SAMPLE QUESTION PAPER

Class X Session 2023-24

MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

		SECTION A				
	Section A consis	Section A consists of 20 questions of 1 mark each.				
1.	If two positive integers a and b are	written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime	1			
	numbers, then the result obtained by dividing the product of the positive integers by the					
	LCM (a, b) is					
	(a) xy (b) xy ²	(c) x^3y^3 (d) x^2y^2				
2.			1			
	The given linear polynomial $y = f(x)$	has				
	(a) 2 zeros	(0, 4)				
	(b) 1 zero and the zero is '3'	3				
	(c) 1 zero and the zero is '4'	2	l			
	(d) No zero					
		(3, 0)				
		-4 -3 -2 -1 0 1 2 3 4 5				
		-1				
			l			

true? (a) $\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$ (b) $\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$ (c) $\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$	2
	2
	2
	1 10
	×er
(c) $\frac{1}{a^2} \neq \frac{1}{b^2} = \frac{1}{a^2}$	-1
	-2
$(d)\frac{a1}{a2} \neq \frac{b1}{b2} \neq \frac{c1}{c2}$	-3
a2 b2 c2	.4
4. Write the nature of roots of the quadratic equation $9x^2 - 6x - 2 = 0$.	1
(a) No real roots (b) 2 equal real roots	
(c) 2 distinct real roots (d) More than 2 real r	its
5. Two APs have the same common difference. The first term of one of	these is -1 and that of 1
the other is – 8. Then the difference between their 4th terms is	
(a) 1 (b) -7 (c) 7 (d))
6. Find the ratio in which the line segment joining (2,-3) and (5, 6) is di	ded by x-axis. 1
(a) 1:2 (b) 2:1 (c) 2:5 (c)	5:2
7. (x,y) is 5 unit from the origin. How many such points lie in the third	uadrant? 1
(a) 0 (b) 1 (c) 2 (c)	infinitely many
8. In \triangle ABC, DE AB. If AB = a, DE = x, BE = b and EC = c.	1
Express x in terms of a, b and c.	
(a) $\frac{ac}{b}$ (b) $\frac{ac}{b+c}$	D
(a) $\frac{b}{b}$ (b) $\frac{b+c}{b+c}$	
(c) $\frac{ab}{b}$ (d) $\frac{ab}{b+c}$	
c c $b+c$ B	E C
9. If 0 is centre of a circle and Chord PQ makes an angle 50° with the tangent	at the point of contact 1
P, find the angle made by the chord at the centre.	<u>R</u>
(a) 130° (b) 100°	
(c) 50° (d) 30°	

