SET-3 # Series HRK/2 कोड नं. Code No. 30/2/3 | रोल नं. | | | | | |----------|--|--|--|--| | Roll No. | | | | | परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Code on the title page of the answer-book. - कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं। - प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 31 प्रश्न हैं। - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें। - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे। - Please check that this question paper contains 11 printed pages. - Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. - Please check that this question paper contains **31** questions. - Please write down the Serial Number of the question before attempting it. - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. # संकलित परीक्षा – II SUMMATIVE ASSESSMENT – II # गणित MATHEMATICS निर्धारित समय : 3 घण्टे अधिकतम अंक : 90 Time allowed: 3 hours Maximum Marks: 90 # सामान्य निर्देश: - (i) सभी प्रश्न अनिवार्य हैं। - (ii) इस प्रश्न-पत्र में 31 प्रश्न हैं जो चार खण्डों अ, ब, स और द में विभाजित हैं। - (iii) खण्ड अ में **एक-एक** अंक वाले 4 प्रश्न हैं | खण्ड ब में 6 प्रश्न हैं जिनमें से प्रत्येक 2 अंकों का है | खण्ड स में 10 प्रश्न तीन-तीन अंकों के हैं | खण्ड द में 11 प्रश्न हैं जिनमें से प्रत्येक 4 अंकों का है | - (iv) कैलकुलेटरों का प्रयोग करने की अनुमित **नहीं** है। #### General Instructions: - (i) All questions are compulsory. - (ii) The question paper consists of 31 questions divided into four sections —A, B, C and D. - (iii) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each. - (iv) Use of calculators is **not** permitted. #### खण्ड अ #### SECTION A प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है । Question numbers 1 to 4 carry 1 mark each. 1. $9 \text{ Hl.} \times 8 \text{ Hl.} \times 2 \text{ Hl.}$ विमाओं वाले धातु के एक ठोस घनाभ को पिघलाकर 2 Hl. भुजा के ठोस घनों में ढाला गया है । इस प्रकार बने घनों की संख्या ज्ञात कीजिए । A solid metallic cuboid of dimensions $9 \text{ m} \times 8 \text{ m} \times 2 \text{ m}$ is melted and recast into solid cubes of edge 2 m. Find the number of cubes so formed. - 2. O केन्द्र तथा QOR व्यास के एक वृत्त पर एक बाह्य बिन्दु P से स्पर्श-रेखा PQ खींची गई है । यदि $\angle$ POR = $120^\circ$ है, तो $\angle$ OPQ की माप क्या है ? - PQ is a tangent drawn from an external point P to a circle with centre O, QOR is the diameter of the circle. If $\angle$ POR = 120°, what is the measure of $\angle$ OPQ? - 3. एक 15 मी. लम्बी सीढ़ी दीवार के साथ 60° का कोण बनाती है। उस बिन्दु की ऊँचाई ज्ञात कीजिए जहाँ सीढी दीवार को स्पर्श करती है। A ladder 15 m long makes an angle of $60^{\circ}$ with the wall. Find the height of the point where the ladder touches the wall. 4. यदि द्विघात समीकरण $6x^2-x-k=0$ का एक मूल $\frac{2}{3}$ है, तो k का मान ज्ञात कीजिए। If one root of the quadratic equation $6x^2-x-k=0$ is $\frac{2}{3}$ , then find the value of k. # खण्ड ब SECTION B प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंकों का है। Question numbers 5 to 10 carry 2 marks each. 5. यदि एक समांतर चतुर्भुज के दो आसन्न शीर्ष (3, 2) व (-1, 0) हैं तथा इसके विकर्ण (2, -5) पर प्रतिच्छेद करते हैं, तो अन्य दो शीर्षों के निर्देशांक ज्ञात कीजिए। If two adjacent vertices of a parallelogram are (3, 2) and (-1, 0) and the diagonals intersect at (2, -5), then find the coordinates of the other two vertices. 6. दी गई आकृति में, यदि AB = AC है, तो सिद्ध कीजिए कि BE = EC. In the given figure, if AB = AC, prove that BE = EC. - 7. एक अधिवर्ष (लीप वर्ष) में 53 मंगलवार होने की प्रायिकता ज्ञात कीजिए। Find the probability that in a leap year there will be 53 Tuesdays. - 8. यदि एक समांतर श्रेढ़ी के 7वें पद का सात गुना उसके 11वें पद के ग्यारह गुने के बराबर है, तो उसका 18वाँ पद क्या होगा ? If seven times the $7^{th}$ term of an A.P. is equal to eleven times the $11^{th}$ term, then what will be its $18^{th}$ term? 9. दो विभिन्न पासों को एक साथ फेंका गया । प्राप्त संख्याओं का गुणनफल 18 से कम होने की प्रायिकता ज्ञात कीजिए । Two different dice are thrown together. Find the probability that the product of the numbers appeared is less than 18. **10.** x के लिए हल कीजिए: $$\sqrt{3}x^2 - 2x - 8\sqrt{3} = 0$$ Solve for x: $$\sqrt{3}x^2 - 2x - 8\sqrt{3} = 0$$ # खण्ड स SECTION C प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंकों का है। Question numbers 11 to 20 carry 3 marks each. - 11. सिद्ध कीजिए कि त्रिभुज ABC जिसके शीर्ष A (-2, 0), B (0, 2) तथा C (2, 0) हैं, Δ DEF जिसके शीर्ष D (-4, 0), F (4, 0) तथा E (0, 4) हैं, के समरूप है । Show that Δ ABC with vertices A (-2, 0), B (0, 2) and C (2, 0) is similar to Δ DEF with vertices D (-4, 0), F (4, 0) and E (0, 4). - 12. दी गई आकृति में, $\triangle$ ABC, 3 इकाई भुजा का एक समबाहु त्रिभुज है । इसके अन्य दो शीर्षों के निर्देशांक ज्ञात कीजिए । In the given figure, $\Delta$ ABC is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices. 13. दी गई आकृति में, ABCD एक समलंब चतुर्भुज, जिसकी भुजाएँ AB = 18 सेमी, DC = 32 सेमी, $AB \parallel DC$ तथा AB व AC के बीच की दूरी 14 सेमी है । यदि A, B, C व D को केन्द्र लेकर 7 सेमी समान त्रिज्या के चाप खींचे गए हैं, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए । In the given figure, ABCD is a trapezium with AB $\parallel$ DC, AB = 18 cm, DC = 32 cm and the distance between AB and AC is 14 cm. If arcs of equal radii 7 cm taking A, B, C and D as centres, have been drawn, then find the area of the shaded region. 14. सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने-सामने की भुजाएँ वृत्त के केन्द्र पर संपूरक कोण अंतरित करती हैं। Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle. 15. एक मीनार की किसी समय की छाया, उस छाया की तीन गुनी है जब सूर्य का उन्नयन कोण 60° है। लम्बी छाया के समय सूर्य का उन्नयन कोण ज्ञात कीजिए। The shadow of a tower at a time is three times as long as its shadow when the angle of elevation of the sun is $60^{\circ}$ . Find the angle of elevation of the sun at the time of the longer shadow. 16. दी गई आकृति में, PA तथा PB एक बाह्य बिन्दु P से वृत्त की स्पर्श-रेखाएँ हैं, जहाँ PA = 4 सेमी तथा $\angle BAC = 135^{\circ}$ है । जीवा AB की लम्बाई ज्ञात कीजिए । In the given figure, PA and PB are tangents to a circle from an external point P such that PA = 4 cm and $\angle$ BAC = 135°. Find the length of chord AB. 17. बिन्दुओं (3, -2) तथा (-3, -4) को मिलाने वाले रेखाखण्ड को समित्रभाजित करने वाले बिन्दुओं के निर्देशांक ज्ञात कीजिए । Find the coordinates of the points of trisection of the line segment joining the points (3, -2) and (-3, -4). 18. यदि x में द्विघात समीकरण $(c^2 - ab) x^2 - 2 (a^2 - bc) x + b^2 - ac = 0$ के मूल समान हों, तो दर्शाइए कि या तो a = 0 या $a^3 + b^3 + c^3 = 3abc$ . If the quadratic equation $(c^2 - ab) x^2 - 2 (a^2 - bc) x + b^2 - ac = 0$ in x, has equal roots, then show that either a = 0 or $a^3 + b^3 + c^3 = 3abc$ . 19. 50 पदों की एक समांतर श्रेढ़ी में, प्रथम 10 पदों का योगफल 210 है तथा अंतिम 15 पदों का योगफल 2565 है। समांतर श्रेढी ज्ञात कीजिए। In an A.P. of 50 terms, the sum of the first 10 terms is 210 and the sum of its last 15 terms is 2565. Find the A.P. 20. 6 सेमी व्यास के एक ठोस गोले को, आंशिक रूप से पानी से भरे एक लम्ब-वृत्तीय बेलनाकार बर्तन में डाला जाता है। बेलनाकार बर्तन का व्यास 12 सेमी है। यदि गोला पूर्णत: पानी में डूब गया है, तो बेलनाकार बर्तन में पानी का स्तर कितना ऊपर उठ जाएगा ? A solid sphere of diameter 6 cm is dropped in a right circular cylindrical vessel partly filled with water. The diameter of the cylindrical vessel is 12 cm. If the sphere is completely submerged in water, by how much will the level of water rise in the cylindrical vessel? # खण्ड द SECTION D प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंकों का है। Question numbers 21 to 31 carry 4 marks each. 21. सिद्ध कीजिए कि एक बाह्य बिन्दु से वृत्त पर खींची गई दो स्पर्श-रेखाओं की लम्बाइयाँ समान होती हैं। Prove that the lengths of two tangents drawn from an external point to a circle are equal. 