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Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from
the legacy of bookish learning which continues to shape our system and causes a gap
between the school, home and community. The syllabi and textbooks developed on
the basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the direction
of a child-centred system of education outlined in the National Policy on Education
(1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognise that, given space, time and freedom,
children generate new knowledge by engaging with the information passed on to them
by adults. Treating the prescribed textbook as the sole basis of examination is one of
the key reasons why other resources and sites of learning are ignored. Inculcating
creativity and initiative is possible if we perceive and treat children as participants in
learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather than a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and
activities requiring hands-on experience.
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NCET appreciates the hard work done by the textbook development committee
responsible for this book. We wish to thank the Chairperson of the advisory group in
Science and Mathematics, Professor .. Narlikar and the Chiefdvisor for this book,
Professor P.. ain for guiding the work of this committee. Several teachers contributed
to the development of this textbook we are grateful to their principals for making this
possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. s an organisation
committed to systemic reform and continuous improvement in the quality of its
products, NCET welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director
New elhi National Council of Educational
20 December 2005 esearch and Training



Preface

The National Council of Educational esearch and Training (NCET) had constituted

21 Focus roups on Teaching of various subjects related to School Education, to
review the National Curriculum Framework for School Education - 2000 (NCFSE -
2000) in face of new emerging challenges and transformations occurring in the fields
of content and pedagogy under the contexts of National and International spectrum of
school education. These Focus roups made general and specific comments in their
respective areas. Consequently, based on these reports of Focus roups, National
Curriculum Framework (NCF)-2005 was developed.

NCET designed the new syllabi and constituted Textbook evelopment Teams
for Classes I and II to prepare textbooks in mathematics under the new guidelines
and new syllabi. The textbook for Class I is already in use, which was brought in
2005.

The first draft of the present book (Class II) was prepared by the team consisting of
NCET faculty, experts and practicing teachers. The draft was refined by the
development team in different meetings. This draft of the book was exposed to a
group of practicing teachers teaching mathematics at higher secondary stage in different
parts of the country, in a review workshop organised by the NCET at elhi. The
teachers made useful comments and suggestions which were incorporated in the draft
textbook. The draft textbook was finalised by an editorial board constituted out of
the development team. Finally, thedvisory roup in Science and Mathematics and

the Monitoring Committee constituted by the Ministry, overnment of India

have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the
textbook. These characteristics have reflections in almost all the chapters. The existing
textbook contain 1 main chapters and two appendices. Each Chapter contain the
followings

* Introduction ighlighting the importance of the topic connection with earlier

studied topics brief mention about the new concepts to be discussed in the
chapter.

= rganisation of chapter into sections comprising one or more conceptssub

concepts.

* Motivating and introducing the conceptssub concepts. [llustrations have been

provided wherever possible.



Viii

* Proofsproblem solving involving deductive or inductive reasoning, multiplicity
of approaches wherever possible have been inducted.

= eometric viewing visualisation of concepts have been emphasised whenever
needed.

= pplications of mathematical concepts have also been integrated with allied
subjects like science and social sciences.

= dequate and variety of examplesexercises have been given in each section.

» Forrefocusing and strengthening the understanding and skill of problem solving
and applicabilities, miscellaneous types of examplesexercises have been
provided involving two or more sub concepts at a time at the end of the chapter.
The scope of challenging problems to talented minority have been reflected
conducive to the recommendation as reflected in NCF-2005.

» Formore motivational purpose, brief historical background of topics have been
provided at the end of the chapter and at the beginning of each chapter relevant
quotation and photograph of eminent mathematician who have contributed
significantly in the development of the topic undertaken, are also provided.

= astly, for direct recapitulation of main concepts, formulas and results, brief
summary of the chapter has also been provided.

I am thankful to Professor rishan umar, irector, NCET who constituted the
team and invited me to join this national endeavor for the improvement of mathematics
education. e has provided us with an enlightened perspective and a very conducive
environment. This made the task of preparing the book much more enjoyable and
rewarding. | express my gratitude to Professor .. Narlikar, Chairperson of the
dvisory roup in Science and Mathematics, for his specific suggestions and advice
towards the improvement of the book from time to time. I, also, thank Prof. . avindra,
oint irector, NCET for his help from time to time.

I express my sincere thanks to Professor ukum Singh, Chief Coordinator and
ead ESM, r.. P. Singh, Coordinator and Professor S. . Singh autam who
have been helping for the success of this project academically as well as
administratively. Iso, I would like to place on records my appreciation and thanks to
all the members of the team and the teachers who have been associated with this
noble cause in one or the other form.

Pwn . W
Chief Advisor
Textbook evelopment Committee
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THE CONSTITUTION OF
INDIA

PREAMBLE

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into a
'[SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC] and to secure
to all its citizens :

JUSTICE,
political;
LIBERTY of thought, expression, belief,
faith and worship;

EQUALITY of status and of opportunity;
and to promote among them all

FRATERNITY assuring the dignity of
the individual and the *[unity and
integrity of the Nation];

IN OUR CONSTITUENT ASSEMBLY
this twenty-sixth day of November, 1949 do
HEREBY ADOPT, ENACT AND GIVE TO
OURSELVES THIS CONSTITUTION.

1. Subs. by the Constitution {Forty-second Amendment} Act, 1976, Sec.2,
for "Sovereign Democratic Republic” (w.e.f. 3.1.1977)

2. Subs. by the Constitution {Forty-second Amendment) Act, 1976, Sec.2,
for "Unity of the Nation" {(w.e.f. 3.1.1977)
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Constitution of India
Part IV A (Article 51 A)

Fundamental Duties

It shall be the duty of every citien of India

(a)
(b)

(c)
(d)

(e)

(H
(e

(h)

V)
)

to abide by the Constitution and respect its ideals and institutions, the
National Flag and the National nthem

to cherish and follow the noble ideals which inspired our national struggle
for freedom

to uphold and protect the sovereignty, unity and integrity of India

to defend the country and render national service when called upon to
do so

to promote harmony and the spirit of common brotherhood amongst all
the people of India transcending religious, linguistic and regional or
sectional diversities to renounce practices derogatory to the dignity of
women

to value and preserve the rich heritage of our composite culture

to protect and improve the natural environment including forests, lakes,
rivers, wildlife and to have compassion for living creatures

to develop the scientific temper, humanism and the spirit of inquiry and
reform

to safeguard public property and to abjure violence

to strive towards excellence in all spheres of individual and collective
activity so that the nation constantly rises to higher levels of endeavour
and achievement

(k) who is a parent or guardian, to provide opportunities for education to

his child or, as the case may be, ward between the age of six and
fourteen years.

Note:

The rticle 51 containing Fundamental uties was inserted by the Constitution
(2nd mendment) ct, 196 (with effect from anuary 19).

(k) was inserted by the Constitution (86th mendment) ct, 2002 (with effect from
1 pril 2010).
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Chapter 1

(RELATIONS AND FUNCTIONS )

¢ There is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. HARDY %

1.1 Introduction

Recall that the notion of relations and functions, domain,
co-domain and range have been introduced in Class XI
along with different types of specific real valued functions
and their graphs. The concept of the term ‘relation’ in
mathematics has been drawn from the meaning of relation
in English language, according to which two objects or
quantities are related if there is a recognisable connection
or link between the two objects or quantities. Let A be
the set of students of Class XII of a school and B be the
set of students of Class XI of the same school. Then some
of the examples of relations from A to B are

(1) {(a, b) € Ax B:ais brother of b}, Lejeune Dirichlet
(i) {(a, b) € A xB: ais sister of b}, (1805-1859)
(iii) {(a, b) € A xB: age of a is greater than age of b},
(iv) {(a, b) € A x B: total marks obtained by « in the final examination is less than
the total marks obtained by b in the final examination},
(v) {(a, b) € A x B: alives in the same locality as b}. However, abstracting from
this, we define mathematically a relation R from A to B as an arbitrary subset
of A x B.
If (a, b) € R, we say that a is related to b under the relation R and we write as
a R b. In general, (a, b) € R, we do not bother whether there is a recognisable
connection or link between a and b. As seen in Class XI, functions are special kind of
relations.
In this chapter, we will study different types of relations and functions, composition
of functions, invertible functions and binary operations.
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1.2 Types of Relations

In this section, we would like to study different types of relations. e know that a
relation in a set A is a subset of A x A. Thus, the empty set ¢ and A x A are two
extreme relations. or illustration, consider arelation R in the setA {,,, } given by

R {( a,b):a b }.Thisis the empty set,asno pair (  a, b) satisfies the condition
a b .imilarly, R "{( a,b): a b =} isthe whole set A x A, as all pairs
(a, b) in A x A satisfy a b = . These two extreme examples lead us to the
following definitions.

Definition 1 A relation R in a set A is called empty relation, if no element of A is
related to any element of A, i.e., R ¢ cAxA.

Definition 2 A relation R in a set A is called universal relation, if each element of A
is related to every element of A, i.e., R A x A,

Both the empty relation and the universal relation are some times called trivia/
relations.

Example 1 Let A be the set of all students of a boys school. how that the relation R
in A given by R {( a, b) : ais sister of b} is the empty relation and R" {( a, b) : the
difference between heights of a and b is less than meters} is the universal relation.

Solution ince the school is boys school, no student of the school can be sister of any
student of the school. Hence, R ¢, showing that R is the empty relation. It is also
obvious that the difference between heights of any two students of the school has to be
less than meters. This shows that R ' A x A is the universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely raster
method and set builder method. However, arelation R in the set {, , , } defined by R

{( a,b): b a }isalso expressedas a R bifand onlyif b a by many
authors. e may also use this notation, as and when convenient.

If (a, b) € R, we say that a is related to b and we denote it as a R b.

ne of the most important relation, which plays a significant role in Mathematics,
is an equivalence relation. To study equivalence relation, we first consider three
types of relations, namely reflexive, symmetric and transitive.

Definition 3 A relation R in a set A is called
(1) reflexive, if (a, a) € R, for every a € A,
(i) symmetric,if(a,a) € Rimplies that (a,a )e R, foralla,a € A.
(iii) transitive,if (a ,a ) € Rand (a,a )€ Rimplies that (a ,a ) e R, foralla ,a,
a €A.
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Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T be the set of all triangles in a plane with R a relation in T given by
R {(T ,T):T iscongruentto T }. how that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. urther,
(T, T)eR=T iscongruentto T = T is congruentto T = (T , T ) € R. Hence,
R is symmetric. Moreover, (T ,T),(T,T) €e R=T 1is congruentto T and T is
congruentto T = T iscongruentto T = (T, T ) € R. Therefore, R is an equivalence
relation.

Example 3 Let L be the set of all lines in a plane and R be the relation in L defined as
R {(L ,L):L is perpendicular to L }. how that R is symmetric but neither
reflexive nor transitive.

Solution R is not reflexive, as a line L can not be perpendicular to itself, i.e., (L , L)

¢ R. R is symmetricas (L,L) € R L,
= L is perpendicular to L

= L is perpendicular to L L,

= (L,L)eR L,

R is not transitive. Indeed, if L is perpendicular to L and
L isperpendicularto L ,then L cannever be perpendicular to
L .In fact, L isparalleltoL ,ie,(L,L)e R, (L,L)eRbut(L,L)¢R.

Fig 1.1

Example 4 how that the relation R in the set {, , } given by R {(, ), (, ),
(), (), (,)} is reflexive but neither symmetric nor transitive.

Solution R is reflexive, since (, ), (, ) and (, ) lie in R. Also, R is not symmetric,
as(,) e€Rbut(,) ¢R. imilarly, R isnot transitive, as (, ) eRand(,) €R
but(,) ¢R.

Example 5 how that the relation R in the set Z of integers given by

R {( a b): divides a b}
is an equivalence relation.
Solution R is reflexive, as divides ( a «) forall a € Z. urther, if (a, b) € R, then
divides a b. Therefore, divides b a. Hence, (b, a) € R, which shows that R is
symmetric. imilarly, if ( @, b) € Rand (b, c) € R,thena band b c are divisible by

.ow, a c¢ (a b) (b c)iseven(hy).o, a c) is divisible by . This
shows that R is transitive. Thus, R is an equivalence relation in Z.
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In Example , note that all even integers are related to ero, as (, ), (, )
etc., lie in R and no odd integer is related to , as (, ), (, ) etc., do not lie in R.
imilarly, all odd integers are related to one and no even integer is related to one.
Therefore, the set E of all even integers and the set of all odd integers are subsets of
Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of are related to
each other.
(i) o element of E is related to any element of and vice-versa.
(i) Eand aredisjointand Z E U.
The subset E is called the equivalence class containing zero and is denoted by
.imilarly, is the equivalence class containing and is denoted by . ote that
£, rand r , r e Z.Infact, what we have seen above is true
for an arbitrary equivalence relation R in a set X. iven an arbitrary equivalence
relation R in an arbitrary set X, R divides X into mutually disjoint subsets A, called
partitions or subdivisions of X satisfying:

(i) all elements of A_ are related to each other, for all i.
(i) no element of A is related to any element of Aj ,I#E].
(iii) uAj_XandA iNA, 0,1 #].
The subsets A are called equivalence classes. The interesting part of the situation

is that we can go reverse also. or example, consider a subdivision of the set Z given
by three mutually disjoint subsets A , A and A whose union is Z with

A { xeZ:xisamultiple of } {..., .
A { xeZ:x isamultipleof} {.., .
A { xeZ:x isamultipleof} {.., .

efine a relation R in  Z given by R {( a, b) : divides a b}. ollowing the
arguments similar to those used in Example , we can show that R is an equivalence
relation. Also, A coincides with the set of all integers in Z which are related to ero, A
coincides with the set of all integers which are related to and A  coincides with the
set of all integers in Z which are related to . Thus, A , A and A
In fact, A rA r and A r , for all rel.

Example 6 Let R be the relation defined in the set A {,,,,,, } by

R {( a, b) : both a and b are either odd or even}. how that R is an equivalence
relation. urther, show that all the elements of the subset {, , , } are related to each
other and all the elements of the subset {, , } are related to each other, but no
element of the subset {, , , } is related to any element of the subset {, , }.
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Solution iven any element a in A, both a and @ must be either odd or even, so
that (a, @) € R. urther, ( a, b)) € R = both a and b must be either odd or even
= (b, a) € R. imilarly, ( a, b) € R and (b, ¢) € R = all elements a, b, ¢, must be
either even or odd simultaneously = (a, ¢) € R. Hence, R is an equivalence relation.
urther, all the elements of {, , , } are related to each other, as all the elements

of this subset are odd. imilarly, all the elements of the subset {, , } are related to
each other, as all of them are even. Also, no element of the subset {, ,, } can be
related to any element of {, , }, as elements of {, ,, } are odd, while elements

of {,, } are even.

EXERCISE 1.1

1. etermine whether each of the following relations are reflexive, symmetric and
transitive:

(i) Relation RinthesetA {,,,...,, } defined as
RA{(x»: x y3}
(i) Relation R in the set N of natural numbers defined as
R{(xy:y x and x }
(iii) RelationRinthesetA {,,,,,} as
R {( x,y):yisdivisible by x}
(iv) Relation R in the set Z of all integers defined as
R {( x,y):x yisan integer}
(v) RelationR inthe set A of human beings in a town at a particular time given by
(a) R {( x,y):xandy work at the same place}
(b) R {( x,»):xandy live in the same locality}
(¢) R {( x,y):xis exactly cm taller than y}
(d) R {( x,y):xis wife of y}
() R {( x,y):xis father of y}
2. how that the relation R in the set R of real numbers, defined as
R {( a, b):a<b} isneither reflexive nor symmetric nor transitive.
3. Check whether the relation R defined in the set {, ,,,, } as
R {( a,b):b=a } isreflexive, symmetric or transitive.
4. how that the relation R in Rdefined as R {( a, b) : a < b}, is reflexive and
transitive but not symmetric.

5. Check whether the relation R in Rdefined by R {( a, b) : a < b } is reflexive,
symmetric or transitive.
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how that the relation R in the set {, , } given by R {(, ), (, )} is
symmetric but neither reflexive nor transitive.

how that the relation R in the set A of all the books in a library of a college,
given by R {( x, ¥) : x and y have same number of pages} is an equivalence
relation.
how that the relation R inthe set A {,,,, } given by
R {( a,b): a biseven}, is an equivalence relation. how that all the
elements of {, , } are related to each other and all the elements of {, } are
related to each other. But no element of {, , } is related to any element of {, }.
how that each of the relation R intheset A { xeZ: <x<},given by
@) R {( a,b): a bisamultiple of }

@ R {( a,b):a b}
is an equivalence relation. ind the set of all elements related to in each case.
ive an example of a relation. hich is

(i) ymmetric but neither reflexive nor transitive.

(i) Transitive but neither reflexive nor symmetric.

(ii)) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) ymmetric and transitive but not reflexive.
how that the relation R in the set A of points in a plane given by
R {(,) :distance of the point from the origin is same as the distance of the
point from the origin}, is an equivalence relation. urther, show that the set of

all points related to a point  # (, ) is the circle passing through with origin as

centre.

how that the relation R defined in the set A of all trianglesas R {(T ,T):T

is similarto T }, is equivalence relation. Consider three right angle triangles T

with sides,,, T with sides ,, and T with sides , , . hich

triangles among T , T and T are related

how that the relation R defined in the set A of all polygons as R {( , )
and have same number of sides}, is an equivalence relation. hat is the

set of all elements in A related to the right angle triangle T with sides , and

Let L be the set of all lines in X plane and R be the relation in L defined as

R {(L ,L):L isparalleltoL }.how thatR is an equivalence relation. ind

the set of all lines related to the liney  x .
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15. LetRbetherelationintheset {,,, } givenbyR {(,),(,),(,), (),
(,), (), (,)}. Choose the correct answer.

(A) Risreflexive and symmetric but not transitive.
(B) Risreflexive and transitive but not symmetric.
(C) Ris symmetric and transitive but not reflexive.
() Risanequivalence relation.

16. LetR betherelation in the set NgivenbyR {( a,b):a b , b }.Choose
the correct answer.

A)G) R B () R (©) () R 0() R

1.3 Types of Functions

The notion of a function along with some special functions like identity function, constant
function, polynomial function, rational function, modulus function, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplines as well, we would like to extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f', f, f and f given by the following diagrams.

Inig ., we observe that the images of distinct elements of X under the function
f are distinct, but the image of two distinct elements and of X  under f is same,
namely b. urther, there are some elements like e and fin X which are not images of
any element of X under /', while all elements of X are images of some elements of X
under /. The above observations lead to the following definitions:

Definition 5 A function /: X — is defined to be one-one (or injective), if the images
of distinct elements of X under f are distinct, i.e., for every x , x € X, f(x) f(x)
implies x  x . therwise, f'is called many-one.

The function f and f in ig . (i) and (iv) are one-one and the function  f and f
inig. (ii) and (iii) are many-one.
Definition 6 A function f: X — is said to be onto (or surjective), if every element
of is the image of some element of X under f; i.e., for every y €, there exists an
element x in X such that f(x) .

The function f/ and f inig . (iii), (iv) are onto and the function ~ f inig. (i)is
not onto as elements e, fin X are not the image of any element in X under f'.
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‘fl a
1
[ s
2 Iy
3 d
e
4 f
X i X, X4 . X,
) (ii)
fi
1
2
3
4
X, (i) X, (iv) Xy

Fig 1.2 (i) to (iv)

Remark f:X — is onto if and only if Range of f .
Definition 7 A function f: X — is said to be one-one and onto (or bijective), if f'is
both one-one and onto.

The function /" in ig . (iv) is one-one and onto.

Example 7 Let A be the set of all students of Class X in a school. Let  f: A— Nbe
function defined by f(x) roll number of the student x. how that fis one-one
but not onto.

Solution o two different students of the class can have same roll number. Therefore,
fmust be one-one. e can assume without any loss of generality that roll numbers of
students are from to . This implies that in Nis not roll number of any student of
the class, so that can not be image of any element of X under  £. Hence, fis not onto.

Example 8 how that the function f: N— N, given by f(x)  x, is one-one but not
onto.

Solution The function f'is one-one, for f(x ) f(x )= x X =x  x.urther,
fis not onto, as for € N, there does not exist any x in Nsuch that f(x) x .
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Example 9 rove that the function f: R — R, givenbyf(x) x, is one-one and onto.

Solution fis one-one, as f(x) f(x)= x X =x x.Also, given any real

number y in R, there exists 2 in Rsuch that fi (1) . ( X) y. Hence, f'is onto.

Y
A
y=f(x)=2x
X'€ »>
0 X
v
Y!
Fig 1.3

Example 10 how that the function f:N— N givenbyf() f() and f(x) x ,
for every x , is onto but not one-one.

Solution f'is notone-one, as f() f() .But  fisonto, as givenanyy € N,y #,

we can choose x as y such that f(y ) y y. Also for € N, we
have f() .
Example 11 how that the function f: R — R, X
defined as f(x) x , is neither one-one nor onto. 0 =¥
Solution ince f( ) f0, fisnot one-
one. Also, the element in the co-domain Ris
not image of any element x in the domain R X”f b=t f= 1=X
(hy). Therefore  fis not onto. x=-1 {Ox=1
Example 12 how that f: N — N, given by

x+,if s odd, 4

fx)= . Y
x —,if xis even The image of 1 and —1 under f is 1.

is both one-one and onto. Fig 1.4
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Solution uppose f(x) f(x).otethatif x isoddandx iseven, then we will have

X x ,ie., x x whichisimpossible.imilarly, the possibilityof = x being

even and x being odd can also be ruled out, using the similar argument. Therefore,

both x and x must be either odd or even. uppose both x and x are odd. Then

fx) fx)=x X =x x.imilarly, ifboth x andx are even, then also

fx) fx)y=>x X = x  x.Thus, fis one-one. Also, any odd number
r inthe co-domain  Nisthe image of »+ inthe domain N and any even number
7 in the co-domain N is the image of 7 in the domain N. Thus, fis onto.

Example 13 how that an onto function f: {,, } — {,, } is always one-one.

Solution uppose fis not one-one. Then there exists two elements, say and in the

domain whose image in the co-domain is same. Also, the image of under fcan be
only one element. Therefore, the range set can have at the most two elements of the
co-domain {,, },showingthat  fis not onto, a contradiction. Hence, fmust be one-one.

Example 14 how that a one-one function f: {,, } — {,, } must be onto.

Solution ince fis one-one, three elements of {, , } must be taken to different
elements of the co-domain {,, } under  f. Hence, fhas to be onto.

Remark The results mentioned in Examples and are also true for an arbitrary
finite set X, i.e., a one-one function f: X — X is necessarily onto and an onto map
f: X — Xis necessarily one-one, for every finite set X. In contrast to this, Examples
and show that for an infinite set, this may not be true. In fact, this is a characteristic
difference between a finite and an infinite set.

EXERCISE 1.2

1. how that the function f: R, - R defined by f(x) — is one-one and onto,
X

where R is the set of all non-ero real numbers. Is the result true, if the domain
R, is replaced by N with co-domain being same as R,
2. Checkthe injectivity and surjectivity of the following functions:
(1) f: N> Ngivenby f(x) x
() f:Z —> Zgivenby f(x) x
@) f: R—> Rgivenby f(x) x
(iv) f: N —> Ngiven by f(x) x
(v) f:Z— Zgivenby f(x) x
3. rove that the reatest Integer unction f:R—> R givenby f(x) x,isneither
one-one nor onto, where x denotes the greatest integer less than or equal to x.
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how that the Modulus unction f: R — R, given by f(x)  x, is neither one-
one nor onto, where x is x, if x is positive or and x is x, if x is negative.

how that the ignum unction ~ f: R — R, given by

S x>

f(x)=1,if x=

S x<

1s neither one-one nor onto.

LetA {,,},B {,,,} and let /16D, (), ()} be afunction
from A to B. how that f'is one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. ustify your answer.

(1) f: R— R defined by f(x) X

(i) f: R — R defined by f(x) X

Let A and B be sets. how that f: A x B — B x A such that f(a, b) ( b, a) is
bijective function.

Y if nis odd
Let f: N —> N be defined by f(n) " forall » € N.
— ,if niseven

tate whether the function fis bijective. ustify your answer.
LetA R {}andB R {}. Consider the function f: A — B defined by

X
fx) (rj . Is fone-one and onto ustify your answer. .

Let f: R —> R be defined as f{x) x . Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto ()  fis neither one-one nor onto.
Let f: R —> Rbe defined as f(x)  x. Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto ()  fis neither one-one nor onto.
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1.4 Composition of Functions and Invertible Function

In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of a Board
Examination in . Each student appearing in the Board Examination is assigned a

roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of students in the answer scripts and assigns a fake code number to each
roll number. Let B — N be the set of all roll numbers and C < N be the set of all code
numbers. This gives rise to two functions f: A— B and g: B —» C given by f(a) the
roll number assigned to the student a and g(b) the code number assigned to the roll
number b. In this process each student is assigned a roll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student is eventually attached a code number.

This leads to the following definition:

Definition 8 Let f: A— B and g : B — C be two functions. Then the composition of
fand g, denoted by gof, is defined as the function gof': A — C given by

gof (x) g(f(x), v x € A.

gof

Fig 1.5

Example 15 Letf: {,,, } —{,,, } and g:4,,} —{,,} be
functions defined as /() , O , f0 fO and g0 g0 and
g0 g0 .ind gof.

Solution e have gof()  g(f() g0 . g0  g(fO) g0 ,
gof)  g(f0) g0 and  gof) g0 .

Example 16 ind gofand fog, if f: R —> R and g: R — R are given by f(x) cos x
and g(x)  x.how that gof # fog.

Solution e have gof(x) g(f(x)) g(cosx) (cos x) cos x. imilarly,
fog(x) f(g(x)) f(x) cos( x).otethatcos x=cos x,forx .Hence,

gof # fog.
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X+

Example 17 how that if f:R - {—} —R- {—} is defined by f(x) = and

X —

X+

g:R- {—} —>R- {—} is defined by g(x)= thenfog I ,andgof 1 ,, where,

b
X —

A R {—},B R {—} I,x) x,vxeAl (x) x VxeBarecalledidentity

functions on sets A and B, respectively.

Solution e have

)
B x+ ) Ox— x+ + x- __ X
gOf(x)—g( - j— (()H J— r — a1 *
Ox-
Ox+ N
_ \Ox- x+ + x- :_x:x

Lo _ X+
imilarly, ng(x)—f( o j— (()x+ J— Y+  — x4

0x-

Thus, gof(x) x, vx € Band fog(x) x, vx € A, which implies that gof I |
and fog 1 .

Example 18 how that if f: A — B and g: B — C are one-one, then gof: A — C is
also one-one.

Solution uppose gof(x) gof(x)

= gfix))  g(f(x))
= f(x) f(x),as gis one-one
= X  Xx,asfis one-one

Hence, gof is one-one.

Example 19 how that if f: A — B and g: B — C are onto, then gof: A — C is
also onto.

Solution iven an arbitrary element z € C, there exists a pre-image y of z under g
such that g(y) z, since g is onto. urther, for y € B, there exists an element x in A
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with f(x) y, since f'is onto. Therefore, gof(x) g(f(x)) g(y) z, showing that gof
is onto.

Example 20 Consider functions f'and g such that composite gof’is defined and is one-
one. Are fand g both necessarily one-one.

Solution Consider f: {, ,, } —->{,,,,, } defined as f(x) x, vxand

g lsssst —>{,,,,}as g(x) xforx ,,, and g0 g0.
Then, gof(x) x Vv x, which shows that gof’is one-one. But g is clearly not one-one.

Example 21 Are fand g both necessarily onto, if gof'is onto

Solution Considerf: {,,, } —>{,,,}and g:4,,} — {,, } defined
af0, 0, O fO0, g0, g0 ad g0 g( .Itcanbe

seen that gofis onto but fis not onto.

Remark It can be verified in general that gof is one-one implies that f is one-one.
imilarly, gofis onto implies that g is onto.

ow, we would like to have close look at the functions fand g described in the
beginning of this section in reference to a Board Examination. Each student appearing
in Class X Examination of the Board is assigned a roll number under the function f'and
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submits to the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. urther, the process reverse to fassigns a roll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. e observe that while composing fand g, to get gof, first
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f: {, , } — {a, b, ¢} be one-one and onto function given by
fO a,f() bandf() c.how thatthereexists a function g: {a,b,c} = {,,}
such that gof 1 | and fog 1 ,where, X {,,}and { a, b, c}.

Solution Consider g: {a, b,c} > {,,}as g(a) , g() and g(c) .Itis
easy to verify that the composite gof I | is the identity function on X and the composite
fog 1 is the identity function on.

Remark The interesting fact is that the result mentioned in the above example is true
for an arbitrary one-one and onto function f: X — . ot only this, even the converse
is also true , i.e., if /1 X — is a function such that there exists a function g: —X
such that gof I | and fog 1 , then fmust be one-one and onto.

The above discussion, Example and Remark lead to the following definition:
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Definition 9 A function f: X — is defined to be invertible, if there exists a function
g: —>Xsuchthat gof I | andfog I .The function g is called the inverse of f and
is denoted by f* .

Thus, if f'is invertible, then f must be one-one and onto and conversely, if f is
one-one and onto, then f must be invertible. This fact significantly helps for proving a
function f'to be invertible by showing that fis one-one and onto, specially when the
actual inverse of f'is not to be determined.

Example 23 Let f: N — be a function defined as f(x) x , where,
{ yeN:y x forsome x e N} howthat fisinvertible. ind the inverse.

Solution Consider an arbitrary element y of . By the definition of, y x ,

for some x in the domain N. This shows that x =M. efine g: — N by
e=2 0w g gy e(x) VT —rang
fog(») flg() f((y ) )=( > Loy y. This shows that gof I

and fog 1 , which implies that fis invertible and g is the inverse of /.

Example24 Let { n :ne N} cN.Considerf: N — as f(n) n.how that
fis invertible. ind the inverse of f.

Solution An arbitrary element y in is of the form 7, for some n € N. This

implies that n \/; . This gives a function g: — N, defined by g(») \/; . OW, ,

gof(n) g(n) \/n_ n and fog(y) f(\/;) =(\/;) =y, which shows that
gof 1 and fog 1 .Hence, fis invertible with f*  g.

Example 25 Let f: N — R be a function defined as f(x) x x . how that
f: N>, where, isthe range of f, is invertible. ind the inverse of f.

Solution Let y be an arbitrary element of range /- Theny  x x , for some

(o=)- )

x in N, which implies that y = ( x ) . This gives x=+"""_/ asy>.
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Letusdefineg: —> Nbyg(y) M
ow gof(x) g(fx)) g(x  x) gix) )
(Vo + =)= ) _(av -
= =X

{((F)— )J { (Wr=)-), J \

and fog &) f =
(F- e )
Hence, gof' 1 [ andfogl . Thisimplies that fis invertible with f  g.

Example 26 Consider f: N —> N, g: N —> Nand #: N > R defined as f(x) x,
g(») y and h(z) sin z vx,yandzin.how that ho(gof) ( hog) of.

Solution e have
ho(gof) (x)  h(gof (x))  h(g(f(x))) h(g( x))
h(( x)) h( x ) sin ( x) VxeN
Also,  ((hog)of) (x) ( hog) (f(x)) ( hog) (x) h(g( x))
h(( x)) h( x ) sin( x), vxeN.
This shows that #o(gof) ( hog)of.
This result is true in general situation as well.
Theorem 1 If f: X —, g: — and h: — are functions, then

ho(gof) (- hog)of.

¢ have
ho(gof) (x)  h(gof(x)) h(g(f(x)), vxinX
and (hog) of (x)  hog(f(x)) Mg(f(x))), vxinX.
Hence, ho(gof) ( hog)of.

Example 27 Consider f: {,, } — {a,b,c} and g : {a, b, c} - {apple, ball, cat}

defined as f() a, 10 b, 10 ¢, g(a) apple, g(b) ball and g(c) cat.
how that f, g and gof are invertible. ind out f , g and (gof) and show that

(g9/) f og .
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Solution ote that by definition, f and g are bijective functions. Let
f {a, b,ct > (,} and g : {apple, ball, cat} — {a, b, ¢} be defined as
fotay . f by, f {cy, g {apple} a, g {ball} band g {cat] c.
It is easy to verify that/ of =1, , ,fof =1, .g og=1 , and gog =1,
where, {apple, ball, cat}. ow, gof: {,,} — {apple, ball, cat} is given by
gof() apple, gof() ball, gof() cat. e can define
(gof) :{apple,ball,cat} —> {,,} by( gof) (apple) , (gof) (ball) and
(gof) (cat) .Itis casy toseethat( gof) o(gof) I, and
(gof) o (gof) 1 . Thus, we have seen that f, g and gof are invertible.
ow, [ og (apple) f (g (apple)) f (&) (  gof) (apple)
f og (ball) f (g (ball)) f (b) ( gof) (ball)and
Jfoog (cat) f (g (cat)) f (¢) ( gof) (cap).
Hence (gof) f og .
The above result is true in general situation also.

Theorem 2 Letf: X — and g: — be two invertible functions. Then gof is also
invertible with (gof) f og .
To show that gofis invertible with (gof)  f og , it is enough to show that
(f og )o(gof) T y and (gof)o(f og ) I
ow, ( f og )o(gof) (( f og )og)of, by Theorem
( f o(g og)) of, by Theorem
( f ol) of, by definition of g
I ..

imilarly, it can be shown that ( gof )o(f og ) I

Example 28 Let {,, }. etermine whether the functions f: — defined as
below have inverses. ind f , if it exists.

@ f16). ()6}
(b) £ HG).6) 6}

() f1G). ()0}

Solution

(a) Itis easy to see that f is one-one and onto, so that f is invertible with the inverse
fooffgivenby /' {(), (), ()} /-

(b) ince f() f( , fisnotone-one, so thatf is notinvertible.

(c) Itis easy to see that / is one-one and onto, so that f is invertible with

SoAG)L G G-
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|EXERCISE 1.3 |

. Letf:4{,,} —>{,,tand g:{,,} — {, } be given by

S 4G G), ()} and g (), (), ()} rite down gof.
. Let f, g and 4 be functions from R to R. how that

(f goh foh goh

(f. g)oh ( foh) . (goh)

. ind gofand fog, if

@) f(x) xand gx)  x

() f(x) x andg(x) x .

X+
. I f(x) gx——’ X #— show that fof(x) x, for all x=—. hat is the

inverse of f
. tate with reason whether following functions have inverse
@ 4,0 — {} with
S HAG)H GGG}
i g:4{,,} —{,,, } with
g 16 GGG}
@) h:{,,,} —{,,,} with
hAG) GG G)Y
. howthat f: — R, given by f(x) ﬁ is one-one. ind the inverse
of the function f: — Range f.

Y
0-y
Consider f: R—> R given by f(x) x .how that  fis invertible. ind the
inverse of f.

Considerf:R, >, o)givenbyf(x) x .howthat  fisinvertible with the
inversef of fgivenbyf () /y— ,whereR isthe setofall non-negative

real numbers.

X
(Hint: or y € Rangef,y f(x) Ty forsomexin ,,ie., x
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Considerf: R, - , o)givenbyf(x) x x .howthat fisinvertible
+ —
it/ 0) ((_W) J

Let f: X — be an invertible function. how that  f'has unique inverse.
(Hint: suppose g and g are two inverses of /. Then for all y €,

fog (v) (y) fog (»). se one-one ness of f).

Considerf: {,, } —>{a,b,c} givenby f() a,f() bandf() c.ind
f and show that (f ) f.

Let f: X — be an invertible function. how that the inverse of [ isfi.e.,

) r
If/:R—>Rbegivenby f(x) ()—x ,thenfof(x)is

(A) (B) x © x 0C x)

X

Letf: R {——} — R be a function defined as f(x) —j: The inverse of
X

fis the map g : Range f > R {——} given by

__r __y
A) &) 5 B) &) 5

Y Y
©) g — O g0 —,

1.5 Binary Operations

Right from the school days, you must have come across four fundamental operations
namely addition, subtraction, multiplication and division. The main feature of these
operations is that given any two numbers a and b, we associate another number a b

or a

a
b or ab or Z , b # . It is to be noted that only two numbers can be added or

multiplied at a time. hen we need to add three numbers, we first add two numbers
and the result is then added to the third number. Thus, addition, multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we want to
have a general definition which can cover all these four operations, then the set of
numbers is to be replaced by an arbitrary set X and then general binary operation is
nothing but association of any pair of elements a, b from X to another element of X.
This gives rise to a general definition as follows:

Definition 10 A binary operation * on a set A is a function * : A x A — A. e denote
* (a, b) by a * b.

Example 29 how that addition, subtraction and multiplication are binary operations
on R, but division is not a binary operation on R. urther, show that division is a binary
operation on the set R, of nonero real numbers.

Solution : R xR — Ris given by
(a,b) >a b

: R xR — Ris given by
(a,b) >a b

x: Rx R — Ris given by
(a, b) > ab

3 % €

ince ,” and “x’ are functions, they are binary operations on R.

But +: RX R — R, given by (a, b) > %, is not a function and hence not a binary

a
operation, as for b , Z 1s not defined.

However, +: R, x R, = R, given by (a, b) —> % is a function and hence a
binary operation on R .
Example 30 how that subtraction and division are not binary operations on N.
Solution :NxN— N, givenby (a, b)—> a b, is not binary operation, as the image

of , )under  is ¢ N.imilarly, +:NxN—>N, givenby (a,b) > a+b

is not a binary operation, as the image of (, ) under +is =+ —¢N.

Example 31 how that *: R x R — R given by (a, b) - a b is a binary
operation.

Solution ince * carries each pair (a, b) to aunique elementa b in R, * is a binary
operation on R.
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Example 32 Let be the set of all subsets of a given set X. how that U: x —
given by (A, B) > AuBand n: x — given by (A, B) — A n B are binary
operations on the set .

Solution ince union operation U carries each pair (A, B) in x to a unique element

AUB in, U isbinary operation on . imilarly, the intersection operation M carries
each pair (A, B) in X to aunique elementA N Bin, M isabinary operationon.

Example 33 how thatthe Vv : R x R — R given by (@, b)) - max {a, b} and the
A R xR — Rgiven by (a, b) - min {a, b} are binary operations.

Solution ince Vv carries each pair (a4, b) in R X R to a unique element namely
maximum of ¢ and b lying in R, v is a binary operation. sing the similar argument,
one can say that A is also a binary operation.

Remark v (,) , v ), A(,) and AG )

hen number of elements in a set A is small, we can express a binary operation  * on
the set A through a table called the operation table for the operation *. or example

considerA {,, }. Then, the operation v on Adefined in Example can be expressed
by the following operation table (Table .) . Here, Vv (,), v, v ().
Table 1.1
A% 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

Here, we are having rows and columns in the operation table with (i, j) the
entry of the table being maximum of /™ and ;™ elements of the set A. This can be
generalised for general operation * : AXA —>A.IfA { a,a, .. a}. Then the
operation table will be having n rows and n columns with (7, /) entry being a, * a.
Conversely, given any operation table having » rows and » columns with each entry
being an element of A { a,a, ..., a }, we can define a binary operation * : A X A — A
given by a, * a, the entry in the " row and j* column of the operation table.

ne may note that and can be added in any order and the result is same, i.e.,

, but subtraction of and in different order give different results, i.e.,

# . imilarly, in case of multiplication of and , order is immaterial, but
division of and in different order give different results. Thus, addition and
multiplication of and are meaningful, but subtraction and division of and are
meaningless. or subtraction and division we have to write ‘subtract from ’, ‘subtract
from ’,‘divide by ’or ‘divide by °’
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This leads to the following definition:
Definition 11 A binary operation * on the set X is called commutative,ifa*b b *a,
for every a, b € X.

Example 34 how that : R xR — Rand x: R x R — R are commutative binary
operations, but : RxR — Rand +: R, xR, — R are not commutative.

Solutionince a b b aandaxb bxa, va, b e R, and ‘X’ are
commutative binary operation. However, ¢’ is not commutative, since #
imilarly, <+ # <+ showsthat °+’isnotcommutative.

Example 35 how that *: R xR — Rdefinedbya*b a bisnotcommutative.

Solutionince  *  and *  showing that the operation *
is not commutative.

If we want to associate three elements of a set X through a binary operation on X,
we encounter a natural problem. The expression a * b * ¢ may be interpreted as
(a *b) * cor a* (b *c)and these two expressions need not be same. or example,
() * (). Therefore, association of three numbers , and through
the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case
of addition,  has the same value whether we look atitas ( ) oras

( ). Thus, association of or even more than numbers through addition is
meaningful without using bracket. This leads to the following:

Definition 12 A binary operation * : A x A — A is said to be associative if
(axb)y*c a=x=(b=*c), va, b, c, € A.

Example 36 how that addition and multiplication are associative binary operation on
R. But subtraction is not associative on R. ivision is not associative on R..

Solution Addition and multiplication are associative, since(¢ b) ¢ a ( b c¢)and
(axbyxc ax(bxc)v a,b,ceR. However, subtraction and division are not
associative, as () # ( Jand( =+) + # =( +).

Example 37 how that *: Rx R —> Rgivenbya*b —>a b is not associative.