	A Quadrilate	ral PQRS is dr	awn to circu	mscribe a cir	cle.			1
	If $PQ = 12 \text{ cm}$	n, QR = 15 cm	and RS = 14	cm, find the l	ength of SP.			
	(a) 15 cm	l	(b) 14 cm		(c) 12 cm	(d)	11 cm	
11.	Given that sin	$\theta = \frac{a}{b}$, find co	osθ.					1
	(a) $\frac{b}{\sqrt{b^2-b}}$	$\overline{a^2}$	(b) $\frac{b}{a}$		(c) $\frac{\sqrt{b^2 - a^2}}{b}$	(d	$\frac{a}{\sqrt{b^2-a^2}}$	
12.	(sec A + tan A)) (1 – sin A) =						1
	(a) sec A		(b) sin A		(c) cosec A	(0	l) cos A	
13.	A pole 6 m hi	gh casts a sha	adow $2\sqrt{3}m$	long on the g	round, then t	he Sun's elev	ation is	1
	(a) 60°		(b) 45°		(c) 30°	(0	d) 90°	
14.	If the perime	ter and the a	rea of a circle	e are numerio	cally equal, th	nen the radiu	s of the circle	1
	is							
	(a) 2 unit	S	(b) π units		(c) 4 units	(d	l) 7 units	
15.	It is proposed	d to build a sin	ngle circular	park equal in	area to the s	um of areas o	f two circular	
	parks of dian	neters 16 m a	nd 12 m in a	locality. The	radius of the	new park is		
	(a) 10m	(b) 15m	(c) 20m	(d) 24m	
16.	There is a gro	een square bo	oard of side ''	2a' unit circu	mscribing a r	ed circle. Jay	adev is asked	
	0	1						1
	_	-		ind the proba	bility that he	keeps the do	t on the green	
	_	-		ind the proba	bility that he	keeps the do		
	to keep a dot region. π	-	said board. F $4-\pi$				t on the green	
	to keep a dot region.	-	said board. F		bility that he (c) $\frac{\pi - 4}{4}$	keeps the do	t on the green	
17.	to keep a dot region. (a) $\frac{\pi}{4}$	on the aboves	said board. From (b) $\frac{4-\pi}{4}$	((c) $\frac{\pi - 4}{4}$	(d)	t on the green	
17.	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat	on the aboves	said board. Final for the second sec	(missing from	(c) $\frac{\pi - 4}{4}$	(d)	t on the green $\frac{4}{\pi}$	
17.	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat of getting a bla	on the aboves	said board. Final for the remaining solution is the remaining solution of the remaining solution is the remaining solutio	(missing from pack?	$\frac{\pi - 4}{4}$ a pack of 52 c	(d) ards. What is t	t on the green $\frac{4}{\pi}$ the probability	
	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat of getting a bla (a) $\frac{22}{52}$	on the aboves rts and 4 cards ack card from t	said board. Final control of the second sec	(missing from pack?	(c) $\frac{\pi - 4}{4}$ a pack of 52 c (c) $\frac{24}{52}$	(d) ards. What is t (d)	t on the green $\frac{4}{\pi}$ the probability	1
17.	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat of getting a bla (a) $\frac{22}{52}$ Find the upp	on the aboves	said board. Final control of the second sec	(missing from pack?	(c) $\frac{\pi - 4}{4}$ a pack of 52 c (c) $\frac{24}{52}$	(d) ards. What is t (d)	t on the green $\frac{4}{\pi}$ the probability	
	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat of getting a bla (a) $\frac{22}{52}$	on the aboves rts and 4 cards ack card from t	said board. Final control of the second sec	(missing from pack?	(c) $\frac{\pi - 4}{4}$ a pack of 52 c (c) $\frac{24}{52}$	(d) ards. What is t (d)	t on the green $\frac{4}{\pi}$ the probability	1
	to keep a dot region. (a) $\frac{\pi}{4}$ 2 cards of heat of getting a bla (a) $\frac{22}{52}$ Find the upper Height	on the aboves rts and 4 cards ack card from t er limit of the	said board. Final control of the second sec	(missing from pack? from the give	(c) $\frac{\pi - 4}{4}$ a pack of 52 cm (c) $\frac{24}{52}$ en distributio	(d) ards. What is t (d) on.	t on the green $\frac{4}{\pi}$ the probability $\frac{24}{46}$	1

	(a) 165	(b) 160	(c) 15	5 (d) 150			
19.	DIRECTION: In th	e question number 19 a	nd 20, a staten	nent of assertion (A) is followed b	y 1		
	a statement of Re	ason (R). Choose the co	rect option				
	Statement A (Ass	sertion): Total Surface	area of the tor	is the sum of the			
		rea of the hemisphere a	-				
	cone.			∇			
	Statement R(Rea	ason) : Top is obtained	by fixing the p	plane surfaces of the \bigvee			
	hemisphere and cone together.						
	(a) Both assert of assertio		are true and re	ason (R) is the correct explanatio	n		
	(b) Both asse	rtion (A) and reason (R) are true a	nd reason (R) is not the correc	ct		
	explanatio	n of assertion (A)					
	(c) Assertion (A) is true but reason (R)	is false.				
	(d) Assertion (A) is false but reason (R) is true.				
20.	Statement A (Ass	ertion): -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$,	is in Arithme	etic Progression.	1		
	Statement R (Rea	ison) : The terms of an A	Arithmetic Prog	gression cannot have both positiv	re		
	and negative ration	onal numbers.					
	(a) Both assert	ion (A) and reason (R) a	are true and re	ason (R) is the correct explanatio	n		
	of assertio	n (A)					
	(b) Both asse	rtion (A) and reason (R) are true a	nd reason (R) is not the correc	ct		
	explanatio	n of assertion (A)					
		A) is true but reason (R)					
	(d) Assertion (A) is false but reason (R) is true.				
			ECTION B				
		Section B consists of	5 questions of	f 2 marks each.			
21.	Prove that $\sqrt{2}$ is a	in irrational number.			2		
22.	ABCD is a parall	elogram. Point P divide	es AB in the	0	2		
	ratio 2:3 and poir	nt Q divides DC in the rat	tio 4:1.	D Q C			
	Prove that OC is h	nalf of OA.		A			
				P			

