}$$

 $20x^2 - 41x + 20 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c

For the given equation a = 20 b = -41 c = 20

= 20.20 = 400

And either of their sum or difference = b

```
---41
```

```
Thus the two terms are - 25 and - 16
```

```
Difference = -25 - 16 = -41
```

```
Product = -25. -16 = 400
```

```
20x^2 - 25x - 16x + 20 = 0
```

```
\frac{5x(4x-5)-4(4x-5)=0}{5x(4x-5)=0}
```

```
(5x - 4) (4x - 5) = 0
```

$$x = \frac{5}{4} \text{ or } \frac{4}{5}$$

Question: 29

The perimeter of

Solution:

Let the length and breadth of the rectangle be l and b respectively

Perimeter of a rectangle is 82 m 2(1 + b) = 82

1 + b = 41

l = 41 - b - (1)

Area is 400 m²

lb = 400

```
(41 - b) b = 400 using (1)
```

 $41b - b^2 = 400$

 $b^2 - 41b + 400 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.cFor the given equation a = 1 b = -41 c = 400= 1.400 = 400And either of their sum or difference = b = -41 Thus the two terms are - 25 and - 16 Difference = -25 - 16 = -41Product = -25. -16 = 400 $b^2 - 25b - 16b + 400 = 0$ b(b - 25) - 16(b - 25) = 0(b - 25)(b - 16) = 0b = 25 or b = 16If b = 25l = 41 - 25 = 16 but l cannot be less than b Thus b = 16mThe breadth of the rectangle = 16m**Ouestion: 30** The length of a r Solution: Let the breadth of the rectangle be x m Thus the length of the rectangle is (x + 8) m Area of the field is $240 \text{ m}^2 = \text{length}$. breadth x(x + 8) = 240

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c

 $x^2 + 8x - 240 = 0$

For the given equation a = 1 b = 8 c = -240

= 1. - 240 = -240

And either of their sum or difference = b

= 8

Thus the two terms are 20 and - 12

 $\frac{\text{Difference} = 20 - 12 = 8}{2}$

Product = 20. - 12 = -240

 $x^2 + 20x - 12x - 240 = 0$

 $\frac{x(x+20)-12(x+20)=0}{x(x+20)=0}$

(x + 20)(x - 12) = 0

x = 12 or x = -20 (but breadth cannot be negative)

The breadth of the rectangle = 12m

Question: 31

The roots of the

Solution:

 $2x^2 - x - 6 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c

For the given equation a = 2b = -1c = -6

= 2. - 6 = -12

And either of their sum or difference = b

```
<del>-1</del>
```

Thus the two terms are - 4 and 3

```
\overline{\text{Difference}} = -4 + 3 = -1
```

Product = -4.3 = -12

 $2x^2 - 4x + 3x - 6 = 0$

 $\frac{2x(x-2) + 3(x-2) = 0}{2x(x-2) - 1}$

(x-2)(2x+3) = 0

x = 2 x = -3/2

Question: 32

The sum of two na

Solution:

Let the required natural number be x and (8 - x)

their product is 15

 $\mathbf{x(8-x)} = 15$

 $8x - x^2 = 15$

 $x^2 - 8x + 15 = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c

For the given equation a = 1 b = -8 c = 15

= 1.15 = 15

And either of their sum or difference = b

--8

Thus the two terms are - 5 and - 3

Sum = - 5 - 3 = - 8

Product = -5. -3 = 15

 $x^2 - 5x - 3x + 15 = 0$

 $\frac{x(x-5) - 3(x-5) = 0}{2}$

(x-5)(x-3) = 0

x = 5 or x = 3

Hence the required natural numbers are 5 and 3

Question: 33

Show that x = -3

Solution:

If x = -3 is a solution then it must satisfy the equation

- $x^2 + 6x + 9 = 0$
- $LHS = x^2 + 6x + 9$
- $=(-3)^2+6.-3+9$
- = 9 18 + 9
- = 18 18
- = 0 = RHS

Thus x = -3 is a solution of the equation

Question: 34

Show that x = -2

Solution:

If x = -2 is a solution then it must satisfy the equation

$$3x^2 + 13x + 14 = 0$$

 $LHS = 3x^2 + 13x + 14$

 $= 3(-2)^2 + 13(-2) + 14$

= 12 - 26 + 14 = 26 - 26 = 0 = RHS

Thus x = -2 is a solution of the equation

Question: 35

If-

Solution:

Given $x = \frac{-1}{2}$ is a solution of the quadratic equation $3x^2 + 2kx - 3 = 0$. Thus it must satisfy the equation.

$$3\left(\frac{-1}{2}\right)^2 + 2k\left(\frac{-1}{2}\right) - 3 = 0$$
$$\left(\frac{3}{4}\right) - k - 3 = 0$$
$$k = \frac{3 - 12}{4} = \left(\frac{-9}{4}\right)$$

Hence the value of k is $\frac{-9}{4}$

Question: 36

Find the roots of

Solution:

Given: $2x^2 - x - 6 = 0$

Using the splitting middle term – the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c For the given equation a = 2 b = -1 c = -6= 2. -6 = -12 And either of their sum or difference = b = -1 Thus the two terms are -4 and 3 Sum = -4 + 3 = -1 Product = -4.3 = -12 $2x^2 - 4x + 3x - 6 = 0$ 2x(x - 2) + 3(x - 2) = 0 (x - 2)(2x + 3) = 0x = 2 or x = -3/2

Hence the roots of the given equation x = 2 or $x = \frac{-3}{2}$

Question: 37

Find the solution

Solution:

The given $3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$

 $3\sqrt{3}x^2 + 9x + x + \sqrt{3} = 0$

Using the splitting middle term - the middle term of the general equation $ax^2 + bx + c = 0$ -is divided in two such values that:

Product = a.c

For the given equation $a = 3\sqrt{3} b = 10 c = \sqrt{3}$

 $= 3\sqrt{3} \cdot \sqrt{3} = 3.3 = 9$

And either of their sum or difference = b

= 10

Thus the two terms are 9 and 1

```
Sum = 9 + 1 = 10
```

Product = 9.1 = 9

 $3\sqrt{3}x^{2} + 9x + x + \sqrt{3} = 0 \text{ using } 9 = 3\sqrt{3} \cdot \sqrt{3}$ $3\sqrt{3}x (x + \sqrt{3}) + 1(x + \sqrt{3}) = 0$ $(x + \sqrt{3}) (3\sqrt{3}x + 1) = 0$ $(x + \sqrt{3}) = 0 \text{ or } (3\sqrt{3}x + 1) = 0$ $x = -\sqrt{3} \text{ or } x = \frac{1}{3\sqrt{3}}$

Question: 38

If the roots of t

Solution:

The roots of the quadratic equation $2x^2 + 8x + k = 0$ are equal then D = 0

a = 2 b = 8 c = k $D = b^{2} - 4ac = 0$ $= 8^{2} - 4.2.k = 0$ = 64 - 8k = 0 8k = 64k = 8

Question: 39

If the quadratic

Solution:

The quadratic equation $px^2 - 2\sqrt{5}px + 15 = 0$ has two equal roots

a = p b =
$$-2\sqrt{5}pc = 15$$

D = $b^2 - 4ac = 0$
= $(-2\sqrt{5}p)^2 - 4.p.15 = 0$
= $20p^2 - 60p = 0$
= $20p(p-3) = 0$
p = 0 or p = 3

For p = 0 in the equation 0 + 0 + 15 = 0 but this is not possible

Thus $p \neq 0$

Question: 40

If 1 is a root of

Solution:

Given that y = 1 is a root of the equation $ay^2 + ay + 3 = 0$

- $a.1^2 + a.1 + 3 = 0$
- a + a + 3 = 0

2a + 3 = 0

a = -3/2

Also y = 1 is a root of the equation $y^2 + y + b = 0$

 $1^2 + 1 + b = 0$

2 + b = 0

b = -2

$$ab = -2.\frac{-3}{2} = 3$$

Thus the value of ab = 3

Question: 41

If one zero of th

Solution:

Given one zero of the polynomial $x^2 - 4x + 1$ is $(2 + \sqrt{3})^7$

$$a = 1 b = -4 c = 1$$

Than let the other zero of the polynomial be α

Sum of zeroes
$$=$$
 $\frac{-b}{a} = \frac{-(-4)}{1} = 4$
 $\alpha + (2 + \sqrt{3}) = 4$
 $\alpha = 4 - 2 - \sqrt{3}$

 $\alpha = 2 - \sqrt{3}$

Hence the other zero of the polynomial is $2 - \sqrt{3}$

Question: 42

If one root of th

Solution:

Let α and β be roots of the quadratic equation $3x^2 - 10x + k = 0$

$$a = 3 b = -10 c = k$$

Then $\alpha = \frac{1}{\beta}$
 $\alpha\beta = 1$

For any general quadratic equation in the form $ax^2 + bx + c = 0$, we have Product of roots $= \frac{c}{2} = \frac{k}{2}$

$$\frac{k}{3} = 1$$

Question: 43

If the roots of t

Solution:

Given that the roots of the quadratic equation px(x-2) + 6 = 0 are equal

$$px^2 - 2px + 6 = 0$$

Comparing with general equation $ax^2 + bx + c = 0$, for the given equation

$$a = p b = -2p c = 6$$

Hence D = b² - 4ac = 0
(-2p)² - 4. p. 6 = 0
4p² - 24p = 0
4p(p 6) = 0
4p = 0 or (p 6) = 0
p = 0 or p = 6

Putting p = 0 in equation given we get 6 = 0 that is not possible

Hence value of p = 6 for which the equation has equal roots.

Question: 44

Find the values o

Solution:

Given that the quadratic equation $x^2 - 4kx + k = 0$ has equal roots

Comparing with general equation $ax^2 + bx + c = 0$, for the given equation

- a = 1 b = -4k c = kHence D = b² - 4ac = 0
- $(-4k)^2 4.1.k = 0$
- $16k^2 4k = 0$
- 4k(4k-1) = 0
- 4k = 0 or (4k-1) = 0
- $k = 0 \text{ or } k = \frac{1}{4}$

Hence 0 and $\frac{1}{4}$ are values of k for which the equation has equal roots.

Question: 45

Find the values o

Solution:

Given that the quadratic equation $9x^2 - 3kx + k = 0$ has equal roots

Comparing with general equation $ax^2 + bx + c = 0$, for the given equation

- a = 9b = -3kc = k
- Hence $D = b^2 4ac = 0$
- $(-3k)^2 4.9.k = 0$
- $9k^2 36k = 0$
- 9k(k-4) = 0
- 9k = 0 or (k-4) = 0
- k = 0 or k = 4

Hence 0 and 4 are values of k for which the equation has equal roots.

Question: 46

Solve:

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 1 b = -(\sqrt{3} + 1) c = \sqrt{3}$

- $= 1.\sqrt{3}$
- $=\sqrt{3}$

And either of their sum or difference = b

$$= -(\sqrt{3} + 1)$$

Thus the two terms are $-\sqrt{3} \& -1$
Difference = $-\sqrt{3} - 1 = -(\sqrt{3} - 1)$
Product = $-\sqrt{3} . -1 = \sqrt{3}$
 $x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$
 $x^{2} - \sqrt{3}x - x + \sqrt{3} = 0$
 $x(x - \sqrt{3}) - 1(x - \sqrt{3}) = 0$
 $(x - \sqrt{3})(x - 1) = 0$
 $(x - \sqrt{3}) = 0 \text{ or } (x - 1) = 0$
 $x = \sqrt{3} \text{ or } x = 1$

Hence the roots of given equation are $x = \sqrt{3}$ or x = 1

Question: 47

Solve: 2x

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 2b = ac = -a^2$

 $= 2.-a^2$

 $=-2a^{2}$

And either of their sum or difference = b

--a

Thus the two terms are 2a & - a

```
\frac{\text{Difference}}{2a-a} = a
```

 $\frac{Product = 2a}{a} = -2a^2$

$$2x^2 + ax - a^2 = 0$$

 $2x^2 + 2ax - ax - a^2 = 0$

$$2x(x + a) - a(x + a) = 0$$

 $(\mathbf{x} + \mathbf{a})(2\mathbf{x} - \mathbf{a}) = \mathbf{0}$

(x + a) = 0 or (2x - a) = 0

$$x = -a \text{ or } x = \frac{a}{2}$$

Hence roots of equation are $x = -a \text{ or } x = \frac{a}{2}$

Question: 48

Solve: 3x²

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.e For the given equation $a = 3 b = 5\sqrt{5} c = -10$ = 3.-10 =--30 And either of their sum or difference = b =-5 $\sqrt{5}$ Thus the two terms are $6\sqrt{5} \& -\sqrt{5}$ Difference = $6\sqrt{5} - \sqrt{5} = 5\sqrt{5}$ Product = $6\sqrt{5} - \sqrt{5} = -30$ -using $\sqrt{5} \cdot \sqrt{5} = 5$ $3x^2 + 5\sqrt{5}x - 10 = 0$ $3x^2 + 6\sqrt{5}x - \sqrt{5}x - 10 = 0$ $3x(x + 2\sqrt{5}) - \sqrt{5}(x + 2\sqrt{5}x) = 0$ $(x + 2\sqrt{5})(3x - \sqrt{5}) = 0$ $(x + 2\sqrt{5}) = 0 \text{ or } (3x - \sqrt{5}) = 0$ $x = -2\sqrt{5} \text{ or } x = \frac{\sqrt{5}}{3}$