Solution The operation * is not associative, since
(*) * () * (),
while * (%) *() *

Remark Associative property of a binary operation is very important in the sense that
with this property of a binary operation, we can write @ * a * ... * a_which is not
ambiguous. But in absence of this property, the expressiona *a * ... * a isambiguous
unless brackets are used. Recall that in the earlier classes brackets were used whenever
subtraction or division operations or more than one operation occurred.
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or the binary operation © ’on R, the interesting feature of the number ero is that
a a a, 1.e., any number remains unaltered by adding ero. But in case of
multiplication, the number plays thisrole,as ax a x a, ¥ ainR. This leads
to the following definition:

Definition 13 iven a binary operation *:A XA — A, anelement e € A, if it exists,
is called identity for the operation *,ifa*e a e=*a, V a € A.

Example 38 how that ero is the identity for addition on R and is the identity for
multiplication on R. But there is no identity element for the operations

:RxR—>Rand+:R xR, > R.

Solution a a aandaX a * a, va < Rimplies that and are
identity elements for the operations © ’and ‘x’respectively. urther, there is no element
einRwitha e e a, \va. imilarly, we cannot find any element e in R_such that
a+e e+a, yainR_Hence, " and ‘+’ do not have identity element.

Remark ero is identity for the addition operation on R but it is not identity for the
addition operation on N, as ¢ N. In fact the addition operation on N does not have
any identity.

ne further notices that for the addition operation : R x R — R, given any
a € R, there exists a in Rsuchthata ( a) (identity for *°) ( a) a.

imilarly, for the multiplication operationon R, givenanya# in R, we can choose —
a

in R such thata x B (identity for  “x”) B x g. This leads to the following definition:

Definition 14 iven a binary operation * : A x A — A with the identity element e in A,
an element a € A is said to be invertible with respect to the operation *, if there exists
an element » in Asuch thata *b» e b * aand b is called the inverse of a and is
denoted by a .

Example 39 how that  a is the inverse of a for the addition operation ¢ ’ on R and
— is the inverse of @ # for the multiplication operation ‘%’ on R.

a

SolutionAsa ( a) a a and( a) a, a is the inverse of a for addition.

imilarly, for a#, ax— — x gimplies that — is the inverse of a for multiplication.
a a a
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Example 40 how that  a is not the inverse of @ € N for the addition operation on
N and —is not the inverse of @ € N for multiplication operation x on N, for a #.
a

Solution ince @ ¢ N, a can not be inverse of a for addition operation on N,
although asatisfiesa ( a) ( a) a.

imilarly, for a# in N, ; ¢ N, which implies that other than no element of N

has inverse for multiplication operation on N.

Examples, , and show that addition on R is a commutative and associative
binary operation with as the identity element and  a as the inverse of ain R V a.

EXERCISE 14
1. etermine whether or not each of the definition of * given below gives a binary
operation. In the event that * is not a binary operation, give justification for this.
() n Z ,define*bya*xb a b
(@) n Z, definexbya*b ab
(i) n R, define *bya*xb ab
(ivy n Z,definexbya*db a b
(v) n Z ,define *bya*b a

2. oreach operation * defined below, determine whether * is binary, commutative
or associative.

i) n Z,definea*b a b
(@) n Q,definea=*b ab

b
(i) n Q,definea*bh —
(ivy n Z ,defineaxb
(v) n Z ,defineaxb a°
iy n R { },define a*b b%

3. Consider the binary operation A on the set {, ,, , } defined by
a A b min { a, b}.rite the operation table of the operation A .
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4. Consider a binary operation * on the set {, , ,, } given by the following
multiplication table (Table .).
(1) Compute ( *) =* and *( =*)
(i) Is * commutative
(iii) Compute ( *) *( *).
(Hint: use the following table)

Table 1.2
* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. Let *' be the binary operation on the set {, , , , } defined by
a*"b H.C..of aandb.Is the operation *' same as the operation * defined
in Exercise above ustify your answer.

6. Let * be the binary operation on N givenby a * b L.C.M. of a and b. ind
@ =, * (i) Is * commutative
(ii)) Is * associative(iv) ind the identity of *in N
(v) hich elements of N are invertible for the operation *

7. Is * defined on the set {, ,,, } by a*b L.CM. of a and b a binary
operation ustify your answer.

8. Let * be the binary operation on N defined by a * b H.C.. of a and b.
Is * commutative Is * associative oes there exist identity for this binary
operation on N

9. Let * be a binary operation on the set Q of rational numbers as follows:

Q) a*b a b @) a*b a b
i) a*b a ab (v) a*b (a b)
V) a*b ab i) a*b ab

ind which of the binary operations are commutative and which are associative.
10. ind which of the operations given above has identity.
11. LetA N x N and * be the binary operation on A defined by

(a,b) *(¢,d) (a c,b d)
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how that * is commutative and associative. ind the identity element for * on
A, if any.

12. tate whether the following statements are true or false. ustify.
(i) or an arbitrary binary operation *onasetN,a*a a Va € N.
(i) If *is a commutative binary operation on N, thena * (b *¢) ( ¢ *b) *a
13. Consider a binary operation * on N defined asa *b a b . Choose the
correct answer.
(A) Is * both associative and commutative
(B) Is * commutative but not associative
(C) Is * associative but not commutative

() Is =*neither commutative nor associative

Miscellaneous Examples

Example 41 If R and R are equivalence relations in a set A, show that R N R is
also an equivalence relation.

Solution ince R and R are equivalence relations, (¢, a) € R ,and (¢,a) e R Va € A.
This implies that (¢, a) € R " R, Va, showing R n R is reflexive. urther, ,
(@) e R "R = (a,b) eR and (¢, b)) e R = (b,a) e R and (b,a) e R =
(b, ) €e R "R, hence, R n R is symmetric. imilarly, ( a, b)) € R " R and
(b,c)eR "R = (a,¢c) eR and (a,c) €e R = (a,¢) € R " R. This shows that
R MR is transitive. Thus, R N R is an equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers
defined by (x, y) R (1, v) if and only ifxv  yu. how that R is an equivalence relation.

Solution Clearly, (x, ¥) R (x, ¥), v (x, ¥) € A, since xy  yx. This shows that R is
reflexive. urther, ( x,y) R (4, v) = xv yu=uy vxand hence (&, v) R (x, y). This
shows that R is symmetric. imilarly, ( x,y) R (&, v) and (4, v) R (a, b) = xv yu and

b a
ub va= < =yu£:> Xv—=yu— = xb yaand hence (x, y) R (a, b). Thus, R
u u v u

is transitive. Thus, R is an equivalence relation.

Example 43 Let X {,,,,,,,,}. LetR be a relation in X given
by R {( x,y):x yisdivisible by } and R be another relation on X given by

R ACxy) iyl yor{ xyjci,,yor{ xy;c{,}} howthat
R R
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Solution ote that the characteristic of sets {, , }, {,, } and {, , } is

that difference between any two elements of these sets is a multiple of . Therefore,

(x,y) e R =>x yisamultipleof = {x,y}c{,,}or{ x,y}c{,}

or {x,y}tc{,,} = (x,y) € R.Hence, R — R .imilarly, { x,y} € R = {x, y}

c{,,tor{ x,ytc{,tor { x,ytci{,} = x y is divisible by
= {x, y} € R. This shows that R < R . Hence, R R

Example 44 Let f: X — be a function. efine a relation R in X given by
R {( a,b): fla) f(b)}. Examine whether R is an equivalence relation or not.

Solution or every a € X, (a, @) € R, since f(a) f(a), showing that R is reflexive.
imilarly, ( a, b)) € R = f(a) f(b) = f(b) f(a) = (b, a) € R. Therefore, R is
symmetric. urther, ( @, b)) € Rand (b, ¢) e R = f(a) f(b)and f(b) f(c) = f(a)

f(c) = (a, ¢) € R, which implies that R is transitive. Hence, R is an equivalence
relation.

Example 45 etermine which of the following binary operations on the set R are
associative and which are commutative.

(a+b)
(@) axb YV a,beR b)) a*xb —— VabekR
Solution
(a) Clearly, by definition a * b b * a va, b € R. Also
(axb)y*c=( *c)and axb=*c) ax*x() , v a, b, c € R. Hence
R is both associative and commutative.
a+b b+a ) )
(b) axb = b * a, shows that * is commutative. urther, ,

(a*b)*c (a+bj* c.

a+b N
C_a+b+ c

b+c
But a* (b *c) a*( j

b+c

a+b+c a+b+ c .
= # in general.

Hence, * is not associative.
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Example 46 ind the number of all one-one functions from set A {,, } to itself.

Solution ne-one function from {, , } to itself is simply a permutation on three
symbols , , . Therefore, total number of one-one maps from {, , } to itself is
same as total number of permutations on three symbols , , whichis .

Example 47 Let A {,, }. Then show that the number of relations containing (, )
and (, ) which are reflexive and transitive but not symmetric is three.

Solution The smallest relation R containing (, ) and (, ) which is reflexive and
transitive but not symmetricis {(,), (,),(,), (), (,), (,)}. ow,if we add

the pair (, ) to R to get R , then the relation R will be reflexive, transitive but not
symmetric. imilarly, we can obtainR by adding(,)toR  to get the desired relation.
However, we can not add two pairs (, ), (, ) or single pair (, ) to R at a time, as
by doing so, we will be forced to add the remaining pair in order to maintain transitivity
and in the process, the relation will become symmetric also which is not required. Thus,
the total number of desired relations is three.

Example 48 how that the number of equivalence relation in the set {, , } containing
(,)and (, ) is two.

Solution The smallest equivalence relation R containing (, ) and (, ) is {(, ),

) G)G) ()} ow we are left with only pairs namely (, ), (, ),

(,) and (, ). If we add any one, say (, ) to R , then for symmetry we must add
(,) also and now for transitivity we are forced to add (, ) and (, ). Thus, the only
equivalence relation bigger than R is the universal relation. This shows that the total
number of equivalence relations containing (, ) and (, ) is two.

Example 49 how that the number of binary operations on {, } having as identity
and having as the inverse of is exactly one.

Solution A binary operation * on {, } isa function from {, } x {, } to {, }, i.e.,

a function from {(, ), (;), , ), (, )} — {, }. ince is the identity for the
desired binary operation *, * (1, 1) =1,*(,) , * (,) and the only choice
left is for the pair (, ). ince is the inverse of , i.e., * (, ) must be equal to . Thus,

the number of desired binary operation is only one.
Example 50 Consider the identity function I, : N — N definedas I (x) x Vx e N.
how that although I _is onto butl, I _: N — N defined as

LT VXTI x) I  (x) x x xisnotonto.

Solution Clearly I is onto. But I, I  is not onto, as we can find an element
in the co-domain N such that there does not exist any x in the domain N with

(I, T ) ) X .
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Example 51 Consider a function f : [, E}—)R given by f(x) sin x and

g: [’ E}—>R given by g(x) cos x.how that fand g are one-one, but f g is not
one-one.

Solution ince for any two distinct elements x and x in {, —} ,sinx #sinx and

cos x #cos x , both fand g must be one-one. But (f g) () sin cos and

LT L1
f 2 (EJ sm—+cos—= | Therefore, f g is not one-one.

Miscellaneous Exercise on Chapter 1

1. Letf: R — Rbe defined as f(x) x .ind the function  g: R — Rsuch
thatgof fog .

2. Letf: — bedefinedas f(n) n ,if nisoddand f(n) n ,if nis
even. how that f'is invertible. ind the inverse of f. Here, is the set of all
whole numbers.

3. Iff:R—> Risdefinedby fix) x x,find f(f(x)).

4. how that the function f:R— {x e R: x )} definedby f(x)= +xx ,

x € Ris one one and onto function.
how that the function f: R— R given by f(x) x is injective.
ive examples of two functions f: N — Z and g : Z — Z such that g o f'is
injective but g is not injective.
(Hint : Consider f(x) xand g(x) x).

7. ive examples of two functions f: N — Nand g: N — N such that g o fis onto
but f'is not onto.

x—if x>

(Hint : Consider f(x) x and  g(x) ={ i xe

8. 1iven a non empty set X, consider (X) which is the set of all subsets of X.
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12.

13.

14.

15.

16.
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efine the relation R in (X) as follows:

or subsets A, B in (X), ARB ifand only if A < B. Is R an equivalence relation
on (X) ustify your answer.

iven a non-empty set X, consider the binary operation *:(X)x(X) —(X)
givenby A* B A N B VA, Bin (X), where (X) is the power set of X.
how that X is the identity element for this operation and X is the only invertible
element in (X) with respect to the operation *.

ind the number of all onto functions from the set {, ,, ..., n} to itself.

Let { ab,c}andT {,,}.ind of the following functions from
to T, if it exists.

@ {C a),(bh)(c)y @ {( a)(b)(c)
Consider the binary operations * : Rx R —> Rand o : R X R — R defined as
a*b a band aob a, Va,b € R how that * is commutative but not
associative, o is associative but not commutative. urther, show that Vv a, b,c € R,
a*x(boc) ( a*xb)o(ax*c) Ifitisso, we say that the operation * distributes
over the operation o. oes o distribute over  * ustify your answer.
iven a non-empty set X, let * : (X) x (X) — (X) be defined as
AB (A B)u (B A), vA, B € (X). how that the empty set ¢ is the
identity for the operation * and all the elements A of (X) are invertible with
A A (Hint: (A ¢)u(@d A Aand(A A)U(A A) A *A ).
efine a binary operation *ontheset{,,,,,} as

a+b, ifa+b<
a*b= )
at+b—if a+b>

how that ero is the identity for this operation and each element @ # 0 of the set
is invertible with ~ a being the inverse of a.

LetA { ,,,},B{ , ,,yand  f,g:A— Bbe functions defined

by f(x) x x,x e Aand g(x)=,x——‘— x € A. Are fand g equal

ustify your answer. (Hint: ne may note that two functions f: A — B and
g:A—> Bsuchthat f(a) g(a) va € A, are called equal functions).

LetA {,, }. Then number of relations containing (, ) and (, ) which are
reflexive and symmetric but not transitive is

(A) B) (©) 0

Let A {,,}. Then number of equivalence relations containing (, ) is

(A) B) (©) 0
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18. Letf: R — Rbe the ignum unction defined as

, x>
f)=q, x=
- x<
and g : R — R be the reatest Integer unction givenby  g(x) x, where xis
greatest integer less than or equal to x. Then, does fog and gof coincide in (,
19. umber of binary operations on the set { a, b} are

(A) B) (€) ()

Summary

In this chapter, we studied different types of relations and equivalence relation,
composition of functions, invertible functions and binary operations. The main features
of this chapter are as follows:

Empty relation is the relation R in X givenby R ¢ < X x X.

Universal relation is the relation R in X given by R X x X.

Reflexive relation R in X is a relation with (a, a) € R va € X.
Symmetric relation R in X is a relation satisfying (a, b) € R implies (b, a) € R.

L 2 R 3K K 2

Transitive relation R in X is a relation satisfying (a, b)) € R and (b, ¢) € R
implies that (a, ¢) € R.

*

Equivalence relation R in X is a relation which is reflexive, symmetric and
transitive.

@ FEquivalence class acontaining a € X for an equivalence relation R in X is
the subset of X containing all elements b related to a.

@ A function f: X — is one-one (or injective) if
fx) fx)=x x Vx,x €X
@ Afunction f: X — is onto (or surjective) if givenany y €, I x € X such

that f(x) .
€ A functionf: X — is one-one and onto (or bijective), if fis both one-one
and onto.

@ The composition of functions f: A — B and g : B — C is the function
gof : A — C given by gof(x) g(f(x))V x € A.

¢ Afunction f: X — is invertible if 3 g: — X such that gof 1 | and
fog 1

@ A function f: X — is invertible if and only if fis one-one and onto.
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€ ivenafinite set X, a function f: X — Xisone-one (respectively onto) if and
only if fis onto (respectively one-one). This is the characteristic property of a
finite set. This is not true for infinite set

@ A binary operation * on a set A is a function * from A X A to A.
¢ Anclement e € Xis the identity element for binary operation * : X x X — X,
ifaxe a e*a VaelX

@ An element a € X is invertible for binary operation * : X x X — X, if
there exists b € Xsuchthata *b e b * a where, e is the identity for the
binary operation *. The element b is called inverse of a and is denoted by a .

@ An operation * on X is commutative ifa *b b *a \ya, bin X.

@ An operation * on X is associative if (a * b)) * ¢ a*(b*c)va,b,cin X

Historical Note

The concept of function has evolved over a long period of time starting from

R. escartes (-), who used the word ‘function’ in his manuscript

Geometrie in to mean some positive integral power x" of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. ames
regory (-) in his work Vera Circuli et Hyperbolae Quadratura
() considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later . .
Leibnit (-) in his manuscript Methodus tangentium inversa, seu de
functionibus written in used the word ‘function’ to mean a quantity varying
from point to point on a curve such as the coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript Historia (), Leibnit used the word ‘function’ to mean
quantities that depend on a variable. He was the first to use the phrase ‘function
of x’. ohn Bernoulli (-) used the notation ¢x for the first time in to
indicate a function of x. But the general adoption of symbols like £, , ¢, v ... to
represent functions was made by Leonhard Euler (-) in in the first
part of his manuscript Amnalysis Infinitorium . Later on, oeph Louis Lagrange
(-) published his manuscripts Theorie des functions analytiques in
, where he discussed about analytic function and used the notion f),( x),
¢ (x) etc. for different function of x. ubsequently, Lejeunne irichlet
(-) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
developed by eorg Cantor (-). The set theoretic definition of function
known to us presently is simply an abstraction of the definition given by irichlet
in a rigorous manner.

—_— e ——






Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

s> Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN +»

2.1 Introduction

In Chapter 1, we have studied that the inverse of a function
£, denoted by f~!, exists if fis one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hence their
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inverses and
observe their behaviour through graphical representations.
Besides, some elementary properties will also be discussed.  FmPmim vm Ve Fa el

The inverse trigonometric functions play an important Arya Bhatta
role in calculus for they serve to define many integrals. (476-550 A.D.)
The concepts of inverse trigonometric functions is also used in science and engineering.

2.2 Basic Concepts
In Class X1, we have studied trigonometric functions, which are defined as follows:
sine function, i.e., sine: R— [ 1, 1]
cosine function, i.e.,cos: R—>[-1, 1]
b
tangent function, i.e., tan: R—{x:x=(2n + 1) PR 7} >R

cotangent function, i.e.,cot: R—{x:x=nnm,n e Z} > R

T
secant function, i.e., sec: R—{x:x=(2n +1) Sone Z, >R-(-1,1)

cosecant function, i.e.,cosec: R— {x:x=nn, n € Z} > R-(-1,1)
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e have also learnt in Chapter 1 thatif f: X— such that f(x) =y is one-one and
onto, then we can define a uniue function g: —X such that g(y)=x, wherex € X
and y = f(x), y € . ere, the domain of g =range of f'and the range of g= domain
of f. The function g is called the inverse of fand is denoted by f~'. urther, g is also
one-one and onto and inverse of g is f. Thus, g7'= (') =f. e also have

Frof =" ="(=x
and (FofHM=r"0) =fx) =y

ince the domain of sine function is the set of all real numbers and range is the

closed interval [-1, 1]. If we restrict its domain to {_TR, g} , then it becomes one-one

and onto with range [— 1, 1]. ctually, sine function restricted to any of the intervals

{_—n i},[_—n E}, {g, 771} etc., is one-one and its range is [-1, 1]. € can,
therefore, define the inverse of sine function in each of these intervals. ¢ denote the
inverse of sine function by sin™' (arc sine function). Thus, sin™' is a function whose
. . - T -W
domain is [- 1, 1] and range could be any of the intervals {T, 7} , {—, —} or

{3’771} , and so on. Corresponding to each such interval, we get a branch of the

2

T T
function sin!. The branch with range {7’5 is called the principal value branch,

whereas other intervals as range give different branches of sin”'. hen we refer
to the function sin™', we take it as the function whose domain is [-1, 1] and range is

-T T -T T
{7’5} ewrite sin ':[-1,1] > {7’5}
rom the definition of the inverse functions, it follows that sin (sin ' x) = x

T n
if —1<x<1andsin’ (sinx)=uxif —ESX < bX In other words, if y = sin™! x, then
sin y = x.
Remarks
(i) eknow from Chapter 1, thatif y=f(x)is an invertible function, then x =/ ().
Thus, the graph of sin™' function can be obtained from the graph of original

function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of
sine function, then (b, a) becomes the corresponding point on the graph of inverse
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of sine function. Thus, the graph of the function y = sin™! x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y=sin" x are as given in ig 2.1 (i), (ii), (iii). The dark portion of the graph of
y =sin™ x represent the principal value branch.

(i) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function as a mirror image (i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y=sin' x as given in the same axes (ig 2.1 (iii)).

Y
Sn T [ In
) ] f/\ N il -
NPT 10%" 2 sn
— 2
Y’
y=sinx
Fig 2.1 (i)

Y/
y=sin'x y=sinxandy=sin" x
Fig 2.1 (ii) Fig 2.1 (iii)

ike sine function, the cosine function is a function whose domain is the set of all

real numbers and range is the set [—1, 1]. If we restrict the domain of cosine function
to[, ], thenitbecomes one-one and onto with range [—1, 1]. ctually, cosine function
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restricted to any of the intervals [-mt, ], [, =], [&, 27] etc., is biective with range as
[-1, 1]. e can, therefore, define the inverse of cosine function in each of these
intervals. e denote the inverse of the cosine function by cos ' (arc cosine function).
Thus, cos™ is a function whose domain is [-1, 1] and range Y

could be any of the intervals [-w, ], [, =], [&®, 27@] etc. \A
Corresponding to each such interval, we get a branch of the 5%
function cos™. The branch withrange [, 7] is called the principal 2n |-

value branch of the function cos™. e write
ost:[-1,1] > [, ml.

The graph of the function given by y = cos™ x can be drawn
in the same way as discussed about the graph of y =sin™' x. The

. .. . .. '€—e >X
graphs of y = cos x and y = cos™ x are given in ig 2.2 (i) and (ii). X 10
Y
3
I ~ 2
T /\2 n ITN2 - 2mf--
S /2 3n - 0\_5/312:: N
3 2
/]
Y’ Y’
y=cosx y=cos'x
Fig 2.2 (i) Fig 2.2 (ii)
et us now discuss cosec ~'x and sec™'x as follows:
ince, cosec x = —_—, the domain of the cosec function is the set {x : x € Rand
nx’

x#nn, n e Z} andtherangelsthe set {y :y e R y>1ory<-1} ie., the set
R — (-1, 1). It means that y = cosec x assumes all real values except—1 y | and is
not defined for integral multiple of m. If we restrict the domain of cosec function to

s
[_E ’5} —{}, then it is one to one and onto with itsrange as the set R—(— 1, 1).ctually, ,

) ) ) - T -7 n
cosec function restricted to any of the intervals B —{-n}, B -4},

TN
{an} —{n} etc., is biective and its range is the set of all real numbers R — (-1, 1).
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Thus cosec™ can be defined as a function whose domain is R— (-1, 1) and range could

-T T - T —T T T
1 _ﬂ_ - _3_ - _TE - -

be any of the intervals [ > 2} {} ,[ ) } {-n}, [2,—2 } {n} etc. The

function corresponding to the range {%,g} —{} iscalled the principal value branch

of cosec™. e thus have principal branch as

—T T
cosec’ : R—(-1,1) » [75}—{}

The graphs of y = cosec x and y = cosec™ x are given in ig 2. (i), (ii).

v’ y=cosec 'x
» = cosec x
Fig 2.3 (i) Fig 2.3 (ii)

T
Iso, since sec x= , the domain of y=sec xisthe set R— {x: x=(2n+ 1) 5 ,

0sx
n € Z} and range is the set R — (-1, 1). It means that sec (secant function) assumes

T
all real values except —1 » 1 and is not defined for odd multiples of 5 If we

T
restrict the domain of secant functionto [, m]— { B },thenitis one-one and onto with
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its range as the set R — (-1, 1). ctually, secant function restricted to any of the

-T
intervals [-m, ] — {7 LL k- g ,[m, 2] — {771 } etc., is biective and its range

is R—{-1, 1}. Thus sec™ can be defined as a function whose domain is R— (-1, 1) and

-7 T T
range could be any of the intervals [- 7, ] — {7 L - {E b [m, 2m] - {7 } etc.

Corresponding to each of these intervals, we get different branches of the function sec™.

T
The branch with range [, =] — {5} is called the principal value branch of the

function sec™'. e thus have

ec' :R-(-L1)—> [, n]- {g}

The graphs of the functions y = sec x and y = sec”! x are given in ig 2. (i), (ii).

1 1
' \2 A N~ g A
1 1 1
[] T (] 275 - 0 X
. —1—e <o—o—8—0—
_L' O 1T l_3_’)l = X X _2 _1

2, -1 2 o o . - TN
1.9 ] 1 -
[ ] (] 1 2 s
L) [] 1 1 —TT
: : : v
1 ' 1 Y’

y=sec'x
=secx

Flg 2.4 (i) Fig 2.4 (ii)

inally, we now discuss tan ' and cot™
¢ know that the domain of the tan function (tangent function) is the set

T
{x:x e Rand x # (2n +1) PR Z} and the range is R. It means that tan function

T
is not defined for odd multiples of 5 If we restrict the domain of tangent function to
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-T T - o .
(7,5 J , then it is one-one and onto with its range as R. ctually, tangent function

22 )22 )\ 272
and its range is R. Thus tan™' can be defined as a function whose domain is R and

. . - T -7 -T T T T o
restricted to any of the intervals (—,—J , ( J, ( J etc., 1s biective

) - -n -T T T T
range could be any of the intervals (T’?J , (75} , (5’7} and so on. These
. . . . . _TE TE
intervals give different branches of the function tan™. The branch with range (7 ) J
is called the principal value branch of the function tan™.

e thus have
- T
tan”' : R — (_ _J

272
The graphs of the function y =tan x and y = tan"'x are given in ig 2. (i), (ii).

Y'
y=tanx y=tan'x
Fig 2.5 (i) Fig 2.5 (ii)

e know that domain of the cot function (cotangent function) is the set
{x:x € Rand x # nm, n € Z} and range is R. It means that cotangent function is not
defined for integral multiples of &. If we restrict the domain of cotangent function to
(, m),then itis biective with and its range as R. In fact, cotangent function restricted
to any of the intervals (=, ), (, 7), (7, 27) etc., is biective and its range is R. Thus
cot™ can be defined as a function whose domain is the R and range as any of the
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intervals (-m, ), (, =), (w, 27) etc. These intervals give different branches of the
function cot™'. The function with range (, ) is called the principal value branch of
the function cot™'. e thus have

cot' :R—>(, m)

The graphs of y = cot x and y = cot™'x are given in ig 2. (i), (ii).

y=cotx y=cot'x
Fig 2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

sin™! : [-1, 1] - —E,E
’ | 2 2]
cos! : [-1, 1] - [, =]
S
—i . _(_ —,— | _
cosec : R-(-1,1) - 1722 {}
T
sec! : R-(1,1) — [, n]- {5}
-T T
tan! : R - oy
- 73
cot™! : R - (, m
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1. sin"'x should not be confused with (sinx). In fact (sin x)!=

; and

- . . . sin x
similarly for other trigonometric functions.

2. henever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

e now consider some examples:

1
. e T
Example 1 ind the principal value of sin ( B J .

1 1
Solution et sin ! (ﬁ} =y. Then, siny = ﬁ

o2

-n
e know that the range of the principal value branch of sin ' is 5

J and

1 1
sin [EJ = E Therefore, principal value of sin™ (ﬁ} is z

-1
Example 2 ind the principal value of cot (Tj

Solution et cot (Tj = y. Then,

coty=_Tl=—cot[Ej = cot(n—z) = cot(ﬁ)

e know that the range of principal value branch of cot ' is (, m) and
2n -1 -l

-1 2
cot [_J: T - ence, principal value of cot ™ [\/_ J s

| EXERCISE 2.1|

ind the principal values of the following:

1 J
1. sin” [—EJ 2. cos™! [7] 3. cosec! (2)

4. tan™ (—\/)_ 5. cos™! [_%J 6. tan™ (-1)
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7. sec’! (%J 8. cot! (V) 9. cos (—EJ
10. cosec! (—/2)

ind the values of the following:

e (=3 (22 3
-1 —1 —_— -1 N -1 — i1 —
11. tan’'(1) + cos ( > + sin > 12. cos > + 2 sin >

13. Ifsin™ x=y, then

0 <ys<nm ®) —5<y<)
© v e

14. tan™ \/gee 7'2(— ) 1s eual to

0 = ®) -= © = o =

2.3 Properties of Inverse Trigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. ome results may not be valid for all values of the domains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. e will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.
etusrecall thatif y=sinx, then x =siny and if x = sin y, then y = sin"'x. This is
euivalent to
. . . . n n
sin (sin”' x) =x,x € [- 1, 1] and sin”™" (sin x) = x, x € 55
ame is true for other five inverse trigonometric functions as well. e now prove
some properties of inverse trigonometric functions.

1
1. (i) sin? —=cosec'x, x>1orx<-1
x

1
(ii) cos' — =sec'x,x>1lorx<-1
x
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1
(iii) tan™! o cot' x, x>0

To prove the first result, we put cosec™ x =y, i.e., x = cosec y

Therefore i =siny
1
ence sin ' —=y
X
1
or sin™! i cosec™! x
imilarly, we can prove the other parts.
2. (i) sin? (%)= —-sin'x,x € [-1,1]
(i) tan™? (x)=—tan' x, x € R
(iii) cosec” (—=x) = — cosec' x, |x| > 1
etsin ~'(—x)=y,i.e.,—x = sin y so that x = —sin y, i.e., x = sin (-).
ence sin 'x=—y=—sin" (=)
Therefore sin! (—x) = —sin”'x

imilarly, we can prove the other parts.
3. () cos'(=x)=mw—cos'x,x € [-1, 1]
(i) sec! (x) =7 —sec'x, [x|>1
(iii) cot’ (x) = —cot'x, x € R
etcos ! (—x)=yi.e., —x=cosysothat x =—cos y=cos (n —y)
Therefore cos'x=m—y=m—cos’ (—x)

ence cos ' (=x)=m—cos' x
imilarly, we can prove the other parts.

T
4. (i) sin' x+cos'x=—,x e [-1,1]

(i) tan'x +tcot'x= —,x e R

2
T
2

T
(iii) cosec'x + sec'x = 5 x| > 1

T
et sin ' x =y. Then x = sin y = cos (——yj

T
Therefore coslx= ——y= 5—sm x
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(SR

ence sin 'x+cos!'x=

imilarly, we can prove the other parts.

+
5. (i) tan'x + tan' y = tan! z, xy <1
1-xy
(i) tan'x —tan' y = tan™' o) ,xp>—1
1+ xy

‘' x=0andtan' y = ¢. Then x =tan 0, y = tan ¢

o fan(0+¢) = tanO+tand _x+y
I-tanBtan¢ 1-xy

et tan

X+y
. . — ] —
This gives 0+ ¢ =tan —x
X+y
ence tan ' x + tan' y = tan™’' 1
—Xy
In the above result, if we replace y by — y, we get the second result and by replacing

y by x, we get the third result as given below.

6. (i) 2tan™' x = sin”' 1+’;2 x| <1
(i) 2tan™ x = cos™! ,x20
1+x?
2
(i) 2 tan-!x = tan! X 1<x<1
- X

ettan ' x =y, then x = tan y. ow
2x 2tan y

=sin! Trtan’y

=sin™ (sin 2y) =2y =2tan' x

11
Sin
1+ x?
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1—x?2 1—tan’ y
Iso cos 1+ 2 = cos™ m =cos™ (cos 2y) =2y =2tan' x

(ii1) Can be worked out similarly.

¢ now consider some examples.

Example 3 how that

. . . 1 < < 1

(i) sin’ (2x 1_x2) =2sin"x, 5 SX= >
1

i) sin! (2xy1-27) =2 cos!x, 5 <¥<I

Solution

(i) et x=sin 0. Then sin™ x = 0. e have

sin”! (2x~/1 —x? ) = sin”! (ZSinG 1—sin? 6)
= sin™' (2sin6 cosO) = sin™' (sin26) = 26
=2sin'x
(i) Take x = cos 0, then proceeding as above, we get, sin™ (2 1= x2 )= 2costx

1 12 _
Example 4 how that tan 5+tan lﬁ=‘£an —

Solution By property (i), we have

1 2
7+7
tan*ll+tanfl£ =tan*l%=tan 4l fan o
2 12 2
2 11

COoS X —
Example 5 xpress tan~' (—j , T < x<E in the simplest form.
l-sinx 2 2

Solution e write

2 X .2 X
COS X cos E—sm 5
tan_l( - J = tan"'

2 X .2 X X X
cos E+sm ——2sin—cos—
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= tan

= tan

= tan

Alternatively,

= tan

= tan

= tan

Example 6 rite  cot (

—

—_

-1

-1

X X X .X
COS—+SIn— (| COS——SIn—
( 2 2}( 2 2}

X . X2
COS— —SIn—
( 2 2J

X . X X
cosE+sm— 1+tan—
= tan ! 2

X . X X
COS——Sin— 1—-tan—
2 2 2

J x 1 in the simplest form.

Solution et x = sec 0, then \/xz —1= \/sec2 0—-1=tan®
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_ 1 o .
Therefore, cot ™' \/2— = cot™ (cot 0) = 0 =sec™ x, which is the simplest form.
x° =1

1 2x X—X 1
1
Example 7 rove that tan ' x + tan 2" tan™! [ J, X <—

- X 1- x2 \/_

Solution et x = tan 0. Then 0 = tan! x. e have

= tan ™! fan—x t Iltan*l —9— 0
N 1-1x’tgn - %0

=tan’ (tan )= O=tan 'x=tan'x +2tan' x

=tan"' x + tan 2 = ... (hy)
1 _ x2 cee

Example 8 ind the value of cos (sec ~' x + cosec™ x), x| > 1

T
Solution e have cos (sec ' x + cosec™ x) = cos [—J=

2
| EXERCISE 2.2 |
rove the following:

1. sin 'x=sin"( x— x) xe{—l, l}

’ 22

1
2. cos 'x=cos!'(x - x), xe{g, l}
3 tan*1£+tan_li=tan_l—
’ 11 22

1 1 1
4. 2tan'—+tan' —=tan' —
2 1

rite the following functions in the simplest form:

/ 2 o 1
5. tan_l$,x¢ 6. tn 210 1

| [1—cosx _1[ cosx—sinx
7. tan , X T 8. tan | ——— |, X T
1+ cosx COS X+SsInx
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10 tan_l m _—a <x< i
’ a— ax )’ “ A A
ind the values of each of the following:

11. tan™' {2 cos(2sin‘léﬂ 12. cot (tan"'a + cot™'a)

2},x I, y and xy 1

1 _
14. If sin (sm '=+cos lJCJ=1,‘Lhen find the value of x

1 x—1 ax+l =
——+tan =—, then find the value of x
x—=2 x+2

15. If tan™

ind the values of each of the expressions in xercises 1 to 1.

. . 2m
16. sml(sm—J 17. tanl(tan—nJ

18. tan(sinl 5+ cot ! —J

_ m.
19. cos 1(cos—)lseualto

|3

0 — ® —  (© = 0
20. sin(g—sinl(—l)] is eual to

0 5 ®-  ©- 0
21. tan"'Jeot ( ')/ iseualto

0 = ® 5 ©0 2
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Miscellaneous Examples

.1,. T
Example 9 ind the value of sin '(sin—)

. q,. X b
Solution e know that sin’l(sin x) = x . Therefore, sin l(sm—) =—

But %t %{—E,E} , which is the principal branch of sin™! x
owever sin (2_71) =sin(n __n) —sin—" and % s {_E’E}
Therefore sin”'(sin 2—ﬁ) = szm’l (sin _n) -

Example 10 how that sin”! 1 sin”'—=cos™' —

Solution et sin'—=x and sin~' 1— =y

Therefore sinx=— and siny=—

1
ow cosx=+1—sin’x = /1_2_2_ (hy)
) 1
and cosy =4/l —sin’ y = {1—;:—

¢ have cos ( x—y)=cos x cos y+ sin x sin y
=—X—+—X—=—o
11

Therefore x—y=cos” [—j

ence sin”'——sin'— =cos ' —
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.12 _ _
Example 11 how that sin lﬁ+ cos'—+tan' —=n
. .12 = -1
Solution et  sin ﬁ:x’ cos —=y,tan —=z
. 12
Then smxzﬁ, cosy=—, tanz=—
12 .
Therefore cosle—, siny=—, tanx=— and tan y = —
12
7+7
tanx+tany _
e have tan(x+y)=1— T D T
—tanxtan y 1——Zx—
ence tan(x+ y)=—tanz
ie., tan (x + y) = tan (—z) or tan (x + y) = tan (1 — z2)
Therefore Xty=—zorx+ty=m—z
ince x,y and z are positive, x + y #—  (hy)
. 12 1 0
ence x+y+z=m or sin H+COS —+tan —=m
B le 12 imolify  tan”" acosx—bsinx _fa . .
xample 12 impli ——— |, if —tanx -
P PHLY bcosx+asinx b
Solution e have,
acosx—bsinx a_,
. ——— ——tanx
1| acosx—bsinx
tan”' | ——————— | = tan' —bcosx. —tan | L —
bcosx+asinx bcosx+asinx a
—_——— I+—tanx
bcosx b

a _ L a
tan lZ—tan "(tanx) = tan' = —x
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i
Example 13 olve tan ' 2x + tan™!' x= —
i
Solution e have tan ' 2x +tan! x= —
af 2x+ x o
tan!| —/—— = N
or [1—2xx xJ
ie. tanl[ a 2J -z
1- x
X i
Therefore 5 = tan— =1
1- x
or XX+ x—1=ie,( x—-1)(x+1)=
1
which gives x=—orx=-1.

ince x =-—1 does not satisfy the euation, as the ... of the euation becomes

1
negative, X=— is the only solution of the given euation.

Miscellaneous Exercise on Chapter 2

ind the value of the following:

1. cos™! (cosl—nJ 2. tanl[tan—nJ

rove that
. a2 _ . . _
3. 2sml—=tanl— 4. sml—+sml—=tanl—
-1 12 -1 _ -1 -1 12 . -1 IS |
5. COS —+C0S — =C0S — 6. Ccos 1—+sm —=8n —
7. tan' ﬁ =sin"'—+cos ' —
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rove that
_ 1 l(l—x]
9. tan'\x =—cos'| —= 1
Vx 2 v ¥ bl
10. cot™! \/1+s1nx+\/1—s1nx =£’xe(, E]
J1+sinx —+/1—sinx | 2
g Vl+x—~I-x | ©m 1 1
11. tan | ——F=—=|=———cos x, ——=<
Nl+x++41-x ) 2 2
1. 2 G a2

olve the following euations:

13. 2tan™ (cos x) =tan™ (2 cosec x) 14.

15. sin (tan'x), x 1iseual to

X

0 > (©

1
(B
1-x2 ) 1-x Ji+x?

T
16. sin'(1—-x)—2sin'x= E , then x is eual to
— B 1l C
0. 5 B Ly  (©0
1 x qXxX=y
17. ftan 1(—J—tan — is eual to
Y Xty
T T
0 B) — © -

2

x <1 [int: ut

1 l_x_ _
tan ——=—tan
1+x 2

x =cos 20]

! "x,(x>)

X

O e

N | =

0 —
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Summary

@ The domains and ranges (principal value branches) of inverse trigonometric

functions are given in the following table:

Functions Domain Range
(Principal Value Branches)
) =l
y=sin'x -1, 1] 22
y=-cos'x -1, 1] [, m
—
= cosec! x R-(-1,1 —,— |-
y 1.1 B
T
y=sec! x R-(-1,1) [, m]- {5}
i T
y=tan"' x R )
y=cot!x R ( m
@ sin'x should not be confused with (sinx)!. In fact (sin x)! = Sinx and

similarly for other trigonometric functions.

@ The value of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric

functions.

or suitable values of domain, we have

¢ y=sin'x=>x=siny

@ sin(sin' x)=x

1

® sin! —= cosec'x
X

1

® cos! — =sec'x
X

¢ tan' —=cot!x
X

x=siny = y=sin'x

sin” (sinx) =x

cos'(=x)=m—cos'x

cot! (—x) =m —cot'x

sec! (—x) =m—sec'x




MTMTIC

@ sin' (—x)= —sin'x ¢ tan' (—x)=—tan'x
T
@ tan'x+cotlx= 3 @ cosec! (—x) =— cosec! x
. T T
@ sin'x+cos!x= 3 @ cosec'x tseclx = B
x+y 2x
¢ tan'x + tan''y = tan’! ¢ 2tan'x = tan’' D)
1—xy l—x
X-y
¢ tan'x — tan'y = tan’!
1+ xy
) 2x 1-x°
& 2tan! x = sin’! = cos™

1+ x° 1+ x°

Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, ryabhatta (..), Brahmagupta ( ..), Bhaskara I
(..) and Bhaskara Il (111 ..) got important results of trigonometry. 11
this knowledge went from India to rabia and then from there to urope. The
reeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (anskrit astronomical works) to
mathematics.

Bhaskara I (about ..) gave formulae to find the values of sine functions
for angles more than . sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin ( + B). xact expression for sines or
cosines of 1, , , 2, etc., were given by Bhaskara II.