23.	From an external point P, two tangents, PA	2
	and PB are drawn to a circle with centre 0. \frown A	
	At a point E on the circle, a tangent is drawn	
	to intersect PA and PB at C and D,	
	respectively. If PA = 10 cm, find the $/E$	
	perimeter of ΔPCD .	
24	B/U	
24.	If tan (A + B) = $\sqrt{3}$ and tan (A – B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2
	[or]	
	Find the value of x	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
25.	With vertices A, B and C of \triangle ABC as centres, arcs are drawn with radii 14 cm and the three	2
	portions of the triangle so obtained are removed. Find the total area removed from the	
	triangle.	
	[or]	
	14 cm	
	Find the area of the unshaded region shown in the given figure. 3 cm $3 cm$ $3 cm$ $14 cm$	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	National Art convention got registrations from students from all parts of the country, of	3
	which 60 are interested in music, 84 are interested in dance and 108 students are interested	
	in handicrafts. For optimum cultural exchange, organisers wish to keep them in minimum	
	number of groups such that each group consists of students interested in the same artform	
	and the number of students in each group is the same. Find the number of students in each	
	group. Find the number of groups in each art form. How many rooms are required if each group will be allotted a room?	

27.	If α , β are zeroes of quadratic polynomial $5x^2 + 5x + 1$, find the value of 1. $\alpha^2 + \beta^2$				
	2. $\alpha^{-1} + \beta^{-1}$				
28.	The sum of a two-digit number and the nur	nber obtained by reversing the digits is 66. If the	3		
	digits of the number differ by 2, find the nu	mber. How many such numbers are there?			
		[or]			
	Solve: - $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} =$: -1			
29.	PA and PB are tangents drawn to a circle	of centre O from an external point P. Chord AB	3		
	makes an angle of 30° with the radius at th	e point of contact.			
	If length of the chord is 6 cm, find the leng	th of the tangent PA and the length of the radius			
	OA.				
) > P			
		\mathcal{V}			
	В				
		[or]			
	Two tangents TP and TQ are drawn to a cire	cle with centre O from an external point T. Prove			
	that \angle PTQ = 2 \angle OPQ.				
30.	If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that ta	$ \ln\theta = 1 \text{ or } \frac{1}{2} $	3		
31.	The length of 40 leaves of a plant are meas	ured correct to nearest millimetre, and the data	3		
	obtained is represented in the following table.				
	Length [in mm]	Number of leaves			
	118 - 126	3			
	127 - 135	5			
	136 - 144	9			
	145 - 153	12			
	154 - 162	5			
	163 - 171	4			
	172 - 180	2			
	Find the average length of the leaves.				

		SECT	ION D		
	Se	ection D consists of 4 q	uestions of 5 marks ea	ch	
32.	A motor boat whose s	speed is 18 km/h in still	water takes 1 hr. more	to go 24 km upstream	5
	than to return downs	tream to the same spot.	Find the speed of strear	n.	
		[0	or]		
	Two water taps toget	her can fill a tank in $9\frac{3}{8}$	hours. The tap of larger	diameter takes 10	
	hours less than the sr	naller one to fill the tanl	separately. Find the tin	ne in which each tap	
	can separately fill the	tank.			
33.		Basic Proportionality the		A Second	5
	Prove that $\frac{AB}{BD} = \frac{AE}{FD}$	e ∠CEF = ∠CFE. F is the	inapoint of DC.		
34.	Water is flowing at th	ne rate of 15 km/h thro	ugh a pipe of diameter	14 cm into a cuboidal	5
	pond which is 50 m lo	ong and 44 m wide. In w	hat time will the level of	water in pond rise by	
	21 cm?				
	What should be the s	peed of water if the rise	in water level is to be at	tained in 1 hour?	
		[(or]		
	A tent is in the shape	of a cylinder surmount	ed by a conical top. If th	e height and radius of	
	the cylindrical part ar	re 3 m and 14 m respect	ively, and the total heigh	it of the tent is 13.5 m,	
	find the area of the c	canvas required for mal	king the tent, keeping a	provision of 26 m ² of	
	canvas for stitching a	nd wastage. Also, find th	e cost of the canvas to be	e purchased at the rate	
	of ₹ 500 per m².				
35.			values of 'p' and 'q', if the s	sum of all frequencies is	5
	90. Also find the mode.			1	
		Marks obtained	Number of students	-	
		20 - 30	p	-	
		30 - 40	15	-	
		40 - 50	25	4	
		50 - 60	20	4	
		60 - 70	q	4	
		70 - 80	8	4	
		80 - 90	10		