22. एक बच्ची पहले दिन अपनी बचत का एक पाँच-रुपए का सिक्का गुल्लक में डालती है । वह प्रतिदिन अपनी बचत में पाँच-रुपए के सिक्के की राशि एक-एक बढ़ाती है । यदि गुल्लक में पाँच-रुपए के कुल 190 सिक्के आ सकते हों, तो ज्ञात कीजिए कि वह कितने दिन तक गुल्लक में पाँच-रुपए के सिक्के डाल सकती है तथा उसने कुल कितना धन बचाया । बचत करने की आदत पर अपने विचार लिखिए । A child puts one five-rupee coin of her saving in the piggy bank on the first day. She increases her saving by one five-rupee coin daily. If the piggy bank can hold 190 coins of five rupees in all, find the number of days she can continue to put the five-rupee coins into it and find the total money she saved. Write your views on the habit of saving. 23. एक पार्क की आकृति 7 मी. व्यास के वृत्त की है। यह 0.7 मी. चौड़ाई के रास्ते से घिरा हुआ है। इस रास्ते पर सीमेंट करने का खर्च ज्ञात कीजिए, यदि इसकी लागत प्रति वर्ग मी. ₹ 110 है। A park is of the shape of a circle of diameter 7 m. It is surrounded by a path of width of 0.7 m. Find the expenditure of cementing the path, if its cost is $\geq 110$ per sq. m. 24. 50 मी. $\times$ 40 मी. विमाओं वाले एक आयताकार पार्क में एक आयताकार तालाब बना है, जिससे तालाब के चारों ओर समान चौड़ाई की बनी घास की पट्टी का क्षेत्रफल 1184 वर्ग मी. है। तालाब की लम्बाई तथा चौड़ाई ज्ञात कीजिए। In a rectangular park of dimensions $50 \text{ m} \times 40 \text{ m}$ , a rectangular pond is constructed so that the area of grass strip of uniform width surrounding the pond would be $1184 \text{ m}^2$ . Find the length and breadth of the pond. 25. दो वृत्त अंत:स्पर्श करते हैं । उनके क्षेत्रफलों का योगफल 116 π वर्ग सेमी है तथा उनके केन्द्रों के बीच की दूरी 6 सेमी है । वृत्तों की त्रिज्याएँ ज्ञात कीजिए । Two circles touch internally. The sum of their areas is $116 \pi$ cm<sup>2</sup> and the distance between their centres is 6 cm. Find the radii of the circles. 26. एक बक्से में 90 डिस्क (Discs) हैं, जिन पर 1 से 90 तक संख्याएँ अंकित हैं (एक डिस्क पर एक संख्या) । यदि इस बक्से में से एक डिस्क यादृच्छया निकाली जाती है, तो इसकी प्रायिकता ज्ञात कीजिए कि इस डिस्क पर अंकित होगी (i) दो अंकों की एक संख्या, (ii) 5 से विभाज्य एक संख्या । A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears (i) a two-digit number, (ii) a number divisible by 5. 27. 3 मी. व्यास का एक कुआँ 14 मी. गहराई तक खोदा गया । बाहर निकाली गई मिट्टी को 5 मी. चौड़ी एक वृत्ताकार वलय (Ring) बनाने के लिए समान रूप से फैलाया गया तथा एक प्रकार का बाँध बनाया गया । इस बाँध की ऊँचाई ज्ञात कीजिए । A well of diameter 3 m is dug 14 m deep. The soil taken out of it is spread evenly all around it to a width of 5 m to form an embankment. Find the height of the embankment. **28.** x के लिए हल कीजिए : $$4x^2 + 4bx - (a^2 - b^2) = 0$$ Solve for x: $$4x^2 + 4bx - (a^2 - b^2) = 0$$ 29. 3 सेमी त्रिज्या का एक वृत्त खींचिए। इसके दोनों ओर बढ़े हुए एक व्यास पर, इसके केन्द्र से दोनों भुजाओं के विपरीत दिशाओं में प्रत्येक 7 सेमी की दूरी पर दो बिन्दु P तथा Q लीजिए। इन दो बिन्दुओं P तथा Q से वृत्त पर स्पर्श-रेखाएँ खींचिए। Draw a circle of radius of 3 cm. Take two points P and Q on one of its diameters extended on both sides, each at a distance of 7 cm on opposite sides of its centre. Draw tangents to the circle from these two points P and Q. **30.