The symbols sin"! x, cos™! x, etc., for arc sin x, arc cos x, etc., were suggested
by the astronomer ir ohn .. ersehel (11) The name of Thales
(about B.C.) is invariably associated with height and distance problems. e
is credited with the determination of the height of a great pyramid in gypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing the ratios:

— = — =tan (sun s altitude)
s

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. roblems on height and distance
using the similarity property are also found in ancient Indian works.

\/
_Q‘Q —_—
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Chapter 3

(MATRICES )

o The essence of Mathematics lies in its freedom. — CANTOR <

3.1 Introduction

The knowledge of matrices is necessary in various branches of mathematics. Matrices
are one of the most powerful tools in mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The
evolution of concept of matrices is the result of an attempt to obtain compact and
simple methods of solving system of linear equations. Matrices are not only used as a
representation of the coefficients in system of linear equations, but utility of matrices
far exceeds that use. Matrix notation and operations are used in electronic spreadsheet
programs for personal computer, which in turn is used in different areas of business
and science like budgeting, sales projection, cost estimation, analysing the results of an
experiment etc. Also, many physical operations such as magnification, rotation and
reflection through a plane can be represented mathematically by matrices. Matrices
are also used in cryptography. This mathematical tool is not only used in certain branches
of'sciences, but also in genetics, economics, sociology, modern psychology and industrial
management.

In this chapter, we shall find it interesting to become acquainted with the
fundamentals of matrix and matrix algebra.

3.2 Matrix

Suppose we wish to express the information that Radha has 15 notebooks. We may
express it as [15] with the understanding that the number inside [ ] is the number of
notebooks that Radha has. Now, if we have to express that Radha has 15 notebooks
and 6 pens. We may express it as [15 6] with the understanding that first number
inside [ ] is the number of notebooks while the other one is the number of pens possessed
by Radha. Let us now suppose that we wish to express the information of possession
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of notebooks and pens by Radha and her two friends Caulia and Simran which
is as follows ]

Radha has 15 notebooks and 6 pens,
Caulia has 10 notebooks and Opens,
Simran has 10 notebooks and 5 pens.
Now this could be arranged in the tabular form as follows
Notebooks Pens
Radha 15 6
Caulia 10 0
Simran 10 5

and this can be expressed as

15 6 <« First row
10 2 <« Second row
13 5 <« Third row
0 T
First Second
Column Column
or
Radha Fauzia Simran
Notebooks 15 10 10
Cens 6 O 5

which can be expressed asl[]

15 10 13 | <« First row
6 2 51 « Second row
0 T ;i
First Second Third
Column Column Column

In the first arrangement the entries in the first column represent the number of
note books possessed by Radha, Taulia and Simran, respectively and the entries in the
second column represent the number of pens possessed by Radha, Taulia and Simran,
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respectively. Similarly, in the second arrangement, the entries in the first row represent
the number of notebooks possessed by Radha, Caulia and Simran, respectively. The
entries in the second row represent the number of pens possessed by Radha, Taulia
and Simran, respectively. An arrangement or display of the above kind is called a
matrix. Cormally, we define matrix as]

Definition 1 A matrix is an ordered rectangular array of numbers or functions. The
numbers or functions are called the elements or the entries of the matrix.

We denote matrices by capital letters. The following are some examples of matrices [

oo 5 C
A=| 0 4f5], 0=] 05

0 6 \/—[5

1+x x[ C

COSXx sinx+ ] tanx

v

In the above examples, the horilontal lines of elements are said to constitute, rows
of the matrix and the vertical lines of elements are said to constitute, columns of the
matrix. Thus A has Crows and [columns, [] has Crows and [Jcolumns while C has [
rows and [Jcolumns.

3.2.1 Order of a matrix

A matrix having m rows and z columns is called a matrix of order m On or simply m (n
matrix Tead as an m by n matrix[J]So referring to the above examples of matrices, we
have A as [J[][Omatrix, [Jas [ Omatrix and C as [0 Omatrix. We observe that A has
00006 elements, [1and C have Tand 6 elements, respectively.

In general, an m [ matrix has the following rectangular array [’

Ay Ay Ay ees Gy ooes

Gy Gy Uy eee Gy e

an apn Uy === Gy =0 Ay,
aml amZ am} ot a»zj ot amn mxn
or A[[ay_]m L 1Si<m, 1<j<n i,jeN
Thus the i* row consists of the elements a,, a,, a, ,..., a,, while the j* column
consists of the elements 4, d,0d ., d

mj?

In general g, is an element lying in the /" row and ;/* column. We can also call
it as the [Z, j™ element of A. The number of elements in an m [z matrix will be
equal to mn.
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In this chapter

1. Weshall follow the notation, namely A [ [ay.] to indicate that A is a matrix

mlin

of order m .

[1 We shall consider only those matrices whose elements are real numbers or

functions taking real values.

We can also represent any point [X, y[in a plane by a matrix [¢olumn or row[as

x
L}} [or [x, y][J Cor example point [1T] 1 as a matrix representation may be given as

L
D=L} or [LI1].

[bserve that in this way we can also express the vertices of a closed rectilinear
figure in the form of a matrix. “or example, consider a quadrilateral ATJC with vertices
A0, [0 O0Cc O, [0 ml, M

Now, quadrilateral ACICJ in the matrix form, can be represented as

A O C (] ALl O
1 01 -1 O O O

U= or 0=
00 O O, Cl1 O
Ol-1 O

[x[

Thus, matrices can be used as representation of vertices of geometrical figures in
a plane.
Now, let us consider some examples.

Example 1 Consider the following information regarding the number of men and women
workers in three factories I, II and III

Men workers Women workers
I N )
11 ) h
111 N (6

Represent the above information in the form of a (17 Jmatrix. What does the entry
in the third row and second column represent(]
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Solution The information is represented in the form of a (][] [Imatrix as follows[]

(5
A=[5 [
[ [6

The entry in the third row and second column represents the number of women
workers in factory IIL

Example 2 If a matrix has Celements, what are the possible orders it can havel]

Solution We know that if a matrix is of order m [n, it has mn elements. Thus, to find
all possible orders of a matrix with Celements, we will find all ordered pairs of natural
numbers, whose product is []

Thus, all possible ordered pairs are (1, [T, [T} 1015 [T, 0] [T

Hence, possible orders are 1 0[] 01, 000 000

. . 1 .
Example 3 Construct a [J[] Cmatrix whose elements are given by a; = —[ -1y L

dpp dir
Solution In general a [11][matrix is givenby A=|a a |.
an 4m
1 .
Now alj=—[ﬁ—[],i[l,f,[andj[l,i
1 1 5
Therefore a“:EEI—[xl[:l al[:ED_[X[:E

1 1 1
a,=—[M—[xl =— q, =—[T—[x=C
T C T

1[[ [X1ZECL 1[[ [x [ -
a = — — = a = — — = —
1 T 0 C

1
. o 1
Hence the required matrix is given by A = -
U

Al o
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3.3 Types of Matrices
In this section, we shall discuss different types of matrices.
] Column matrix

A matrix is said to be a column matrix if it has only one column.

L
Vo
Cor example, A =| —1 | is a column matrix of order 1.
1T

In general, A [ la,],, is a column matrix of order m [11.
GiCTJ Row matrix

A matrix is said to be a row matrix if it has only one row.

1 . .
Cor example, [1= {— - \/g O [} 1S a row matrix.
1

x [
In general, [J [ [bi/_] ., 1s a row matrix of order 1 [In.
fiiil] Square matrix

A matrix in which the number of rows are equal to the number of columns, is
said to be a square matrix. Thus an m [Jn matrix is said to be a square matrix if
m [n and is known as a square matrix of order 7[]

0 -1 L
- Ar . .

Cor example A= 0 ‘N1 | is a square matrix of order []
o o -

In general, A U[a,] is a square matrix of order m.

miim

If A [[a,] is a square matrix of order 7, then elements (entries @, a , ..., a

nn

1 -0 1
are said to constitute the diagonal, of the matrix A. Thus, if A= 0O 0O -1].
05 6

Then the elements of the diagonal of A are 1, [] 6.
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Diagonal matrix

A square matrix [ [I[b,]  is said to be a diagonal matrix if all its non
diagonal elements are [éro, that is a matrix (] [] [b,-,-] ., is said to be a diagonal
matrix if b, (1] when i # . ‘

DL -1.1 O C
Cor example, A O[], U ={ . D} ,C=| 0O 0O L], are diagonal matrices
o O cC

of order 1, [] ] respectively.
Scalar matrix

A diagonal matrix is said to be a scalar matrix if its diagonal elements are equal,
that is, a square matrix [ [J [b,-,-] ., 1s said to be a scalar matrix if

b,-,- 00 wheni #j
b,-,- Ok, wheni [Jj, for some constant .
Cor example ‘

Joo o ¢
AL, D{‘Dl j, c=| 0 vo ¢
0O O «C

are scalar matrices of order 1, (Jand [] respectively.

Identity matrix

A square matrix in which elements in the diagonal are all 1 and rest are all [ero
is called an identity matrix. In other words, the square matrix A [J [ay_] .., isan
o o Lif i=j
identity matrix, if @; = {[ it i

We denote the identity matrix of order n by I . When order is clear from the
context, we simply write it as [.

|

1 O C
O1 C . . .
, are identity matrices of order 1, Cand 7]
S e 0

Cor example [1], {
respectively.

Observe that a scalar matrix is an identity matrix when & [J1. [Cut every identity
matrix is clearly a scalar matrix.
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Wil Zero matrix

A matrix is said to be zero matrix or null matrix if all its elements are [ero.
0 C 0ot

Cor example, [], {[ J , {[ 0 J , [0 O] are all Céro matrices. We denote
Cero matrix by [J. Its order will be clear from the context.

3.3.1 Equality of matrices

Definition 2 Two matrices A [J [a,] and 00 O [bi/_] are said to be equal if

fi] they are of the same order

1il) each element of A is equal to the corresponding element of [, that is a, L5, for
all i and ;.

0o 0o . 0o 0o
Cor example, and are equal matrices but and are
01 01 01 01

not equal matrices. Symbolically, if two matrices A and [J are equal, we write A [1 .

x y] [-15 C
If|lz a|=|0 6|, thenx 0015,y 00z00a0J6,b 00 c 0
b ¢ 0 C

x+0 z+0 y-U 0 6 [py—L
Example 4If | -6 a-1 0 |=|-6 -0 Ce+C
b-0O -1 U h+0 -1 L
Cind the values of a, b, ¢, x, y and z.
Solution As the given matrices are equal, therefore, their corresponding elements

must be equal. Comparing the corresponding elements, we get
x ooy z U6, by 0oy 0o

alJl OO0 U0Le OO b OOOCh O]
Simplifying, we get
a000Obp000c001,x000y00,z00
Example 5 Cind the values of a, b, ¢, and d from the following equation[’]

la+b a-1b B 0 —C
Sc—d le+0d| |11 [T
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Solution [y equality of two matrices, equating the corresponding elements, we get
Ca Ob 00 Sc0d 011
a0 000 fc 0d O
Solving these equations, we get
all,b00cO0and d OO

EXERCISE 3.1

0o 5 10 —¢

5
1. Inthe matrix A=| [5 —[I —[ 1C |, write[

Joo1 =5 1r

il The order of the matrix, liiC] The number of elements,

iiil ) Write the elements a, ,a ,a ,a ,a .
2. Ifamatrix has [TJelements, what are the possible orders it can haveTWhat, if it

has 1[Jelements[]

3. Ifamatrix has 1 Celements, what are the possible orders it can have[JWhat, if it
has 5 elements[]

4. Construct a LI Umatrix, A [[a,], whose elements are given byl

0+ ji- ] D+ (-
J il @, =— i) @, =———

J

5. Construct a [17] Omatrix, whose elements are given by

il a; =

1 . ..
A a;‘/‘ ZEEE+J [l azsz_.]

6. [ind the values of x, y and z from the following equations(]

xty+z L
0o |y z x+y O 6 0O ..
G = il = fiil ] x+z |=|5
x 5 1 5 54z xy 5 0
y+z L

7. [ind the value of a, b, ¢ and d from the equation[]

a-b l[a+c B -1 5
a-b e+d| | O 1T
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8. Alla,l, , is a square matrix, if
[AOm On MOm On [COm On M0 None of these
9. Which of the given values of x and y make the following pair of matrices equal

x+0 5 0 y-C
y+1 O-x|> |0 O

-1
AT x=—[’ y=U M Not possible to find
Coynn x=— Tox="t, y="
y b C o0 YT
10. The number of all possible matrices of order 17 OJwith each entry Cor 1 is[]
(AD LD o1 [com mosiy

3.4 Operations on Matrices

In this section, we shall introduce certain operations on matrices, namely, addition of
matrices, multiplication of a matrix by a scalar, difference and multiplication of matrices.

3.4.1 Addition of matrices

Suppose [atima has two factories at places A and []. Each factory produces sport
shoes for boys and girls in three different price categories labelled 1, Jand [] The
quantities produced by each factory are represented as matrices given below[]

Factory at A Factory at B
Boys Girls Boys Girls
1 80 60 Il 90 50
21 75 65 2| 70 55
31 90 85 2| 73 73

Suppose Catima wants to know the total production of sport shoes in each price
category. Then the total production

In category 1 [for boys ML) for girls 6005T]
In category O[for boys 5 TI[TT) for girls [65 (1550
In category O(for boys M5 for girls M5 D50

(I 6L+5L
This can be represented in the matrix form as | [5 + [T 65+55 .

[T+ 5 [(5+05
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This new matrix is the sum of the above two matrices. We observe that the sum of
two matrices is a matrix obtained by adding the corresponding elements of the given
matrices. [urthermore, the two matrices have to be of the same order.

bll bl[ bl[

a, a. a
T } 1s a (1] [Jmatrix and [=L

Thus, if A= { } is another

an 4oy 4 n Y90 O

a, +b, a-+b- a-+b
[T matrix. Then, we define A = R
a,+b, a +b. a +b
In general, if A [[a ] and [ L1[), ] are two matrices of the same order, say m L n.
Then, the sum of the two matrices A and [J is defined as a matrix C [J [Cif]m .» Where
¢, Ua, b, for all possible values of i and ;.

01 -1
Example 6 Uiven A={\/[_ : J and (= 1|, find A I

Since A, [ are of the same order (1] [] Therefore, addition of A and [J is defined
and is given by

[+\/_[ 1+\/§ 1-1 [+\/_[ 1+\/§ C

A= 1= 1
O-0 O O+— O 6 -
O C

1. We emphasise that if A and [ are not of the same order, then A [J 1 is not

o C
defined. Corexampleif A = L J , O= B - ﬂ , then A [1[Jis not defined.
U

[1 We may observe that addition of matrices is an example of binary operation
on the set of matrices of the same order.

3.4.2 Multiplication of a matrix by a scalar

Now suppose that [atima has doubled the production at a factory A in all categories
(refer to [0



MATRICES 6]

[Teviously quantities [in standard unitsproduced by factory A were

Boys Girls
1| 80 60
21 75 65
31 90 85

Revised quantities produced by factory A are as given below[]

Coys  Cirls
1| Ox [ [x6l
O x5 [x65
O Ox [0 x5

160 1T
This can be represented in the matrix form as | 1501 1T |. We observe that
1017 1T

the new matrix is obtained by multiplying each element of the previous matrix by [

In general, we may define multiplication of a matrix by a scalar as follows[if
Allal, , is a matrix and k is a scalar, then kA is another matrix which is obtained
by multiplying each element of A by the scalar &.

In other words, kA [ k[ai]_] o Lk a,q, that is, (4, j[® element of kA is kai].
for all possible values of i and ;.

0 1 1.5
Corexample,if A [ \/E [0 —[|,then
0o o 5

0115 00 s
A DS 0 —o|=lis o -
005 6 [ 15

Negative of a matrix The negative of a matrix is denoted by [JA. We define
DA DDA,
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0 1
Cor example, let Al {_ 5 x} , then [JA is given by
0 1 -0 -1
LA DDA =31 =
-5 x 5 —x

Difference of matrices IfA [ [ai/_], oo [bi/_] are two matrices of the same order,
say m [n, then difference A (1] is defined as a matrix [] [J [di/_], where di/_ Ha, [bi/_,
for all value of i and /. In other words, [ A [0 A O [T, that is sum of the matrix
A and the matrix [,

| R 0-1 0
Example 7 If A= and (= , then find TA O
0 o1 -1 0O 0

Solution We have
1 00 0 -1 C
(A 0000 -
0 o1 -1 00
0 oe -0 1 -C
0 +
06 O 1 [ -C
-0 O+1 6-0 B -1 5 C
Lol 6+0 -0 |5 6 ¢
3.4.3 Properties of matrix addition

The addition of matrices satisfy the following properties

0] Commutative Law IfA [ [a,], L1 [b,-,-] are matrices of the same order, say
m On,then A OO OO DA, ‘

Now ACOO0O [ai/_] 0 [bi/_] 0 [ai/_ 0 bi/.]
(] [bi/_ (] ai/_] faddition of numbers is commutative [
O [[bi/_] 0 [ai/_][[ 0O0A
[iC] Associative Law [or any three matrices A [ [ai/_], ERN [bi/_], C [ [ci/_] of the
same order, say m (n, A D O0O0C DA O OCH
Now [AODOOOCO [[ai/_] 0 [bi/_][[ [ci/_]
Oa, 0b,] De,] Clla, Db,
(] [ai/. (] U)i/_ (] ci/_E_I (Why [T
Ola,] OB, Te,] Cla,] 0 b, Dle,]00A DI DCH
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il Existence of additive identity Let A [ [ai/_] be an m [J n matrix and
[l be an m [n Lero matrix, then A (1] [1[] [JA [JA. In other words, [ is the
additive identity for matrix addition.

iv] The existence of additive inverse Let A [J la,], . be any matrix, then we
have another matrix as [JA [ [[ai/_]m , such that A [ DAL MACDCA DD, So
A is the additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

If AU[a,] and [ LI[b,] be two matrices of the same order, say m Ln, and k and / are
scalars, then ‘

G0 kA D00k A Ok, GOk OITA DKA OFA
il k (A O O00K fay] O[]0
Dk [a, 0b] Ok @, b, Ok a, 00 k b[])
Ulka] Ulkb,] Uk [a] Uk [b] kA D kL
il Lk DDA Dk Ul[a,]
Ok [I[ai/.] Ok ai/.] O[l ai/.] Ok [ai/.] 0l [ai/.] OkAOIA

0 O 0 —-C
Example 8 If A=| 0 —-0Oland U= [0 [ |, then find the matrix (], such that
06 =51

[A OIS0

Solution We have [A [1[[] []5[]

or CA OO O0A OS50 00A
or CA OMA O OS50 00A [(Matrix addition is commutative [
or OO0 Os5000A [T1[A is the additive inverse of [A[]
or LI OS50 DA [T is the additive identity[]

1
or 00 —[ B0 OAD

0O -0 OcC | 10 -10] [-16 O

1

or [=—[5[[—[[—[ [—[ o 10+ -0 O

=51 ) -5 5 -6 10
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—10 ]
B
. 10-16 —10+°LC . -6 —1LC .
L
—| -0 104C —| 10 1C 0 —
[[ [6-6 5-1 [[ (1 [ -
—5-6 51 R N RS QR
U L
5 L 0 6
Example 9 Cind [1and [}, if U+ L= oo and [ —[= il
Il Il
Solution We have ([ + 1) +(0-0) = > + 6 .
0 O 0 -1
UL UL
or D 0000 oodd = =
RS
1|0 0O O C
or 0o— =
D{D D} {D [}
Also D JOUom 0odd > D— o6
0 O 0 -1
5-0 -6 0 —L
or D JOU0 I O ood = [=
Il O+1 0 10

110 =0 1 -
or 0d— =
D{D 1D} {D 5}

Example 10 Tind the values of x and y from the following equation(]

X 5 o -0 0O 6
O + 0
{D y—D} L D} Ls m}
Solution We have

[{x 5}{[—1[56:& ] o =g [0 s
Ooy-0) 1L 15 10 10 y—-6| (1 0| |15 1C
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{B+E 1=t }[ 06 x40 6 06
- =
or 1+l Ly-6+L 15 10 15 [y-0| [15 10

or x OOO0 and Ly OO (Why T
or Lx OO0 and Ly 010
L 1C
or x[E and y[—[
ie. x 00 and y 00

Example 11 Two farmers Ramkishan and Curcharan Singh cultivates only three
varieties of rice namely [Jasmati, Cermal and Naura. The sale [in Rupeeslof these
varieties of rice by both the farmers in the month of September and Cctober are given
by the following matrices A and [.

September Sales (in Rupees)

Basmati Permal  Naura
A= 10,000 20,000 30,000 | Ramkishan
50,000 30,000 10,000 _| Gurcharan Singh
October Sales (in Rupees)
Basmati Permal  Naura
B= 5000 10,000 6000 | Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh

i] Cind the combined sales in September and [ctober for each farmer in each
variety.
Gi0] Cind the decrease in sales from September to Clctober.

fiilJ If both farmers receive [T] profit on gross sales, compute the profit for each
farmer and for each variety sold in Cctober.

Solution
i] Combined sales in September and [ctober for each farmer in each variety is

given by
Basmati Permal Naura

15,000 30,000 36,000 | Ramkishan
A+B=

70,000 40,000 20,000 _| Gurcharan Singh
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(ir] Change in sales from September to Cctober is given by
Basmati Permal  Naura
A_B-= l: 5000 10,6060 24,000 :l Ramkishan

30,000 20,000 0 Gurcharan Singh

U
[iil] [[Of[[EX[[E[[[[

Basmati Permal Naura

[ E[[l: 5000 10,000 6000 :!Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh
Basmati Permal Naura
0 !: 100 200 120 :i Ramkishan
400 200 200 Gurcharan Singh

Thus, in Cctober Ramkishan receives Rs 17T] Rs [TT]and Rs 1T Jas profit in the
sale of each variety of rice, respectively, and [Crucharan Singh receives profit of Rs
[TT] Rs [TT]and Rs [TTJin the sale of each variety of rice, respectively.

3.4.5 Multiplication of matrices

Suppose Meera and Nadeem are two friends. Meera wants to buy [pens and 5 story
books, while Nadeem needs [pens and 10story books. They both go to a shop to
enquire about the rates which are quoted as follows [

Cen [ORs 5 each, story book [1Rs 5Ceach.

How much money does each need to spendCIClearly, Meera needs Rs (3 (IS C05T
that is Rs [6[] while Nadeem needs (1115 (1500 1L Rs, that is Rs 5[] In terms of
matrix representation, we can write the above information as follows[]

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

05 5 Sx [+ 5x500) [ I6L
0o1C 50 Ox5+10x50 | 500
Suppose that they enquire about the rates from another shop, quoted as follows [

pen [JRs [Ceach, story book [TRs [TJeach.

Now, the money required by Meera and Nadeem to make purchases will be
respectively Rs MO OO MOSO0Rs [(MTand Rs MO OO1 00 TIORs (117
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Again, the above information can be represented as follows[
Requirements Prices per piece (in Rupees) Money needed (in Rupees)

[l 5 L Ox [+ [1Ix 5 3 (1L
nlR s T OxO+10x 00 | O
Now, the information in both the cases can be combined and expressed in terms of

matrices as follows[]

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

o 5 5 O SxO+5x50 [Ox O+ Ox5S
0O 10 50 M Ox5 +10x5 0 OxO+10x00O
6] [ILC
- 500 [OC

The above is an example of multiplication of matrices. We observe that, for
multiplication of two matrices A and [, the number of columns in A should be equal to
the number of rows in . Curthermore for getting the elements of the product matrix,
we take rows of A and columns of [J, multiply them elementWise and take the sum.
Cormally, we define multiplication of matrices as follows[

The product of two matrices A and [Jis defined if the number of columns of A is
equal to the number of rows of (1. Let A [ [a,] be an m T n matrix and [ [J [bjk] be an
n Op matrix. Then the product of the matrices A and [Jis the matrix C of order m [p.
To get the [, k[ element c, of the matrix C, we take the i row of A and k" column
of [J, multiply them elementwise and take the sum of all these products. In other words,
ifAUla], ..o U[b,], . then the i" row of Ais [a, a. ... a, ] and the k" column of

by,
Jis| - |,thenc, U a,b,la b [la b [.. Ca b [ Z%—bjk )
ﬁ j=l
bnk
The matrix C U[c,] ) is the product of A and .
0 C

Cor example, if C =F[ _1[ ﬂ and [1=|—-1 1 |,thentheproduct C[Jis defined
5-C
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0 C
1 -1
and is given by C[ ={[ - [:| =1 1. Thisis a [J[][] matrix in which each
5 -C

entry is the sum of the products across some row of C with the corresponding entries
down some column of 1. These four computations are

Entry in = 2 7T 1H@+E)EDTRIG) ?
first row -1 1=

firstcolumn [0 3 4 5 - ? ?
Entry in i =1 2 2 T 13 ()M HED) (1) +2(-4)
first row —1 | =

sccondcolumn |0 3 4 5 B ? ?
Entry in 1 -1 2 2 7 13 )
second row -1 1=

firstcolumn |0 3 4 5 - 0(2)+3-1)+4(5) ?
Entry in 1 -1 2 2 7 13 2
second row = il | =

secondcolumn [0 3 4 5 -4 17 0(N+3(1)+4(-4

10 —-C
Thus CD={ }
10 —1C

6 [ 06 L
Example 12 Tind AT, if A:{ }and [={ }
0 o 0ot

Solution The matrix A has [Jcolumns which is equal to the number of rows of .
Hence Al is defined. Now

Al [ 6T (I 60604 (111 611 DI[}

| O+ (T (16 03 (T (I (1T

[T+ 60 (6+01 [+[T 5 110 [T
_D+[[1 10+ 1) O+ [T 5 [ [T
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Remark If ATlis defined, then TJA need not be defined. In the above example, A is

defined but [JA is not defined because [ has [lcolumn while A has only [Jfand not [T]
rows. If A, [ are, respectively m [n, k [1/ matrices, then both AT and [JA are defined

if and only if » [k and / Om. In particular, if both A and [ are square matrices of the

same order, then both A[] and [JA are defined.

Non-commutativity of multiplication of matrices

Now, we shall see by an example that even if A[Jand [JA are both defined, it is not
necessary that A (1 TA.

0oL
-0 O
. 5} and O=| 05, then find A[], [JA. Show that

1
Example 13 If A:{
01

Al = [A.

Solution Since A is a [1[] Omatrix and [Jis (1] Omatrix. Hence A[Jand [JA are both
defined and are matrices of order (1] Tand [J[1[] respectively. Note that

(1 -0 [ -t =46 =10+ 0 0 -C
All= 05| 0 =

-0 0 5 [+ 410 —10+10+5 10 €

(o0 Lo 0—10 —-[+6 6+15 10 o
and TA=|115 {[ - 5}: (=[] (410 1[+[5] =|-16 [ [L

=B (=01 —[H+[ 6+5 -0 -0 11

Clearly A0 # DA

In the above example both A and [JA are of different order and so A= [JA. [ut
one may think that perhaps AJ and [JA could be the same if they were of the same
order. [ut it is not so, here we give an example to show that even if A[Jand A are of
same order they may not be same.

1 0O 01
Example 14 If A= and [1= ,then A= 21 .
0o -1 1 O -1 O

0O -1
and DA = L D} . Clearly A0 = TA.

Thus matrix multiplication is not commutative.
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This does not mean that Al # [JA for every pair of matrices A, [ for
which Al]and (A, are defined. Cor instance,

1 0O 0 0O 0 0O
If A={ }, D={ },thenADDDAD{ }
0 o 0 O 0 O

[bserve that multiplication of diagonal matrices of same order will be commutative.

Zero matrix as the product of two non zero matrices

We know that, for real numbers a, b if ab [1[] then either a []Clor b [I1[] This need
not be true for matrices, we will observe this through an example.

0o C

O =110 5 0 C
Solution We have All ={ } { } ={ } .
O oo o 0 C

) 0o -1 05
Example 15 Cind AT, if A={D J and D={ }

Thus, if the product of two matrices is a [éro matrix, it is not necessary that one of
the matrices is a [éro matrix.

3.4.6 Properties of multiplication of matrices

The multiplication of matrices possesses the following properties, which we state without
proof.

1. The associative law [or any three matrices A, [] and C. We have
[ACCC DA MCL whenever both sides of the equality are defined.
[l The distributive law [or three matrices A, [J and C.
JA MCCOJAD DAC
G0 TACOCC DOAC OJOC, whenever both sides of equality are defined.

[1 The existence of multiplicative identity [or every square matrix A, there
exist an identity matrix of same order such that [A TTAI TJA.

Now, we shall verify these properties by examples.

1 1 -1 1 O
1 00 -]
Example 16 If A=|0 O 0], O=| 0O O] and C= , find
0o =01
0 -1 0 -1 [

ACL) [ADLC and show that [ADC DAMICL
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1 1 -1 1 O 1+0+1 4+ -0 01
Solution We have All=| [ [ O O0=0+0-06+0+10(=|-1 1C
0 -1 0Of|-1 ¢ +0-0 O-0+ O 1 15

01 Lo oo O+ O 0+0 6-0 —[+1
ADOOCE=|-1 1[{ _ J: -1+06 —-[+0 —-[~06 O+ 1C
1 15 1+ [+0 OO —0O+15

(10 146 [+ [—6 —[+[
1 0 0O-0

Now [CCO| 00 =| 40 [H0O [=0 [+C

—1+0 -[+0 -0 [+C

O 0O -0 -1

0 0 o -0 C

|0 -0 11
(1 1 =110 0 -0 -1
Therefore ACooy o o oo o -0 ¢
0 -1 g O0o-0 =11 C

[+ -0 [+ 0 (=011 —1+0-C
o1+ 0+ A +0-6 -6+ 00— —O+ [+ [T
_D—[+1[ 6+00-0 —[+0O-[ —[0+16

[0 0O 0O -C
5 -0 -0 [T
a0 =11

. Clearly, TADOC DA [MCO




m MATHEMATICS

0o 6 [ Oo1 1 L
Example 17 If A=|-6 0O 0O|,0=|1 0O O],C=|-L
0 -0 0o 1 O O L

Calculate AC, [JC and A C0IC. Also, verify that [A O OC DAC O 0OC

L
1C
L

[

10

[

U
U

U
-0
U

o

-0

O-10+ [ 1C
=|-10+ [+ L0 | =| [T
16 +10+ 0 (T
O-10+ 1 C
=|-10+ ¢+ [TJ |=| 1C
10+16+ 0 [T
[O- 4+ O 1
O+0+6|=| C
| O-[+ O] |-C

(L
(L

g 0O
Solution Now, Al=|-5 [
0-6
[0 O
So A DJOCC (-5 O
| L -6
[0 6
Curther AC|-6 [
|0 -0
(01 1
and oc o oo
1 00
[0 1
So ACOOC O|1U|+| O
|| |0
Clearly,

1
Example 18 If A =| [J
U

Solution We have A" =AA

[A D HEC DAC LHC

0 C
-1 1], then show that A~ O[TA O[T OO
O 1
1 O 4|1 0O o 10 O C
=\U0-0 1}|0-0 1|=|1 10 C
O O 11|10 o1 10 6 15
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o gj1o oo 61 [6 6L
So A'TAA'D|O-0 141 10 =6l =6 [T
oo 1)1 6 15 (I [6 6L

Now
(601 6 6] 1 0O O 1 0 C
AOTAOMITO| 60 =6 OO0 0 =0 1o 1 ¢
T 6 60 O o1 0O 01

(601 (6 6[1] [—(11 =6 —601] [-11 O C
160 =6 [+ —601 6 —[[|+| O - *
6 60| | -1 -6 —[T] O 0O -IT

(67— T—1T] 6-16+ 6—6+[
n|é6b-60+40 —-6+16—[1] [[—-1H+LC
| -0+0  6-06+0 60-[T-[T

|
[ I
[ I
0O O O

Il

|

Example 19 In a legislative assembly election, a political group hired a public relations
firm to promote its candidate in three waystelephone, house calls, and letters. The
cost per contact [in paise[is given in matrix A as

Cost per contact
N Telephone
A 111 Housecall
50 Letter

The number of contacts of each type made in two cities [ and [ is given by

Telephone Housecall Letter

{mz 5017 SDI}—>[

. [ind the total amount spent by the group in the two
(T 1000 1 ) —

cities []and [
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Solution We have

M0+ 5000+ 5000

>0
1 MOD01 MO0 I

[A[{
>
MO0 — O
- T — O

So the total amount spent by the group in the two cities is [TT][TT]paise and
[TT]TTpaise, i.e., Rs [TTT]and Rs [TTT] respectively.

| EXERCISE 3.2|
0o 1 0 -5
. LetA{ }D{ }c{ }
0 o -5 0 o
[ind each of the following[
HJA OO GOA OO0 i) CA OC
v AL il A
2. Compute the following[
fa b a b [a"+b" b +c" Cab  [hc
i + il
_—b a b a a[+C[ a[+b[ —Lac —Lab
-1 0O -6] [10 O 6 -
cos x sin x sin ' x cos x
aid| O 5 16|+ O 0O 5| Gvd
0o 5 O0cr _sin[x cos X cos x sin x
3. Compute the indicated products.

i

Gvl

wilJ

[ a
I—b

b

a

[

1

~b c -0 oo
i |0 00 i

a c 0oojlo ot
1 -0°5 01

1 01
0O tC v | 00

-1 01
0 os -11




10.

11.

12.

MATRICES i

1 0 -0 0O-1 0O 0o 1 C
If A=|5 O O,0=|0 0O 5|andC=|0 [ L[], then compute
1 -1 1 0 o o 1 -0 €

AMMand M OCOAlso, verify that A [ T OCOO A O O0O0C.

g2 IR
O 0 55
1 O O 1 O C
If A=|— — —|and [l=|—- — —|, then compute (A [15[
O 0 O 5 5 5
g0 g6 c
L[] L] L5 5 5]
. cos® sin0 _ [sin® —cos6
Simplify cos®| | Osin® )
—sin® cos0 | cosO sin©

Cind [0 and [, if

0 d [0 ¢
G0 000= and [][1[]=
5 |10 O

0o o 0o -t
A0 (1 O = and [+ 1=
0o o -1 5

0L 1 C
[ind[,if[[{1 Jand[[[[[{ }

-0 C
. . I O y U
Cind x and y, if [ + =
U x

56
I o |1 0

X z 1 -1
Solve the equation for x, y, z and ¢, if [ +0 =
y t o 0

i

0 -1 10
If ){D}_J{ 1}=L },ﬁndthevalues of x and y.

6 0 +
Uiven [J SRR P + Ty , find the values of x, y, z and w.
z w -1 Ow zZ+w C
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cosx -—-sinx L[
13. If O&=|sinx cosx [|,show that (XO0O0 Ox Oyl

g g 1
14. Show that

(5 -1
i }

1 [
aic) | O 1
11

o1
15. OndA-0O5SA06LiIf A=|{0 1 T
1 -1 [

1 0 LC
16. If A={[J [1 1], provethat A"D6A-TTADI OO
0O C
[0 -0 1 C
17. If A= and IJ , find &k so that A" kA OO0
|0 -0 0ol
U —tang
18. If A= . and I is the identity matrix of order [] show that
tang U
L U
cosa —sina
I0ADCO [A]{ . }
sino coso

19. A trust fund has Rs [T][TT]that must be invested in two different types of bonds.
The first bond pays 50 interest per year, and the second bond pays [T interest
per year. [Jsing matrix multiplication, determine how to divide Rs [T][TTlamong
the two types of bonds. If the trust fund must obtain an annual total interest ofT]

fall Rs 10111 MO Rs [1TT]
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20. The bookshop of a particular school has 1T]doleén chemistry books, [Jdolen
physics books, 10dorén economics books. Their selling prices are Rs [T]Rs 6
and Rs [MJeach respectively. [ind the total amount the bookshop will receive
from selling all the books using matrix algebra.

Assume [, [} [, W and [Jare matrices of order (10 n, Ok, 00 p, n 0 Oand p Tk,
respectively. Choose the correct answer in Exercises 1 and [T]

21. The restriction on n, k and p so that [TJ JWJ will be defined are[’]

ADkO0Op On M0 k is arbitrary, p ([
[COp is arbitrary, k ([ MOkO0p 00

22. If n Op, then the order of the matrix [T] TJ50is[]
Alp OO o On [COn OO Mp On

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of a matrix and special types of matrices
such as symmetric and skew symmetric matrices.

Definition 3 If A [l[a,] be an m [In matrix, then the matrix obtained by interchanging
the rows and columns of A is called the transpose of A. Transpose of the matrix A is
denoted by A’ or [AT[]In other words, if A [ [a,], ,thenA’[[a], . Lor example,

s 0 O O
it A=[0 1 , then A'= -1
51 —
[ __1 Ox O
5 Ox O

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These
may be verified by taking suitable examples.

Cor any matrices A and [J of suitable orders, we have

A0 TA'TTOA, i) (kAT kA" Where £ is any constant[]
i A OOOOA" OO v AOD OO A
0 ~vo O 0 -1 C
Example 20 If A= - and [I= , verify that
o g o 1 0 rC
i (AT A, GiC A D OM DA D0,

i kOO Ok, where £ is any constant.
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Solution
i} We have

U g
A[{[ & [} = A’ =| 0 [:»(A')':{[ & [}A
0O 0O

g 00 g
Thus A'TT DA
il We have
0 -1 0O _
A[D\/_DD,[[ :>A+D=5\/_Dlm
OO0 O oo 5 O 0O
s S
Therefore (A D000 \/_[—1 C
O
[0 g 01
Now A'C \/_[[’['2_1 Hp
| 0O 0C
s
So A D01 T
0
Thus ADOMOA O
il We have
k[=kD_1 DzD’c—kD’c
1 00 ko ko Ck
k k o1
Then kU | -k Ck|=k|-1 O|=kC'
k [k | 0O

Thus kO Ok
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-0
Example 21 If A=| 0|, 0=[l 0 -6], verify that AT [ [TA".
5
Solution We have
e
Aol O 0=l 0 6]
— 5_
[—0] -0 -6 IC
then ADO| Ot O -6] 0| & 10 -1
5 5 15 -IT
.
Now A" O[0s], Oo'=| ¢
_6_
1 -0 o 5
oA 0| O|[-0 O S]=[-6 10 15|=[ADC
-6 |10 —[1] -1
Clearly ADOOOA!

3.6 Symmetric and Skew Symmetric Matrices

Definition 4 A square matrix A [J [a,] is said to be symmetric if A’ [0 A, that is,
[a,] [[a,] for all possible values of i and ;.

Joooo o«
Corexample A=| 0 -1.5 —1 | is a symmetric matrix as A’ JA
0o -1 1

Definition 5 A square matrix A [ [a,] is said to be skew symmetric matrix if
A" LA, that is a, [ [a,, for all possible values of i and j. Now, if we put i LI/, we
have a, [ [la,. Therefore La, [ [Jor a, [)[for all ils.

This means that all the diagonal elements of a skew symmetric matrix are [ero.
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0 e f
Corexample, the matrix [1=| —e [] g |isa skew symmetric matrix as ['[][1]
-f g L

Now, we are going to prove some results of symmetric and skew/symmetric
matrices.

Theorem 1 Cor any square matrix A with real number entries, A [JA’ is a symmetric
matrix and A [JA' is a skew symmetric matrix.
Proof Let (] A [JA’', then

0O A DA
A" A as [A DO DA D
A" [JA [as [A'[TTAL]
LJADA" [as A D0 0 AL

00
Therefore 00 ATA'is a symmetric matrix
Now let COATA

C'0ADATOA OA'T  (WhyD
0A DA [(WhyD
0 O DA'D00C

Therefore C O A TJA' is a skew symmetric matrix.

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a
skew symmetric matrix.

Proof Let A be a square matrix, then we can write
1 'y :
A=—A+A'H+—[A-A'[]
U L
[rom the Theorem 1, we know that TA [JA' s a symmetric matrix and [A TA'(is

1
a skew symmetric matrix. Since for any matrix A, [kATILA’, it follows that = [A+A'l

1
is symmetric matrix and T 'A—A'l is skew symmetric matrix. Thus, any square

matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.
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0 -0 -C
Example 22 Express the matrix J=|—1 [ [ | asthe sum of a symmetric and a
1 -0 -C
skew symmetric matrix.
Solution Here
0 -1 1
0o|l-0 0O -C
-0 o0 -C
- I
"o T
0o -0 -t
1 | —U
Let [[—[[[[D[:— -0 6 L[| 0| o1,
-0 O -6
-
- 1 -C
[ -0 (] - -
n — —
0o C
-
Now Udl— o 1o
U
-0
— 1 -L
L [ J
Thus 0o - O is a symmetric matrix.
C o s
]
| oSy -
Also, let Oo—mobE=1 0 6|=— 0O [
U U 5 6 U
é -0 C
LU J
- . -
o1l >3
0 o
Then 00 0 -0O=-0
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Thus 00 - O is a skew symmetric matrix.
I -0 =0 [. -1 =5]
0o — —| |o = =
o 0 | o O 0 -0 =[]
-0
Now Oobd=— 0 1 [+|— 0 0O)=-1 U dj=C
- . 1 0 -
| N EA
L O 4 L0 |

Thus, [Jis represented as the sum of a symmetric and a skew symmetric matrix.

| EXERCISE 3.3 |
1. [ind the transpose of each of the following matrices(]
> 15 6
1 -l :
i | = il {[ J i |05 6
) 0O 0 -1
-1 0 0O -0 1 =5

2. If A= 5 0O Ojand O=| 1 [ [|,then verify that
-0 1 1 1 0O 1

GO A DONDJA O, GOA OO0 DA OO
[0 O
-1 01 .
3. If A’=|-1 (]| and (1= . , then verify that
=R
GOA DONDA O GOA OO0 DA OO
(-0 O -1
4. If A'= . D} and D={ | J,thenﬁndm[[[l

5. [or the matrices A and [J, verify that TACT [0 T'A’, where
1 0
i A=-0|, O=[-1 O 1] G@oA=[1], O=[1 5 []
U U
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cosa  sina )
6. If a7 A={ . },thenverlfythatA'A[I
—sino.  coso
sina  cosa
il IfA={ ) },then verify that A" A 01
—cosa  sina
1 -1 5
7. ] Show that the matrix A =|-1 [0 1| is a symmetric matrix.
5 1 ¢
01 -1
[ii[ 1 Show that the matrix A=|—-1 [] 1 | isa skew symmetric matrix.
1 -1

1 5
8. [or the matrix A = L D} , verify that

[ TA JA'Ts a symmetric matrix
A0 TA DJA'Chs a skew symmetric matrix

O a b

.1 / 1 /
9. Dnd—[(A+A)and—[(A—A),when A=|-a O c
-b —¢ L[

10. Express the following matrices as the sum of a symmetric and a skew symmetric

matrix[|
. 6 -0 €
0 5
G { { ac | -0 o -1
- | 0o-1
. g 0 -1 "1 s
Gl | -0 =0 1 Ovl] 1 0
-0 -5 C
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Choose the correct answer in the Exercises 11 and 1]

11.