	SECTION E			
36.	Manpreet Kaur is the national record holder for women in the shot-put discipline. Her throw of 18.86m at the Asian Grand Prix in 2017 is the biggest distance for an Indian female athlete. Keeping her as a role model, Sanjitha is determined to earn gold in Olympics one day. Initially her throw reached 7.56m only. Being an athlete in school, she regularly practiced both in the mornings and in the evenings and was able to improve the distance by 9cm every week. During the special camp for 15 days, she started with 40 throws and every day kept increasing the number of throws by 12 to achieve this remarkable progress.			
	(i) How many throws Sanjitha practiced on 11 th day of the camp?	1		
	 (ii) What would be Sanjitha's throw distance at the end of 6 months? (or) When will she be able to achieve a throw of 11.16 m? (iii) How many throws did she do during the entire camp of 15 days ? 	2		
37.	Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women's World Cup's history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane.			

1	T		1
	(i)	At an instance, the midfielders and forward formed a parallelogram. Find the	1
		position of the central midfielder (D) if the position of other players who formed	
		the parallelogram are :- A(1,2), B(4,3) and C(6,6)	
	(ii)	Check if the Goal keeper G(-3,5), Sweeper H(3,1) and Wing-back K(0,3) fall on a	2
		same straight line.	
		[or]	
		Check if the Full-back J(5,-3) and centre-back I(-4,6) are equidistant from	
		forward C(0,1) and if C is the mid-point of IJ.	
	(iii)	If Defensive midfielder A(1,4), Attacking midfielder B(2,-3) and Striker E(a,b) lie on	1
	ł	the same straight line and B is equidistant from A and E, find the position of E.	
38.	nearby tr When a s seconds,	hing, Kaushik was in a park. Children were playing cricket. Birds were singing on a ree of height 80m. He observed a bird on the tree at an angle of elevation of 45°. sixer was hit, a ball flew through the tree frightening the bird to fly away. In 2 he observed the bird flying at the same height at an angle of elevation of 30° and lying towards him at the same height at an angle of elevation of 60°.	
		Ground G B C G C C C C C C C C C C C C C C C C	
	(i)	At what distance from the foot of the tree was he observing the bird sitting on the tree?	1
	(ii)	How far did the bird fly in the mentioned time?	2
	(11)	now far ala the bird hy in the mentioned time.	
		(or) After hitting the tree, how far did the ball travel in the sky when Kaushik saw the ball?	

Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) xy ²	1
2.	(b) 1 zero and the zero is '3'	1
3.	(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	1
4.	(c) 2 distinct real roots	1
5.	(c) 7	1
6.	(a) 1:2	1
7.	(d) infinitely many	1
8.	(b) $\frac{ac}{b}$	1
	b+c	
9.	(b) 100°	1
10.	(d) 11 cm	1
11.	$\sqrt{b^2-a^2}$	1
	(c) $$	
12.	(d) cos A	1
13.	(d) 60°	1
14.	(a) 2 units	1
15.	(a) 10m	1
16.	4-π	1
	(b) $\overline{4}$	
17.	(b) $\frac{22}{2}$	1
	(b) $\frac{1}{46}$	
18.	(d) 150	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	1
20	assertion (A)	1
20.	(c) Assertion (A) is true but reason (R) is false. SECTION B	1
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational.	
21.	a a a a a a a a a a a a a a a a a a a	1/2
	So, we can find integers <i>a</i> and <i>b</i> such that $\sqrt{2} = \frac{a}{b}$ where <i>a</i> and <i>b</i> are coprime.	12
	So, b $\sqrt{2}$ = a.	
	Squaring both sides,	
	we get $2b^2 = a^2$.	1⁄2
	Therefore, 2 divides a ² and so 2 divides a.	
	So, we can write a = 2c for some integer c. Substituting for a we get $2b^2 = 4a^2$ that is $b^2 = 2a^2$	
	Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$. This means that 2 divides b^2 , and so 2 divides b	1⁄2
	This means that 2 divides b ² , and so 2 divides b Therefore, a and b have at least 2 as a common factor.	
	But this contradicts the fact that a and b have no common factors other than 1.	1/
	This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.	1⁄2
	So, we conclude that $\sqrt{2}$ is irrational.	
	50, we conclude that y2 is in ational.	