** एक पहाड़ी की चोटी से पूर्व दिशा की ओर सीधी रेखा में दो क्रमागत किलोमीटर वाले पत्थरों के अवनमन कोण क्रमश: 45° व 30° हैं। पहाड़ी की ऊँचाई ज्ञात कीजिए। From the top of a hill, the angles of depression of two consecutive kilometre stones due east are found to be 45° and 30° respectively. Find the height of the hill. 31. एक लम्ब-वृत्तीय शंकु को तीन भागों में बाँटने के लिए इसकी ऊँचाई को उसके आधार के समांतर दो समतलों द्वारा तीन बराबर भागों में बाँटा गया है । दर्शाइए कि शिखर से आरम्भ करने पर इन तीन भागों के आयतनों का अनुपात 1:7:19 होगा । A right circular cone is divided into three parts by trisecting its height by two planes drawn parallel to the base. Show that the volumes of the three portions starting from the top are in the ratio 1:7:19. # QUESTION PAPER CODE 30/2/3 # **EXPECTED ANSWER/VALUE POINTS** #### **SECTION A** 1. No. of cubes = $$\frac{9 \times 8 \times 2}{2 \times 2 \times 2}$$ $\frac{1}{2}$ $$= 18$$ $\frac{1}{2}$ 2. $$\angle POR = \angle OQP + \angle OPQ$$ $$\angle OPQ = 120^{\circ} - 90^{\circ}$$ $\frac{1}{2}$ $$\cos 60^\circ = \frac{h}{15}$$ $$h = 7.5 \text{ m}$$ $$\frac{1}{2}$$ $$\frac{1}{2}$$ 4. $$6x^2 - x - k = 0$$ $$6\left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right) - k = 0$$ $$k = 2$$ $$\frac{1}{2}$$ $$\frac{1}{2}$$ # **SECTION B** 5. Let other two coordinates are $$(x, y)$$ and $(x', y')$ $$2 = \frac{x+3}{2}$$ $$\Rightarrow$$ x = 1 and, $$-5 = \frac{2+y}{2}$$ $$y = -12$$ $$\frac{1}{2}$$ Again, $$\frac{-1+x'}{2}=2$$ $$x' = 5$$ $$\frac{1}{2}$$ and $$\frac{0+y'}{2} = -5$$ $$y' = -10$$ $$\frac{1}{2}$$ Hence co-ordinates are (1, -12) and (5, -10) 6. $$AB = AC$$ (Given) $\frac{1}{2}$ On subtracting, $$BD = CF$$ 1 and CF = EC $$\Rightarrow$$ BE = EC $$\frac{1}{2}$$ 7. In leap year = 52 weeks + 2 days 1 Two days may be, (M, Tu), (Tu, W), (W, Th), (Th, F), (F, Sat) (Sat, Sun), (Sun, M) Required probability = $\frac{2}{7}$ $\frac{1}{2}$ 8. $$7a_7 = 11a_{11}$$ $$7(a+6d) = 11(a+10d)$$ $\frac{1}{2}$ $$7a - 11a + 12d - 110d = 0$$ $\frac{1}{2}$ $$-4a - 68d = 0$$ $\frac{1}{2}$ $$a + 17d = 0$$ 2 $$a_{18} = 0$$ $\frac{1}{2}$ 9. Total number of outcomes = 36 $$P(\text{Product appears is less than } 18) = \frac{26}{36} = \frac{13}{18}$$ $$1\frac{1}{2}$$ 10. $$\sqrt{3}x^2 - 2x - 8\sqrt{3} = 0$$ $$\sqrt{3}x^2 - 6x + 4x - 8\sqrt{3} = 0$$ $$\sqrt{3}x (x - 2\sqrt{3}) + 4(x - 2\sqrt{3}) = 0$$ 1 1 1 1 1 $$x = \frac{-4}{\sqrt{3}}, 2\sqrt{3}$$ #### **SECTION C** 11. AB = $$\sqrt{(-2+0)^2 + (0-2)^2} = 2\sqrt{2}$$ units BC = $$\sqrt{(0-2)^2 + (2-2)^2}$$ = $2\sqrt{2}$ units $$CA = \sqrt{(2+2)^2 + (0-0)^2} = 4 \text{ units}$$ DE = $$\sqrt{(-4+0)^2 + (0-4)^2} = 4\sqrt{2}$$ units EF = $$\sqrt{(0-4)^2 + (4-0)^2}$$ = $4\sqrt{2}$ units DF = $$\sqrt{(-4-4)^2 + (0-2)^2}$$ = 8 units $$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{1}{2}$$ 12. Co-ordinates of B are (5, 0) Let co-ordinates of C be (x, y) $$AC^{2} = BC^{2}$$ $$(x-2)^{2} + (y-0)^{2} = (x-5)^{2} + (y-0)^{2}$$ $$x^{2} + 4 - 4x + y^{2} = x^{2} + 25 - 10x + y^{2}$$ 30/2/3 (23) $$6x = 21$$ $$x = \frac{7}{2}$$ $$(x-2)^2 + (y-0)^2 = 9$$ $$\left(\frac{7^2}{2} - 2\right) + y^2 = 9$$ $$y^2 = 9 - \frac{9}{4}$$ $$y^2 = \frac{27}{4}$$ $$y = \frac{3\sqrt{3}}{2}$$ (+ve sign to be taken), Co-ordinate of $C\left(\frac{7}{2}, \frac{3\sqrt{3}}{2}\right)$ 3 marks be given to every attempt $$\triangle AOS \cong \triangle AOP$$ $$\Rightarrow \angle 1 = \angle 2$$ 3 1 Similarly $\angle 4 = \angle 3$ $$\angle 5 = \angle 6$$ $$\angle 8 = \angle 7$$ $$\Rightarrow$$ $(\angle 1 + \angle 8) + (\angle 4 + \angle 5) = (\angle 2 + \angle 3) + (\angle 6 + \angle 7) = 180^{\circ}$ 1 $$\Rightarrow \angle AOD + \angle BOC = 180^{\circ}$$ and $$\angle AOB + \angle COD = 180^{\circ}$$ 30/2/3 (24) **15.** Correct Figure $$\tan 60^\circ = \frac{h}{x}$$ $$h = \sqrt{3}_X$$ $$\tan \theta = \frac{h}{3x}$$ $$\tan \theta = \frac{\sqrt{3}x}{3x}$$ $$\tan \theta = \frac{1}{\sqrt{3}}$$ $$\Rightarrow \theta = 30^{\circ}$$ $\frac{1}{2}$ 1 $\frac{1}{2}$ 1 $$\frac{1}{2}$$ 16. PA = PB = 4 cm (tangents from external point) $$\angle PAB = 180^{\circ} - 135^{\circ}$$ $$\angle APB = 180^{\circ} - 45^{\circ} - 45^{\circ}$$ $$=90^{\circ}$$ $\Rightarrow$ $\triangle$ ABP is a isosceles right angled triangle $\Rightarrow AB^2 = 2AP^2$ $$= 2(4)^2 = 32$$ $AB = 4\sqrt{2} \text{ cm}$ $$\frac{1}{2}$$ **17.** Let the co-ordinates be (x, y) and (x', y') $$x = \frac{1(-3) + 2(3)}{1 + 2} = 1$$ $$y = \frac{1(-4) + 2(-2)}{1+2} = \frac{-8}{3}$$ $$x' = \frac{2(-3) + 1(3)}{1 + 2} = -1$$ $$y' = \frac{2(-4) + 1(-2)}{1 + 2} = \frac{-10}{3}$$ $$1\frac{1}{2}$$ 18. $$(c^2 - ab)x^2 - 2(a^2 - bc)x + b^2 - ac = 0$$ For equal roots $$4(a^2 - bc)^2 - 4(c^2 - ab) (b^2 - ac) = 0$$ $$a^4 + b^2c^2 - 2a^2bc - c^2b^2 + c^2a + ab^3 - a^2bc = 0$$ $$a(a^3 + b^3 + c^3 - 3abc) = 0$$ either $$a = 0$$ or $a^3 + b^3 + c^3 = 3abc$ $\frac{1}{2}$ 19. $$S_{10} = 210$$ $$\frac{10}{2}(2a+9d) = 210$$ $$2a + 9d = 42$$ ...(1) $$a_{36} = a + 35d$$ $$a_{50} = a + 49d$$ Sum of last 15 terms = $$\frac{15}{2}$$ (a + 35 d + a + 49 d) $$2565 = \frac{15}{2}(2a + 84d)$$ $$\Rightarrow a + 42d = 171 \qquad ...(2)$$ Solving (1) and (2) $$a = 3, b = 4$$ **20.** Let the rise in level of water be h cm $$\frac{4}{3}\pi(3)^3 = \pi(6)^2 h$$ Solving $$h=1$$ (26) 30/2/3 ### 30/2/3 # **SECTION D** For correct given, To prove, construction, figure 21. $$4 \times \frac{1}{2} = 2$$ for correct proof Total saving = $190 \times 5 = ₹950$ 22. 