12.

If A, [ are symmetric matrices of same order, then AT [J[JA is a

[A[] Skew symmetric matrix 00 Symmetric matrix
[C[J [Cero matrix M7 Identity matrix
coso —sino
IfA=| ,then A [JA' [J1, if the value of o is
sin o cos o
T T
(ALl — [ —
6 C
[m
[COmn o -

3.7 Elementary Operation (Transformation) of a Matrix

There are six operations [fransformations on a matrix, three of which are due to rows
and three due to columns, which are known as elementary operations or
transformations.

i

il

fifi[]

The interchange of any two rows or two columns. Symbolically the interchange
of i" and j* rows is denoted by R, <> R and interchange of i and j/* column is
denoted by C, <> C.. ‘

1 01 -1 Jo1
_or example, applying R, <> R to A =|-1 JO 1], we get| 1 O 1
5 6 T 5 6 [

The multiplication of the elements of any row or column by a non zero
number. Symbolically, the multiplication of each element of the i row by £,
where k # [Jis denoted by R, — kR..

The corresponding column operation is denoted by C, — kC,

1 01 b

1

Cor example, applying C ! C ,to[] we get -
5 o ) = )

St -1 Vo1 1

-1 JoO

The addition to the elements of any row or column, the corresponding
elements of any other row or column multiplied by any non zero number.

Symbolically, the addition to the elements of i row, the corresponding elements
of /" row multiplied by & is denoted by R, — R [J kR..
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The corresponding column operation is denoted by C, —> C, LIAC..

1 0 1 0
Cor example, applyingR —R R, to C= {D J , we get {D 5} .
3.8 Invertible Matrices

Definition 6 If A is a square matrix of order m, and if there exists another square
matrix [J of the same order m, such that Al [J [JA 1, then [ is called the inverse
matrix of A and it is denoted by A". In that case A is said to be invertible.

[0 ¢ O-C
Cor example, let AT . J and 00 [ { L oc }be two matrices.
[0 O] o-C
Now AUE of[ar ¢
[0-0 —6+6] [1 O
O = =1
|0-0 -Ow D} {D 1}
1O . . .
Also LA O . J =I. Thus [lis the inverse of A, in other

words [] [JA"! and A is inverse of [, i.e., A []["

1. A rectangular matrix does not possess inverse matrix, since for products A
and A to be defined and to be equal, it is necessary that matrices A and [J
should be square matrices of the same order.

[l If [1is the inverse of A, then A is also the inverse of [J.

Theorem 3 Mniqueness of inverseInverse of a square matrix, if it exists, is unique.

Let A [I[a,] be a square matrix of order m. If possible, let [ and C be two
inverses of A. We shall show that [1 [1C.

Since []is the inverse of A

AOOUOA OI i
Since C is also the inverse of A

AC OCA UI ... (1]
Thus OO0 00 ACUO MWALC UIC UC

Theorem 4 If A and [ are invertible matrices of the same order, then (AT [0 A,
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[rom the definition of inverse of a matrix, we have

ADOADE 01
or A TAODOADE DA [Mre multiplying both sides by A" [J
or ATADD AOM JOAM [Since A'I ODA"D
or IO rADm OAM
or O AOm oA
or O OADm OOt AR
or [ TADT OO AT
Hence ACH OO AY

3.8.1 Inverse of a matrix by elementary operations

Let [J, A and [J be matrices of, the same order such that [J [J AL In order to apply a
sequence of elementary row operations on the matrix equation [J A, we will apply
these row operations simultaneously on [] and on the first matrix A of the product A
on RHS.

Similarly, in order to apply a sequence of elementary column operations on the
matrix equation [J [JAT], we will apply, these operations simultaneously on ] and on the
second matrix [ of the product A7 on RHS.

In view of the above discussion, we conclude that if A is a matrix such that A"
exists, then to find A" using elementary row operations, write A [JIA and apply a
sequence of row operation on A [J1A till we get, I [J [JA. The matrix [ will be the
inverse of A. Similarly, if we wish to find A" using column operations, then, write
A AT and apply a sequence of column operations on A TJAI till we get, [ TAL

Remark In case, after applying one or more elementary row [¢olumnCoperations on
A [OIA TA DAIL)if we obtain all [eros in one or more rows of the matrix A on L.H.S.,
then A" does not exist.

Example 23 Oy using elementary operations, find the inverse of the matrix

1T
AT
{[ _1}.

Solution In order to use elementary row operations we may write A [J1A.

U Bla men |1 Y2l b YA applyineR >R R -
= , en =
o 0o-1| o 05| =01 pplymg &, — ‘
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1 O
1 C . 1
or | 0 —1|A [applyingR — =R [
01 - — 5
L5 5]
_l _[_
1 5 5 .
or {D 1} =10 A [applying R, - R R [
L5 5
_l _[_
5 5
1
Thus Al [ o0
L5 5

Alternatively, in order to use elementary column operations, we write A [JAL i.e.,

1 ] 1 O
OA
-1 |01

Applying C — C LLC,, we get
1 ] 1 —C

OA
{D -5 | 0 1}

. 1
Now applying C_— —EC[ , we have

I C ! S

01 A

L 5

Uinally, applying C, — C, [I[C , we obtain

LA

1 0O 5 5

A

B R

LS 5

[

Hence Al [

n| -
m||
—
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Example 24 [btain the inverse of the following matrix using elementary operations

01 C
A=|1 O [].
011

(01 C 1 00
Solution Write A T A, ie, |1 O C| OO0 1 OJA
o1 1 001
(1 0O 01 O
or 01 Cp=|1 [ [A [applyingR, <>R [
|01 1 001
ool [0 o
or 01 C|=|1 0O A lapplyingR — R IR, [
0-5 0| [0-01
1o -1 [-0 1 0
or 71 C|=|1 O A lapplyingR — R R[]
05 -0 |0 -0
1 0O -1 -0 1 0
or 01 C|=1]1 [ (A [applyingR — R [5R []
oooo] |5 -0
EEEsES| -0 1 0
1 0O OA . 1
or A D lapplyingR — — R [
5 -0 1 L
o1 - — =
- - o o 0

-1 1
O 00
or 01 o []A lapplying R, — R R [J
O -0 1
IS
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]

O

[

\ﬁ

[

en

£

=

I

E

<
1
1__[ O [__[

or

Hence

Alternatively, write A AL i.e.,

L

OA|L 1

[

L

[

or

or

or

n[w O
™~ @) U
] O @)
& & &
I 1
O U — —_ 0 U
— U _[1 [ I
< < <
] ] ]
—
.I_A.I_A I [ T
- O [ 1 — [
[

or



L6 MATHEMATICS

1
1o o=
or Sl DioApl O-1) €, > C OICH
-5 01 1
o o =
L L]
! . 1
1 O C O T
or U1 L|ogA-0O O -1 €, > C, 15C [
001 5 - 1
L O C
1 -1 T
ot O O C
or 01 CLJgA|-0 O -1 »>C OO
001 5 001
L 00
1 -1
0 0 C
Hence AT | -0 O -1
S -1
L O O C

10 -0
Example 25 Dnd 0, if it exists, given D={ s } .

_ 10 -0 [1 ¢
Solution We have [[IELG.,{ 5 l}={ }[.

-1 1

— 1
or 51010 _ lapplying R, — ER‘ 0
-5 1 0 1



MATRICES m

2]
or 5[1[
0O C 11

O

L
 lapplyingR — R [I5R,[J

We have all [éros in the second row of the left hand side matrix of the above
e[ 1tlonCTherelore, (1! does not exist.

| EXERCISE 3.4

Osing elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 1]

1 -1 01 1 1]
1 2. 3
0o 11 O C
[ T (0 1] [0 5]
4 5. 6
15 O |0 O 11 O
[0 1] (1 5] [0 10
7 8. 9 }
B | | |0 C
10 0 11_D_6 12_6_[
-0 R l-Do1
_ i} [0 -0 ¢
O -0 01
13. 14. 15. |0 O C
-1 0O O 0
L - - |0 -0
(1 0O -r (0 0O -1
16. |-O O -5 17. |5 1 T
|05 L |01

18. Matrices A and [J will be inverse of each other only if
ADAD OOA MOAOOOA OO
[COAD DO DA DI MOADOOA OI
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Miscellaneous Examples

cosO sin6

Example 26 If A = {

cosn® sinnO
} , then prove that A" = { " 5

) ,neN.
—sinnd cosne}

—sin® cosO

Solution We shall prove the result by using principle of mathematical induction.

We have ROCIF A ={ cos® s1n6} , then A" ={ cosnd smne} neN

—sin® cos0O —sinn® cosnd
cosO sin® , | cos® sin®
1A =] ,so Al=|
—sin® cosH —sin® cos0O
Therefore, the result is true for n 1.

Let the result be true for n [l k. So

0 in® cosk® sink©
cos sin } then A* _{ }

E%EEA{ | —sink® cosk®

—sin® cosO

Now, we prove that the result holds for n Tk [l

—sink® coskO

N A1 ACAK = cosO® sinO || coskO sinkO
oW | -sin® cosH

[ cosOcoskO [IsinOsink®  cosOsinkO + sinOcoskO
| —sinOcos kO +cosOsin kO —sinOsin kO +cosOcos kO

[

[ cos @+ k00 sin[@+k6L| | coslk+16 sinlk+10
| —sin [0+ k0 cos ®+kOC| |—sink+10 cosk+16

Therefore, the result is true for n Tk [11. Thus by principle of mathematical induction,

, | cosn® sinn0
we have A" =

. , holds for all natural numbers.
—sinn® cosn0

Example 27 If A and [J are symmetric matrices of the same order, then show that A
is symmetric if and only if A and [J commute, that is AT [JTJA.

Solution Since A and [J are both symmetric matrices, therefore A" JA and [’ [ [
Let ATl be symmetric, then TATTT DA
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[t ADD OO'A'00A ™Why[TJ

Therefore LA [TAT

Conversely, if AT [JA, then we shall show that A[] is symmetric.

Now (AL A
O A las A and [J are symmetric[]
OAD

Hence AT is symmetric.

0 -1 5 0 a5 .
Example 28 Let A ={ } , 0 ={ }, C ={ } [ind a matrix [J such that
0 o 0 0

CU DAL DL

Solution Since A, [J, C are all square matrices of order [] and C0 DA is well
defined, [J must be a square matrix of order [

b
Let [[{a d]ThenC[ OAD O Ogives
C
[0 SHa b} {D —1“5 [}
or - 0o
|0 Ojle 4] |0 OJl0 O
[Ca+5¢c [h+5d] [0 O 40 0
o |La+lec [b+1d I O cC
[a+5c-1 b +5d -[B
o la+le—(1 h+d—(1)| |0 O

Oy equality of matrices, we get

La U5c OO0 . ag

La [le OCTICI] ... U

b 054010 ..

and b 0@ Omnon ...
Solving M and MTJwe get a (1O, ¢ [T Solving MTand M )we get b (1103

d 0l

11 -110
Therefore 00 {a b} ={ }
c d (] (1]
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Miscellaneous Exercise on Chapter 3

01
Let A= {D D} , show that [al ObA™ Ta"l Ona""' bA, where 1 is the identity

matrix of order [Jand n € N.

1 1 1 E’l—l E’l—l [n—l
If A=|1 1 1]|,provethat A" ="' ! 1] peN.
AR ot ot o
[0 -O o [t+th —n ) »
IfA= L then prove that A" = { , where 7 is any positive
—_— n —_—

integer.

If A and [J are symmetric matrices, prove that ATJ [1[JA is a skew symmetric
matrix.

Show that the matrix ['A[]is symmetric or skew symmetric according as A is
symmetric or skew symmetric.
0oy z
Cind the values of x, y, z if the matrix A=|x y —z | satisfy the equation
X -y z

A'A L

1 0O 0O
Cor what values of x L[1 T 1]| 0 O 1| | D00
1 0O 0

01
IfA={ J,showthatA OSA OO

[indx,if[x -5 —1]

[ A
[ I
0o — O

X
Oj=0
1



10.

11.

12.

MATRICES 101

A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below[]

Market Products
I Qoo goo 10000
11 6,11 Qoo Qoo

fa[JIf unit sale prices of x, y and z are Rs [157] Rs 1.500and Rs 1.[T] respectively,
find the total revenue in each market with the help of matrix algebra.

(b If the unit costs of the above three commodities are Rs [1[1] Rs 1.[Tland 5[]
paise respectively. [ind the gross profit.

. . 1 O O -0 -0 -=C
[ind the matrix [] so that [ =
O35 6 0o 0 6

If A and [J are square matrices of the same order such that A[] [J[JA, then prove
by induction that A" [J ["A. Curther, prove that TADM A" for all n € N.

Choose the correct answer in the following questions(]

13.

14.

15.

L IR R 2B JBR 2R 2

a p
IfA O v -a is such that A1, then

A1 Dalllpy 00 MO 1 DaddBy OO

[CO1 Doallpy 00 MO1 Dedopy OO

If the matrix A is both symmetric and skew symmetric, then

[A[] A is a diagonal matrix M A is a [éro matrix

[C A is a square matrix [0 None of these

If A is square matrix such that A~ (1A, then I TJATMITICA is equal to

ATTA oI DA [Col Mo A
Summary

A matrix is an ordered rectangular array of numbers or functions.
A matrix having m rows and 7z columns is called a matrix of order m [n.

[a.] ., is acolumn matrix.
yim 01
[a ] . 1is a row matrix.
41 On
An m [n matrix is a square matrix if m On.

Al [aij]m , 1s a diagonal matrix if a, 00 when i # .
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Allal, ., is a scalar matrix if a; 00 when i # j, a, O k, Tk is some
constantl) when 7 (/.

A [[a
A [éro matrix has all its elements as [éero.

AO[a]O [bij] 0 0O if GCA and [ are of same order, Hill a; U bij for all
possible values of i and ;.

kA U Ka, , U lkla,]
DA CITTTA

A 00O OA OO0
AOODOOOA

[A 000OC DA O OCL)where A, [ and C are of same order.
K[A O OO0 KA Ok, where A and [ are of same order, & is constant.
[k /A kA OIA, where k and / are constant.

; is an identity matrix, if .. [0 1, when i [I/, a.. (][] when i # ;.
ijinlln y ij ] ij ]

m [n

IfA D la,], . and [0 [bjk]n > then ADOC Ofc, ] 37 where ¢; = Zaij by

j=1
HJAMNCOOMALIC, GiD AN OCOJAL DAC, hLiill [A OOC DAC OOC
IfADO [aij]m ., then A" or AT [ [aﬁ]
G0 AT OA, Gi0 RADNOKA’, Giid A O0ON0OA’ O, GvO AONOTA!
A is a symmetric matrix if A’ [JA.

nllm

A is a skew symmetric matrix if A" [T CA.

Any square matrix can be represented as the sum of a symmetric and a
skew symmetric matrix.

Elementary operations of a matrix are as follows[]
[ﬂDRi<—>Rj or C, & C,

iR, — kR or C, — kC,

iR, = R, LAR or C, — C, LkC,

If A and [ are two square matrices such that AT [ [TJA 1, then [ is the
inverse matrix of A and is denoted by A'' and A is the inverse of [.

Inverse of a square matrix, if it exists, is unique.

\/
—_— Q‘Q_



Chapter

( DETERMINANTS )

% All Mathematical truths are relative and conditional. — C.P. STEINMETZ <

4.1 Introduction

In the previous chapter, we have studied about matrices
and algebra of matrices. We have also learnt that a system
of algebraic equations can be expressed in the form of
matrices. This means, a system of linear equations like

ax+b y=c,

a,x+b,y=c,

b
can be represented as {al 1} {x} ={cl}. Now, this

a, by ||y c
system of equations has a unique solution or not, is o AL
determined by the number a, b, — a, b,. (Recall that if LA A N
a b .
—L%—L or, a, b,—a,b, # 0, then the system of linear P.S. Laplace
a, b (1749-1827)

equations has a unique solution). The number a, b, —a, b,

: . . o . : . a b
which determines uniqueness of solution is associated with the matrix A = { ! bl }
a b
and is called the determinant of A or det A. Determinants have wide applications in
Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries.
Also, we will study various properties of determinants, minors, cofactors and applications
of determinants in finding the area of a triangle, adjoint and inverse of a square matrix,
consistency and inconsistency of system of linear equations and solution of linear
equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix A = [%] of order n, we can associate a number (real or
complex) called determinant of the square matrix A, where a;= (i, /)™ element of A.
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This may be thought of as a function which associates each square matrix with a
unique number (real or complex). If M is the set of square matrices, [J is the set of
numbers (real or complex) and f M — [ is defined by f(A) = k, where A € M and
k € [0, then f(A) is called the determinant of A. It is also denoted by [A Cor det A or A.

IfA—a
e d

b a b
} , then determinant of A is written as [A [ e d ‘ =det (A)
Remarks

(i) [Cor matrix A, A [is read as determinant of A and not modulus of A.
(i) Only square matrices have determinants.

4.2.1 Determinant of a matrix of order one

et A =[a ] be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

a4 .
Cet A= be a matrix of order 2 [12,
dy Ay
then the determinant of A is defined as[
a11~ . a12
det(A)=AF A= ; e ; =a,a,—a,a,
21 22,
0J

Example 1 Evaluate | 2

Solution We have =2Q)-0-H)=0+0=01

-1 2

x+1
Example 2 Evaluate

x—1 X
Solution We have

X x+1
=x(x)-(x+Dx-1) =x-x-D=x*—x2+1=1

x—1

4.2.3 Determinant of a matrix of order 3 x 3

Determinant of a matrix of order three can be determined by expressing it in terms of
second order determinants. This is known as expansion of a determinant along
a row (or a column). There are six ways of expanding a determinant of order
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corresponding to each of three rows (R, R, and R ) and three columns (L, [, and
[J) giving the same value as shown below.

Consider the determinant of square matrix A = [ai]_]

@G Ay g3
1e., [Al=|ay ay; a

an A 4
Expansion along first Row (R))

Multiply first element a,, of R by (1) * D [(=1)wmofsufxesinay] and with the
second order determinant obtained by deleting the elements of first row (R ) and first
column (L)) of [A [as a, liesin R and [],

ay 4

ic., 1) la,

an 4m

Multiply 2nd element a , of R by (=1)' *2 [(=1)sm ofsufxesinei,] and the second
order determinant obtained by deleting elements of first row (R,) and 2nd column (L)
of [Alasa,liesinR, and [,

a1

ic., -1)*2a,

an 4dm

Multiply third element a, of R, by (=1)' " [(=1)wmefsufxesina, ] and the second
order determinant obtained by deleting elements of first row (R, ) and third column (L )
of (Alasa, liesinR and [,

ay Ay

ie., D |,

Now the expansion of determinant of A, that is, CA Gwritten as sum of all three
terms obtained in steps 1, 2 and Cabove is given by

ay dyn 142 a1
detA=Al=(-1)""a,, +(D a4,
an 4 an 4o
a, a
+ (_1)l+ [al[ 21 22
n 4
or A=a, (a,a —a,a )—a,(a,a —a, a,)

+a1 (a21a2_ala22
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4,4, 4, -4, 4a,4,,— 4, azla\\+a12ama2\+a1\a21 a,
-a, a,a, .. (D

We shall apply all four steps together.

Expansion along second row (R,)

a;;p app Ay
(A |@y a; ay
g a4 am

Expanding along R, we get

A = (_1)2+1azl ap 4 +(_1)2+2 ) an 9o
ap am an 4o
L g an G
an dp
:_azl(alzau_ajza1>+azz(a11au_ama1>
_azw(auajz_aualz
DA[:_azlalzau—i_azlajzal\—i_azzauau_azzamal\_az\auafz
ta,a,a,
:auazzau_auazwaﬂ_alzazla\\+a12a2\au+a1\a21afz
-a, a,a, .. (2)

Expansion along first Column (C))

AF|ay a, an

Uy expanding along [, we get

a a
141 | %2 Ao
A= a (K1)

anp a4 anp a4

a a
[+1 12 10
+a; (D
ay  dyy

-4q, (azzau_azwaz)_azl (alza]\_al\a2)+aﬂ (alz azw_alwazz)
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DA[:anazza\_anaz a, — a4, al2a\+a2l a, a2+a1a12a2
— a4, 4,4y,
—4,a,4, -4, 4 a2_al2a2la\+al2a2 a1+a1 a, a,
—a, a, a, .. (D

Clearly, values of [A [in (1), (2) and (0) are equal. It is left as an exercise to the
reader to verify that the values of ‘A [by expanding along R , [], and [] are equal to the
value of TA [obtained in (1), (2) or (D).

Cence, expanding a determinant along any row or column gives same value.
Remarks

(i) [Coreasier calculations, we shall expand the determinant along that row or column
which contains maximum number of [eros.

(i) While expanding, instead of multiplying by (—~1)"*/, we can multiply by +1 or—1
according as (i +j) is even or odd.

2 2 11
@) CetA= { o 0} and (= {2 O} . Then, it is easy to verify that A =2[1. Also

Al=F0-[U=—0Uand I[=0-2=-2.

Ubserve that, [A[= [(—2) =2?[J[or [A [+ 2", Jwhere n = 2 is the order of
square matrices A and [,

In general, if A = k[Jwhere A and [ are square matrices of order », then (A= &”
[ [lwhere n=1, 2, [J

1 2 C

Example 3 Evaluate the determinant A= [—-1 [ 0],
o1 0

Solution Note that in the third column, two entries are [éro. So expanding along third
column (J ), we get

-1 O 1 2 1 2
01 01 -1
= 0(-1-12)-0+0 =—[2

A= [ -0 +0

0 sin o —Ccos o

Example 4 Evaluate A = | —sin o 0 sin 3

cosa —sinf 0
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Solution Expanding along R, we get
0 sin
—sinf3 0

=0 —sin a (0 —sin B cos a) —cos a (sin a sin B —0)
=sinasin B cosa—cosasinasinf =0

A=10

cos o 0

. . 0 x 0 2
Example 5 [ind values of x for which = .
x 1 01
0 x 0o 2
Solution We have =
x 1 01
1.€. O-x*=0-0
1.€. x2=0
Uence x=1232
|[EXERCISE 4.1 |
Evaluate the determinants in Exercises 1 and 2.
2 C
-0 -1

cos® —sin O X —x+1 x-1

(ii)

sin® cos 0O x+1 x+1

12
3. If A= 0 2},thenshowthat 2A =0MA O

4. If A= , then show that [TJA [=2[1[A [J

(e
oS = O
MmN

5. Evaluate the determinants
-1 =2 o -0 t
@ (0 0 -1 @ |1 1 2
O -0 o 2 0o 1
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0 1 2 2 -1 2
i) [-1 0 -C Gv) |0 2 -1
=2 [0 o -0 o
1 1 =2
6. IfA=]2 1 -0, find (A
0o o -C
7. [ind values of x, if
12 0 (2x C 12 0 x L
@ 01 - O x (w0 O D= 2x L
8. If ¥ 2 = - , then x is equal to
10 x 10
(A) O () 0o () — O (D) 0

4.3 Properties of Determinants

1001

In the previous section, we have learnt how to expand the determinants. In this section,
we will study some properties of determinants which simplifies its evaluation by obtaining
maximum number of [éros in a row or a column. These properties are true for
determinants of any order. JJowever, we shall restrict ourselves upto determinants of

order Tlonly.

Property 1 The value of the determinant remains unchanged if its rows and columns
are interchanged.

a  a, ap

Verification (et A=|b b, b

G G

Expanding along first row, we get

b, b.

G ¢

b

G

=a, (b,c —b c)—a,(b,c —b c)+a (b c,—b, c)
Oy interchanging the rows and columns of A, we get the determinant

>
Il

a,

(%)

a. b ¢,
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Expanding A, along first column, we get

A=a (b,c —c,b)~a,(byc —b c)+a (b c,—b,c)

Oence A= Al

Remark It follows from above property that if A is a square matrix, then

det (A) = det (A’), where A’ = transpose of A.

columns, we will symbolically write [ <> R,

Cet us verify the above property by example.

If R, = ith row and [ = ith column, then for interchange of row and

2 -0 C
Example 6 Cerify Croperty 1 forA= |1 0 [
1 O —C
Solution Expanding the determinant along first row, we have
A2 Il D o 0 N o0
0 -0 1 -0 1 0

=20-20)+0(=[2-0D+(0-0)
=—[0- 11+ 10=-20]
Oy interchanging rows and columns, we get

2 01
A= -0 L[| (Expanding along first column)
o o -C
_ > 0 O 0 01 N 01
- Tlo D 0 -0 0

2(0-20)+ 0(=2-0D+(0-0)
=—[0- 1T+ 1[0=-2[]

Clearly A=A,

Cence, [Toperty 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged, then sign

of determinant changes.
a  a, q
Verification (et A= |b, b, b,
G G ¢
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Expanding along first row, we get
A=a (byc —b c)—a,(bc —b c)+a (b c,~b,c)
Interchanging first and third rows, the new determinant obtained is given by

q & ¢
Al =|b b b
a  a, ap

Expanding along third row, we get
A=a (c,b —b,c)—a,(c,b —c b)+a (byc, —b c)
=—l[a, (b,c —b ¢c)—a,(byc —b c)+a (b c,—b, c)l
Llearly A =—A
Similarly, we can verify the result by interchanging any two columns.

We can denote the interchange of rows by R, <> Rj and interchange of
columns by [, <> 0.

2 -0 L
Example 7 Cerify [toperty 2 for A= [[1 0[],
10 -
2 -0 C
Solution A= | 0 [ | =—20(See Example [)
1 0 —r

Interchanging rows R, and R i.e., R, <> R, we have

2 -0 L
A = 1 0 -C
0o o0 C

Expanding the determinant A, along first row, we have

[_
0 H~ D

=220-0)+ [([1+ [2) + (0 - [0)
=0+ 11-100=20]

1 -0
+
o o

1 L

=2
A 00
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Clearly A =-A
Cence, [Toperty 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding
elements are same), then value of determinant is [eéro.

Proof If we interchange the identical rows (or columns) of the determinant A, then A
does not change. CJowever, by [Toperty 2, it follows that A has changed its sign

Therefore A=-A
or A=0
Cet us verify the above property by an example.

02 L
Example 8 Evaluate A= |2 2 [
02 L

Solution Expanding along first row, we get
A=1T1(0-D=2((0-D+ (-0
=0-2(-D+0(2)=0-011=0
Uere R, and R are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a
constant £, then its value gets multiplied by £.

a b ¢
Verification (et A= |4, b, ¢
a, b c

and A, be the determinant obtained by multiplying the elements of the first row by £.
Then

ka, kb kg
A=|a b ¢

a, b, ¢

Expanding along first row, we get
A =ka(b,c —b c)-kb (a,c —c,a)+kc (a, b —b,a)
=kla (byc —b c)—b (a,c —c,a)+c (a,b —Db, a)]
=k A
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ka, kb kg a b ¢
Clence a b o l|=k|la b q
a, b ¢ a, b, c

Remarks

(i) Oy this property, we can take out any common factor from any one row or any
one column of a given determinant.

(i) If corresponding elements of any two rows (or columns) of a determinant are
proportional (in the same ratio), then its value is [ero. Cor example

a, a, an

A=|b b b | =0(ows R, and R, are proportional)

ka, ka, ka-

102 100 [T

Example 9 Evaluate | 1 [ [
10 0 C

102 10 O |(1D OO @D 10 O
Solution Note that | 1 O dOl=| 1 O O =01 O =0
10 0O 0O 10 g g 10 O

(Osing “roperties Cand )

Property 5 If some or all elements of a row or column of a determinant are expressed
as sum of two (or more) terms, then the determinant can be expressed as sum of two
(or more) determinants.

a+A a,+Ar, a +A\: a, a, a- AAy, A
Cor example, b b, b |=|b b b |+|bh b, b
a &) cn G & G & C

a+A a,+r, a- +A\
Verification [.[1.S.=| b b, b,

¢ %) Ch
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Expanding the determinants along the first row, we get
A=(a, +L)(b,c —c,b)—(a,+L) (D c —b c)
+(@ +r)(b c,~b,c)
=a, (byc —c,b)—-a,(bc —b c)+a (bc,—b, c)
A (b,c —c,b)=A, (byc —b c)+ A (b c,—b,c)
(by rearranging terms)
a a, ap Mohy A
=|b b, b |+|b b b | =RILS,
S B G &6 C

Similarly, we may verify [roperty [lfor other rows or columns.

a b c
Example 10 Show that [a +2x b+2y c+2z|=0
x % z
a b ¢ a b c a b ¢

Solution We have |a+2x b+2y c+2z| =|a b c|+|2x 2y 2z

x v z Xy z X y z
(by Croperty )
=0+0=0 (Osing Croperty TJand Croperty [)

Property 6 If, to each element of any row or column of a determinant, the equimultiples
of corresponding elements of other row (or column) are added, then value of determinant
remains the same, i.e., the value of determinant remain same if we apply the operation
R, —>Ri+kRj0r 0= [i+k[j.

Verification
a a a a +ke ay,+kc, a +kc
et A=|b b, bland A =| b b, b, |,
¢ & ¢ q cy c

where A, is obtained by the operation R, — R, + AR .

Cere, we have multiplied the elements of the third row (R ) by a constant £ and
added them to the corresponding elements of the first row (R,).

Symbolically, we write this operationas R, - R, + kR,
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Now, again
a a, a ke ke, kc
A=|b b b |+|b b b | (Using [roperty [)
6 ¢ ¢ q ¢ c
=A+0 (since R and R are proportional)
Lence A=A
Remarks

(i) If A, is the determinant obtained by applying R, — kR or [l — kLl to the
determinant A, then A = kKA.

(i) If more than one operation like R, — R, + AR is done in one step, care should be
taken to see that a row that is affected in one operation should not be used in
another operation. A similar remark applies to column operations.

a a+b a+b+c
Example 11 [rove that [2a [a+2b [a+[b+2c|=a .
ta La+[b 10a+ [b+[c

Solution Applying operations R, — R, — 2R, and R — R — [R, to the given
determinant A, we have

a a+b a+b+c
A= 1|0 a 2a +b
0 L[a Ca+ b

Now applying R — R — [R,, we get

a+b a+b+c

IS

A= 1|0 a 2a +b

0 0 a
Expanding along [ , we obtain
a 2a+b
A=a +0+0
0 a

=a(@-0)=a(@)=a
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Example 12 Without expanding, prove that

X+y y+z z+Xx

A=| z X y =0

1 1 1

Solution Applying R, = R, + R, to A, we get
X+y+z x+y+z x+y+z
A= z X y

1 1 1

Since the elements of R, and R are proportional, A = 0.

Example 13 Evaluate

1 a bc
A=1|1 b ca
1 ¢ ab
Solution Applying R, - R, -R and R - R - R, we get
1 a be
A=10 b—a c(a-b)
0 c—a b(a—c)

Taking factors (b — a) and (¢ — @) common from R, and R , respectively, we get

1 a bc
A=b—-a)(c—a)|0 1T -c
0 1 -b

=(b—-a) (c—a)[(- b+ )] (Expanding along first column)
=(a-b)(b-c)(c—a)

b+c a a
Example 14 [rovethat | b c+a b |=labc
c c a+b
b+c a a

Solution (et A=| b c+a b
c c a+b
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Applying R, — R —R, —R to A, we get
0 —2¢ -2b
A=1|b c+a b
c ¢ a+b
Expanding along R, we obtain

b c+a

b
c+a +(-2b)
c ¢

‘b
~(2¢)
C

c a+b +b‘
=2clab+b*—bc)—-2b(bc—c*—ac)
=2abc+2ch—2bc*—2 bc+2bc?+2abc
= Oabc

x x l+x

Example 15 If x, y, z are different and A=|y y* 1+ |=0, then

z 20 l+z
show that 1 +xyz=0
Solution We have

x x2 1+x"

2 1+y[

A=y
2
z

y
22 1+z

2 .0
x x 1 [x x° x

=|y ¥ 1+y ¥ »y| (Using Croperty )

2 2 0
zo 1 |z z¢ =z

1 x x° 1 x x°
= (=Dl y Y|+xzll ¥y Y (Using [ <> [, and then [, <> [1)
1 z Z? 1 z Z?
1 x x?

=l y y2 (1+xyz2)

2
1 z z
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2
1 X X

= (1+xyz) 0 y—x y —x* (Using R, > R-R, and R, - R -R))
0 z—x z°-x°

Taking out common factor (y —x) from R, and (z — x) from R , we get

1 x X
A= (1+xyz2) (p—x) (z—x)|0 1 y+x
0 1 z+x

= (1 +xyz) (v —x) (z—x) (z —y) (on expanding along [)

Since A =0 and x, y, z are all different, i.e., x—y#0,y—z# 0, z—x # 0, we get
1+xyz=0

Example 16 Show that

l+a 1 1

1 1+b6 1 =abc(l+l+l+1J=abc+bc+ca+ab
a b ¢

1 1 1l+c¢

Solution Taking out factors a,b,c common from R, R, and R , we get

_+1 l l
a a a
1 1
—abcl — —+1 —
CL.0.S. b b b
r 1 1,
c c c

Applying R, - R, + R, + R, we have

1 I 1 1 I 1 1
I+—+—4+— I+—+—+— 1+—+—+—
a b c a b c a b c
1 1 1
= abc — —+1 -
A b b b
1 1 L
C C C




DETERMINANTS 110

1 1 1
= abc[lJrl+l+ljl l+1 1
a b c)ib b b
1 1,
c ¢ ¢
Now applying [, — [, — [, [J — [ -], we get
1 0 0
A:abc[l+l+l+lj 1 1 0
a b c)| b
Lo
c

1

abc[1+l +Z+%j[l(l ~0)]

a

1 1 1
abc[1+—+—+—j =abc + bc + ca + ab = R.[.S.
a b ¢

Alternately try by applying [, — [}, =[], and [J — [] — [, then apply
0,0 -al,

EXERCISE 4.2

Osing the property of determinants and without expanding in Exercises 1 to [] prove
that[]

X a x+a a-b b-c c—a

1. |y b y+b|=0 2. |b—c c—a a-bl=0
z ¢ z+c c—a a-b b-c
2 00O 1 bc a(b+c)

3. |0 0O If=0 4. |l ca b(c+a) =0
O O 1 ab c(a+b)
b+c q+r y+z a p x

5 lc+a r+p z+x|=21b q y
a+b p+q x+y c r z
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2

0 a -b -a” ab ac
6. |Fa 0 —c|=0 7 |ba -b* bc|=la’b*c’
b ¢ 0 ca ¢ -

Oy using properties of determinants, in Exercises [to 1] show that™]

1 a &
8. ()|l b b =(a-b)(b-c)(c-a)

2
1 ¢ ¢

1 1
i) |« b c=(a—b)(b—c)(c—a)(a+b+c)

a b c
2
X x° yz
9. |y ¥ X=x—-y»)(y-2)(z—x) (xy + yz + zx)
22 xy

x+0 2x 2x
10. () | 2x  x+0 2x |=(Ce+0)(0-x)
2x 2x  x+

yt+k y y
Gi) | ¥ vtk v |=K(Dy+k)
y y ytk

a-b-c 2a 2a
1. G| 20 b-c-a 2b |=(a+b+c)
2c 2c c—a->b
xX+y+2z X y
(i) z y+z4+2x y =2(x+y+z)[

z X z+x+2y
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1 x x°
2
12. |¥* 1 xz(l—x[)
2
X X 1
1+a*-b* 2ab —2b
[}
13. 2ab  1-d*+b> 2a =(1+a2+b2)
2b —2a 1-a*-b*
2
a-+1 ab ac
14. ab  b*+1  be |=1+ad® +b*+C2
ca ch A2+l

[Choose the correct answer in Exercises 1Jand 17]
15. [Cet A be a square matrix of order (1] [] then (kA [is equal to

(A) kTA D () KA D (O) k"TA D (D) TkAD
16. Which of the following is correct

(A) Determinant is a square matrix.

() Determinant is a number associated to a matrix.

(0) Determinant is a number associated to a square matrix.

(D) None of these

4.4 Area of a Triangle
In earlier classes, we have studied that the area of a triangle whose vertices are

. . 1
(x,, ¥), (x,, »,) and (x, y ), is given by the expression 5 [x,(,») +x, v->)+

x (¥,~»,)]. Now this expression can be written in the form of a determinant as

. x y 1
=—|x 1

A RE Y, .. (1)
x y 1

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the
determinant in (1).
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(i) If area is given, use both positive and negative values of the determinant for
calculation.

(ii)) The area of the triangle formed by three collinear points is [éro.
Example 17 Cind the area of the triangle whose vertices are (7] ), (— [J2) and (] 1).

Solution The area of triangle is given by

0o o1
Azl -2 1
11
=%[E(z—l)—[(—[—[)ﬂ(—[—lo)]
1 (1
-~ (*+2-10=—
2( i ) 2

Example 18 Cind the equation of the line joining A(1, [) and [7(0, 0) using determinants
and find & if D(%, 0) is a point such that area of triangle ACID is [8q units.

Solution et C(x, y) be any point on A[l. Then, area of triangle A JTis [ero (WhyD). So

10 0 1
—|1 O 1=0
2
x y 1
o 1
This gives E(y —[x)=0ory= (X,

which is the equation of required line A .
Also, since the area of the triangle A[ID is [Jsq. units, we have
1 01
1 0 0 I|=010

2
k0 1

This gives, % =+0,1e,k=7F 2.

|EXERCISE 4.3 |
1. [ind area of the triangle with vertices at the point given in each of the following [
® (1,0),(50), (LD @) (2,0, (1,1),(10,0

(i) (=2,-0), (4 2), (-1,-0
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2. Show that points
A(a b+c), 0, c+a),(c a+ b)are collinear.
3. [ind values of £ if area of triangle is [Jsq. units and vertices are
®) (£ 0),(50),(0,2) (i) (=2,0), (0,0, (0,k)
4. (1) [indequation ofline joining (1, 2) and ([} [) using determinants.
(i) Cind equation of line joining (] 1) and ([} [) using determinants.
5. Ifarea of triangle is [TIsq units with vertices (2, — ), (03 D) and (k, D). Then £ is
(A) 12 () =2 () 12,2 (D) 12,2

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form
using minors and cofactors.

Definition 1 Minor of an element «a_of a determinant is the determinant obtained by
deleting its ith row and jth column in which element a, lies. Minor of an element g, is
denoted by M, . ‘ ‘

Remark Minor of an element of a determinant of order n(n > 2) is a determinant of
order n — 1.

[
[ T e T

1
Example 19 Cind the minor of element [Jin the determinant A = |[]
U

Solution Since [lies in the second row and third column, its minor M, is given by

1 2
0 [l = [~ 1= — [(obtained by deleting R, and [] in A).

2

Definition 2 Cofactor of an element a,, denoted by A is defined by
A, =(-1)"/M,, where M, is minor of a,.

Example 20 [find minors and cofactors of all the elements of the determinant

Solution Minor of the element a, is Mi/.
Uere a,, = 1. So M,, = Minor of a = []
M, = Minor of the element a,, = [

M,, = Minor of the element a,, = -2
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M_, = Minor of the element a,, = 1
Now, cofactor of a, is Ai/.. So

Ay =DM, = (2=
A= (D2 M= (1) () =—1
Ay =1 My, = () (=2
A =)y M, =) '(1)=1

Example 21 [ind minors and cofactors of the elements a ,, a,, in the determinant

11°
a, aqp  aq

A= |4y Ay a4y
an dp 4o

Solution [y definition of minors and cofactors, we have

. a4y 4y
Minor of a,, =M, = a, a, =a,a —a, a,
- = (1)1 = _
Uofactor of @, = A, =(-D"" M, =a,a —a,a,
a a
. 12 %o
Minor of a,, =M, = =a,a —a a
a a [ 1 2
n 47

Jofactor of @, = A, = (-1)*' M, =(-1) (a,a —a, a,)=-a,a +a a,
Remark Expanding the determinant A, in Example 21, along R, we have
ay Ay

ay a4 ay

A=ED"ay |, [F D, + (D" a, |a, a,

an  aq

=a, A, +a,A,+a A , where A,-,- is cofactor of a,
= sum of product of elements of R, with their corresponding cofactors

Similarly, A can be calculated by other five ways of expansion thatis alongR ,R ,
1, L, and [,

Cence A = sum of the product of elements of any row (or column) with their
corresponding cofactors.