22.	ABCD is a parallelogram.	1/2
	AB = DC = a	,2
	Point P divides AB in the ratio 2:3	1
	$AP = \frac{2}{5}a, BP = \frac{3}{5}a$	
	point Q divides DC in the ratio 4:1.	1/2
	$DQ = \frac{4}{5} a, CQ = \frac{1}{5} a$	
	$\Delta APO \sim \Delta CQO [AA similarity]$	1/2
	$\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$	72
		1⁄2
	$\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{5}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$	
	$\frac{1}{5}a$ 1	
23.	$\mathbf{D}\mathbf{A} = \mathbf{D}\mathbf{D}\mathbf{C}\mathbf{A} = \mathbf{C}\mathbf{E}$, $\mathbf{D}\mathbf{E} = \mathbf{D}\mathbf{D}\mathbf{E}$ [Tanganta ta a single]	1/
	PA = PB; CA = CE; DE = DB [Tangents to a circle] Perimeter of \triangle PCD = PC + CD + PD	1⁄2
	= PC + CE + ED + PD	
	$= PC + CA + BD + PD \qquad ()_{F} \qquad P$	4
	$= PA + PB$ Perimeter of $\triangle PCD = PA + PA = 2PA = 2(10) = 20$	$\frac{1}{\frac{1}{2}}$
	cm B / D	12
24.	$\therefore \tan(A+B) = \sqrt{3} \therefore A+B = 60^0 \qquad \dots (1)$	1/2
	$\therefore \tan(A - B) = \frac{1}{\sqrt{3}} \therefore A - B = 30^0 \qquad(2)$	1/2 1/2
	Adding (1) & (2), we get $2A=90^{\circ} \Rightarrow A = 45^{\circ}$	⁷² 1/2
	Also (1) –(2), we get $2B = 30^{\circ} \Rightarrow B = 45^{\circ}$	
	[or]	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	$\Rightarrow 2(2)^2 + x\left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^2 = 10$	
	$\Rightarrow 2(2)^2 + x\left(\frac{1}{2}\right) - \frac{1}{4}\left(\frac{1}{\sqrt{3}}\right) = 10$	1
	$\Rightarrow \qquad 2(4) + x\left(\frac{3}{4}\right) - \frac{3}{4}\left(\frac{1}{3}\right) = 10$	1⁄2
	$\Rightarrow \qquad 8 + x \left(\frac{3}{4}\right) - \frac{1}{4} = 10$	
	$\Rightarrow \qquad 32 + x(3) - 1 = 40$	1/2
	$\Rightarrow \qquad 3x = 9 \Rightarrow x = 3$	
25.	$\Rightarrow \qquad 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$ = $\frac{\angle A + \angle B + \angle C}{100} \pi r^2$	1⁄2
	$=\frac{2A+2B+2C}{360}\pi r^2$	
	$=\frac{180}{360}\pi r^2$	1⁄2
	$= \frac{180}{360} \times \frac{22}{7} \times (14)^2 $ ¹ / ₂	1/
	$= \frac{360}{360} \frac{7}{7}$ (14) = 308 cm ²	1⁄2
	= 308 cm ² [or]	
	The side of a square = Diameter of the semi-circle = a	1/
	Area of the unshaded region = Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a')	1⁄2
	The horizontal/vertical extent of the white region = 14-3-3 = 8 cm	1⁄2
	Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm	