Hence roots of equation are $x = -2\sqrt{5}$ or $x = \frac{\sqrt{5}}{3}$

Question: 49

Solve: √3x<

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{3} b = 10 c = -8\sqrt{3}$

$$=\sqrt{3}.-8\sqrt{3}-using\sqrt{3}\sqrt{3} = 3$$

---24

And either of their sum or difference = b

-10

Thus the two terms are 12 & -2

 $\frac{\text{Difference}}{12-2} = 10$

Product = 12. -2 = -24

 $\sqrt{3}x^2 + 10x - 8\sqrt{3} = 0$

 $\sqrt{3}x^2 + 12x - 2x - 8\sqrt{3} = 0$

 $\frac{\sqrt{3} x(x + 4\sqrt{3}) \cdot 2(x + 4\sqrt{3}) = 0}{(\sqrt{3} x \cdot 2)(x + 4\sqrt{3}) = 0}$ $\left(\sqrt{3} x - 2\right) = 0 \text{ or } \left(x + 4\sqrt{3}\right) = 0$ $x = -4\sqrt{3} \text{ or } x = \frac{2}{\sqrt{3}}$

Hence roots of equation are $x = -4\sqrt{3}$ or $x = \frac{2}{\sqrt{3}}$

Question: 50

Solve: √3x<

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = \sqrt{3} b = -2\sqrt{2} c = -2\sqrt{3}$

$$=\sqrt{3} \cdot -2\sqrt{3} \cdot \text{using}\sqrt{3}\sqrt{3} = 3$$

---6

And either of their sum or difference = b

$$-2\sqrt{2}$$

Thus the two terms are $-3\sqrt{2} \& \sqrt{2}$

Difference = $-3\sqrt{2} + \sqrt{2} = -2\sqrt{2}$ Product = $-3\sqrt{2}, \sqrt{2} = -6$

$$\sqrt{3} x^2 - 2\sqrt{2} x - 2\sqrt{3} = 0$$

$$\sqrt{3} x^2 - 3\sqrt{2} x + \sqrt{2} x - 2\sqrt{3} = 0$$

 $\sqrt{3} x(x \sqrt{6}) + \sqrt{2}(x \sqrt{6}) = 0$

$$(\sqrt{3} x + \sqrt{2})(x \sqrt{6}) = 0$$

 $(\sqrt{3} x + \sqrt{2}) = 0 \text{ or } (x - \sqrt{6}) = 0$

$$x = \sqrt{6} \text{ or } x = \frac{-\sqrt{2}}{\sqrt{3}}$$

Hence roots of equation are $x = \sqrt{6}$ or $x = \frac{-\sqrt{2}}{\sqrt{3}}$

Question: 51

Solve: $4\sqrt{3x^2}$

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 4\sqrt{3} b = 5 c = -2\sqrt{3}$

$$= 4\sqrt{3} \cdot -2\sqrt{3}$$

And either of their sum or difference = b =-5 Thus the two terms are 8 & - 3 Difference = 8 - 3 = 5 Product = 8. -3 = -24 $4\sqrt{3} x^2 + 5x - 2\sqrt{3} = 0$ $4\sqrt{3} x^2 + 8x - 3x - 2\sqrt{3} = 0$ $4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2) = 0$ $(4x - \sqrt{3})(\sqrt{3}x + 2) = 0$ $(4x - \sqrt{3}) = 0 \text{ or } (\sqrt{3}x + 2) = 0$ $x = \frac{\sqrt{3}}{4} \text{ or } x = \frac{-2}{\sqrt{3}}$

Hence roots of equation are $x = \frac{\sqrt{3}}{4}$ or $x = \frac{-2}{\sqrt{3}}$

Question: 52

Solve: 4x

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 4b = 4bc = -(a^2 - b^2)$

 $= -4(a^2 - b^2)$

And either of their sum or difference = b

=-4b Thus the two terms are 2(a + b) & - 2(a - b)Difference = 2[(a + b) - (a - b)]=-2[2b] =-4b Product = $2(a + b) \times -2(a - b)$ =--4(a + b)(a - b) using (a + b)(a - b) = a² - b² =--4(a² - b²) 4x² + 4bx - (a² - b²) = 0 4x² + 2[(a + b) - (a - b)]x - (a + b)(a - b) = 0 - using (a + b)(a - b) = a² - b² 4x² + 2(a + b)x - 2(a - b)x - (a + b)(a - b) = 0 2x[2x + (a + b)] - (a - b)[2x + (a + b)] = 0 [2x - (a - b)][2x + (a + b)] = 0 [2x - (a - b)] = 0 or [2x + (a + b)] = 0