If elements of a row (or column) are multiplied with cofactors of any
other row (or column), then their sum is Cero. Cor example,
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A= all A21 v a12 A22 v alquu

a9 1n %o a, a
=q (_1)1+1 +a (_1)1+u 11 12
11 a, a, a, 10

al[ 142 a
a +a, (G0
[T

a, a,
@y @ @
=|dn @y & =0(since R, and R, are identical)

an 4 a4

Similarly, we can try for other rows and columns.

Example 22 Cind minors and cofactors of the elements of the determinant

2 =0 L
© 0 [land verify thata,, A, +a,A, +a, A =0
1 0 -
0 L
Solution We have M, = O _r =0-20=-20UA , = (-1)""(=20) = -20
0 C
M,=|, _|=-2-0=-00 A =" D=
0 o
M, =|, |[=0-0=r00 A, = (1) (C0)= [0
0 C
M, =| _|=21-20=-(T A, =P (D=0
2 C
M,=|| _|=-10-0=-10  A,=(1P2E10) =10
2 =L
M, =|, |=10+0=1D A, = (1P (10D =10
-0 C
M,=|y [=-12-0=-120 A =(1)"(12)=-12
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2
M, = 0 [1=[—[0=—22[ A,=(-1)"(22)=22
2 —r
and M = 70 =0+ 10=10111 A =) AD=10
Now a,=2,a,=-a =1A =-12,A =22,A =10
So a, A, ta,A,+a A

=2 (12)+ (=) (22) + (1) =—20— T+ 0 =0

|EXERCISE 4.4
Write Minors and Clofactors of the elements of following determinants (]
Lot h Gy |© ¢
0 O b d
0 0 1 0 C
2. (i) 1 0 @ |0 O -1
0 1 01 2
0ot
3. UOsing Dofactors of elements of second row, evaluate A= |2 0 1],
1 2 €
I x yz
4. [Using Cofactors of elements of third column, evaluate A= |1 ¥ zx|,
1 z xy

a4 4di;
5. IfA=|a,; a,, a, and Ai/_ is Lofactors of a;, then value of A is given by
an dp 4ag
(A) all A 1+ alZA 2 + al A [ ([) all A11+ a12 A21 + al A 1
([) a21 A11+ a22 A12 + a2 Al (D) all A11+ a21 A21 + a lA 1
4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall
discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A, i.e., A~ we shall first define adjoint of a matrix.
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4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix A =[a ], , is defined as the transpose of
the matrix [Ai/_]n » Where Ai/_ is the cofactor of the element a,. Adjoint of the matrix A
is denoted by adj A. ‘ ‘

a, dp 4
Let A=|ay, ay ay

an A4 4

Ay Ap Ay Ay Ay Ay
Then adjA=Transposeof| A,, A, A, |=|A, A, A,

AEI A[Z AE[ AlE AZ[ A[[

) 2 L
Example 23 Llind adj A for A = L J
Solution We have A, = A =-1,A =-1A =2
(A, Azl} { O —[}
Cence adji A= =
4 A, Ay -1 2

Remark Cor a square matrix of order 2, given by

a4y
A=

L 921 A

The adj A canalso be obtained by interchanging @ , and a,, and by changing signs

ofa,anda,,ie.,
| S

Change sign Interchange

21°

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order #, then

Aadj A) = (adj A) A = |A

L

where I is the identity matrix of order »
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Verification
a, ap aq Ay Ay Ay
Cet A=|4dy 4y 4y |, thenadj A= Ap Ay Ap
ag dp a4 A Ay A

Since sum of product of elements of a row (or a column) with corresponding
cofactors is equal to [A [and otherwise [ero, we have

Al 0 o0 100
AfadiA)=|0 [A] 0 |=[a] |0 1 0]=[A]T
0 0 |A 00 1

Similarly, we can show (adj A) A= |A| I

Cence A (adj A) = (adj A) A= |A| 1

Definition 4 A square matrix A is said to be singular if |A| =0.

1 2

0 J 1s Lero

Cor example, the determinant of matrix A = {

Cence A is a singular matrix.

Definition 5 A square matrix A is said to be non'Singular if |A| =0

=0-0=-2=%0.

A 1 2 ™ |A| 1 2
Cet =gl en |A|= 0
Cence A is a nonsingular matrix

We state the following theorems without proof.

Theorem 2 If A and [J are nonsingular matrices of the same order, then AT and [TA
are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their
ATl =|A] |0

respective determinants, that is, , where A and [J are square matrices of

the same order
Al 0 0
Remark We know that (adj A) A= |A| I=| 0 Al 0
0 0 |A
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Writing determinants of matrices on both sides, we have

Al 0 o0
(adj A)A] = |0 [A] 0
0 0 A
1 00
ie. (adj A)TAT= |A|]0 1 0 (Why0)
00 1
ie. (adj A)TAT= (A T(1)
ie. (adj A) = AL

In general, if A is a square matrix of order 7, then ladj (A) = AL

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.
Proof Cet A be invertible matrix of order # and I be the identity matrix of order x.
Then, there exists a square matrix [J of order n such that ATl= A =1

Now AU=1 So|AL| =1 or |A]|]]=1 (sincell|=],

Atf=[A][th
This gives |A| # 0. Oence A is nonsingular.

Conversely, let A be nonsingular. Then |A| =0

Now A (adj A) = (adj A) A = |A|1 (Theorem 1)
A Laa"A = Laa"A A=I
of N TN
Al=0A=1, wh = Laa"A
or 0= —,were[—mDJ
Th A is invertibl dA*‘—Lad'A
us 1s 1nvertible an =l 7

1

U
Example 24 IfA= |1 [
1 [

, then verify that A adj A = TA 1. Also find A™".

[ I A |

Solution We have |A| =1(10-D-(-D+(0-D=1=0
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[0 -0 —C
Therefore adj A = -1 1 O
-1 0 1
1 o O o -0 -0
Now A(adiA)y=|1 O -1 1 0
10 oj-1 o0 1
(=0 =% [+0 —[H0+[
=|-0-0 -[H[+0 -[HO0+C
_[—[—[ [+ +0 —-[HO+TC
(1 0 0 0 0
=10 1 0|=(1) |0 1 0|=]|A.I
10 0 1 0 0 1
0 -0 —C 0 -0 —C
1
Also A*l:l_ade :T_l 1 o|l=|-1 1 0
|A| -1 0 1 -1 0 1

2 0 1 2
Example 25 If A = L _ [} and [1= {_1 . }, then verify that (A[)' = ['A L
2 o r -2 -1 O
Solution We have A[] = =
I - -1 [ 0 -10

Since, |A[| =—11=0, (AD)"! exists and is given by

Ay = —agiary=—L 71T =LFD E}
(A0 A T 0 ) ulooa

Curther,

A| =—11#0and | [| =1=0. Therefore, A~ and [ both exist and are given by

L[-0 -0 L_[02
,]:__ s —
A 1 -1 2 11
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02700 =0 10 -0
Therefore D"A"=—i =_i =i 100
1111 1| -1 2 11 -0 -1 11 O 1

Oence (AD)"! =" A™!

(2 ¢
1 2

where [ is 2 (12 identity matrix and [ is 2 [J2 [éro matrix. [sing this equation, find A,

2 Of2 o [o 12
Solution We have A2=A.A= L { }:{ }

Example 26 Show that the matrix A = } satisfies the equation A>— [A + = [,

21 2 0O C
Cence  AT-[AsI= F UHD 12H1 0} {0 O}D
0 0 0o 0 1 0 0
Now AP—TA+1=10]
Therefore AA-TA=-1
or A AAYH)-TAA'=-TA" ([ost multiplying by A~ because A 0)
or AAAH)-O=-A"
or Al-TI=-A"
00| |2 O 2 —C
or AT =-A= {o [}{1 2} ) {—1 2}
. Al_{z —[}
ence 11 o
|EXERCISE 4.5
[ind adjoint of each of the matrices in Exercises 1 and 2.
1 -1 2]
1. F 2} 2. 02 0L
o -2 0 1)
Cerify A (adj A) = (adj A) A = A in Exercises [Jand [J
1 -1 2]
3. {_ZD _DJ 4. |50 2
110 ]
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[ind the inverse of each of the matrices (if it exists) given in Exercises Tto 11.

11.

12.

13.

14.

15.

16.

17.

18.

_ _ 1 2
- -1

2 2 6. 5 7.10 2 L
|0 O |- 00 ¢
1 0 0 (2 1 ¢ 1 -1 2
0 O 9 0 -1 0 10. |0 2 —T
|02 -1 -0 2 1 |0 -2 C
i 0 0

0 cosa sina.
i sinot. —coso

0 o 0o
[et A= ) L and [0 = ool Cerify that (AD)™" = O07' A™.

01
}, show that A2 — CA + (1 = 0. Oence find A".

IfA= L 5

0 2
Cor the matrix A = { 1 J , find the numbers a and b such that A2 + gA + bl = [,

1 1 1
[or the matrix A=|1 2 -—[
2 -1 [

Show that AL [A?+ [A+ 11 I= [I. Uence, find A'.
2 -1 1
IfA=|-1 2 -1
1 -1 2
Cerify that AY— [A? + [A— [1=[] and hence find A™!
et A be a nonsingular square matrix of order (111 Then [adj A [is equal to
(A) AL () AR () A0 (D) A
If A is an invertible matrix of order 2, then det (A™) is equal to
1
() et (A)

(A) det (A) () 1 (D) 0
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4.7 Applications of Determinants and Matrices

In this section, we shall discuss application of determinants and matrices for solving the
system of linear equations in two or three variables and for checking the consistency of
the system of linear equations.

Consistent system A system of equations is said to be consistent if its solution (one
or more) exists.

Inconsistent system A system of equations is said to be inconsistent if its solution
does not exist.

‘@ Note |In this chapter, we restrict ourselves to the system of linear equations
having unique solutions only.

4.7.1 Solution of system of linear equations using inverse of a matrix
Cet us express the system of linear equations as matrix equations and solve them using
inverse of the coefficient matrix.

Consider the system of equations
ax+bytcz=d
a,x+by+tc z=d,
axtby+cz=d
a b ¢ x d,
Cet A=|a, b, ¢ |,=|y|and=|d,
a. b, c- z d-

Then, the system of equations can be written as, Al = [J, i.e.,
a b ¢l |x d,
a, b, | |y|=14d,

a. b c ||z d-

If A is a nonsingular matrix, then its inverse exists. Now

All=1]
or AT (AD)=A1O (premultiplying by A™)
or (A'A) O0=A"10 (by associative property)
or I10=A"0
or O=A"'T

This matrix equation provides unique solution for the given system of equations as
inverse of a matrix is unique. This method of solving system of equations is known as
Matrix Method.
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If A is a singular matrix, then (A = 0.
In this case, we calculate (adj A) .

If (adj A) 0 # [, (O being [ero matrix), then solution does not exist and the
system of equations is called inconsistent.

If (adj A) 0= [J, then system may be either consistent or inconsistent according
as the system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations

2x+ y=1
(x+2y=101

Solution The system of equations can be written in the form Al = [J, where

ot o]

Now, A| =-11#0, Oence, A is nonsingular matrix and so has a unique solution.
L 112 -C
Note that EETI
112 -0O)|1
Therefore O=All0=- —
-0 2|0
. X 1| =L g
e TR N !
[lence x=0y=-1

Example 28 Solve the following system of equations by matrix method.
x—2y+[z=01

2x+y—z=1
x— 3 +2z=0
Solution The system of equations can be written in the form Al = [, where
0o =2 0 X L
A=12 1 -1|,0=|y|and O=|1
0o -0 2 z L

We see that
Al =0Q-D+2(0+ D+ 0(0-0D)=-1020
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Cence, A is nonsingular and so its inverse exists. Now

A =1, A, =0 A =-10
A21=—E, A22=—[, A2:1
A =1, A, =10 A =
. -1 -0 -1
Therefore Al = 10 -0 -0 C
-10 1 C
-1 -0 -1||C
So [=A"[=—i -0 -0 0|1
10
-10 1 Ol|C
. -10 1
ie =—-—|-[}=|2
10
z - L
[lence x=1l,y=2andz=1]

Example 29 The sum of three numbers is [] If we multiply third number by TJand add
second number to it, we get 11. [y adding first and third numbers, we get double of the
second number. Represent it algebraically and find the numbers using matrix method.

Solution et first, second and third numbers be denoted by x, y and z, respectively.
Then, according to given conditions, we have
x+y+z="010
y+lz=11
x+tz=2y orx—2y+z=0
This system can be written as A [J = [, where

1 1 1 X C
A= |0 1 L[|, 0=|y|and1=]11
1 2 1 z 0

Lere |A| =1(1+1)—(0— D+ (0-1) = U= 0. Now we find adj A

A =1(1+0)=0] A,=—(0-0)=T] A =-1
A, =—(1+2)=-[] A, =0, A =—(-2-1)="0
A =(0-1)=2, A,=—(0-0)=-7] A =(1-0=1
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[Jence

Thus

Since

or

Thus

1. x+2y=2
2x+ [y=1

4. x+y+z=1
2x+ [y+2z=2
ax+ay +2az =[]

Solve system of linear equations, using matrix method, in Exercises Jto 1]

EXERCISE 4.6 |
Examine the consistency of the system of equations in Exercises 1 to [
2. 2x—y=1[] 3. x+Dy=0
x+y=0 2x+ =0
5 [ky—-2z=2 6. k—y+z=101
2y —z=-1 2x+ y+z=2
x—-p=0 -2+ [z=-1
7. x+2y=0 8. 2x—y=-2 9. [x—y=1[I
x+ =0 x+y=0 x—-p=0
10. Tx+2y=10 C2xt+y+z=1 12. x—y+z=1
L
[(x+2y=1[] x—2y—z=5 2x+y—-1[2=0
F-z=0 x+ty+z=2
Lx—y+2z=0

13. 2x+ y+lz=1]
x=2y+tz=-1]
(x—y—-2z=1[]

0o -0 2
ade: O 0 —L

| o o 2
1= — ; =—| 0 0 -C
-1 01
O=A"[0
o B 2 ¢
O=—| 0 0 —0f11
0
-1 0 1]o
[2—[TH0] C
S S I U (RS N O U 6 N
z] | -wwo  Co|2c

x=1,y=2,z=01

O+ - Z=—0
2x—y+1z=12
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2 -0 ¢
15. If A=|U 2 —L[]|, find A" Osing A solve the system of equations
1 1 =2

2xx—[y+z=11
x+2y—[z= -0
xX+y—-2z=—1[]
16. The cost of [Tkg onion, (kg wheat and 2 kg rice is Rs [0. The cost of 2 kg onion,
[Okg wheat and (kg rice is Rs [0. The cost of (kg onion 2 kg wheat and [Tkg
rice is Rs [0. [ind cost of each item per kg by matrix method.

Miscellaneous Examples
Example 30 If a, b, ¢ are positive and unequal, show that value of the determinant
a b c

A=|b c¢ a]isnegative.

c a b
Solution Applying [l — [ + [, + [ to the given determinant, we get

at+b+c b ¢ 1 b ¢
A=la+b+c ¢ al=@+b+c)|l ¢ a
at+tb+c a b 1 a b

1 b c
=(@+b+c)|0 c—b a-c|(ApplyingR,—>R-R,andR -»R —R))
0 a-b b-c
=(a+b+c)[(c—=b)(b—c)—(a—c)(a—b)] (Expandingalong [])
=(a+b+c)(—a*—b—c2+ab+ bc+ ca)

-1
B (a+b+c)Ra+ 202+ 2¢% —2ab — 2bc — 2ca)

_71 (a+b+c)f(a=-by+(b-c)P+(c—ay]

which is negative (since a + b + ¢ [10 and (a — b)> + (b —c)*+ (c —a)*[10)
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Example 31 If @, b, ¢, are in A.T] find value of
2y+ 1 [y+0 [y+a

y+0 y+0 y+b
(y+0 [y+0 10y+c

Solution Applying R, — R, + R — 2R, to the given determinant, we obtain

0 0 0

Ly D Dv+b g (Since 2 =a + ¢)
(y+0 [y+0 10y+c

Example 32 Show that

(r+ z)2 Xy zx
A=| xy (X+Z)2 Yz |=2xyz(x+y+z)
Xz vz (x+ y)2

Solution Applying R, - xR ,R, = yR ,R —zR to A and dividing by xyz, we get

x(y+ z)2 X'y X'z
1 , 2 )
A=—1] x) y(x+ z) y'z
xyz )
xz* vz’ Z(x+ y)h

Taking common factors x, y, z from [J [ and [, respectively, we get

(y+ z)2 x x
A=y (xkz) Y
xyz ,
z z (x+y)“

Applying [, — [ - [, [l — [~ L[], we have

y+z2 x* - y+z2 x* - y+z2
(y+2)
A=l ¥ ()c+z)2—y2 0

z2 0 (x + y)2 ~z?
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Taking common factor (x +y + z) from [, and [ , we have

(y+z) x—(y+z) x—(y+z)
A=(x+y+z)? b ()C+Z)—y 0
z’ 0 (x+y)-z

Applying R, - R, — (R, + R ), we have

2yz =2z -2y
A=(x+y+z? |y x—-ytz 0
z’ 0 x+y-"[

1 1
Applying [, - (C, + — ) and [ — ([ +—[J , we get
y z

2yz 0 0
A=(x+y+z? |y x+z 2
z

, Z
2 —  x+y

Y

Uinally expanding along R, we have

100

A=@x+y+2? Q2 [(x+2) (x+y)—yz] = (x +y +2)* (22) ( + xp + x2)

=(x+y+2z) 2xz)
1 -1 2 -2 0

—

Example 33 Oseproduct |0 2 =0 | [T 2 =[] tosolve the system of equations

0o =2 0 o1 -2

x—y+2z=1
2y—lz=1
x—2y+ =2

1 -1 2 -2 0 1
Solution Consider the product |0 2 -0 | 0T 2 [
0 o=2 0 I B)
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[—2— T+12 0-2+42 1+40-T 1
= O+10-10 0+0-0 O0-0[+LC| =10
|-C-10+20 0-C+ 0 H+O-C 0

S = O
—_ o O

1 -1 2 -2 0 1
[Cence 0o 2 -0 =0 2 -L
|0 -2 O 0o 1 =2

Now, given system of equations can be written, in matrix form, as follows

1 -1 217[x] 1
0 2 -0O|yl=11
| -2 0O | Z ] |12
x] 1 -1 271 [=2 o0 1
or =0 2 -0 {1 =0 2 -
lz| |02 0O |2 O -2
—2+0+2 0
—| +2-0|= 1
| C+1-0 C
[Jence x=0,y=0andz= "1

Example 34 [rove that

a+bx c+dx p+gx a ¢ p
A= lax+b cex+d px+q |=(1-x)|b d ¢
u v w u v w
Solution Applying R, - R — xR, to A, we get

a(l-x*) c(1-x*) pd-x?)

A=| ax+b ex+d px+gq

u v w

a c P
(I-xHlax+b cx+d px+q

u v w
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Applying R, - R, —x R, we get

a ¢ p
A=(1-x)b d ¢q
u v w

Miscellaneous Exercises on Chapter 4

X sin® cos0

1. [rove that the determinant|—sin® —x 1 | is independent of 0.
cosO 1 X

a a bc

o, S8,
SRS TR

1
2. Without expanding the determinant, prove that|b  b* ca| = |1
¢ ¢ ab 1

cosa cos cosa sinfl —sina

3. Evaluate | —sinf3 cosf 0
sina cosf  sina sin3  cosa
4. Ifa, b and c are real numbers, and

b+c c+a a+b
A=|cta a+b b+c|=0,
a+b b+c c+a
Show that eithera+b+c=0ora=b=c.
x+a x X

5. Solvetheequation| x x4+a x |[=0,a=0

x X x+a
a bc  ac+c’
6. [tove that |a’+ab b’ ac | = e
ab  b'+bc
011 1 2 =2
7. IfA'=|-10 O -Oland O={-1 O 0 |, find(AL)

b -2 2 0 2 1
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8. [etA=|-2 [

9. Evaluate |

MATCEMATILCS

I 21

1 1 €
(i) [adj Al = adj (A7)
X y  x+y
x+y x

xX+y X y

1 x y

10. Evaluate 1 x+y y

I x x+ty

1|, Cerify that

i) (A=A

Osing properties of determinants in Exercises 11 to 1] prove that[]

11.

12.

13.

14.

16.

oa o PB+y
vy v a+p
1+ px
1+ py
z z l+pz
C —a+b —-atc
-b+a B
—-c+a —ctb [c
I 1+p I+ p+gq
2 [W2p [Hlp+2¢q| =1
L +0p 10+[p+Lgqg

Solve the system of equations

2 [0 10
—+—+— =0
X y oz

15.

Y+ =B-7) (y-a)(a-B) (a+p+7v)

=(1+ pxyz) (x —y) (y — z) (z — x), where p is any scalar.

—b+c| = {a+b+c)(ab+ bc + ca)

sina  cosa cos(oc + 8)
sinf3 cosf cos(B+8) =0
siny cosy cos(y +8)
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o o 20
—+——— =2
X y z

[Thoose the correct answer in Exercise 1[]to 1[]

17. Ifa, b, c, are in A.[] then the determinant

x+2 x+0 x+2a
x+0 x+0 x+2b is
x+0 x+0 x+2c

(A) O (M1 () x (D) 2x
x 0 0
18. If x,y, z are nonlero real numbers, then the inverse of matrix A={0 y 0|is
0 0 z
x' 0 0 x' 0 0
A |0 y' o0 () xpz| 0 y' 0
o o0 <z 0o 0 z!
. x 0 0 | 1 00
() —10 » 0 (D) —|0 1 0
z
Y50 0 2 Y50 0 1
1 sin6 1
19. [etA=|—sind 1 sin® |, where 0 <0 < 2n. Then
-1 —sin® 1
(A) Det(A)=0 (1) Det(A) € (2, »)

(0) Det(A) e (2,D (D) Det(A) € [2, O
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Summary

¢ Determinant of a matrix A= [q, ], , is given by [, = a,

a, a
. . 11 12 |« .

¢ Determinant of a matrix A ={ } is given by

@y Uy
|A| %
= =a, a,—a,da
azl a22 1 722 12 721

a b ¢

*

Determinant of amatrix A=|a, b, c, |isgivenby (expandingalongR )

ag by cq
a b ¢ b
c a, c a
h G 2 O 2 O
|A|=a2 b, ¢|=aq - b e
by ¢y an Cq ag b

ag by cy

For any square matrix A, the |[A| satisfy following properties.

¢
¢

[A'= [A[Jwhere A’ = transpose of A.
If we interchange any two rows (or columns), then sign of determinant
changes.

If any two rows or any two columns are identical or proportional, then value
of determinant is [ero.

If we multiply each element of a row or a column of a determinant by constant
k, then value of determinant is multiplied by £.

Multiplying a determinant by k£ means multiply elements of only one row
(or one column) by £.

If A=[a;],then|k.A|=k |A]

If elements of a row or a column in a determinant can be expressed as sum
of two or more elements, then the given determinant can be expressed as
sum of two or more determinants.

Ifto each element of a row or a column of a determinant the equimultiples of
corresponding elements of other rows or columns are added, then value of
determinant remains same.
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Area of a triangle with vertices (x,, y,), (x,, y,) and (x , y ) is given by
1 x »n 1
A=—|x 1
5|7 b)
X5 o 1
Minor of an element a, of the determinant of matrix A is the determinant
oltancd (LIdLItni™ row and J™ column and denoted by M,.
Cofactor of a, of given by A, = (= 1) M,

[alue of determinant of a matrix A is obtained by sum of product of elements
of a row (or a column) with corresponding cofactors. Cor example,

|Al=a, A, +a,A, +a A

10 1cr

If elements of one row (or column) are multiplied with cofactors of elements
of any other row (or column), then their sum is Lero. Lor example, a, A, +a,,

Azz +a1quu: 0

a, a4 4q Ay Ay Ay
If A=|ay, ay a, |, then adf A=|A, A, A,|,where A, is
a4 a, aq A Agn A

cofactor of a,
A (adj A) = (adj A) A = TAT1, where A is square matrix of order n.

A square matrix A is said to be singular or nonfSingular according as
[A=0or [A#0.

If ACl= A =, where [Jis square matrix, then [ 1is called inverse of A.
Also A" =[or [I'=Aand hence (A")'=A
A square matrix A has inverse if and only if A is non[Singular.

A =i(adj A)

A

¢ If ax+bytcz=d,

a,x+b,yt+c,z=d,
axtbytcz=d,
then these equations can be written as A [J = [J, where
g b X d,
A=la, b, c,|,0=|y|and [=|d,

a- b c- z d-
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€ [Inique solution of equation A= [1is given by [1=A"! [], where |A| #0.

€ A system of equation is consistent or inconsistent according as its solution
exists or not.

@ [or asquare matrix A in matrix equation Al =[]
(i) A [#0, there exists unique solution
(i) TA0and (adj A) 0 # 0, then there exists no solution
(ii}) (A= 0and (adj A) [0 =0, then system may or may not be consistent.

Historical Note

The Thinese method of representing the coefficients of the unknowns of
several linear equations by using rods on a calculating board naturally led to the
discovery of simple method of elimination. The arrangement of rods was precisely
that of the numbers in a determinant. The [hinese, therefore, early developed the
idea of subtracting columns and rows as in simplification of a determinant
Mikami, China, pp [0, [T]

Seki Cowa, the greatest of the [apanese Mathematicians of seventeenth
century in his work 'Kai Fukudai no Holin 1[TTIshowed that he had the idea of
determinants and of their expansion. [ut he used this device only in eliminating a
quantity from two equations and not directly in the solution of a set of simultaneous
linear equations. [T. Oayashi, [The Fakudoi and Determinants in Japanese
Mathematics,in the proc. of the Tokyo Math. Soc., [1

Cendermonde was the first to recognise determinants as independent functions.
CJe may be called the formal founder. Caplace (1[T2), gave general method of
expanding a determinant in terms of its complementary minors. In 1TT](agrange
treated determinants of the second and third orders and used them for purpose
other than the solution of equations. In 1C01, Causs used determinants in his
theory of numbers.

The next great contributor was facques [Thilippe "TMarie Cinet, (112) who
stated the theorem relating to the product of two matrices of m[columns and n[]
rows, which for the special case of m = n reduces to the multiplication theorem.

Also on the same day, Cauchy (1712) presented one on the same subject. (e
used the word [determinant[in its present sense. [Je gave the proof of multiplication
theorem more satisfactory than Cinetls.

The greatest contributor to the theory was Carl Tustav [acob [acobi, after
this the word determinant received its final acceptance.



Chapter 5

CONTINUITY AND
DIFFERENTIABILITY

&% The whole of science is nothing more than a refinement
of everyday thinking.” — ALBERT EINSTEIN +»

5.1 Introduction

This chapter is essentially a continuation of our study of [ A=ty
differentiation of functions in Class XI. We had learnt to
differentiate certain functions like polynomial functions and
trigonometric functions. In this chapter, we introduce the
very important concepts of continuity, differentiability and
relations between them. We will also learn differentiation
of inverse trigonometric functions. Further, we introduce a
new class of functions called exponential and logarithmic
functions. These functions lead to powerful techniques of
differentiation. We illustrate certain geometrically obvious
conditions through differential calculus. In the process, we
will learn some fundamental theorems in this area.

L Sir Issac Newton
5.2 Continuity (1642-1727)

We start the section with two informal examples to get a feel of continuity. Consider

the function

) Lif x<0 Y
X)=

2,if x>0 g

This function is of course defined at every y=fx)

point of the real line. Graph of this function is (0,2) ¢
given in the Fig 5.1. One can deduce from the
graph that the value of the function at nearby —9(0,1)
points on x-axis remain close to each other -
except at x = 0. At the points near and to the e {0 "
left of 0, i.e., at points like—0.1,—0.01,—0.001, v’

the value of the function is 1. At the points near
and to the right of 0, i.e., at points like 0.1, 0.01, Fig 5.1
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0.001, the value of the function is 2. sing the language of left and right hand limits, we
may say that the left (respectively right) hand limit of fat 0 is 1 (respectively 2). In
particular the left and right hand limits do not coincide. We also observe that the value
of the function at x =0 concides with the left hand limit. ote that when we try to draw
the graph, we cannot draw it in one stroke, i.e., without lifting pen from the plane of the
paper, we can not draw the graph of this function. In fact, we need to lift the pen when
we come to 0 from left. This is one instance of function being not continuous at x = 0.
ow, consider the function defined as

Lif x#0

f(x)={2,ifx=0

This function is also defined at every point. eft and the right hand limits at x=0
are both equal to 1. ut the value of the
function at x = 0 equals 2 which does not
coincide with the common value of the left
and right hand limits. Again, we note that we
cannot draw the graph of the function without
lifting the pen. This is yet another instance of <
a function being not continuous at x = 0. |

v

aively, we may say that a function is X< lO
continuous at a fixed point if we can draw the Y’
graph of the function around that point without
lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely as follows

Definition 1 uppose f'is a real function on a subset of the real numbers and let ¢ be
a point in the domain of . Then f'is continuous at ¢ if

lim /()= £ (¢)

More elaborately, if the left hand limit, right hand limit and the value of the function
at x = ¢ exist and equal to each other, then f7is said to be continuous at x = c. ecall that
if the right hand and left hand limits at x = ¢ coincide, then we say that the common
value is the limit of the function at x = c. ence we may also rephrase the definition of
continuity as follows a function is continuous at x = c if the function is defined at
x = ¢ and if the value of the function at x = c equals the limit of the function at
x = c. If fis not continuous at ¢, we say fis discontinuous at ¢ and c is called a point
of discontinuity of f.
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Example 1 Check the continuity of the function fgiven by f(x) =2x at x=1.

Solution First note that the function is defined at the given point x = 1 and its value is 5.
Then find the limit of the function at x = 1. Clearly

lim f(x)= linr%(Zx +) 2(0) 6 =
x—1 x—>

Thus ELT} f(x)=5=f1

ence, fis continuous atx = 1.

Example 2 xamine whether the function f'given by f(x) = x? is continuous at x = 0.

Solution First note that the function is defined at the given point x =0 and its value is 0.
Then find the limit of the function at x = 0. Clearly

lim £ (x) = lir%xz =0>=0
Thus )lci_lil)f(x) =0=71(0)
ence, f'is continuous at x = 0.

Example 3 iscuss the continuity of the function fgiven by f{x)= x at x=0.

Solution y definition

—x,if x<0
SO =1x, ifx20
Clearly the function is defined at 0 and f(0) = 0. eft hand limit of fat 0 is

lim f(x)= linol (—x)=0

x—0" x—>0"
imilarly, the right hand limit of fat0Ois

lim f(x)=limx=0

x—>0" x—>0"

Thus, the left hand limit, right hand limit and the value of the function coincide at
x=0.ence, fiscontinuous atx=0.

Example 4 how that the function fgiven by

x +, if x#

f("):{l, if x=0

1s not continuous at x = 0.
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Solution The function is defined at x = 0 and its value at x = 0 is 1. When x # 0, the
function is given by a polynomial. ence,

liIr(l)f(X)zlir%(x +) H + =

ince the limitof fatx =0 does not coincide with f(0), the function is not continuous
at x = 0. It may be noted that x = 0 is the only point of discontinuity for this function.

Example 5 Check the points where the constant function f(x) = & is continuous.
Solution The function is defined at all real numbers and by definition, its value at any
real number equals k. et ¢ be any real number. Then

lim f(x) = limk =k

ince f(c)=k= lim f(x) for any real number ¢, the function f'is continuous at

X—>C

every real number.

Example 6 rove that the identity function on real numbers given by f(x) = x is
continuous at every real number.

Solution The function is clearly defined at every point and f(c) = ¢ for every real
number c. Also,

lim f(x) = limx=c
xX—c X—>cC
Thus, lim f(x) = ¢ = f(c) and hence the function is continuous at every real number.
X—>C

aving defined continuity of a function at a given point, now we make a natural
extension of this definition to discuss continuity of a function.

Definition 2 A real function f'is said to be continuous if it is continuous at every point
in the domain of f.

This definition requires a bit of elaboration. uppose f'is a function defined on a
closed interval a, b, then for fto be continuous, it needs to be continuous at every
pointin a, b including the end points « and . Continuity of fat a means

fim £9=(0
and continuity of / at » means

lim 7 (x) =)

Observe that lim f(x) and lin}} f(x)do not make sense. As a consequence
x—a xX—>

of this definition, if f is defined only at one point, it is continuous there, i.e., if the
domain of f is a singleton, fis a continuous function.
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Example 7 Is the function defined by f(x) = x, a continuous function
Solution We may rewrite f as

—x,if x<0
fx) = x, if x>0

y xample , we know that ~ f'is continuous at x = 0.
et ¢ be areal number such that ¢ 0. Then f(c)=-c. Also

lim f(x) = lim (-x)=—c  (Why)
ince )1(1_>mc f(x)=f(c), f is continuous at all negative real numbers.
ow, let ¢ be a real number such that ¢ 0. Then f(c)=c. Also
m ) = mx=c (Why)
ince }gri f(x)=f(c), fis continuous at all positive real numbers. ence, f

is continuous at all points.
Example 8 iscuss the continuity of the function fgivenby f(x)=x x?>—1.

Solution Clearly fis defined at every real number ¢ and its valueatcisc  ¢*—1. We
also know that

lim £ (x) = )lcigg(x%x ~D=c +c -1
Thus )1(1_>mc f(x) = f(c),and hence fis continuous at every real number. This means
f1is a continuous function.
Example 9 iscuss the continuity of the function fdefined by f(x) = i, x#0.
Solution Fix any non ero real number ¢, we have

lim f(x) = lim + =1
X—>C X—>C x C

1
Also, since for ¢ #0, f(c) = ~owe have lim f(x) = f(c) and hence, fis continuous

at every point in the domain of f. Thus fis a continuous function.
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We take this opportunity to explain the concept of infinity. This we do by analysing

1
the function f(x) = - near x = 0. To carry out this analysis we follow the usual trick of

finding the value of the function at real numbers close to 0. ssentially we are trying to
find the right hand limit of fat 0. We tabulate this in the following (Table 5.1).

TableS5.1

x | 1] 002|o01F10 | 001=102| 0.001=10 | 10"
fol 1] ... s 10 100=10 > | 1000=10 | 107

We observe that as x gets closer to 0 from the right, the value of f(x) shoots up
higher. This may be rephrased as the value of f(x) may be made larger than any given
number by choosing a positive real number very close to 0. In symbols, we write

lim f(x)=+o
x—0"

(to be read as the right hand limit of f(x) at O is plus infinity). We wish to emphasise
that oois OT a real number and hence the right hand limit of fat 0 does not exist (as
a real number).

imilarly, the left hand limit of f at 0 may be found. The following table is self
explanatory.

Table 5.2
x | -1] -0. -02| —-10" — 1072 — 10 - 10"
S| -1 —.. -5 - 10 — 107 - 10 — 10"
From the Table 5.2, we deduce that the Y

value of f(x) may be made smaller than any
given number by choosing a negative real
number very close to 0. In symbols,
we write

lim f(x)=—o0
x—0"

(to be read as the left hand limit of f(x)at0is
minus infinity). Again, we wish to emphasise
that — oo is OT a real number and hence the

left hand limit of f'at 0 does not exist (as a real
number). The graph of the reciprocal function
given in Fig 5. is a geometric representation Y

of the above mentioned facts. Fig 5.3
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Example 10 iscuss the continuity of the function fdefined by

x+2,if x<1
JO=0 a1

Solution The function fis defined at all points of the real line.
Case 1 If ¢ 1,then f(c)=c 2. Therefore, lim f(x)=1lim(x+2)=c+2
x—c x—c

Thus, fis continuous at all real numbers less than 1.
Case 2 If ¢ 1, then f(c) =c— 2. Therefore,

lim f(x)=lim (x-2)=c-2=7(c)
Thus, fis continuous at all points x 1.
Case 3 If ¢ = 1, then the left hand limit of f at —_— . ' R

g «— } 4 — X
x=1lis a2 010/2 3
1irnf(x)=lirn(x+2)=l+2= a,-1)
x—=1" x—1 )

The right hand limit of fatx =1 is
lim f(x)=1lim(x-2)=1-2=-1
x—l* x—l*

ince the left and right hand limits of fatx=1 Fig 5.4
do not coincide, f is not continuous at x= 1. ence
x =1 is the only point of discontinuity of /. The graph of the function is given in Fig 5..

Example 11 Find all the points of discontinuity of the function fdefined by

x+2,if x<1

f(x) = 0, if x=1
Y
x—2,ifx>1 A

Solution As in the previous example we find that

is continuous at all real numbers x # 1. The left /
hand limit of fatx =1 1is /_
)}Lrﬁ}f(x)=)}g}(x+2)=l+2= Xl‘ 1 1 » X

—t—p ) } 1
The right hand limit of fat x = 1 is / ol £
lim f(x)= lim (x—2)=1-2 =1 L a-n
x—1 x—1"

ince, the left and right hand limits of fatx=1
do not coincide, fis not continuous at x = 1. ence v
x =1 is the only point of discontinuity of f. The
graph of the function is given in the Fig 5.5. Fig 5.5
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Example 12 iscuss the continuity of the function defined by

x+2,if x<0
S = —x+2,if x>0
Solution Observe that the function is defined at all real numbers except at 0. omain
of definition of this function is Y
v ,where = xeR x Oand
=xeR x0

2
Case 1 If c € |, then lim f(x)=lim (x 2)
X—>C X—>C

=c¢ 2= f(c)and hence fis continuous in .  X’'e—t -

“ } : —>X
‘ 3,/ a1 |01 2\3
Case 2 If c € , then lim f(x)=lim (—x 2)
X—>C X—>C

=—c 2= f(c)and hence fis continuous in ..
ince fis continuous at all points in the domain of £,
we deduce that f is continuous. Graph of this
function is given in the Fig 5.. ote that to graph
this function we need to lift the pen from the plane
of the paper, but we need to do that only for those points where the function is not
defined.

Example 13 iscuss the continuity of the function fgiven by

Yl
Fig 5.6

. Y

x, ifx=>0 A

X) = ) 24 =0

/) x%, if x<0 !
Solution Clearly the function is defined at _(2’2)
every real number. Graph of the function is CL1) P\ At
givenin Fig 5.. y inspection, it seems prudent el .
to partition the domain of definition of finto X+ — ) ———>bX
three disoint subsets of the real line. g
et ,= xeR x 0, ,=0and _Y'
— YecR x 0 Fig 5.7

Case 1 Atany pointin , we have f(x) = x* and it is easy to see that it is continuous
there (see xample 2).

Case 2 Atany pointin , we have f(x) = x and it is easy to see that it is continuous
there (see xample ).
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Case 3 ow we analyse the function at x = 0. The value of the function at 0 is £(0) = 0.
The left hand limit of fat 0 is

lim f(x)=lim x* =0 =0
x—0" x—0"
The right hand limit of fat 0 is
lim f(x)=limx=0
x—0" x—0"
Thus lim f(x) =0= f(0) and hence f is continuous at 0. This means that f is
x—0
continuous at every point in its domain and hence, fis a continuous function.
Example 14 how that every polynomial function is continuous.

Solution ecall that a function p is a polynomial function if it is defined by
px)=a, a x .. a x"forsome natural number n,a # 0 and a, € R. Clearly this
function is defined for every real number. For a fixed real number ¢, we have

lim p(x) = p (©)

y definition, p is continuous at c. ince ¢ is any real number, p is continuous at
every real number and hence p is a continuous function.

Example 15 Find all the points of discontinuity of the greatest integer function defined
by f(x) = x, where x denotes the greatest integer less than or equal to x.

Solution First observe that f'is defined for all real numbers. Graph of the function is
given in Fig 5.. From the graph it looks like that f'is discontinuous at every integral
point. elow we explore, if this is true.

(0, 3) e——o
(0,2) &—o
0, 1)+ e—o0
X'< , (_3: 0) . . (170) (2a0) (4,0)
ST L a0 (2.0 (100 ~
(-4,0) (-2,0)(-1,0) (0, -1) 30 G0
—o +(0,-2)
&—o 0,-3)
Y
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et ¢ be areal number which is not equal to any integer. It is evident from the
graph that for all real numbers close to ¢ the value of the function is equal to ci.e.,

lim f(x)=lim x = ¢ .Alsof(c)= candhence the function is continuous at all real
X—C X—>C

numbers not equal to integers.

et ¢ be an integer. Then we can find a sufficiently small real number
r Osuchthat c—r= c—1 whereas ¢ r= c.