1 The series 5 + 10 + 20 + ... $$S_n = 950$$ $$\frac{n}{2}(2(5) + (n-1)5) = 950$$ 1 $$n(2+(n-1))=380$$ $$n^2 + n - 380 = 0$$ n = 19 $$n^2 + 20n - 19n - 380 = 0$$ 1 Views on the habit of saving 1 23. $r_1 = 3.5 \text{ m}, r_2 = 4.2 \text{ m}$ $\frac{1}{2}$ area of path = $\pi(4.2)^2 - \pi(3.5)^2$ 1 $$=\pi[(7.7)\times0.7]$$ $$=\frac{22}{7}\times7.7\times0.7$$ $= 16.94 \text{ m}^2$ Cost of cementing the path = $16.94 \times 110$ **=**₹1863.40 1 30/2/3 **(27)** 24. Let width of grass strip be x mts. area of park – area of pond = 1184 $$(50 \times 40) - (50 - 2x)(40 - 2x) = 1184$$ $$2000 - 2000 + 180x - 4x^2 = 1184$$ $$x^2 - 45x + 296 = 0$$ 1 1 2 1 $$x^2 - 37x - 8x + 296 = 0$$ $$x = 8, 37$$ (rejected) Length of pond = $$50 - 16 = 34 \text{ m}$$ Breadth of pond = $$40 - 16 = 24 \text{ m}$$ 25. Let radii of circles be x, y (x > y) $$x - y = 6$$ ...(1) and $$\pi x^2 + \pi y^2 = 116\pi$$ $$x^2 + y^2 = 116$$ $\frac{1}{2}$ $$x^2 + (x - 6)^2 = 116$$ $$\Rightarrow x^2 + x^2 + 36 - 12x = 116$$ $$\Rightarrow x^2 - 6x - 40 = 0$$ $$(x-10)(x+4) = 0$$ $$\Rightarrow x = 10 \text{ cm (rejecting-ve value)}$$ and $$y = 4$$ cm **26.** (i) P(bears two digit number) = $$\frac{81}{90}$$ or $\frac{9}{10}$ (ii) P(a number divisible by 5) = $$\frac{18}{90}$$ or $\frac{1}{5}$ 27. Let height of embankment be h mts $$17(1.5)2 \times 14 = \pi[(6.5)^2 - (1.5)^2] \times 2$$ $$2.25 \times 14 = 5 \times 8 \times h$$ $$\Rightarrow$$ h = 0.7875 m **28.** $$4x^2 + 4bx - (a^2 - b^2) = 0$$ $$D = 16b^2 + 16(a^2 - b^2)$$ $$= 16a^2$$ $$x = \frac{-4b \pm 4a}{2 \times 4}$$ $$x = \frac{-b-a}{2}, x = \frac{-b+a}{2}$$ **29.** For constructing correct circle For constructing correct pair of tangents 3 **30.** For correct figure 1 1 1 $$\tan 45^\circ = \frac{h}{x}$$ $$\mathbf{x} = \mathbf{h}$$ $$\tan 30^\circ = \frac{h}{x + 1000}$$ $$h + 1000 = \sqrt{3}h$$ $$h(\sqrt{3} - 1) = 1000$$ $$h = \frac{1000}{\sqrt{3} - 1}$$ or $500 (\sqrt{3} + 1) m$ 30/2/3 (29) #### 30/2/3 31. $$\frac{r_1}{r_2} = \frac{h}{2h}$$ $$2\mathbf{r}_1 = \mathbf{r}_2$$ $$\frac{r_1}{r_3} = \frac{h}{3h}$$ $$3\mathbf{r}_1 = \mathbf{r}_3 \qquad \qquad \frac{1}{2}$$ Volume of cone ABC = $$\frac{1}{3}\pi r_l^2 h$$ Volume of frustum BCED = $\frac{1}{3}\pi r_2^2(2h) - \frac{1}{3}\pi r_1^2 h$ $$= \frac{1}{3}\pi (2r_l)^2 \times (2h) - \frac{1}{3}\pi r_l^2 h$$ $$=\frac{7}{3}\pi r_l^2 h$$ Volume of frustrm DEGF = $\frac{1}{3}\pi r_3^2(3h) - \frac{1}{3}\pi(2r_2)^2 \times 2h$ $$=\frac{1}{3}\pi r_1^2 h(27-8)$$ $$=\frac{19}{3}\pi r_l^2 h$$ Required Ratio = $\frac{1}{3}\pi r_1^2 h : \frac{7}{8}\pi r_1^2 h : \frac{19}{3}\pi r_1^2 h$ $$= 1:7:19$$ (30) 30/2/3