2x = (a - b) or 2x = -(a + b)

$$x = \frac{-(a + b)}{2}$$
 or $x = \frac{a - b}{2}$

Hence roots of equation are $x = \frac{-(a+b)}{2}$ or $x = \frac{a-b}{2}$

Question: 53

Solve: x

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 1 b = 5 c = -(a^2 + a - 6)$

 $= -1. -(a^2 + a - 6) = -(a^2 + a - 6)$

And either of their sum or difference = b

----5

Thus the two terms are (a + 3) & (a - 2)

 $\frac{\text{Difference}}{a} = (a + 3) - (a - 2)$

----5

 $\frac{Product}{a} = (a + 3)(a - 2)$

$$= a^{2} + a - 6$$

$$x^{2} + 5x - (a^{2} + a - 6) = 0$$

$$x^{2} + 5x - (a + 3)(a - 2) = 0$$

$$x^{2} + [(a + 3) - (a - 2)]x - (a + 3)(a - 2) = 0$$

$$x^{2} + (a + 3)x - (a - 2)x - (a + 3)(a - 2) = 0$$

$$x[x + (a + 3)] - (a - 2)[x + (a + 3)] = 0$$

$$[x - (a - 2)][x + (a + 3)] = 0$$

$$[x - (a - 2)] = 0 \text{ or } [x + (a + 3)] = 0$$

$$x = (a - 2) \text{ or } x = -(a + 3)$$

Hence roots of equation are x = (a - 2)or - (a + 3)

Question: 54

 \mathbf{x}^2

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 1b = 6c = -(a^2 + 2a - 8) =$

 $= 1.(a^2 + 2a - 8) = (a^2 + 2a - 8)$

And either of their sum or difference = b

=-6 Thus the two terms are (a + 4) & (a - 2)Difference = (a + 4) (a - 2)=-6 Product = (a + 4)(a - 2)=-a² + 2a - 8 x² + 6x - $(a^2 + 2a - 8) = 0$ x² + 6x - (a + 4)(a - 2) = 0x² + [(a + 4) - (a - 2)]x - (a + 4)(a - 2) = 0x² + (a + 4)x - (a - 2)x - (a + 4)(a - 2) = 0x² + (a + 4)x - (a - 2)x - (a + 4)(a - 2) = 0x[x + (a + 4)] (a - 2)[x + (a + 4)] = 0[x - (a - 2)][x + (a + 4)] = 0[x - (a - 2)][x + (a + 4)] = 0x = (a - 2) or x = -(a + 4)Hence roots of equation are x = (a - 2) or (a + 4)

Question: 55

```
×2
```

Solution:

Using splitting middle term, the middle term of the general equation $ax^2 + bx + c = 0$ is divided in two such values that:

Product = a.c

For the given equation $a = 1 b = -4a c = 4a^2 - b^2$

 $=-1.(4a^2-b^2)=-4a^2-b^2$

And either of their sum or difference = b

---4a

```
Thus the two terms are -(2a + b) \& -(2a - b)
```

```
Sum = -(2a + b) - (2a - b)
```

= -2a - b - 2a + b

---4a

 $\frac{Product = -(2a + b) - (2a - b) \cdot using (a + b)(a - b) = a^2 - b^2}{a^2 - b^2}$

$$= -(2a + b)(2a - b) = -4a^{2} - b^{2}$$

$$x^{2} - 4ax + 4a^{2} - b^{2} = 0$$

$$x^{2} - 4ax + (2a + b)(2a - b) = 0$$

$$x^{2} - [(2a + b) + (2a - b)]x + (2a + b)(2a - b) = 0$$

$$x^{2} - (2a + b)x - (2a - b)x + (2a + b)(2a - b) = 0$$

$$x[x - (2a + b)] - (2a - b)[x - (2a + b)] = 0$$

$$[x - (2a - b)][x - (2a + b)] = 0$$

[x-(2a-b)] = 0 or [x-(2a+b)] = 0

x = (2a-b) or x = (2a + b)

Hence roots of equation are x = (2a - b) or x = (2a + b)