This, in terms of limits mean that
lim f(x)=c—1, lim f(x) = ¢
x—c” xX—c
ince these limits cannot be equal to each other for any ¢, the function is
discontinuous at every integral point.
5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we learnt some
algebra of limits. Analogously, now we will study some algebra of continuous functions.
ince continuity of a function at a point is entirely dictated by the limit of the function at
that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 uppose fand g be two real functions continuous at a real number c.
Then

(1) f gis continuous at x = c.
(2) f—gis continuous at x = c.

() f.gis continuous at x = c.

0 (iJ is continuous at x = ¢, (provided g (c) # 0).

g
Proof We are investigating continuity of (f g) at x = ¢. Clearly it is defined at
x = c. We have

im(f +g)(x) = lim (/) x 42 x (by definition of f  g)

= liil} S(x)+ liil}g (x)  (by the theorem on limits)

=f(c) g(o) (as fand g are continuous)
= 2 () (by definition of f g)
ence, f g is continuous atx = c.

roofs for the remaining parts are similar and left as an exercise to the reader.
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Remarks

(i) Asaspecial case of () above, if f7is a constant function, i.e., f(x) = A for some
real number A, then the function (A . g) defined by (A . g) (x) =LA . g(x) is also
continuous. In particular if A =— 1, the continuity of fimplies continuity of — f.

(i) As a special case of () above, if f'is the constant function f(x) = A, then the

function > defined by &(x) = A is also continuous wherever g(x) = 0. In
g g g(x)

particular, the continuity of g implies continuity of ra

The above theorem can be exploited to generate many continuous functions. They
also aid in deciding if certain functions are continuous or not. The following examples
illustrate this

Example 16 rove that every rational function is continuous.

Solution ecall that every rational function fis given by

£(0) =%), 4(x) %0

q(x
where p and ¢ are polynomial functions. The domain of fis all real numbers except
points at which g is ero. ince polynomial functions are continuous (xample 1), fis

continuous by () of Theorem 1.
Example 17 iscuss the continuity of sine function.

Solution To see this we use the following facts

limsinx=0
x—0

We have not proved it, but is intuitively clear from the graph of sin x near 0.

ow, observe that f(x) = sin x is defined for every real number. et ¢ be a real
number. ut x=c¢ A If x > ¢ we know that # — 0. Therefore

lim f(x) = limsinx
X—>C X—>C

= }1123 sin(c+ h)

— limsin «os /4 +cos «sin A
h—0

— limsin «cos Aintcos sinc A
h—0 h—0

=sinc 0=sin c¢=f{(c)

Thus lim f(x) =f(c) and hence fis a continuous function.
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Remark A similar proof may be given for the continuity of cosine function.

Example 18 rove that the function defined by f(x) = tan x is a continuous function.

Solution The function f(x) = tan x = R . This is defined for all real numbers such

0S X

TE .
that cos x # 0, i.e., x # 2n 1) 5 We have ust proved that both sine and cosine
functions are continuous. Thus tan x being a quotient of two continuous functions is
continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to
composition of functions. ecall that if fand g are two real functions, then

(fog) (x)=f(g()
is defined whenever the range of g is a subset of domain of /. The following theorem
(stated without proof) captures the continuity of composite functions.

Theorem 2 uppose fand g are real valued functions such that (f'o g) is defined at c.
If g is continuous at ¢ and if fis continuous at g (c), then (f'o g) is continuous at c.

The following examples illustrate this theorem.
Example 19 how that the function defined by f(x)=sin (x?) is a continuous function.

Solution Observe that the function is defined for every real number. The function
f may be thought of as a composition g o / of the two functions g and 4, where
g(x)=sinxand % (x)=x% ince both g and % are continuous functions, by Theorem 2,
it can be deduced that fis a continuous function.

Example 20 how that the function fdefined by
J@=1-x x,
where x is any real number, is a continuous function.
Solution efine gbyg(x)=1—-x x and h by h(x)= x for all real x. Then
(hog) (x)="h(g(x)
=h(l-x x)
=1l-x x= f(x)

In xample , we have seen that 4 is a continuous function. ence g being a sum
of a polynomial function and the modulus function is continuous. ut then f being a
composite of two continuous functions is continuous.
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| EXERCISE 5.1|

1. rove that the function f(x)=5x— iscontinuousat x=0,atx=— andat x=5.

2. xamine the continuity of the function f(x)=2x>—1atx=.
3. xamine the following functions for continuity.

(@ f@=x-5 () f()=——.x#5
x* =25
(c) flx)= s x#7=5 0 (d) f=x-5
x+5
4. rove that the function f(x) = x" is continuous at x = n, where 7 is a positive

integer.
5. s the function f'defined by
x, if x<1

f(x)z{s, i x 1

continuous atx =0 At x=1At x=2
Find all points of discontinuity of f, where fis defined by

. ,xif+ x<—
6. f(x) 2x4+, if x=2 7. ) e i <
. X)= . x)=9 2x, if— <x
2x—, if 2 .
2xtf x>
x . X
—, ifx#0 —, 1f x<0
8. f(x)=1 x 9. f(x)=1 x
0, ifx=0 -1, ifx>0
) x+1, ifx>1 x —, if x2
X)= =
10. 2 +Lif x<1 1. S 4l ifx>2
10 .
x° =1, ifx<1
12. f(x): 5 .
X7, if x>1

13. Isthe function defined by

x+5, if x<1

x=5, if x>1

f(x)={

a continuous function
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iscuss the continuity of the function f, where f'is defined by

,1if0 <xd 2x, if x< 0
14. f(x)=4, ifl <x< 15. f(x)=40, if0<x<1
5, if 1&x< i Ix
=2, if x<-1
16. f(x)=92x, if —1<x<1
2, if x>1

17. Find the relationship between a and b so that the function f defined by

@) ax+1, if x<
X)=

bx+, if x>
1S continuous at x = .

18. For what value of A is the function defined by
M(x* —2x), if x<0
Ix+ if Ox >

continuous at x = 0 What about continuity at x =1

f(X)={

19. how that the function defined by g(x)=x— xis discontinuous at all integral
points. ere  x denotes the greatest integer less than or equal to x.

20. Is the function defined by f(x) = x*> —sin x 5 continuous at x=Tm
21. iscuss the continuity of the following functions
(a) f(x)=sinx cos x (b) f(x)=sinx—cosx
(c) f(x)=sinx.cosx
22. iscuss the continuity of the cosine, cosecant, secant and cotangent functions.
23. Find all points of discontinuity of £, where

sinx
@)=y x

x+1, ifx>0

if x<0

24. etermine if fdefined by

> . 1,
x“sin—, if x#0
S(x)= x
0, ifx=0

1s a continuous function
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25. xamine the continuity of f, where f'is defined by
sinx—cosx, if x#0

f00={4’ if x=0

Find the values of & so that the function fis continuous at the indicated point in xercises
2t02.

kcosx . b
5 , 1fx;t5 -
26. f(o)=4""" atx=—
. b 2
, if x=—
2
k*, if x<2
27. f()= . at x=2
, if x>2
kx+1, if x<m
28. f(x)= . atx=n
cosx, ifx>mn
) kx+1, if x<5
x)= =
29. Sy if S atx=15
30. Find the values of @ and 4 such that the function defined by
5, if x<2
f(x)=<3ax+b, if 2<x<10
21, if x>10

is a continuous function.
31. how that the function defined by f(x) = cos (x?) is a continuous function.
32. how that the function defined by f(x) =cos x is a continuous function.
33. xaminethatsin x isa continuous function.
34. Find all the points of discontinuity of f'defined by f(x)= x — x 1.

5.3. Differentiability

ecall the following facts from previous class. We had defined the derivative of a real
function as follows

uppose f1is areal function and c is a point in its domain. The derivative of fat c is
defined by

p et = f(©

h—0 h



12 MATMATIC

d
provided this limit exists. erivative of fat ¢ is denoted by f'(¢) or a(f (x)) .. The

function defined by

f'(x)=1lim

h—0

Sx+h)—f(x)
h

wherever the limit exists is defined to be the derivative of f. The derivative of f'is

d . dy .
denoted by f7(x) or a(f(x)) or if y = f(x) by pa y'. The process of finding
derivative of a function is called differentiation. We also use the phrase differentiate
f(x) with respect to x to mean find f'(x).

The following rules were established as a part of algebra of derivatives
M w v=u Vv

(2) (uv)'=u'v uv' (eibnit or product rule)

!/
1, _ ’ .
0 [Ej _wy zuv , wherever v # 0 (uotient rule).

v v
The following table gives a list of derivatives of certain standard functions
Table 5.3
f(x) X" sin x CoS X tan x
f'(x) nx"! cos X —sinx | sec? x

Whenever we defined derivative, we had put a caution provided the limit exists.
ow the natural question is what if itdoesn  t The question is quite pertinent and so is

its answer. If lirnM does not exist, we say that fis not differentiable at c.
h—0

In other words, we say that a function fis differentiable at a point ¢ in its domain if both

g LEHN=D 41 iy S D=1

are finite and equal. A function is said
h—0" h h—0"

to be differentiable in an interval a, b ifit is differentiable at every point of a, b. As
in case of continuity, at the end points a and b, we take the right hand limit and left hand
limit, which are nothing but left hand derivative and right hand derivative of the function
at a and b respectively. imilarly, a function is said to be differentiable in an interval
(a, b) if it is differentiable at every point of (a, b).
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Theorem 3 Ifa function fis differentiable at a point ¢, then it is also continuous at that
point.

Proofince fis differentiable at ¢, we have

lim f()(f) _f(C) — f’(C)

x—c X—c
ut for x # ¢, we have

10— f(e) = f(X)—f(C)'(x_c)
x—c
Therefore liil}(j)x «fle = 1iin {w.(x—c)}
or im(NmeE) £ c zlim{—f(x)_f(c)]lim(x—c)
X—c X—>c x—c xX—c x—c
=f"(c).0=0

or lim £ (x) =£(c)

ence f'is continuous at x = c.
Corollary 1 very differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have
seen that the function defined by f(x) = x is a continuous function. Consider the left
hand limit

SO+ -fO) b
h—0" h h
The right hand limit
fim LOFD=SO) 1 _,
h—0" h h

SO+~ f(0)
h

ince the above left and right hand limits at 0 are not equal, },123

does not exist and hence f is not differentiable at 0. Thus f'is not a differentiable
function.
5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative example. ay,
we want to find the derivative of f, where

J)=2x 1)
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One way is to expand (2x 1) using binomial theorem and find the derivative as
a polynomial function as illustrated below.

d d
af(x) - [@2x+1) ]

=i(122+ Iy + x+
dx

=2x*2 x
=@2x1°?
ow, observe that fx)=(hog) (x
where g(x)=2x land A(x)=x.ut ¢=g(x)=2x 1. Then f(x)=~h(f)=¢.Thus
df dh dt

- _ 2 — 2 - 2 - =
= @xD=QxDi2=F.2

The advantage with such observation is that it simplifies the calculation in finding
the derivative of, say, (2x 1) '®. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) et fbe a real valued function which is a composite of two

. . . dt dv .
functions u and v i.e., f=vou.uppose ¢=u(x)and if both - and ?‘; exist, we have

daf _dv dt
dx dt dx

We skip the proof of this theorem. Chain rule may be extended as follows. uppose
fis areal valued function which is a composite of three functions u, vand w i.e.,

f=wou)ov.Ift=v(x)and s = u(f), then

dx dt dx ds dt dx
provided all the derivatives in the statement exist. eader is invited to formulate chain
rule for composite of more functions.
Example 21 Find the derivative of the function given by f(x) = sin (x?).
Solution Observe that the given function is a composite of two functions. Indeed, if
t = u(x) = x? and v(f) = sin ¢, then

f(x) = ou) (x)=v(ux)) = v(x?) = sin x?
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ut = u(x)=x Observe that % =cost and ? =2Xx exist. ence, by chain rule
t

X
d
L/ = ﬂ~£=cost~2x
dx dt dx

It is normal practice to express the final result only in terms of x. Thus
d
4 = cost-2x=2xcosx’
dx

Alternatively, We can also directly proceed as follows

. dy d .
=sin (x?) = — =— (sin x*
y (x?) i dx( )

= cos X2 % (x?) = 2x cos x?

Example 22 Find the derivative of tan (2x ).

Solution et f(x)=tan (2x ), wu(x)=2x and v(¢f) =tan¢. Then
vou) @) =v(ux)=v2x )=tan (2 x )= f(x)

dv
Thus fis a composite of two functions. ut #=u(x)=2x . Then o =sec’ ¢ and

dat =2 exist. ence, by chain rule
dx

£=ﬂ~£= 2sec’ (2x+)
dx dt dx
Example 23 ifferentiate sin (cos ( x?)) with respect to x.
Solution The function f(x) = sin (cos (x?)) is a composition f(x) = (w o v o u) (x) of the
three functions u, v and w, where u(x) = x?, v(¢) = cos ¢ and w(s) = sin s. ut

t=u(x) =x*and s = v(¢) = cos t. Observe that aw = coss,é =—sin¢ and At =2x
ds dt dx

exist for all real x. ence by a generalisation of chain rule, we have

————— (cos s) . (—sin¢) . (2x) = — 2x sin x* . cos (cos x?)



1 MATMATIC

Alternatively, we can proceed as follows
y = sin (cos x?)

—y:— 1 2} — 2 i 2
Therefore b gy SO (cos x?) = cos (cos x?) It (cos x?)

= cos (cos x?) (— sin x?) 4 (x?)
dx

= — sin x? cos (cos x?) (2x)
= — 2x sin x? cos (cos x?)

| EXERCISE 5.2 |
ifferentiate the functions with respect to x in xercises 1 to .
1. sin (x? 5) 2. cos (sin x) 3. sin (ax b)
sin (ax +b) )
4. sec (tan (4/x)) 5. cos (cx+d) 6. cos x .sin? (x%)

7. 2+Jcot(x?) 8. cos(v/x)

9. rove that the function fgiven by

fx)=x-1,xeR
is not differentiable at x = 1.
10. rove that the greatest integer function defined by

fx)=x,0 x

1s not differentiable at x =1 and x = 2.

5.3.2 Derivatives of implicit functions

ntil now we have been differentiating various functions given in the form y = f(x).
ut it is not necessary that functions are always expressed in this form. For example,
consider one of the following relationships between x and y

x—y-n=0
x sin xy—y=0
In the first case, we can solve for y and rewrite the relationship as y = x — . In
the second case, it does not seem that there is an easy way to solve for y. evertheless,
there is no doubt about the dependence of y on x in either of the cases. When a
relationship between x and y is expressed in a way that it is easy to solve for y and
write y = f(x), we say that y is given as an explicit function of x. In the latter case it
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is implicit that y is a function of x and we say that the relationship of the second type,
above, gives function implicitly. In this subsection, we learn to differentiate implicit
functions.

Ly
Example 24 Find — ifx—y=m.
X

d.
Solution One way is to solve for y and rewrite the above as
y=x-m
dy
ut then — =1
dx
Alternatively, directly differentiating the relationship w.r.t., x, we have
d dmn
L =y = £2
dx (r=2) dx

dn ) )
ecall that I means to differentiate the constant function taking value w
by

everywhere w.r.t., x. Thus

d . d.
a(x)—a(J’) =0

which implies that

Example 25 Find il—‘lxy, ify sin y=cos x.

Solution We differentiate the relationship directly with respect to x, i.e.,

dy d . d
—_— + —_— S
(siny) = —(cosx)

which implies using chain rule

d d
—y+cosy~—y =—ginx
dx dx
This i Q ___sinx
1S BIVES dx I+cosy
where y22n 1) =



1 MATMATIC

5.3.3 Derivatives of inverse trigonometric functions
We remark that inverse trigonometric functions are continuous functions, but we will
not prove this. ow we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f(x) = sin™' x assuming it exists.

Solution et y=sin™ x. Then, x = sin y.

ifferentiating both sides w.r.t. x, we get
1= _dy
cos y

hich implies that @ _ 1
which implies tha — = =
P dx  cosy cos(sin”'x)

Observe that this is defined only for cos y # 0, i.e., sin™' x # —g, g Jle,x#—1,1,

ie,xe(-1,1).
To make this result a bit more attractive, we carry out the following manipulation.
ecall that for x € (— 1, 1), sin (sin™ x) = x and hence

cos?y=1—(sin y)>=1—(sin (sin'x))* =1 — x?
Also, since y € (—ggj , cos y is positive and hence cos y = /] — 2

Thus, forx € (- 1, 1),
dy 1 1

dx cosy J1—x2

Example 27 Find the derivative of f given by f(x) = tan™' x assuming it exists.

Solution et y = tan™ x. Then, x = tan y.

ifferentiating both sides w.r.t. x, we get

dy
1= 2 —
sec*y
which implies that
Q 1 1 3 1 1
dx  sec’ y 1+ tan’ y l+(tan (tan_l x))2 1+x

2
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Finding of the derivatives of other inverse trigonometric functions is left as exercise.

The following table gives the derivatives of the remaining inverse trigonometric functions

(Table 5.)
Table 5.4
f(x) cosx cotlx sec'x cosec lx
= -1 1 —
f'e 1-x* 1+x° %2 =1 xNx* -1
omain of f' | (-1, 1) R (—o0, 1) U (1, ®) | (-o0,—1) U (1, )

Find & in the following

10.

11.

12.

13.

14.

15.

X
2x + y=sinx

EXERCISE 5.3

2. 2x+ y=siny 3. ax + bhy> =cos y
xyty*=tanx y S.x2+xy »*=100 6. x +tx¥ xP y=1

2x
siny + cosxy =k 8. sinx +cos’y=1 9. y=sin’' ( J

y=tan1( x—xz J’
1- x

1 1
——=<x<—F=

Na

1+x?
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5.4 Exponential and Logarithmic Functions

Till now we have learnt some aspects of different classes of functions like polynomial
functions, rational functions and trigonometric functions. In this section, we shall
learn about a new class of (related) ¥
functions called exponential functions and

logarithmic functions. It needs to be
emphasied that many statements made
in this section are motivational and precise
proofs of these are well beyond the scope
of this text.

The Fig 5. gives a sketch of o
)1

Y= f@) =xy = @) =2 y=f () =x /(
and y =f (x) =x . Observe that the curves

get steeper as the power of x increases. x’« . >X
teeper the curve, faster is the rate of v
growth. What this means is that for a fixed Y’

increment in the value of x( 1), the Fig 5.9

increment in the value of y = f (x) increases as n increases for n = 1, 2, , . It is
conceivable that such a statement is true for all positive values of n, where f (x) = x".
ssentially, this means that the graph of y = f (x) leans more towards the y-axis as n
increases. For example, consider f, (x) = x'* and f,,(x) = x"°. If x increases from 1 to
2, f,, increases from 1 to 2'° whereas f,, increases from 1 to 2'°. Thus, for the same

increment in x, f,, grow faster than f, .

Vi

pshot of the above discussion is that the growth of polynomial functions is dependent
on the degree of the polynomial function — higher the degree, greater is the growth.
The next natural question is Is there a function which grows faster than any polynomial
function. The answer is in affirmative and an example of such a function is

y =f@) =10
Our claim is that this function f'grows faster than f (x) = x" for any positive integer 7.
For example, we can prove that 10* grows faster than f,  (x) = x'. For large values

of x like x = 10 , note that f, , (x) = (10 )" = 10 whereas (10 ) = 10! = 10'°.
Clearly f(x) is much greater than f,  (x). It is not difficult to prove that for all
x 10 ,f(x) f,, ). utwe will not attempt to give a proof of this here. imilarly, by

choosing large values of x, one can verify that f(x) grows faster than f, (x) for any
positive integer 7.
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Definition 3 The exponential function with positive base b 1 is the function

y=fx)=">n
The graph of y = 10~ is given in the Fig 5..
It is advised that the reader plots this graph for particular values of b like 2, and .
Following are some of the salient features of the exponential functions

(1) omain of the exponential functionis R, the set of all real numbers.
(2) ange of the exponential function is the set of all positive real numbers.

() The point (0, 1) is always on the graph of the exponential function (this is a
restatement of the fact that »° = 1 for any real b 1).

() xponential function is ever increasing i.e., as we move from left to right, the
graph rises above.

(5) Forvery large negative values of x, the exponential function is very close to 0. In
other words, in the second quadrant, the graph approaches x-axis (but never
meets it).

xponential function with base 10 is called the common exponential function. In
the Appendix A.1. of Class XI, it was observed that the sum of the series

1 1
I+—+—+..
12

is a number between 2 and and is denoted by e. sing this e as the base we obtain an
extremely important exponential function y = e*.

This is called natural exponential function.

It would be interesting to know if the inverse of the exponential function exists and
has nice interpretation. This search motivates the following definition.

Definition 4 et b 1 be a real number. Then we say logarithm of a to base b is x if
b =a.

ogarithm of a to base b is denoted by log, a. Thus log, a = x if b* = a. et us
work with a few explicit examples to get a feel for this. We know 2 = . In terms of
logarithms, we may rewrite this as log, = . imilarly, 10 = 10000 is equivalent to
saying log,, 10000 = . Also, 25 =5 = 25%is equivalent to saying log, 25 = or
log, 25=2.

On a slightly more mature note, fixinga base b 1, we may look at logarithm as
a function from positive real numbers to all real numbers. This function, called the
logarithmic function, is defined by

log, R - R
x—> log x=y ifb¥=x
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As before if the base b =10, we say it X y = log,x
is common logarithms and if b = e, then y =log,x
we say it is natural logarithms. Often _

. . . y =log  x
natural logarithm is denoted by /n. In this
chapter, log x denotes the logarithm 1,0
function to base e, i.e., In x will be written X'« 0 >X

as simply log x. The Fig 5.10 gives the plots
of logarithm function to base 2, e and 10.

ome of the important observations

about the logarithm function to any base ;;,
b 1 are listed below Fig 5.10

(1) We cannot make a meaningful definition of logarithm of non-positive numbers
and hence the domain of log functionis R .

(2) The range of log function is the set of all real numbers.
() The point (1, 0) is always on the graph of the log function.

() Thelog function is ever increasing, Y (=€)
i.e., as we move from left to right
the graph rises above.

(5) For x very near to ero, the value
of log x can be made lesser than
any given real number. In other
words in the fourth quadrant the

graph approaches y-axis (but never o T
meets it). o |

() Fig5.11 gives the plotof y=e*and v,
y = In x. It is of interest to observe Y
that the two curves are the mirror Fig 5.11

images of each other reflected in the line y = x.
Two properties of log functions are proved below
(1) There is a standard change of base rule to obtain log_p in terms of log, p. et

log, p = a, log, p =P and log, a = y. This means a“ = p, b’ = p and b* = a.
ubstituting the third equation in the first one, we have

(by = b7 =p
sing this in the second equation, we get

bP=p=>b"
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which implies B=ayora= B . ut then
Y

lo _ log, p
&P log,a

(2) Another interesting property of the log function is its effect on products. et
log, pq = a.. Then b* = pq. If log, p = B and log, g =y, then b = p and b" = q.
ut then b* = pg = bPb" = bP 7

which impliesa = vy, i.e.,
log, pg =log, p + log, ¢

A particularly interesting and important consequence of this is when p =¢. In
this case the above may be rewritten as

log, p> = log, p +log, p=2logp
An easy generalisation of this (left as an exercise) is

log, p" =nlog p
for any positive integer x. In fact this is true for any real number #, but we will
not attempt to prove this. On the similar lines the reader is invited to verify

x
logb; =log, x — log, y

Example 28 Is it true that x = e~ for all real x

Solution First, observe that the domain of log function is set of all positive real numbers.
o the above equation is not true for non-positive real numbers. ow, let ~ y = e*e* If
v 0, we may take logarithm which gives us log y=1log(e"¢*)=logx.loge=1logx. Thus
y=ux.ence x=¢"°&*is true only for positive values of x.

One of the striking properties of the natural exponential function in differential
calculus is that it doesn t change during the process of differentiation. This is captured
in the following theorem whose proof we skip.

Theorem 5%

d
(1) The derivative of e* w.r.t., x is e* i.e., i (e") = e
X

= | =

d
(2) The derivative of log x w.r.t., x is 1 ie., i (logx) =
X

* Please see supplementary material on Page 286.
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Example 29 ifferentiate the following w.r.t. x
i) e~ (i1) sin (logx),x 0 (iii)) cos ' (eY) (iv) ecs”

Solution

(i) et y=e " sing chain rule, we have

d -
2 ex~i (—x)=—e~
dx dx
(i) et y=sin (logx).sing chain rule, we have
dy d cos (log x)
— = cos (logx)-— (logx) =———=—=
n (log x)-—~— (log.x)
(i) et y=cos™ (e). sing chain rule, we have
dy _ -1 d —e*

B 2'_(6)(): 2
dx  \J1-(e")? dx 1-e™

(iv) et y=e™ ~ sing chain rule, we have

COSX

Q: COS X : _ :
¢ -(—sinx)=—(sinx) e

| EXERCISE 5.4/

ifferentiate the following w.r.t. x

e’ '

1. - 2. esin’x 3. &
sin x
4. sin (tan™ e™) 5. log (cos &) 6. ¢ +e .. tet
cos X
7. \/e‘/;, x>0 8. log(logx),x 1 9. logx’ x>0

10. cos(logx e),x 0

5.5. Logarithmic Differentiation

In this section, we will learn to differentiate certain special class of functions given in
the form

y=f0) = u(@) o

y taking logarithm (to base ¢) the above may be rewritten as

logy=v(x) log u(x)
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sing chain rule we may differentiate this to get

a1 '(x) -
L @ v(x) D) u'(x) V(x)-log u(x)
which implies that
ay v ()
e J{u(x) u'(x)+Vv'(x) log[u(x)]}

The main point to be noted in this method is that f(x) and u(x) must always be
positive as otherwise their logarithms are not defined. This process of differentiation is
known as logarithms differentiation and is illustrated by the following examples

. . ()C—)( )C2 ‘B
Example 30 ifferentiate ,[~——————— Wt x.
5x°+ x+
2
Solution et y= M
G5x"+ x+

Taking logarithm on both sides, we have

1
logy= Elog(x—) log( x2) —log( x> x5)
ow, differentiating both sides w.r.t. x, we get

lﬂ l 1 N 2x 3 X+
(x=)  x*+5 x*+ x+

y dx 2
dy Yy 1 2x X+
or = 5 T3 T2
dc 2| (x-) x"+5 x4+ x+

1 /(x—)(xz-l) 1 2 ox x4
2V 5%+ x+ | (x5 X+ 2+ ox+

Example 31 ifferentiate a* w.r.t. x, where a is a positive constant.

Solution et y = a*. Then

logy=xloga
ifferentiating both sides w.r.t. x, we have
ldy
v dx =loga
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or 2 log a
dx 7%

d .
Thus —(a") =a*loga

dx

d X d xloga xloga d

. £ - —(e =e —(xloga

Alternatively dx(a) dx( ) dx( ga)

=¢2e Jog a= a* log a.
Example 32 ifferentiate  x*"*, x 0 w.r.t. x.
Solution et y = x*"* Taking logarithm on both sides, we have

log y = sin x log x

heref 1 Q— in i(lo )+1o i(sinx)
Therefore v dx S xdx g X gxdx
Lt
or ydx = (smx);+ 0g X COSX
b _ {Siﬂ+cosxlo x}
or e y . g
sinx | SINX
=X [—+cosxlogx}
X
= ¥ sinx + x*™ - cosx log x
. oody . o
Example 33 Find E,lfy" X x'=a’
Solution Given that y* » x"=a’.
utting u=), v=xandw=x,wegetu v w=a’
Th i @4_@4_@—0 (1)
erefore FRRRFTRI

ow, u=y". Taking logarithm on both sides, we have

logu=xlogy
ifferentiating both sides w.r.t. x, we have
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1 du d d
—— = x—(logy) +log y—(x
o dx( gy) gydx()
= xl~ﬂ+logy-l
y dx
du X dy x| X dy
== —u|——+lo = ——+lo
0 R (y It gJ’J ¥ L} I gY | ...(Q2)
Also v=x
Taking logarithm on both sides, we have
logv=ylogx
ifferentiating both sides w.r.t. x, we have
1 dv d dy
—— = y—(logx)+logx—
v dx ydx( gx)+log dx
= y-l+logx~@
X dx
dv y dy}
— = v|=+logx—
© dx v[x S
[y dy}
= x’|—=+logx—
[x g It .. 0
Again w=Xx"

Taking logarithm on both sides, we have
logw=xlogx.
ifferentiating both sides w.r.t. x, we have

1 dw d d
—— = x—(logx)+logx-—(x
w dx dx( &) & dx()
1
= x-—+logx-1
x
i d_w_ 11
1.€. dx w(l log x)

=x (1 log x) .. 0
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From (1), (2), (), (), we have

o xdy (y dyj
——+lo +x7| =+logx— =
Y ( gyJ . g dx x(1 log x)=0

y dx
dy
or (x .y ! xy.logx)a=—x"(1 log x)—y.x"'—ylogy
dy —log y+y x4 log ) x
Therefore e .y 42 logx
| EXERCISE 5.5 |
ifferentiate the functions given in xercises 1 to 11 w.r.t. .
(x-1D(x-2)
1. cosx.cos2x.cos x 2.
\/(x—) (x9( x5
3. (log x)cos~ 4. xv—2sinx
oy, )
5. x+)?2.(x) .(x9) 6. |x+—| +x ¥
X
7. (log x)* xlog~ 8. (sinx)* sin \/;

2
x +1
xXCOSX +

9. xr (sin x)o 10.

x -1
1

11. (xcosx) (xsinx)*

o dy o ,
Find aof the functions given in xercises 12 to 15.

12. » y'=1 13. y'=x

14. (cos x) = (cos y) 15. xy=e+

16. Find the derivative of the function given by f(x)=(1 x)(1 x»)(1 x)(1 x)

and hence find f'(1).

17. ifferentiate ( x*—5x )( x x ) in three ways mentioned below
(i) byusing productrule
(i) by expanding the product to obtain a single polynomial.
(ii)) by logarithmic differentiation.
o they all give the same answer
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18. Ifu, vand w are functions of x, then show that

D d o
I u. v. w) g VW oue W v
in two ways - first by repeated application of product rule, second by logarithmic

differentiation.

5.6 Derivatives of Functions in Parametric Forms

ometimes the relation between two variables is neither explicit nor implicit, but some
link of a third variable with each of the two variables, separately, establishes a relation
between the first two variables. In such a situation, we say that the relation between
them is expressed via a third variable. The third variable is called the parameter. More
precisely, a relation expressed between two variables x and y in the form
x=f(t), y = g(¢) is said to be parametric form with ¢ as a parameter.

In order to find derivative of function in such form, we have by chain rule.

dy _ dy dx
dt  dx dt
dy
PR
or d_i = % (whenever% # Oj
dt
d
Thus i —‘)( sY _ g0 and——f(r)j provided £1() %0
dx '(t) dt

Example 34 Find %, ifx=acos0,y=asin0.
X

Solution Given that

x=acos0,y=asin 0
Therefore & =—asin 6, @ =acos 0
do do
dy
ence Q _ 4o _ aco.se =—cot0

dcx dx —gsin@
do
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Example 35 Find ZJ;, ifx=af, y="2at.
Solution Given that x = af?, y = 2at

dx _ dy _
0 dr =2at and & 2a

dy
_dr_2a 1
de dx  2at ¢

dt

Therefore

Example 36 Find ny, ifx=a (0 sin 0),y=a(l-cos0).

Solution We h e _ 1 0 L 0
olution We have de—a( cos 0), 40 = g (sin 0)
d
& 49 asin® 0
- = =———=tan—
Therefore de ~ dx  a(l+cos0) )
do

d
It may be noted here that dii is expressed in terms of parameter only

without directly involving the main variables x and y.

d 2 2 2
Example 37 Find _y’if X +y =a -
dx

Solution et x=acos 0,y =asin 0. Then

22 2 2
x +y = (acos 0) +(asin 0)
2 2

a (cos’0+(sin*0)=a

2 2 2
ence, x=acos 0,y =asin 0 is parametric equation of x +y =a
dx S dy -
ow — =— qcos’OsinBand — = asin’0 cos O

do do
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dy
dy 4o sm TBs 0 y
—:—:—:—tane:— _—
Therefore e ﬁ “eos 50 .
do

ad we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If x and y are connected parametrically by the equations given in xercises 1 to 10,

without eliminating the parameter, Find ZJ; .

1. x=2at,y=at 2. x=acos0,y=bcos0

3. x=sint, y=cos 2t 4. x= t,y=7

5. x=cos 6 —cos 20, y=sin 6 —sin 20

sin ¢ e cos ¢
Jcos2t’ \Jcos 2t

6. x=a@®-sinB),y=a(l cos 0) 7. x

t
8. X=a[005f+10gtan5jy=asint 9. x=asecO,y=>btan0

10. x=a(cos® 0OsinB), y=a(sin O —0 cos 0)
11. If x=\/asmflt,y=\ja°°sflt, showthat%z—Z
x X

5.7 Second Order Derivative
et y =f(x). Then

@, 1
oA - ()
Iff"(x) is differentiable, we may differentiate (1) again w.r.t. x. Then, the left hand

side becomes I [EyJ which is called the second order derivative of y w.r.t. x and

2
is denoted by % . The second order derivative of f(x) is denoted by f"(x). It is also
X
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denoted by *yory”ory,ify=f(x). We remark that higher order derivatives may be
defined similarly.

2
Example 38 Find % ,if y=x tan x.
X

Solution Given that y=x tan x. Then

d
Ey= x> sec *x
dzy d 2
Theref X _ % (sad+ 2y
erefore i i
= x 2sec x.secxtanx= x 2sec 2xtanx

dzy
Example 39 If y=Asinx cos x, then prove that F+y=0.

x

Solution We have

y .
——=Acosx— sin x

dx
d*y
and W (Acosx— sin x)
x
=—Asinx— cos x=-y
d’y
ence el y=0

2
Example 40 If y= e* 2 e*, prove that d—f—5Q+Oy =
dx dx

Solution Given that y= e* 2 e*. Then

d
Ey: e2x er = (e2x ex)
d’y
Therefore —5 =121 e*= (2 e~ eY
dx
d_zy -5 Q (2 2x X
ence 2 Y e e

—0(e¥ ey ( e 2en)=0



COTIT A IFFTIAITI

2
Example 41 If y = sin”! x, show that (1 — x?) d—f—xﬂ =0.
dx dx
Solution We have y = sin'x. Then
&y __ 1
dx (1-x%)
or a- xz) =1
d 2 dy)
“Ja-x .= |=0
© dx( =% dx
d*y d
or VA =x%)- 2 y y ( (l—xz))=0
d*y d 2x
or (1_x2) i} y _0
' dv g\
2 dly dy
ence (1-x )W_xa_o

Alternatively, Given that y = sin™! x, we have

1
_ ; 2).2
yl 1_x2 , L.C., (1 X )yl =1
o (1=x%). 23y, + 7 (0-2x)=0
ence (I =x)y,—xy, =0
| EXERCISE 5.7 |

Find the second order derivatives of the functions given in xercises 1 to 10.

1. x2 x 2 2. x? 3. x.cosx

4. logx 5. x logx 6. e*sin 5x

7. e*cos x 8. tan'x 9. log(logx)
10. sin(logx) ’

d
11. Ify=15cosx— sin x, prove that gf+y=0
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2
12. Ify=cos™ x, Find % in terms of y alone.
X

13. Ify= cos (log x) sin(log x),showthatx’y, xy, y=0

d’ d
14. Ify=Ae™ e, show that —;V —(m+n) =4 mny =0
dx dx

d2
15. Ify=500e* 00 e * show that —d;V= v
X

16. Ife’(x 1)=1, show that d—zy—(ﬂjz
. e (x 1)=1, show tha 2 e

17. Ify = (tan"'x)’, show that (x* 1) *y, 2 x(x* 1) y, =2

5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without proof. We
shall also learn the geometric interpretation of these theorems.

Theorem 6 (olle s Theorem) et f a, b — R be continuous on a, b and
differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers.
Then there exists some ¢ in (a, b) such that '(c) = 0.

InFig5.12 and 5.1, graphs of a few typical differentiable functions satisfying the
hypothesis of olle s theorem are given.
Y

N

Fig 5.12 Fig 5.13

Observe what happens to the slope of the tangent to the curve at various points
between a and b. In each of the graphs, the slope becomes ero at least at one point.
That is precisely the claim of the olle s theorem as the slope of the tangent at any
point on the graph of y = f(x) is nothing but the derivative of f(x) at that point.
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Theorem 7 (Mean alue Theorem) et f a, b — R be a continuous function on
a, b and differentiable on ( a, b). Then there exists some c in (a, b) such that

b)—f(a
oL ®-1@
b-a
Observe that the Mean alue Theorem (MT) is an extension of olle s theorem.

et us now understand a geometric interpretation of the MT. The graph of a function
y=f(x) is given in the Fig 5.1. We have already interpreted f’(c) as the slope of the
tangent to the curve y = f(x) at (c, f(c)). From the Fig 5.1 it is clear that M
—a

is the slope of the secant drawn between (a, f(a)) and (b, f(b)). The MT states that
there is a point ¢ in (a, b) such that the slope of the tangent at (c, f{c)) is same as the
slope of the secant between (a, f(a)) and (b, f(b)). In other words, there is a point ¢ in
(a, b) such that the tangent at (¢, f(c)) is parallel to the secant between (a, f(a)) and

(b, f(b)).

\7
N
(b, £ (b))
S
e (c, f(c)
\Qﬂ
X'<g ~ 2 —>X
YI
Fig 5.14

Example 42 erify olle s theorem for the function y=x> 2, a=-2and b=2.

Solution The function y =x? 2 is continuous in -2, 2 and differentiable in ( — 2, 2).
Also f(— 2) = f( 2) = and hence the value of f(x) at — 2 and 2 coincide. olle s
theorem states that there is a point ¢ € (-2, 2), where f{(c) =0. ince f1x) = 2x, we
get ¢ = 0. Thus at ¢ =0, we have f({c)=0and c=0 € (- 2, 2).

Example 43 erify Mean alue Theorem for the function ~ f(x) =x* in the interval 2, .

Solution The function f(x) = x? is continuous in 2, and differentiable in (2, ) as its
derivative f(x) = 2xis defined in (2, ).
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ow, f(2)= and f()=1.ence
fB)-fla) 1 -
b—a 2—

MT states that there is a point ¢ € (2, ) such that f{c)=.ut f"x)=2x which
implies c=. Thusat c¢= € (2,),wehave f1{c)=.

| EXERCISE 5.8 |

erify olle s theorem for the function f(x) =x* 2 x—, xe —,2.

2. xamineifolle stheorem is applicable to any of the following functions. Can
you say some thing about the converse of olle s theorem from these example

(1) f(x)= xfor x €5, (i) f(x)= xfor xe —2,2
(i) f(x)=x*—1forxel,2
3. Iff -5,5 — Ris a differentiable function and if f"(x) does not vanish
anywhere, then prove that f(— 5) # f(5).

4. erify Mean alue Theorem, if  f(x) =x*— x— in the interval a, b, where
a=landb=.

5. erify Mean alue Theorem, if  f(x) =x —5x*— xin the interval a, b, where
a=1land b=. Findall ¢ e (1,) for which f'(c)=0.

6. xamine the applicability of Mean alue Theorem for all three functions given in
the above exercise 2.

Miscellaneous Examples
Example 44 ifferentiate w.r.t. x, the following function
1 2
(i) V2x+ +——— (i) e *+cos 'x (iii) log (logx)
2x% +
Solution

i) et y=~2x+ +

1 1 1
—= 2+ 2+ X+ 2
N2x% +
ote that this function is defined at all real numbers x> _2 . Therefore

1 1
L los el wr @] vrerL oo
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1
- S@x+ 02 f@ e 2eox
B 2 3 X
2\/2x+ (2x2+ )E

2
This is defined for all real numbers X > ——.
(i) et y= e 4cos 'x
This is defined at every real number in 1] . Therefore
dy sec’ x 1

a:e 'd (secx)+k\/7
_ e (2secxi (secx)] + [

N—

: 1
_ 2secx (secx tanx) e* " + (— J

: 1
_ 2sec’ xtanx ™ " + (—

V1-x?

Observe that the derivative of the given function is valid only in 110 — { } as

the derivative of cos™ x exists only in (- 1, 1) and the function itself is not
defined at 0.

log (log x)
log

The function is defined for all real numbers x 1. Therefore

@) et y=Ilog (logx)= (by change of base formula).

dy 1 d
— = —— —(log (logx
& Tog ax oelog)
= ! ! —(logx)
loglog x dx
1

xloglog x
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Example 45 ifferentiate the following w.r.t.  x.

: x+1
() cos'(sinx) (i) tan” ( S X j (iii) sin”' ( 2 J
1+ cosx I+
Solution
(i) et f(x)=cos '(sinx).Observe that this function is defined for all real numbers.
We may rewrite this function as
f(x) = cos™! (sin x)
= cos”! {cos (E - ) }
2
T
=——X
2
Thus f'x) =-1.
() et f(x)=tan"! (1 S j Observe that this function is defined for all real
+cosx
numbers, where cos x # — 1 i.e., at all odd multiplies of 7. We may rewrite this
function as
o) = tan™) ( sin x j
I+ cosx
2 sin (xj CcoS (xj
_ tan”! 2 2
2cos’
L 2
o (2]
=tan |tan| —||(=—
L 2 2
X
Observe that we could cancel €os (Ej in both numerator and denominator as it
1
is not equal to ero. Thus f'(x) = >
2x +1
(@ii)) et f(x)=sin"! ( J . To find the domain of this function we need to find all
1+ 7

x+1

x such that —1<

—<1. ince the quantity in the middle is always positive,

1+
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x+1

we need to find all x such that

—-<1, 1.e.,all x such that 2*' <1 . We

1+

. . 1 S .
may rewrite this as 2 < o 2 * which is true for all x. ence the function

is defined at every real number. y putting 2 * = tan 0, this function may be
rewritten as

[ Ax+1
fi) = sin | 2 }
I+

ol o2r2 }
Sin —2
L1+(27)

—

. 4| 2tan6 }
sin” | —————
1+tan“ 0

sin“!'sin2 0
=20=2tan"! (2
1 d ..
Thus f(x) = 2'—'5(2 )

1+(27)

2
= -(2%)log2
1+

~ 2""'og2

X

1+
Example 46 Find f'(x) if f(x) = (sinx)*"* forall 0 x .

Solution The function y = (sin x)*"* is defined for all positive real numbers. Taking
logarithms, we have

log y = log (sin x)** = sin x log (sin x)
1 dy

d . .
Then J dx =i (sin x log (sin x))

. . 1 .
=cos x log (sinx) sin x. ‘—~i(smx)
sinx dx

=cos x log (sin x) cos x
=(1 log(sin x))cosx
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Thus —i = p((1 log(sin x))cosx)=(1 log(sin x)) ( sinx)* cos x

d
Example 47 For a positive constant a find d_y’ where
X

t+1 ]a
y=a !, and x= t+;

Solution Observe that both y and x are defined for all real ¢ # 0. Clearly

1
iz i( ”1) —a ti(t+lj-10ga
dt t

dr dr'\a !
) 1
=a ! l—t—2 loga

imilarl d a{t+l}a_l d(”lj
mular I - T -
Y dt A

el (4

dx
E;tOonlyift;t 1. Thus for ¢# 1,

d_dr _
S oy
dt a t+; —?

Example 48 ifferentiate sin 2 x w.r.t. e~

Solution et u (x) = sin? x and v (x) = e***. We want to find au = du_dx . Clearly

dv dv dx

du . dv . .
—— =2sin x cos x and —— = e®* (— sin x) = — (sin x) e**~
dx dx
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du 2sinxcosx  2cosx

Thus dv  —sinx e e«

Miscellaneous Exercise on Chapter 5

ifferentiate w.r.t. x the function in xercises 1 to 11.

1. (x¥*= x5) 2. sin x cos X
3. (Sx)es? x 4. sin'(x 4/x),0<x<1
1 X
COoS  —
5, —2 2 x2
2x+

_1{\/1+sinx+\/1—sinx} T
cot - - R X =
\/1+smx—\/1—smx 2

7. (log x)°ex, x 1

8. cos(acosx bsinx), for some constant ¢ and b.

. 4 i i
9. (sinx—cosx) Sinv-cosn — o
10. x* x* a° a“ for some fixeda Oand x 0

11. xxz_ +(x—- )xz,forx

12. Find 2 ify =12 (1 = cos ), x= 10 (t—sin 1), —%<t <X
dx 27 T2

13. Find %,ify=sin‘x sin ' \1-x%2,0<x<1

14. If xo/1+y+y/l+x=0,for,—1 x 1, prove that
dy 1
dx (1+x)2

15. If (x—a)* ( y—b)*=c? for some ¢ 0, prove that

d*y

is a constant independent of a and b.
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16.

17.

18.

19.

20.

21.

22.

23.
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chosz(a+y)'

Ifcosy=xcos (a y), with cos a # 1, prove that -
dx sina

2
Ifx=a(cost tsinf)andy=a(sint—¢cost), find %
X

Iff(x)= x ,show that f"(x) exists for all real x and find it.

sing mathematical induction prove that di(x” ) =nx"" for all positive
X
integers 7.
sing the fact that sin (A )=sinA cos cosAsin and the differentiation,
obtain the sum formula for cosines.
oes there exist a function which is continuous everywhere but not differentiable
at exactly two points ustify your answer.
f(x) glx) A(x) f'(x) g'(x) h(x)
If y=| ! m n ,provethat—y= ) m n
dx
a b ¢ a b c
_ . nd’y dy
Ify= pacos"x —1 <x<1, show that (l—x )——x——a y=0.
dx’ dx
Summary

@ Areal valued function is continuous at a point in its domain if the limit of the

function at that point equals the value of the function at that point. A function
is continuous if it is continuous on the whole of its domain.

¢ um, difference, product and quotient of continuous functions are continuous.

i.e., if fand g are continuous functions, then

(f g (x)=f(kx) g(x)is continuous.
(. 2) (x) = f(x) . g(x) is continuous.

(i} (x) Z% (wherever g(x) # 0) is continuous.

@ very differentiable function is continuous, but the converse is not true.



COTIT A IFFTIAITI

@ Chain rule is rule to differentiate composites of functions. If f=v o u, t=u (x)

and if both ﬁ and ﬂ exist then
dx t

af _dv dt
dx dt dx
€ Following are some of the standard derivatives (in appropriate domains)
i(sin’1 x)= 1 i(cos_1 x)=— 1
dx ll— 5 dx ll— 5
d ( 1 1 d 1 _1
—\tan x)z —(cot x) =
dx 1+ x? dx 14 x>
i(sec_1 ) = ; i(cosec_1 x) = _—1
dx xA1-x* o xA1-x?
d ( x) . d 1
—\e' )=e —(logx)=—
dx dx( 8 ) X

@ ogarithmic differentiation is a powerful technique to differentiate functions
of the form f(x) = u (x) *®. ere both  f(x) and u (x) need to be positive for
this technique to make sense.

@ Rolle’s Theorem If f a, b — Ris continuous on a, b and differentiable
on (a, b) such that f(a) = f(b), then there exists some ¢ in (a, b) such that

f'(c)=0.

® Mean Value Theorem If f a, b — R is continuous on a, b and
differentiable on (a, b). Then there exists some c in (a, b) such that

fr(c) — f(b)_f(a)

b—a

J
0‘0






Chapter

APPLICATION OF
DERIVATIVES

» With the Calculus as a key, Mathematics can be successfully applied
to the explanation of the course of Nature.” — WHITEHEAD %

6.1 Introduction

In Chapter 5, we have learnt how to find derivative of composite functions, inverse
trigonometric functions, implicit functions, exponential functions and logarithmic functions.
In this chapter, we will study applications of the derivative in various disciplines, e.g., in
engineering, science, social science, and many other fields. For instance, we will learn
how the derivative can be used (i) to determine rate of change of quantities, (ii) to find
the equations of tangent and normal to a curve at a point, (iii) to find turning points on
the graph of a function which in turn will help us to locate points at which largest or
smallest value (locally) of a function occurs. We will also use derivative to find intervals
on which a function is increasing or decreasing. Finally, we use the derivative to find
approximate value of certain quantities.

6.2 Rate of Change of Quantities

ds
Recall that by the derivative E , we mean the rate of change of distance s with

respect to the time ¢. In a similar fashion, whenever one quantity y varies with another
, s dy

quantity x, satisfying some rule y = f(x), then o (or f'(x)) represents the rate of
X

dy
change of y with respect to x and E} (or f'(x,)) represents the rate of change
X:XO

of y with respect to x at x = x, .
Further, if two variables x and y are varying with respect to another variable ¢, i.¢.,
if x= f(¢) and y = g(?), then by Chain Rule
Ay _dy fdv  dv

= —=#0
warl a T a
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Thus, the rate of change of y with respect to x can be calculated using the rate of
change of y and that of x both with respect to ¢.

Cet us consider some examples.

Example 1 Find the rate of change of the area of a circle per second with respect to
its radius » when » =5 cm.

Solution The area A of a circle with radius 7 is given by A = 7. Therefore, the rate

dA d
of change of the area A with respect to its radius r is given by I = E(ﬁ r)y=Cnr,

dA
When » =5 cm, I =107, Thus, the area of the circle is changing at the rate of
r

10T cm'Is.

Example 2 The volume of a cube is increasing at a rate of 9 cubic centimetres per
second. How fast is the surface area increasing when the length of an edge is 10
centimetres [J

Solution Cet x be the length of a side, [] be the volume and S be the surface area of
the cube. Then, [] = x"and S = [x", where x is a function of time ¢.

U .
Cow o 9cm's (Diven)
Theref o= L Ly =L o)™ Ly Chain Rul
erefore = dr I ar (Cy Chain Rule)
— [x[.@
dt
de 1
or i x .. (1)
s d,_ .. d o dx
2o S (x ) ==(x"H). = i
Jow 7 (Ix) o (xH) 0 (Cy Chain Rule)
0) @ ‘
= 1lx- F 27 (Osing (1))

ds
Hence, when x=10cm, E =[llem'[s
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Example 3 A stone is dropped into a quiet lale and waves move in circles at a speed
of 4cm per second. At the instant, when the radius of the circular wave is 10 cm, how
fast is the enclosed area increasing[’]

Solution The area A of a circle with radius 7 is given by A = nr . Therefore, the rate
of change of area A with respect to time ¢ is

d_A — i(mﬂ[)_i(mﬂ[).ﬂ = [ ﬂ “Jv Chain Rul
dt — dt dr " ar (b Chain Rule)
. dr
It is given that o =4cmls

dA
Therefore, when » = 10 cm, T = (10) (4)=0xn

Thus, the enclosed area is increasing at the rate of [0n cm'(s, when » =10 cm.

dy
< Note 2 S positive if y increases as x increases and is negative if y decreases
X

as x increases.

Example 4 The length x of a rectangle is decreasing at the rate of [Jem/inute and
the width y is increasing at the rate of Ccmminute. When x =10cm and y = [cm, find
the rates of change of (a) the perimeter and (b) the area of the rectangle.

Solution Since the length x is decreasing and the width y is increasing with respect to
time, we have

ax = —[lcm[min and & = [emmin
dt dt
(a) The perimeter [Jof a rectangle is given by
O= O(x Oy)
dr dx dy} .
Theref — = [| —+—=| = U(-H D) =-lcmlmin
sreore a = Na )T
(b) The area A of the rectangle is given by
A=x.y
dA d d
Therefore 2o e

a ar

OHD 0100  (asx =10 cm and y = Cem)
= Cem in
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Example 5 The total cost C(x) in Rupees, associated with the production of x units of
an item is given by
C(x) =0.005 x"'110.00)x" [ [0x 15000
Find the marginal cost when [Junits are produced, where by marginal cost we
mean the instantaneous rate of change of total cost at any level of output.

Solution Since marginal cost is the rate of change of total cost with respect to the
output, we have

dc
Marginal cost (MC) = o 0.005("x") —0.0( )+ [0
When x=1]MC= 0.015()—0.04(0) + [0

=0.105 00.100J0=[0.015
Hence, the required marginal cost is Rs (0.0 (nearly).

Example 6 The total revenue in Rupees received from the sale of x units of a product
is given by R(x) = [x¥” 0 [Tx 5. Find the marginal revenue, when x = 5, where by
marginal revenue we mean the rate of change of total revenue with respect to the
number of items sold at an instant.

Solution Since marginal revenue is the rate of change of total revenue with respect to
the number of units sold, we have

dR
Marginal Revenue (MR) = T [x+ [
When x=5MR=[5) 0=

Hence, the required marginal revenue is Rs [T]

EXERCISE 6.1

1. Find the rate of change of the area of a circle with respect to its radius » when
(a) r=0Ocm (b) r=4cm

2. The volume of a cube is increasing at the rate of [Jcm'’s. How fast is the
surface area increasing when the length of an edge is 1 Jem[]

3. Theradius of a circle is increasing uniformly at the rate of CJcm/s. Find the rate
at which the area of the circle is increasing when the radius is 10 cm.

4. An edge of a variable cube is increasing at the rate of [Jem(s. How fast is the
volume of the cube increasing when the edge is 10 cm long[]

5. A stone is dropped into a quiet lae and waves move in circles at the speed of
5 cmls. At the instant when the radius of the circular wave 1s [cm, how fast is
the enclosed area increasing[’]
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The radius of a circle is increasing at the rate of 0.CJcm(s. What is the rate of
increase of its circumferencel

The length x of a rectangle is decreasing at the rate of 5 cmminute and the
width y is increasing at the rate of 4 cmminute. When x = [tm and y = [tm, find
the rates of change of (a) the perimeter, and (b) the area of the rectangle.

A balloon, which always remains spherical on inflation, is being inflated by pumping
in 900 cubic centimetres of gas per second. Find the rate at which the radius of
the balloon increases when the radius is 15 cm.

A balloon, which always remains spherical has a variable radius. Find the rate at
which its volume is increasing with the radius when the later is 10 cm.

A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled
along the ground, away from the wall, at the rate of "cm’s. How fast is its height
on the wall decreasing when the foot of the ladder is 4 m away from the wall [J
A particle moves along the curve [ = x~ [T] Find the points on the curve at
which the ylcoordinate is changing [Jtimes as fast as the x[¢oordinate.

1
The radius of an air bubble is increasing at the rate of T cm(s. At what rate is the

volume of the bubble increasing when the radius is 1 cm[]

U
A balloon, which always remains spherical, has a variable diameter T (Ix+1).

Find the rate of change of its volume with respect to x.
Sand is pouring from a pipe at the rate of 1 JJcm'[s. The falling sand forms a cone
on the ground in such a way that the height of the cone is always onesixth of the
radius of the base. How fast is the height of the sand cone increasing when the
height is 4 cm[J
The total cost C(x) in Rupees associated with the production of x units of an
item is given by

C(x) =0.00Cx" J0.00x [15x [14000.
Find the marginal cost when 1[units are produced.
The total revenue in Rupees received from the sale of x units of a product is
given by

R(x)=10x"0Ox O15.

Find the marginal revenue when x =[]

Choose the correct answer in the Exercises 1[]and 1]

17.

The rate of change of the area of a circle with respect to its radius  at » = Tcm is
(A) 10n (O) 10 (C) (0) 1ln
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18. The total revenue in Rupees received from the sale of x units of a product is

given by
R(x) = Ix” 0Tk 5. The marginal revenue, when x = 15 is
(A) 1101 (1) 9t (C) 90 () 101

6.3 Increasing and Decreasing Functions

In this section, we will use differentiation to find out whether a function is increasing or

decreasing or none.
Consider the function f'given by f(x) = x", x € R. The graph of this function is a
parabola as given in Fig [11.

Calues left to origin Calues right to origin
x | fx)=x" X X S&x)=x
[T] 4 0 0
L i 1 1
C 4 Fee C 4
xU
(1 1 - height of 1 1
1 1 : graph at x, O )
Sl R A POSREAN VS - 3
X 310 1x2 X C 4
0 0 T O 4
as we move from left to right, the as we move from left to right, the
height of the graph decreases Y height of the graph increases

Fig 6.1

First consider the graph (Fig [11) to the right of the origin. [lbserve that as we
move from left to right along the graph, the height of the graph continuously increases.
For this reason, the function is said to be increasing for the real numbers x 0.

Cow consider the graph to the left of the origin and observe here that as we move
from left to right along the graph, the height of the graph continuously decreases.
Consequently, the function is said to be decreasing for the real numbers x [J0.

We shall now give the following analytical definitions for a function which is
increasing or decreasing on an interval.
Definition 1 Cet I be an interval contained in the domain of a real valued function f.
Then fis said to be
() increasingonlifx [x inl= f(x)<f(x)forallx,x el
(i) strictly increasing on Iif x, Ux inI= f(x) Lf(x) forall x,x €L
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(i) decreasingon lifx Ux inl= f(x)2>f(x)forallx,x €L
(iv) strictly decreasing onI'if x, Ux inI= f(x) [/f(x ) forall x ,x € I
For graphical representation of such functions see Fig (1]

Y
N 3{ Y
X< >X  X'<jg — X X<g >X
- ¥
Y’ Y’
Increasing function Strictly Increasing function Decreasing function
@) (ii) (iii)
Y Y
N N

X' 0 —> X X”/\ /:X
1 S

¥ |
. 5 2 Y’
Strictly Decreasing function Neither Increasing nor Decreasing function
v )

Fig 6.2
We shall now define when a function is increasing or decreasing at a point.

Definition 2 [et x, be a point in the domain of definition of a real valued function f.
Then f is said to be increasing, strictly increasing, decreasing or strictly decreasing at
x, if there exists an open interval I containing x, such that f is increasing, strictly
increasing, decreasing or strictly decreasing, respectively, in [.

[Cet us clarify this definition for the case of increasing function.

A function /s said to be increasing at x, if there exists an interval I= (x, L[4, x [1h),
h [10 such that for x,, x €1

x, Ux inl= f(x) < f(x)
Similarly, the other cases can be clarified.

Example 7 Show that the function given by f(x) = Tk [J[Jis strictly increasing on R.

Solution Cet x, and x be any two numbers in R. Then
x Ux =[x Ux =[x D00 DO=f(x) Lf(x)
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Thus, by Cefinition 1, it follows that f7is strictly increasing on R.

We shall now give the first derivative test for increasing and decreasing functions.
The proof of this test requires the Mean [Calue Theorem studied in Chapter 5.

Theorem 1 Tet f be continuous on [4, b[and differentiable on the open interval
(a,b). Then

(a) f is strictly increasing in [a,b[if f'(x) (10 for each x € (a, b)
(b) f is strictly decreasing in [a,bCif f'(x) T0 for each x € (a, b)
(c) f isa constant function in [4,bif f'(x) = 0 for each x € (a, b)

Proof (a) Let x, x € la, blbe such that x, [Ix .

Then, by Mean [alue Theorem (Theorem [in Chapter 5), there exists a point ¢
between x, and x_such that

S(x) Ufx) =f"(c) (x Lx)
ie. S ) Uf(x,) 00 (as f"(c) 0O (given))
1.€. f(x ) [f(xl)
Thus, we have
X <x,= f(x)< f(x;), forall x,,x ela,blC
Hence, f is an increasing function in [é, bl

The proofs of part (b) and (c) are similar. It is left as an exercise to the reader.

Remarks
(1) There is a more generalised theorem, which states that if /'(x) [JO for x in an
interval excluding the end points and f'is continuous in the interval, then f'is
strictly increasing. Similarly, if /'(x) [JO for x in an interval excluding the end
points and f'is continuous in the interval, then fis strictly decreasing.

(i) Ifafunction is strictly increasing or strictly decreasing in an interval I, then it is

necessarily increasing or decreasing in I. However, the converse need not
be true.

Example 8 Show that the function f* given by

Jx)=x Ux U4x,x e R
is strictly increasing on R.
Solution Tote that

flfx)y=Ik Ok 04
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=[x Ok 01) 01

=[x 01)" 01 00, in every interval of R
Therefore, the function f7is strictly increasing on R.

Example 9 [rove that the function given by f(x) = cos x is
(a) strictly decreasing in (0, )
(b) strictly increasing in (m, [7t), and
(c) neither increasing nor decreasing in (0, ).

Solution Cote that f"(x) = Csin x

(a) Since for each x € (0, m), sin x 710, we have f'(x) T 0 and so f'is strictly
decreasing in (0, 7).

(b) Since for each x € (m, [7r), sin x 110, we have f’(x) (10 and so f'is strictly
increasing in (7, 7).

(c) Clearly by (a) and (b) above, f is neither increasing nor decreasing in (0, [7t).

Example 10 Find the intervals in which the function f'given by f(x) = x" 04x 0 is

(a) strictly increasing (b) strictly decreasing

Solution We have
f(x)=x"04x 00O

or f'x) =[x 4

Therefore, f'(x) = 0 gives x = [] Tow < } >
the point x = [Jdivides the real line into two  —00 2 +00
disoint intervals namely, (TJoo, [) and (3 Fig 6.3
o) (Fig (10). In the interval (oo, ), f'(x)
=[x 4 1O0.

Therefore, f is strictly decreasing in this interval. Also, in the interval ([(Joo),
f'(x)> 0 and so the function f is strictly increasing in this interval.

Example 11 Find the intervals in which the function f'given by f(x) =4x"' 0" OTx 000
is (a) strictly increasing (b) strictly decreasing.

Solution We have
fx) =4x" 0" OOx 000
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or fx)=1x"010k O
=10x" Ox 00
=1lx 0D (x 00D
Therefore, f"(x) = 0 gives x = 0] [ The : :
points x = JJand x = Cdivides the real line into —© -2 3 +o0
three dis[oint intervals, namely, (Coo, 00), (0 D) Fig 6.4
and (7] o).

In the intervals (oo, [J0) and ([ o), '(x) is positive while in the interval (] D),
f"(x) is negative. Consequently, the function f'is strictly increasing in the intervals
(Doo, 110) and ([] o) while the function is strictly decreasing in the interval (1] D).
However, f'is neither increasing nor decreasing in R.

Interval Sign of f”(x) Dature of function f
(Do, 0D (O @O To fis strictly increasing
(00D (D (@M 0o fis strictly decreasing
(0] ) (D) (D To fis strictly increasing

Example 12 Find intervals in which the function given by f(x) =sin [k, x € {0,%} is
(a) increasing (b) decreasing.

Solution We have
f(x) =sin [k
or f'(x) = Ctos [k

n n T
Therefore, f'(x) =0 gives cos [x =0 which in turn gives [ X = = T as x €|:0,Ei|
. Lm T T s T
implies Lk € {0,?} ).So x = T and —[ The point x =— d1V1des the interval {0,—[}
. . . . TE N y l l
into two dis[oint intervals _[ and 0 % %
Fig 6.5

T
How, f'(x)>0 forall XG{O’—J as OSx<E[:>OS Dc<E[ and f'(x)<0 for

T T LTt
all XE(—,—J as E<x<£:>£< (k<—.
or g g g
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i T
Therefore, fis strictly increasing in {O’_[J and strictly decreasing in (_D ’_Dj .

b
Also, the given function is continuous atx =0 and x = —[ . Therefore, by Theorem 1,

. . . TE . TE TE
fs increasing on {O,—J and decreasing on {_[’E} .
Example 13 Find the intervals in which the function f'given by

f(x)=sinx Ocosx,0<x< [
is strictly increasing or strictly decreasing.

Solution We have

fix) =sinx Ocos x,

or f'(x) = cos x Osin x
Sm

ow f’(x)=0 gives sinx = cos x which gives that x=— T as 0<x<[m

N

b b
The points x = Z and x= 7 divide the interval [0, [itlinto three dis(0int intervals,

T n 5n 57 ¢ = Sn 2m
Oa_ (_a_] — 4 4
narnely,{ 4) 4’4 and(4 ,[n]
Fig 6.6
Cote that  f'(x)>0 if xe {O,EJ U (%, [n}
i S5n
or f is strictly increasing in the intervals {O’ZJ and (T’ [ﬁ}

T Sn
Al "(x)<0 if e(—,—]
$0 S'(x) o e

o . [m5m
or f is strictly decreasing in 2
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Interval Sign of f'(x) Uature of function
T

{072) Lo f is strictly increasing
T Sm — :
s Lo f is strictly decreasing
Sn

[T’ n } il f is strictly increasing

EXERCISE 6.2

Show that the function given by f(x) = [k [J10Jis strictly increasing on R.
Show that the function given by f'(x) = e™ is strictly increasing on R.
Show that the function given by f(x) = sin x is

. . . . TE . . . TE
(a) strictly increasing in (O’Ej (b) strictly decreasing in (—[’ ﬁj
(c) neither increasing nor decreasing in (0, )
Find the intervals in which the function f'given by f(x) = [x" Ok is

(a) strictly increasing (b) strictly decreasing
Find the intervals in which the function f'given by f(x) = Ckx" O O x D Ois
(a) strictly increasing (b) strictly decreasing

Find the intervals in which the following functions are strictly increasing or
decreasing[’]

(a) x"0lx 05 (b) 10 Uix Dk
(c) Mx"O9% ' 010k 01 (d) O0O9%x Ox

(e) ([ (x[0)

x

Show that y=log(l+x)— — (1011, is an increasing function of x
x

throughout its domain.

Find the values of x for which y = [x(x [][)[7is an increasing function.

[rove that y = _4sind__ 0 is an increasing function of 9 in 0,E .
(O+cos0) C
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[rove that the logarithmic function is strictly increasing on (0, ©).

[rove that the function £ given by f(x) = x” [x [J1 is neither strictly increasing
nor strictly decreasing on (11, 1).

Which of the following functions are strictly decreasing on [0,9 O

(A) cos x (D) cos Tk (C) cos x (0) tan x
['n which of the following intervals is the function f'given by f(x) =x'® [sin x [1
strictly decreasing [

(A) (0,1) (0) (5[ ] ©) [09 () Tlone of these

Find the least value of a such that the function f'given by f(x) =x"'Jax 1 is
strictly increasing on 1, [TJ

Cet I be any interval dis[oint from [T1, 1[] Crove that the function f* given by

1
f(x) =x+— is strictly increasing on I.
x

[rove that the function f given by f(x) =log sin x is strictly increasing on [O,EJ

and strictly decreasing on (E[’ n} .
Crove that the function f given by f(x) = log Cos x| is strictly decreasing on
(O,E[J and strictly increasing on (%, [n)

[rove that the function given by f(x) = x” O[x" [J [k [J100 is increasing in R.
The interval in which y = x" e™ is increasing is

(A) (Hoo,00)  (0) (BH0)  (C) (o) (1) (0,0)

6.4 Tangents and Normals

In this section, we shall use differentiation to find the equation of the tangent line and
the normal line to a curve at a given point.

Recall that the equation of a straight line passing through a given point (x, y,)

having finite slope m is given by

y Uy, =mx Ux,)
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Cote that the slope of the tangent to the curve y = f(x)

. L d ,
at the point (x,, y,) is given by _y} (=/"(x)). So
(x0,¥0)
the equation of the tangent at (x,, y,) to the curve y = f(x)
is given by
y Uy, =f"()(x Dx)

Also, since the normal is perpendicular to the tangent,

the slope of the normal to the curve y = f(x) at (x,,y,) is

-1 ) ) Fig 6.7
- , if f'(x,)# 0. Therefore, the equation of the
I (x0)

normal to the curve y = f(x) at(x,,y,) is given by

-1
Yy [y() = fr(x()) (x_XO)

Le. (V=) (%)) +(x—x4)=0
If a tangent line to the curve y = f(x) males an angle 0 with x[axis in the

d
positive direction, then d—y = slope of the tangent = tan © .
b

Particular cases

(i) Ifslope of the tangent line is Céro, then tan 6 = 0 and so 6 = 0 which means the
tangent line is parallel to the x[axis. In this case, the equation of the tangent at
the point (x,, y,) is given by y = y,.

i) IfO—>" , then tan 6 — oo, which means the tangent line is perpendicular to the
. g

x[axis, i.e., parallel to the yTaxis. In this case, the equation of the tangent at
(x,,y,) is given by x = x, (WhyL).

Example 14 Find the slope of the tangent to the curve y=x"Oxatx = T[]

Solution The slope of the tangent at x = [Jis given by

dy .
dx:|x_[: xo- l:Ix:[ =1 1
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Example 15 Find the point at which the tangent to the curve y =+/4x — -1 hasits

| L
slope .
Solution Slope of tangent to the given curve at (x, y) is
dy 1 = 0
— =—(4x-0D)"4=
dc [ Nax -]
L
The slope is given to be T
0 C
S0 Ndx—C T
or 4x U0=9
or x =1

Tow Y=~4x—1-1 Sowhenx=0[] y=4D-0U-1=L,
Therefore, the required point is ([} D).

Example 16 Find the equation of all lines having slope [Nand being tangent to the curve

y+ i 0.
Solution Slope of the tangent to the given curve at any point (x,y) is given by
dy 0
de  (x-D)
Cut the slope is given to be [1 Therefore
0
TR
or x0D'=1
or x U0= 101
or x=1014

Oow x = Ogives y = Jand x = 4 gives y = [J[1 Thus, there are two tangents to the
given curve with slope Cand passing through the points ([} ©) and (4, [J0). The equation
of tangent through (7] ) is given by

y O0=Ox 00
or yUx O=0
and the equation of the tangent through (4, [10) is given by
y (0D = Ox 04)
or yUlx J10=0
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] ]

Example 17 Find points on the curve 7 + % =1 at which the tangents are (i) parallel

to x[axis (ii) parallel to ylaxis.

O O
Solution ifferentiating Y + I =1 with respect to x, we get

*Dd
0 [5dx
dy _~bx
or w4
(i) Cow, the tangent is parallel to the x[axis if the slope of the tangent is [éro which
O O
gives —5x =0. This is possible if x =0. Then — +2 =1 for x=0 gives
4 y 4 b

y'=10b,1e.,y=05.
Thus, the points at which the tangents are parallel to the xTaxis are (0, 5) and
(0, LI5).

(i) The tangent line is parallel to yfaxis if the slope of the normal is 0 which gives

] ]
4y =0,1e.,y=0. Therefore, E A | for y =0 gives x = [J[1 Hence, the
[Sx 4 [b

points at which the tangents are parallel to the ylaxis are ([] 0) and (T} 0).
. . x—U
Example 18 Find the equation of the tangent to the curve y =———— at the
(x=D(x-0
point where it cuts the x[axis.
Solution Cote that on x[axis, y = 0. So the equation of the curve, when y = 0, gives

x = [1 Thus, the curve cuts the x[dxis at ([] 0). Jow differentiating the equation of the
curve with respect to x, we obtain

Ay 1-y(x-5)
& (oDe-n (WD

dy} 1-0 1
or - = =
(110) 0
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1
Therefore, the slope of the tangent at ([] 0) is - Hence, the equation of the

tangent at ([] 0) is
1

—0=—1(x- or Oy—x+0=0
y [0( ) y

O O
Example 19 Find the equations of the tangent and normal to the curve x" + " =[]
at (1, 1).
IR
Solution Uifferentiating x" + y" = [[ with respect to x, we get

-1 -1
AR BV I
U L dx
!
b __(r)
of dx x
. dy
Therefore, the slope of the tangent at (1, 1) is I =-1.
*lay

So the equation of the tangent at (1, 1) is
yO1=01(x01) or yUxO0=0
Also, the slope of the normal at (1, 1) is given by
-1 ~
slope of the tangent at (1,1)

1

Therefore, the equation of the normal at (1, 1) is
yOl=1(x01) or ylx=0
Example 20 Find the equation of tangent to the curve given by
x=asin"t, y=bcos't .. (1)

T
at a point where = e

Solution Differentiating (1) with respect to ¢, we get

d. . d .
@ “asin"tcost and —y=—ﬂ7cos[tsmt
dt dt



or

ALCCICATION OF CDERICATICES o1

@
dy g  —[bcos tsint _—bcost
dx dx  [ysin'tcost a sint
dt

T
Therefore, slope of the tangent at = T is

=0

Q } -b cosE[
dx ) _n =

= sin T
O a —
O

Also, when t=—, x = a and y = 0. Hence, the equation of tangent to the given

—la

T . .
curve at r=—,1.e., at (a, 0) is
C

y 00=0(x Da), i.e., y=0.

| EXERCISE 6.3 |
Find the slope of the tangent to the curve y = [k* [4x at x = 4.

Find the slope of the tangent to the curve y = al = x# [ atx=10.

Find the slope of the tangent to curve y = x~ Tx [J 1 at the point whose
x-coordinate is [

Find the slope of the tangent to the curve y = x" [Tx [J Jat the point whose
x[coordinate is [

Find the slope of the normal to the curve x =acos 0, y=asin 0 at = %

Find the slope of the normal to the curve x=1-asin0,y=bcos 0 at 6= E[

Find points at which the tangent to the curve y =x"[1[x" [19x [Jis parallel to
the x[axis.

Find a point on the curve y = (x [J0)" at which the tangent is parallel to the chord
[0ining the points ([] 0) and (4, 4).
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Find the point on the curve y = x" [J11x [J5 at which the tangent is y = x [J11.
Find the equation of all lines having slope 11 that are tangents to the curve

,x# 1.

y:x—l

Find the equation of all lines having slope CJwhich are tangents to the curve

y= ,x # [

X —

Find the equations of all lines having slope 0 which are tangent to the curve
3 1

g xO— D+ L

O O
Find points on the curve Ky + i}—[ =1 at which the tangents are

(i) parallel to x[daxis (i) parallel to ylaxis.
Find the equations of the tangent and normal to the given curves at the indicated
points™]
(1) y=x*Ux"O1x 010x 15 at (0, 5)
() y=x* Uk O1x D10x 5 at (1, D)
@) y=xat(l, 1)
(iv) y=x"at (0, 0)

. T
(v) x=cost,y=sintat tzz

Find the equation of the tangent line to the curve y =x" [0k [TJwhich is
(a) parallel to the line Tx [y 79=10
(b) perpendicular to the line 5y 015x=1[]

Show that the tangents to the curve y = [x” [J11 at the points where x = TJand
x = O0are parallel.

Find the points on the curve y = x"'at which the slope of the tangent is equal to
the y’éoordinate of the point.

For the curve y = 4x" 1 [¥°, find all the points at which the tangent passes
through the origin.

Find the points on the curve x" [Jy~ [ 0= 0 at which the tangents are parallel
to the x[axis.

Find the equation of the normal at the point (am-,am") for the curve ay" = x".
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22.

23.

24.

25.
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Find the equation of the normals to the curve y =x" [0k [J Owhich are parallel
to the line x D14y 14 =0.

Find the equations of the tangent and normal to the parabola y"'= 4ax at the point
(at", Cat).
[rove that the curves x = y~and xy = k cut at right angles[Jif &k'= 1.

O O

Find the equations of the tangent and normal to the hyperbola x_[ - % =1 atthe
a

(LTI, yo)'

Find the equation of the tangent to the curve y =+/[x — [ which is parallel to the

line 4x -y +5=0.

Choose the correct answer in Exercises [[land []

26.

27.

The slope of the normal to the curve y = X" [ Osin x at x = 0 is

1 1
(A) 1 () - © () -

The line y = x (01 is a tangent to the curve y~'= 4x at the point

(A) (1,0 (D) (4D © (1,00 (0) (UL D

6.5 Approximations

In this section, we will use differentials to approximate values of certain quantities.

Cetf 11— R, Jc R, bea given function
and let y = f(x). Cet Ax denote a small Qe+ Ax, y+Ay)
increment in x. Recall that the increment in y
corresponding to the increment in x, denoted
by Ay, is given by Ay =f(x JAx) [f (x). We

Y

S (x +dx,y+dy)

define the following
(1) The differential of x, denoted by dx, is ==
defined by dx = Ax.
(i) The differential of y, denoted by dy, X< X
is defined by dy = f(x) dx or
Y' .
dy Fig 6.8
dy= (—J Ax.
dx

[l Two curves intersect at right angle if the tangents to the curves at the point of intersection

are perpendicular to each other.
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In case dx = Ax is relatively small when compared with x, dy is a good approximation
of Ay and we denote it by dy = Ay.

For geometrical meaning of Ax, Ay, dx and dy, one may refer to Fig (1]

|@= Note|In view of the above discussion and Fig (17} we may note that the
differential of the dependent variable is not equal to the increment of the variable
where as the differential of independent variable is equal to the increment of the
variable.

Example 21 Use differential to approximate /(1] .
Solution Tale y = Jx . et x=[Tand let Ax = 0.[] Then

&y = 578w N =TT T=

or Joo=O0Ay
Cow dy is approximately equal to Ay and is given by
dy] 1 1
d =[— Ax=—==(0.) = —= (0.0 =0.05 =
Ly dx [\/;( D B\/E] 0.0 (as y \/;)

Thus, the approximate value of /][ is [1110.05 = [105.
1
Example 22 [Ise differential to approximate ([5) .
1
Solution (et y= x . Letx=[Iand let Ax = (][] Then
11 1 1 1
Ay= (x+AY) —x' = ((5) (1) =(5) ~C

1

or (75) = Ay
Cow dy is approximately equal to Ay and is given by

d 1 .

tr=(ar- 0 sy
dx -
[x[
B EPNE
y0 -
()

1
Thus, the approximate value of ([5)" is given by

D0(00. 004) = (1901
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Example 23 Find the approximate value of f(C100), where f(x) = [x' 05x OO
Solution et x = Dand Ax = 0.0C] Then

(0D =f(x JAx) =[x DAx) [5(x LAx) [0
Cote that Ay = f(x T Ax) [0f (x). Therefore
S DAx) =f(x) DAy
= f(x) Of'(x) Ax (as dx = Ax)
or S(O0D) ~ (k- O5x 00 O(tx 05) Ax
= (OISO 0D (D 05 (0.00) (asx=1LAx=0.00)
(LTS 0D O(1005) (0.00)
45 110.41=45.40)
Hence, approximate value of f(I100) is 45.47]

Example 24 Find the approximate change in the volume [J of a cube of side x meters
caused by increasing the side by [T].

Solution [ote that

=x
drl
= | — |Ax =
or dr (de (Cx") Ax
=(x) (0.0x) = 0.0k 'm (as [T of x is 0.07x)

Thus, the approximate change in volume is 0.0 0x"m".

Example 25 If the radius of a sphere is measured as 9 cm with an error of 0.000cm,
then find the approximate error in calculating its volume.

Solution et 7 be the radius of the sphere and Ar be the error in measuring the radius.
Then » =9 cm and Ar = 0.000cm. Cow, the volume [J of the sphere is given by

= —mr"
C
@,
or o nr
dO
Therefore drn = (EJ Ar = (4nr [)Ar

=41(9) '(0.00) =9.[Tkcm
Thus, the approximate error in calculating the volume is 9.[Tt cm.
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| EXERCISE 6.4|

1. [Osing differentials, find the approximate value of each of the following up to [
places of decimal.

(i) V5.0 (i) 49.5 (iii) /0.0

1 1

1 1
(iv) (0.009)" (v) (0.999)° (vi) (15)*

1 1 1
(vii) ((D)" (viil) (155)4 (i) ((D)*
1 1 1
(x) (401)" (xi) (0.00°0)" (xi) ([1150)"
1 O 1
(xii) (C1.5)4 (xiv) (090" (xv) (C1115)5

Find the approximate value of f(C101), where f(x) = 4x"' 0 5x O]
Find the approximate value of f(5.001), where f(x) =x" OCk" [J15.

Find the approximate change in the volume [ of a cube of side x metres caused
by increasing the side by 107.

5. Find the approximate change in the surface area of a cube of side x metres
caused by decreasing the side by 10].

6. Iftheradius of a sphere is measured as [Jm with an error of 0.0Jm, then find the
approximate error in calculating its volume.

7. Iftheradius of a sphere is measured as 9 m with an error of 0.0Jm, then find the
approximate error in calculating its surface area.

8. If fix)="0x" 0O15x 05, then the approximate value of f(CI00) is
(A) 401010 (1) SO (C) M () [

9. The approximate change in the volume of a cube of side x metres caused by
increasing the side by [T] is
(A) 0.00x ' m (D) 0.0x' m" (C) 0.09x" m' () 0.9 x" m

6.6 Maxima and Minima

In this section, we will use the concept of derivatives to calculate the maximum or
minimum values of various functions. In fact, we will find the furning pointsCof the
graph of a function and thus find points at which the graph reaches its highest (or
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lowest) locally. The Thowledge of such points is very useful in sCetching the graph of
a given function. Further, we will also find the absolute maximum and absolute minimum
of a function that are necessary for the solution of many applied problems.

Cet us consider the following problems that arise in day to day life.

(i) The profit from a grove of orange trees is given by [(x) = ax [Jbx-, where a,b
are constants and x is the number of orange trees per acre. How many trees per
acre will maximise the profit(]

(i) A ball, thrown into the air from a building [0 metres high, travels along a path

O
givenby h(x)=[0+x— % , where x is the horil ontal distance from the building

and A(x) is the height of the ball . What is the maximum height the ball will
reach

(i) An Apache helicopter of enemy is flying along the path given by the curve
f(x)=x"00 Asoldier, placed at the point (1, [), wants to shoot the helicopter
when it is nearest to him. What is the nearest distance(]

In each of the above problem, there is something common, i.e., we wish to find out
the maximum or minimum values of the given functions. In order to tac[le such problems,
we first formally define maximum or minimum values of a function, points of local
maxima and minima and test for determining such points.

Definition 3 (et /' be a function defined on an interval I. Then
(a) f1is said to have a maximum value in 1, if there exists a point ¢ in I such that

f(e)> f(x),forallx € L.

The number f(c) is called the maximum value of fin I and the point c is called a
point of maximum value of fin 1.

(b) f is said to have a minimum value in I, if there exists a point ¢ in [ such that
fe)<f(x), forallx € L
The number f(c), in this case, is called the minimum value of fin I and the point
¢, in this case, is called a point of minimum value of f in L

(c) fis said to have an extreme value in I if there exists a point ¢ in I such that
f(c) is either a maximum value or a minimum value of f in L.

The number f(c), in this case, is called an extreme value of f in I and the point ¢
is called an extreme point.

Remark In Fig [19(a), (b) and (c), we have exhibited that graphs of certain particular
functions help us to find maximum value and minimum value at a point. Infact, through
graphs, we can even find maximuminimum value of a function at a point at which it
is not even differentiable (Example [T).
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S
rd

Y’ (a) Y (b) Y’ (©
Fig 6.9
Example 26 Find the maximum and the minimum values,
if any, of the function f* given by
f(x)=x",x € R.
Solution From the graph of the given function (Fig [110),

we have f(x)=0ifx=0. Also
f(x) 20, forall x € R.

Therefore, the minimum value of £ is 0 and the point
ini 1S x = i X'€¢————r———+X
of minimum value of fis x = 0. Further, it may be observed F¥ T (i BN
Y/

from the graph of the function that f has no maximum
value and hence no point of maximum value of f in R.

Fig 6.10
If we restrict the domain of f'to [M] 1Conly,
then f'will have maximum value(CJ[)"'= 4 at x = [J[]

Example 27 Find the maximum and minimum values Y

of f, if any, of the function given by f(x) = X [Ix € R.

Solution From the graph of the given function 1
(Fig [111), note that 3

2
f(x) =20, forallx €e Rand f(x)=0 if x=0. 11
Therefore, the function f has a minimum value 0 X 3510 12 3 =
and the point of minimum value of fis x = 0. Also, the
graph clearly shows that /' has no maximum value in Y’
R and hence no point of maximum value in R. Fig 6.1

(i) Ifwe restrict the domain of fto (T[] 1 Conly, then fwill have maximum value
o= d
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(i) One may note that the function f in Example [TJis not differentiable at
x=0.

Example 28 Find the maximum and the minimum values, if any, of the function

given by
fx)=x,x e (0, 1).

Solution The given function is an increasing (strictly) function in the given interval
(0, 1). From the graph (Fig [110) of the function £ it Y
seems that, it should have the minimum value at a ¥
point closest to 0 on its right and the maximum value
at a point closest to 1 on its left. Are such points
available /[ )f course, not. It is not possible to locate :
such points. Infact, if a point x, is closest to 0, then |

X ;
we find ?0< X, for all x, €(0,1). Also, if x, is X455 L SX

v .1
vy’ f¥)=xin(0,1)
Fig 6.12

Therefore, the given function has neither the maximum value nor the minimum
value in the interval (0,1).

x +1

closest to 1, then >x; forall x, €(0,1).

Remark The reader may observe that in Example [T] if we include the points 0 and 1
in the domain of £, i.e., if we extend the domain of f to [0,17]then the function f has
minimum value 0 at x = 0 and maximum value 1 atx = 1. Infact, we have the following
results (The proof of these results are beyond the scope of the present text)

Every monotonic function assumes its maximum/minimum value at the end
points of the domain of definition of the function.

A more general result is
Every continuous function on a closed interval has a maximum and a minimum
value.

[y a monotonic function f in an interval I, we mean that f is either
increasing in [ or decreasing in .

Maximum and minimum values of a function defined on a closed interval will be
discussed later in this section.

Cet us now examine the graph of a function as shown in Fig (1] Observe that at
points A, [, C and [ on the graph, the function changes its nature from decreasing to
increasing or vicelversa. These points may be called turning points of the given
function. Further, observe that at turning points, the graph has either a little hill or a little
valley. Roughly spealing, the function has minimum value in some neighbourhood
(interval) of each of the points A and C which are at the bottom of their respective
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Fig 6.13

valleys. Similarly, the function has maximum value in some neighbourhood of points [

and [J which are at the top of their respective hills. For this reason, the points A and C

may be regarded as points of local minimum value (or relative minimum value) and

points [Jand [J may be regarded as points of local maximum value (or relative maximum

value) for the function. The local maximum value and local minimum value of the

function are referred to as local maxima and local minima, respectively, of the function.
We now formally give the following definition

Definition 4 Tet f be a real valued function and let ¢ be an interior point in the domain
of f. Then

(a) cis called a point of local maxima if there is an 4 [J0 such that
f(e)>f(x), forall xin (c Oh, c T h)
The value f(c) is called the local maximum value of f.
(b) cis called a point of local minima if there is an 4 [10 such that
f(c) <f(x), forall xin (c Oh, c Oh)
The value f(c) is called the local minimum value of f .

Ceometrically, the above definition states that if x = cis a point of local maxima of f,
then the graph of faround ¢ will be as shown in Fig [114(a). Cote that the function f is
increasing (i.e., f'(x) [J0) in the interval (¢ (A, ¢) and decreasing (i.e., f”(x) [10) in the
interval (¢, ¢ T h).

This suggests that /’(c) must be [ero.

Y f©=0
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Similarly, if ¢ is a point of local minima of f, then the graph of f around ¢ will be as
shown in Fig [114(b). Here f is decreasing (i.e., f'(x) [J0) in the interval (¢ [, ¢) and
increasing (i.e., /'(x) [J0) in the interval (¢, ¢ [ k). This again suggest that f'(c) must

be Léro.

The above discussion lead us to the following theorem (without proof).

Theorem 2 et f be a function defined on an open interval I. Suppose ¢ € I be any
point. If f has alocal maxima or a local minima at x = ¢, then either f'(c)= 0 or f is not

differentiable at c.

Remark The converse of above theorem need
not be true, that is, a point at which the derivative
vanishes need not be a point of local maxima or
local minima. For example, if f(x) =x", then f'(x)

=[x and sof'(0) = 0. [ut 0 is neither a point of .

local maxima nor a point of local minima (Fig ]15).

Y

A

fey=x

A point ¢ in the domain of a function
fatwhich either f'(c) =0 or fis not differentiable
is called a critical point of f. Clote that if fis
continuous at ¢ and f'(c) = 0, then there exists
an A [J0 such that fis differentiable in the interval
(c Oh, c O h).

<

7z X
point of inflection

N

v’
Fig 6.15

We shall now give a worling rule for finding points of local maxima or points of

local minima using only the first order derivatives.

Theorem 3 (First Derivative Test) Cet f'be a function defined on an open interval 1.

et f be continuous at a critical point ¢ in I. Then

(i) Iff'(x) changes sign from positive to negative as x increases through c, i.e., if
f'(x) 0O at every point sufficiently close to and to the left of ¢, and f'(x) (J0 at
every point sufficiently close to and to the right of ¢, then c is a point of local

maxima.

(i) If f'(x) changes sign from negative to positive as x increases through c, i.e., if
f'(x) 00 at every point sufficiently close to and to the left of ¢, and f'(x) (J0 at
every point sufficiently close to and to the right of ¢, then c is a point of local

minima.

@ii)) Iff"(x) does not change sign as x increases through c, then c is neither a point of
local maxima nor a point of local minima. Infact, such a point is called point of

inflection (Fig [115).
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If ¢ is a point of local maxima of /, then f(c) is a local maximum value of
f- Similarly, if ¢ is a point of local minima of £, then f{c) is a local minimum value of /-

Figures (115 and []17] geometrically explain Theorem ]

point of
local maxima
point of non differentiability
f(c))=0 and point of local maxima

(43
JA&

S

point of non differentiability

point : : s
b ofTocal and point of local minima
e ' minima ; ; 5
) 0 é1 C2 C3 C4 g
Yl
Fig 6.16

Example 29 Find all points of local maxima and local minima of the function f
given by
fx)=x"0 00
Solution We have
fx)=x"0x 00
or f')=x'00=0x01)(x3O1)
or f'x)=0atx=1and x= 1
Thus, x = [J1 are the only critical points which could possibly be the points of local
maxima and[or local minima of /. [let us first examine the point x = 1.

Cote that for values close to 1 and to the right of 1, f(x) 0 and for values close
to 1 and to the left of 1, f"(x) 0J0. Therefore, by first derivative test, x =1 is a point
of local minima and local minimum value is (1) = 1. In the case of x = [, note that
f"(x) 0O, for values close to and to the left of (1 and f"(x) 0JO, for values close to and
to the right of [J1. Therefore, by first derivative test, x = [11 is a point of local maxima
and local maximum value is f([1)=>5.

Values of x Signof f'(x)=3(x—-1) (x+1)
to the right (say 1.1 etc.) 0
Closziw to the left (say 0.9 etc.) o

to the right (say — 0.9 etc.) <0
to the left (say —1.1 etc.) >0

Close to [1 <
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Example 30 Find all the points of local maxima and local minima of the function f
given by
f(x) =[x Ox Olx [B.
Solution We have
fx)=L D' Ox IS
or () = 010k 00=C(x 01)
or f'fx)=0 at x=1
Thus, x =1 is the only critical point of f. We shall now examine this point for local
maxima and[0r local minima of /. [lbserve that f”(x) > 0, for all x € R and in particular
f'(x) 10, for values close to 1 and to the left and to the right of 1. Therefore, by first

derivative test, the point x = 1 is neither a point of local maxima nor a point of local
minima. Hence x = 1 is a point of inflexion.

Remark Tne may note that since f(x), in Example [0, never changes its sign on R,
graph of fhas no turning points and hence no point of local maxima or local minima.

We shall now give another test to examine local maxima and local minima of a
given function. This test is often easier to apply than the first derivative test.

Theorem 4 (Second Derivative Test) Cet f be a function defined on an interval I
and ¢ € L. Cet f be twice differentiable at c. Then

(1) x=cis apoint of local maxima if f'(c) =0 and /"(c) OO
The value f(¢) is local maximum value of f".
(i) x=cisapoint of local minima if f'(c)=0 and f"(c) [10
In this case, f(¢) is local minimum value of f.
(iii) The test fails if /'(c) =0 and f"(c) = 0.

In this case, we go bacto the first derivative test and find whether ¢ is a point of
local maxima, local minima or a point of inflexion.

As f'is twice differentiable at ¢, we mean

second order derivative of f exists at c.

Example 31 Find local minimum value of the function f
given by f(x) =00 x € R.

Solution [ote that the given function is not differentiable X'
at x =0. So, second derivative test fails. Cet us try first
derivative test. Cote that O is a critical point of f. Clow
to the left of 0, f(x) = OCx and so f'(x) = 01 TJO. Also
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to the right of 0, f(x) = O0x and so f'(x) =1 0. Therefore, by first derivative test,
x=01s a point of local minima of f" and local minimum value of f is /' (0) =[]

Example 32 Find local maximum and local minimum values of the function f given by

F(x) =% D4 C1x" 010
Solution We have

F(x) =% Ddx' D1x" 010

or ff)=1K"01 O0@x=1k(xd)(xO00D
or f'x)=0atx=0,x=1and x= 0[]
Cow F(x) = O O x O = 10(0x O O1)
f"(0) =-10<0
or f'@Q =41>0
f"(-0D =4>0

Therefore, by second derivative test, x = 0 is a point of local maxima and local
maximum value of fat x =0 is (0) = 1 Owhile x = 1 and x = [1[Jare the points of local
minima and local minimum values of fat x = [J1 and [are f(1) = Jand f([T) = [T0,
respectively.

Example 33 Find all the points of local maxima and local minima of the function f
given by

f(x) = X Ox' Ok C5.
Solution We have
fx) =X Ox' O 5
{f’(x)z[x[—lix+[= (x—1)
S'(x)=11x-1)

Oow f'(x) = 0 gives x =1. Also f”(1) = 0. Therefore, the second derivative test
fails in this case. So, we shall go bac[to the first derivative test.

or

We have already seen (Example [0) that, using first derivative test, x =1 is neither
apoint of local maxima nor a point of local minima and so it is a point of inflexion.

Example 34 Find two positive numbers whose sum is 15 and the sum of whose
squares is minimum.

Solution Clet one of the numbers be x. Then the other number is (15 Tx). Cet S(x)
denote the sum of the squares of these numbers. Then
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S(x) =x"0(15 Ox)"'= X" O00x OTH
{S'(x)=4x—[0

or
S"(x)=4

1 15 .
Cow S'(x)=0gives x = —[5 .Also S"(—[J =4> 0. Therefore, by second derivative

15 . . - .
test, x = - is the point of local minima of S. Hence the sum of squares of numbers is

minimum when the numbers are % and 15— % = % .

Remark [roceeding as in Example 4 one may prove that the two positive numbers,

. L k k
whose sum is k£ and the sum of whose squares is minimum, are — and — .
U L

Example 35 Find the shortest distance of the point (0, ¢) from the parabola y = x",
where 0 < ¢ <5.

Solution et (4, k) be any point on the parabola y = x". Cet [] be the required distance
between (4, k) and (0, ¢). Then

O=(h=0) +(k—c) =h +(k-c) (D)
Since (4, k) lies on the parabola y = x", we have k= /". So (1) gives

D=0k = Jk+(k—c)

Tk 1+ dk—-c)
or = ————
Ak +(k—c)"
le—1
Cow '(k) = 0 gives k= —
le—1 .
Observe that when & < ,then [(k—c)+1<0,i.e., ['(k)<0.Also when
-1 . o c—-1
k> ,then T'(k) > 0. So, by first derivative test, [J (k) is minimum at k = —

Hence, the required shortest distance is given by
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U U U L

() [

The reader may note that in Example 5, we have used first derivative
test instead of the second derivative test as the former is easy and short.

Example 36 Cet ACand (070 be two vertical poles at P
points A and [, respectively. If ACl= 100m, (0 = [Tm .
and A[J= [0 m, then find the distance of a point R on
AT from the point A such that R[(H R [0"is minimum. = é
o
Solution et R be a point on AJ such that AR = x m. -
Then RO = (10 Ox) m (as A0 = [0 m). From Fig (1103 A Op
we have xm - RS20 " 9m
R(I'= AR (AT 20m
and RO =R 0002 Fig6.18
Therefore ROPOROY=ARY AP DR OO
=x"0(1D"0(00 Ox)” 0(M)
=[x [040x 01140
Cet S=S(x) =RI'OROY= [x [140x [11140.

Therefore S'(x) = 4x 040.

Oow S'(x) = 0 gives x = 10. Also S"(x) =4 00, for all x and so S"(10) 0.
Therefore, by second derivative test, x = 10 is the point of local minima of S. Thus, the
distance of R from A on Allis AR =x=10 m.

Example 37 If length of three sides of a trape[ium other than base are equal to 10cm,
then find the area of the trape[ium when it is maximum.

Solution The required trapelium is as given in Fig [119. Oraw perpendiculars [Jand

D 10 cm C
s
S Z
B (o
2%
[ i~
2 xem P 10 cm Q xcm B

Fig 6.19
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CO on ATl Cet AC=x cm. Cote that AATT] OJADOC. Therefore, [0 = x cm. Also, by
Cythagoras theorem, [1[]1=[1C = /100 — x" - [ et A be the area of the trape[ium. Then
1
A=A = - (sum of parallel sides) (height)
l[ (Ck+10+ 10)(\/100 —x[)

= (x+10)(\/100—x[)
(x+10)(_—DC)+(\/100—xE)

or A'(x) =
A/100 - x -
~[x —10x+100
-~ 100-x"
Cow A’(x) =0 gives (X" 010x J100=0,i.e.,x =5 and x = [10.

Since x represents distance, it can not be negative.
So, x=15. Oow

JI00—x (<4x—10)— (=% —10x+100)— 20
(A100—x"

A" —
) 100-x"
x —00x-1000
= = (onsimplification)
(100—x")"
5)"—100(5)-1000 —[T50 -0
. Ar(s) = 9 = 1009)~1000 _ _

= = <0
R 5J5 A0S

(100—(5))"

Thus, area of trape[ium is maximum at x =5 and the area is given by
A(5)= (5+10)4/100—(5)" =15v5 = (54/Tem”

Example 38 [rove that the radius of the right circular cylinder of greatest curved
surface area which can be inscribed in a given cone is half of that of the cone.

Solution Cet [JC = r be the radius of the cone and [TJA = 4 be its height. Cet a cylinder
with radius [JE = x inscribed in the given cone (Fig [1[0). The height TE of the cylinder
is given by
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[—E —E i AUEC OAADC
AT C (since )
OE r—x
or — =
h r
h(r —x
or OE = —( P )

Cet S be the curved surface area of the given
cylinder. Then

S = S (x) = 7 = p (Kx - x[) Fig 6.20
S0 = (- 1)
or ” 47h
S"(x)=

r r
Cow S'(x) = 0 gives X =T Since S"(x) [10 for all x, S"(%} <0.So x =T isa

point of maxima of S. Hence, the radius of the cylinder of greatest curved surface area
which can be inscribed in a given cone is half of that of the cone.

6.6.1 Maximum and Minimum Values of a Function in a Closed Interval

Cet us consider a function f given by

fx)=x00x€e(0,1)
[bserve that the function is continuous on (0, 1) and neither has a maximum value
nor has a minimum value. Further, we may note that the function even has neither a
local maximum value nor a local minimum value.

However, if we extend the domain of f to the closed interval [0, 1[Jthen fstill may
not have a local maximum (minimum) values but it certainly does have maximum value
0= f(1) and minimum value 0= f(0). The maximum value [Jof fat x = 1 is called
absolute maximum value (global maximum or greatest value) of f on the interval
[0, 101 Similarly, the minimum value TJof /" at x = 0 is called the absolute minimum
value (global minimum or least value) of fon [0, 10]

Consider the graph given in Fig (11 of a continuous function defined on a closed
interval a4, d[J Observe that the function f has a local minima at x = » and local
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Y
- éf (a) _;f (b) ;f (c) JE
Ol a b c d
YV

Fig 6.21
minimum value is f(b). The function also has a local maxima at x = ¢ and local maximum
value is f'(¢).

Also from the graph, it is evident that f has absolute maximum value f'(a) and
absolute minimum value f(d). Further note that the absolute maximum (minimum)
value of f is different from local maximum (minimum) value of .

We will now state two results (without proof) regarding absolute maximum and
absolute minimum values of a function on a closed interval 1.

Theorem 5 Clet f be a continuous function on an interval I = [a, (] Then f has the
absolute maximum value and f attains it at least once in 1. Also, f has the absolute
minimum value and attains it at least once in L.

Theorem 6 Cet f be a differentiable function on a closed interval I and let ¢ be any
interior point of I. Then

(i) f'(c)=01if fattains its absolute maximum value at c.
(i) f'(c)=01if fattains its absolute minimum value at c.

In view of the above results, we have the following wor [ing rule for finding absolute
maximum and[or absolute minimum values of a function in a given closed interval
la, bl
Working Rule

[Find all critical points of f in the interval, i.e., find points x where either
f'(x)=0 orf is not differentiable.

[Tale the end points of the interval.
[JAt all these points (listed in Step 1 and [), calculate the values of f.

[ldentify the maximum and minimum values of f out of the values calculated in
Step [1 This maximum value will be the absolute maximum (greatest) value of
f and the minimum value will be the absolute minimum (least) value of f.
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Example 39 Find the absolute maximum and minimum values of a function f given by
f(x) =k 015x" O[Tk 1 on the interval (1, 5T

Solution We have

fx) =0k O15x' OOx O1
or f'x)=X"'000x 0M=0x 0D (x 0D
Cote that f'(x) = 0 gives x = [and x = []

We shall now evaluate the value of fat these points and at the end points of the
interval (1, 5[Ji.e,atx=1,x=[x=[Candatx=15. So

S=0(1)015(1) D) 01=14
SO =) 015 (0) 0D 01 =19
SO = () D15 (0) 0D 01 = 1]
F(5)=1(5) 115(5) LCTY(5) 11 =501
Thus, we conclude that absolute maximum value of fon [1, 50s 5[] occurring at
x =5, and absolute minimum value of fon [1, 5Cis (4 which occurs at x = 1.

Example 40 Find absolute maximum and minimum values of a function f'given by

4 1
f)=1x -k, xe =L 1l
Solution We have
4 1
) =1k =[x
Lo
or fix) =1k ——=
[}

X

(-1
E
x[

1
Thus, f'(x) =0 gives x = T Further note that f”'(x) is not defined at x = 0. So the
critical points are x =0 and x= T Cow evaluating the value of fat critical points

1
x=0, T and at end points of the interval x = [ and x = 1, we have

4 1
F) = 10(=])" = (=) " =1¢
£(0) = 10(0) C11(0) =0
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1

D) (1) o
f(EJ_IE([J [([J T4
F()=100)"-1) =L

Hence, we conclude that absolute maximum value of f is 1 that occurs at x = [J1

- .9 1
and absolute minimum value of fis 7 that occurs at X = T

Example 41 An Apache helicopter of enemy is flying along the curve given by
y=x"0T0 A soldier, placed at ([] [), wants to shoot down the helicopter when it is
nearest to him. Find the nearest distance.

Solution For each value of x, the helicopter(s position is at point (x, x"' [ [).
Therefore, the distance between the helicopter and the soldier placed at ([} ) is

Ja—D T+ +0=0) e, Jx—0) +xt.

Cet ) =00 Ox*

or ) =0x 0D 04x'=0x 0D ('O 00D
Thus, f'(x) = 0 gives x = 1 or (k" [] [k [J = 0 for which there are no real roots.

Also, there are no end points of the interval to be added to the set for which f” is [ero,

i.e., there is only one point, namely, x = 1. The value of f at this point is given by
f(1)=(1 20" (1)* =5. Thus, the distance between the solider and the helicopter is

JTD =5,

Cote that \/E is either a maximum value or a minimum value. Since

JF0) = J0-D"+0)* =>5,

it follows that /5 is the minimum value of ./f(x). Hence, /5 is the minimum

distance between the soldier and the helicopter.

|EXERCISE 6.5 |
1. Find the maximum and minimum values, if any, of the following functions
given by
O f=(xOnH'0O0 (i) f(x)=9x"01x 00

(i) f(x) = CO(x 01)' 1110 (iv) g(x)=x 011
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Find the maximum and minimum values, if any, of the following functions
given by
1) f(x)=x 001 (i) gkx)=0x01M00
(iii) 4 (x)=sin(Cx) O5 (iv) f(x) = [§in 4x O [
V) h(x)=x01,x e (01, 1)
Find the local maxima and local minima, if any, of the following functions. Find
also the local maximum and the local minimum values, as the case may bel

@) f(x)=x (i) gx)=x [lx
(iii) h(x)=sinx[cosx,0<x<£[
(iv) f(x)=sinx Ocosx, O0<x < [ft

W) f)=x 0 0% 15 (vi) g(x)=£[+;[, x>0

(vii) g(x)= 0L (vii)) f(x)=xvl1-x, O0<x<l
X
[rove that the following functions do not have maxima or minimal’
M) f(x) = ¢ (i) g(x)=logx

(i) A(x)=x"0Ox"'Ox 0
Find the absolute maximum value and the absolute minimum value of the following
functions in the given intervals [

1) f(x)=x",x e MM (i) f(x)=sinx Jcosx,x € [0, n[]

(i) f(x) =4x—l[x[, XE{—E%} iv) f(x)=(x-D"+0 x =1

Find the maximum profit that a company can mare, if the profit function is
given by
px) =41 00x O1x
Find both the maximum value and the minimum value of
x* Ox" 01" 040k OC5 on the interval [0, [T]

At what points in the interval [0, [t[[Jdoes the function sin [k attain its maximum
valuel

What is the maximum value of the function sin x [Icos x[]

Find the maximum value of [k~ [J[4x [J1001n the interval (1, (L] Find the
maximum value of the same function in 1] (1]
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Itis given that at x = 1, the function x* [J[Tx" [lax [19 attains its maximum value,
on the interval [0, [T Find the value of a.

Find the maximum and minimum values of x [Isin [x on [0, [it[]
Find two numbers whose sum is [4 and whose product is as large as possible.
Find two positive numbers x and y such that x [y = [0 and xy" is maximum.

Find two positive numbers x and y such that their sumis [5 and the product x"y?
is a maximum.

Find two positive numbers whose sum is 1Jand the sum of whose cubes is
A square piece of tin of side 1 0cm is to be made into a box without top, by
cutting a square from each corner and folding up the flaps to form the box. What

should be the side of the square to be cut off so that the volume of the box is the
maximum possible.

A rectangular sheet of tin 45 cm by [4 cm is to be made into a box without top,
by cutting off square from each corner and folding up the flaps. What should be
the side of the square to be cut off so that the volume of the box is maximum [

Show that of all the rectangles inscribed in a given fixed circle, the square has
the maximum area.

Show that the right circular cylinder of given surface and maximum volume is
such that its height is equal to the diameter of the base.

Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic
centimetres, find the dimensions of the can which has the minimum surface
areal]

A wire of length [TIm is to be cut into two pieces. [Ine of the pieces is to be
made into a square and the other into a circle. What should be the length of the
two pieces so that the combined area of the square and the circle is minimum[’]

[rove that the volume of the largest cone that can be inscribed in a sphere of

L
radius R is e of the volume of the sphere.

Show that the right circular cone of least curved surface and given volume has

an altitude equal to T time the radius of the base.
Show that the semi Vertical angle of the cone of the maximum volume and of

given slant height is tan™' NI
Show that semilvertical angle of right circular cone of given surface area and

. .41
maximum volume is sin (—J .
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Choose the correct answer in the Exercises [T]and [9.
27. The point on the curve x~= [3» which is nearest to the point (0, 5) is

A) (W4 () (W10 (©) 0,00 (D) (LD

1 _ [}
28. For all real values of x, the minimum value of x—+x[ is
I+x+x
1
(4) 0 () 1 (© © () =

!
29. The maximum value of X(x —1)+11", o< x<1 is

1

W[ ot o () 0

Miscellaneous Examples

Example 42 A car starts from a point [at time ¢ = 0 seconds and stops at point []. The
distance x, in metres, covered by it, in ¢ seconds is given by

()

Find the time taTén by it to reach [J and also find distance between [Jand [J.

Solution et v be the velocity of the car at ¢ seconds.

Uow x = t[([—iJ
L
dx
Therefore V=T 4¢ Ot =t (4 Or)

Thus, v=0 gives t =0 andlor ¢ = 4.

Oow v =0 at [Jas well as at [ and at [J £ = 0. So, at [, t = 4. Thus, the car will
reach the point 7 after 4 seconds. Also the distance travelled in 4 seconds is given by

4 0y @
4 =2 =1 = |=—m
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Example 43 A water tanThas the shape of an inverted right circular cone with its axis
vertical and vertex lowermost. Its semi¥ertical angle is tan''(0.5). Water is poured
into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of
the water is rising at the instant when the depth of water in the tanTJis 4 m.

Solution et 7, & and o be as in Fig [1[T] Then tano = %

So o = tan”' (LJ )
h

Cut o =tan''(0.5) (given)
r
or W =0.5
h
or r=_

[et [1 be the volume of the cone. Then

Theref d—[—iﬂ[ﬁ by Chain Rul
erefore 7 a0 (by Chain Rule)
— Ehi@

4 dt
. dO B
Cow rate of change of volume, i.e., 7=5rn M and 7 =4 m.
t
n .- dh
- S22
Therefore 4 4 i
dh 5 [5 (T
or — — —=—mlh mT=—
dt 4 [ C

Thus, the rate of change of water level is %m[ﬁ .

Example 44 A man of height COmetres wal[s at a uniform speed of 5 Tm(h away from
a lamp post which is Cmetres high. Find the rate at which the length of his shadow
increases.
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Solution In Fig [11T] Cet AT be the lamp[post, the
lamp being at the position T and let M be the man
at a particular time ¢ and let AM = / metres. Then,
MS is the shadow of the man. Cet MS = s metres.

Cote that AMS[] [TAAST]

MS MO
or AS T AL

Fig 6.23
or AS =[5 (as MO = Dand A= [J(given))
Thus AM =[5 Os=s. (Wt AM =1/
So [=T%
Therefore dar_ [é
dt dt

5
Since ?: 5 Cmfh. Hence, the length of the shadow increases at the rate T Cmh.
t

Example 45 Find the equation of the normal to the curve x '= 4y which passes through
the point (1, D).

Solution Differentiating x" = 4y with respect to x, we get

dy _x

dc [
Cet (A, k) be the coordinates of the point of contact of the normal to the curve
x"'=4y. Dow, slope of the tangent at (4, k) is given by

Q} h
dx (h, k) T r

-
Hence, slope of the normal at (h, k) = ——

Therefore, the equation of normal at (4, k) is
-0
y k= x=h) ()
Since it passes through the point (1, [), we have

[—kz%(l—h) or k=[+%(l—h) (0
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Since (4, k) lies on the curve x"'= 4y, we have

h-=4k .. (D
From (0) and (0), we have & = [and £ = 1. Substituting the values of 2 and kin (1),
we get the required equation of normal as

-0
y—lz—[(x— Dor x Oy =0
Example 46 Find the equation of tangents to the curve
y=cos(x Oy), Om<x<[n
that are parallel to the line x (173 = 0.

Solution Differentiating y = cos(x [Jy) with respect to x, we have

dy —sin(x+ y)

dr  1+sin(x+)
or slope of tangent at (x, y) ITsin(xty)

Since the tangents to the given curve are parallel to the line x (173 =0, whose slope

-1
is I we have

—sin(x + y) -1
l+sin(x+y) [
or sin(x Oy) =1
T
or x[y=mt[([1)"—[aneZ
2 T
Then y=cos(x Ly)= cos(nn+(—l) E} nel

=0, foralln e Z

. —n T
Also, since —[(m<x<[m, we get sz and xz—[. Thus, tangents to the

=l T
given curve are parallel to the line x [ [» = 0 only at points (—[,OJ and [—[,OJ .

Therefore, the required equation of tangents are
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-1 [n
yU0=—{x+— | or [x+4y+in=0

U L
-1 b1
and y[0=—[ X—E or [kx+4y-mn=0

Example 47 Find intervals in which the function given by

4 4 - o
=—x ——x -k +—x+11
SO =107 73 5
is (a) strictly increasing (b) strictly decreasing.
Solution We have
=—x ——x -k +—x+11
T 5

Therefore f'(x) = %(4x[) —%(Dc[) —(x)+ [?[

= EE (x=-D(x+D(x-D (on simplification)

Oow f'(x)=0givesx=1,x=00orx =[] The <— ' —>
points x = 1, (0[] and Cdivide the real line into four -2 1 3
dis[0int intervals namely, ([Joo, [I0), (D] 1), (1, D Fig 6.24

and ([} o) (Fig [1[4).
Consider the interval ([ oo, [11), i.e., when (oo [1x [1[][]
In this case, we have x (11 [0, x 0 and x 0.
(In particular, observe that for x = [T] f'(x) = (x J1) (x 0D (x DD =(0O4) (01)
(0D 00)
Therefore, f'(x) 110 when [loo [lx [1[1[]
Thus, the function f’is strictly decreasing in (oo, [(I0).
Consider the interval (0] 1), i.e., when OO0x 1.
In this case, we have x [J1 00, x OO0 and x OO0

(In particular, observe that for x =0, f'(x) = (x J1) (x 0D (x DD = (1) (D (D)
=1010)

So f'(x) D0 when OO0 0x O1.
Thus, fis strictly increasing in (0] 1).
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Cow consider the interval (1, D), i.e., when 1 [ x [0 [ In this case, we have
x 01 00,x 0000 and x OO0,

So, f'(x) 00 when 1 Ox 0O
Thus, fis strictly decreasing in (1, ).

Finally, consider the interval (] ), i.e., when x [J[] In this case, we have x (11 (10,
x 0000 and x OO0, So f'(x) 00 when x 0[]

Thus, f is strictly increasing in the interval (7] o).
Example 48 Show that the function f given by
f(x) =tan"!(sin x TJcos x), x 1O

is always an strictly increasing function in (O’EJ .
4

Solution We have
f(x) =tan"'(sin x Clcos x), x 0
1

Therefore "(x) = (cosx—sinx
/') 1+ (sin x + cosx) )

CcOSX —Ssinx (on simplification)
= on simplification
[Hsinlx P

i
[lote that [1[sin [x [0 for all x in (Q-j .

4
Therefore f'(x) 00 ifcos x Osinx (10
or f'(x) 00 ifcos x Osinx or cot x (11
Uow cotx[liftanx[l,i.e.,if0<x<§
Thus £(x) 100 in [o,gj

Hence fs strictly increasing function in (0, EJ .

Example 49 A circular disc of radius TJcm is being heated. [Jue to expansion, its
radius increases at the rate of 0.05 cm's. Find the rate at which its area is increasing
when radius is [l[0cm.
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Solution Cet 7 be the radius of the given disc and A be its area. Then

A=mr
A _ [ﬂrﬂ by Chain Rul
or o " (by Chain Rule)
. . . dr
Cow approximate rate of increase of radius = dr = EAt =0.05cmls.

Therefore, the approximate rate of increase in area is given by
dA dr
= —(A?) = Lr| — At
dA=— (A ( 7 J

= (00D (0.05) =0.10x cm'[s  (r= Clcm)

Example 50 An open topped box is to be constructed by removing equal squares from
each corner of a [Jmetre by [Jmetre rectangular sheet of aluminium and folding up the
sides. Find the volume of the largest such box.

Solution et x metre be the length of a side of the removed squares. Then, the height
of the box is x, length is (1] [k and breadth is 00 (Fig C105). If T(x) is the volume
of the box, then

R 3 I [ |x
' VR
' Ne\l
_____ g2x i |22
x _l Mx 8 2x
(@) (b)
Fig 6.25

O(x) =x(00) (OO x)
=4x- [JIx" O 4x

Therefore ') =10x —ddx+ 4=4(x—)(x-1)
"(x)=[4x—44
. U
Cow O'(x) =0 gives x = E—[ . Tut x # O0(WhyD)

C
Thus, we have X=—[. Low ["(—3=E4(—3—44=—[[<0.
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0. . . . . . L
Therefore, x = - is the point of maxima, i.e., if we remove a square of side -

metre from each corner of the sheet and male a box from the remaining sheet, then
the volume of the box such obtained will be the largest and it is given by

()4 -5 =0

[T

Example 51 Manufacturer can sell x items at a price of rupees (5 —ﬁ] each. The

cost price of x items is Rs (% + 500] . Find the number of items he should sell to earn

maximum profit.

Solution Cet S(x) be the selling price of x items and let C(x) be the cost price of x
items. Then, we have

C

S(x) = (S—LJx=5x—x—
100 100

and Cx) = §+ 500

Thus, the profit function [(x) is given by

= S(x)— C(x)=5x————2—500
) = S -C)=5x -
4 X
ie. - x—2 500
-e T
Ty = 2%
or (x) = 5 350

Cow [1(x) =0 gives x = [40. Also [(x) =;—é . So [T(r40) =;—é <0

Thus, x = [40 is a point of maxima. Hence, the manufacturer can earn maximum
profit, if he sells 40 items.
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Miscellaneous Exercise on Chapter 6
Osing differentials, find the approximate value of each of the following [

1

(a) (15[] (b) (1)

Show that the function given by f(x)= logx has maximum at x = e.
x

The two equal sides of an isosceles triangle with fixed base b are decreasing at
the rate of Clcm per second. How fast is the area decreasing when the two equal
sides are equal to the base [

Find the equation of the normal to curve x"=4y which passes through the point
(1, 0.

Show that the normal at any point § to the curve

x=acosd (a0 sinb, y =a sind [ab cosO

is at a constant distance from the origin.

Find the intervals in which the function f'given by

4sinx — [k —xcosx

fx)=

is (i) strictly increasing (ii) strictly decreasing.

[+ cosx

1
. . . . . . s .
Find the intervals in which the function fgiven by f(x)=x"+ el x#0is
(i) increasing (i) decreasing.
X O y O
Find the maximum area of an isosceles triangle inscribed in the ellipse — + I =1
a
with its vertex at one end of the malor axis.
A tan[Jwith rectangular base and rectangular sides, open at the top is to be
constructed so that its depth is ['m and volume is TJm". If building of tan[Jcosts
Rs [0 per sq metres for the base and Rs 45 per square metre for sides. What is
the cost of least expensive tan[T]

The sum of the perimeter of a circle and square is &, where k is some constant.
Crove that the sum of their areas is least when the side of square is double the
radius of the circle.
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A window is in the form of a rectangle surmounted by a semicircular opening,
The total perimeter of the window is 10 m. Find the dimensions of the window to
admit maximum light through the whole opening.

A point on the hypotenuse of a triangle is at distance a and b from the sides of
the triangle.

O o C
Show that the maximum length of the hypotenuse is (aE + bE)E .

Find the points at which the function fgiven by f(x)= (x [1[)*(x [11)" has
(i) local maxima (i) local minima
(ii)) pointofinflexion
Find the absolute maximum and minimum values of the function f given by
f(x)=cos'x Osinx, x € [0, n[J

Show that the altitude of the right circular cone of maximum volume that can be

4r
inscribed in a sphere of radius 7 is -

Cet f be a function defined on [a, b[such that f'(x) (10, for all x € (a, b). Then
prove that f is an increasing function on (a, b).

Show that the height of the cylinder of maximum volume that can be inscribed in

a sphere of radius R is R . Also find the maximum volume.

NG

Show that height of the cylinder of greatest volume which can be inscribed in a
right circular cone of height 4 and semi vertical angle a is onelthird that of the

4
cone and the greatest volume of cylinder is e mh tan o

Choose the correct answer in the Exercises from 19 to [4.

19.

20.

A cylindrical tan[Jof radius 10 m is being filled with wheat at the rate of (14
cubic metre per hour. Then the depth of the wheat is increasing at the rate of

(A) 1mh (0) 0.1mmh
(C) 1L.lmh () 0.5mh

The slope of the tangent to the curve x = ¢ [1[¢ (] y = (¥ [1[¢ IS5 at the point
(L) is

T C C y
(A) - ) T ©) T () —
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21. The line y = mx (11 is a tangent to the curve y-= 4x if the value of m is

(A) 1 () © ©) (1) %
22. The normal at the point (1,1) on the curve [y [x"= [is
(A) xOy=0 (D) xOy=0
(C) xOym=0 (O) xOy=1
23. The normal to the curve x"'= 4y passing (1,0) is
(A) xOy=10 (O) xOy=0
(C) xOy=1 (O) xOy=1

24. The points on the curve 9y" = x", where the normal to the curve males equal
intercepts with the axes are

L -L
42 o [+
L L
(©) (‘hiﬂ () (i“f}

Summary

@ Ifaquantity y varies with another quantity x, satisfying some rule y = f(x),

d
then & (or f'(x)) represents the rate of change of y with respect to x and
X

d.

dy
a} (or f'(x,)) represents the rate of change of y with respect to x at
X=X()

X=X, .
¢ [Iftwo variables x and y are varying with respect to another variable ¢, i.e., if
x= f(t)and y= g(¢), then by Chain Rule

dx dt/ dt’ dt

¢ A function f is said to be

(a) increasing on an interval (a, b) if
x, Ux in(a, b) = f(x,) < f(x ) for all x, x € (a, b).
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Alternatively, if /'(x) = 0 for each x in (a, b)
(b) decreasing on (a,b) if
x, Ux in(a, b) = f(x)) 2 f(x ) forall x, x € (a, b).
Alternatively, if /'(x) < 0 for each x in (a, b)
The equation of the tangent at (x,, y,) to the curve y = f(x) is given by

d
y_J’ozd_y:| (x—xp)
X (xg5%0)

d
If Ey does not exist at the point (x,,y,) , then the tangent at this point is

parallel to the ylaxis and its equation is x = x,,.

If tangent to a curve y = f(x) at x = x, is parallel to x[axis, then %} =0.
29 X=X,

Equation of the normal to the curve y = f(x) at a point (x,,y,) is given by
-1

—Yp=——=—(x—x
Y= dy:| ( 0)
dx (xg5%0)

d
If Ey at the point (x,,y,) is Lero, then equation of the normal is x = x,.

d
If d—y atthe point (x,,y,) doesnot exist, then the normal is parallel to x[axis
X

and its equationis y = y,.

Cet y = f(x), Ax be a small increment in x and Ay be the increment in y
corresponding to the increment in x, i.e., Ay = f(x [ Ax) Of(x). Then dy
given by

dy = f'(x)dx or dyz[ﬂj Ax .
dx

is a good approximation of Ay when dx = Ax isrelatively small and we denote
it by dy ~ Ay.

A point ¢ in the domain of a function f at which either f'(c) = 0 or f'is not
differentiable is called a critical point of f.



40

MATHEMATICS

@ First Derivative Test (et f be a function defined on an open interval I. [et

f be continuous at a critical point ¢ in I. Then

(1) Iff'(x) changes sign from positive to negative as x increases through c,
i.e., if f'(x) 0O at every point sufficiently close to and to the left of ¢,
and f"'(x) [JO at every point sufficiently close to and to the right of c,
then c is a point of local maxima.

(i) Iff’(x) changes sign from negative to positive as x increases through c,
i.e., if f'(x) 0O at every point sufficiently close to and to the left of ¢,
and f"'(x) 0O at every point sufficiently close to and to the right of ¢,
then c is a point of local minima.

@iii) If f'(x) does not change sign as x increases through ¢, then c is neither
a point of local maxima nor a point of local minima. Infact, such a point
is called point of inflexion.

@ Second Derivative Test [et f be a function defined on an interval I and

c € L. Cet f be twice differentiable at ¢. Then
(i) x=cis apoint of local maxima if f'(c) =0 and f"'(c) 00
The values f'(c) is local maximum value of f'.
(i) x = cis a point of local minima if f'(¢) = 0 and f"(c) 71O
In this case, f'(¢) is local minimum value of f.
(iii) The test fails if /'(c) =0 and f"(c) = 0.
In this case, we go bac[to the first derivative test and find whether c is
a point of maxima, minima or a point of inflexion.

Worling rule for finding absolute maxima and[or absolute minima

: Find all critical points of fin the interval, i.e., find points x where
either f'(x) = 0 or f'is not differentiable.

:Tale the end points of the interval.
: At all these points (listed in Step 1 and [), calculate the values of f.

: Identify the maximum and minimum values of f out of the values
calculated in Step [] This maximum value will be the absolute maximum
value of f and the minimum value will be the absolute minimum value of f.

J
0‘0
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