	2 (radius of the semi-circle) + side of a square = 8 cm	
	$2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$	1/2
	Area of the unshaded region	12
	= Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)	
	$= (4)^2 + 4X\frac{1}{2}\pi(2)^2 = 16 + 8\pi \text{ cm}^2$	1/2
	SECTION C	
20	Section C consists of 6 questions of 3 marks each	1/
26.	Number of students in each group subject to the given condition = HCF (60,84,108) HCF (60,84,108) = 12	1/2 1/2
	Number of groups in Music = $\frac{60}{12}$ = 5	1/
	Number of groups in Dance = $\frac{\frac{124}{12}}{12} = 7$	1/2 1/2
	12	⁷² 1/2
	Number of groups in Handicrafts = $\frac{108}{12}$ = 9	1/2
	Total number of rooms required = 21	12
27.	$P(x) = 5x^2 + 5x + 1$	1/2
	-b -5	12
	$\alpha + \beta = \frac{1}{a} = \frac{1}{5} = -1$	1/2
	$\alpha\beta = \frac{c}{c} = \frac{1}{c}$	1/2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha\beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$	
	$u + \rho = (u + \rho) - 2u\rho$	1⁄2
	$=(-1)^2-2\left(\frac{1}{5}\right)$	
	$-1 - \frac{2}{2} = \frac{3}{2}$	1⁄2
	$= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$	1⁄2
	$=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{2}}=-5$	
	$\alpha\beta$ $\frac{1}{5}$	
28.	Let the ten's and the unit's digits in the first number be x and y, respectively.	
	So, the original number = 10x + y	
	When the digits are reversed, x becomes the unit's digit and y becomes the ten's	
	Digit.	1⁄2
	So the obtain by reversing the digits= $10y + x$	
	According to the given condition.	
	(10x + y) + (10y + x) = 66	1/
	i.e., $11(x + y) = 66$	1⁄2
	i.e., $x + y = 6 (1)$ We are also given that the digits differ by 2,	1/2
	therefore, either $x - y = 2 (2)$	72 1/2
	or $y - x = 2 - (2)$	12
	If $x - y = 2$, then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$.	1/2
	In this case, we get the number 42.	,2
	If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$.	1/2
	In this case, we get the number 24.	
	Thus, there are two such numbers 42 and 24.	
	[0r]	
	Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n',	1⁄2
	Then the given equations become 2m + 3n = 2	
	4m - 9n = -1	1⁄2
	TIII - 7/II1	

	$(2m + 3n = 2) X - 2 \Rightarrow -4m - 6n = -4$ (1)	
	4m - 9n = -1 $4m - 9n = -1$ (2)	
	Adding (1) and (2)	
	We get $-15n = -5 \Rightarrow n = \frac{1}{2}$	1⁄2
	3	
	Substituting n = $\frac{1}{3}$ in 2m + 3n = 2, we get	
	5	1⁄2
	2m + 1 = 2	
	2m = 1	
	$m = \frac{1}{2}$	1
	$m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$	
29.	$\frac{11}{2} \qquad \qquad$	
29.	$\angle OAB = 30^{\circ}$	
	$\angle OAP = 90^{\circ}$ [Angle between the tangent and	
	the radius at the point of contact] $(\circ \langle \rangle) > P$	1/
	$\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1/2
	AP = BP [Tangents to a circle from an external point] B	4.
	$\angle PAB = \angle PBA$ [Angles opposite to equal sides of a triangle]	1⁄2
	In $\triangle ABP$, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$ [Angle Sum Property]	1
	$60^{\circ} + 60^{\circ} + \angle APB = 180^{\circ}$	
	$\angle APB = 60^{\circ}$	1⁄2
	$\therefore \Delta ABP$ is an equilateral triangle, where AP = BP = AB.	
	PA = 6 cm	1⁄2
	In Right $\triangle OAP$, $\angle OPA = 30^{\circ}$	
	$\tan 30^\circ = \frac{\partial A}{\partial A}$	
	$1 \qquad OA$	1⁄2
	$\frac{1}{\sqrt{3}} = \frac{1}{6}$	
	$\tan 30^\circ = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$ $OA = \frac{6}{\sqrt{3}} = 2\sqrt{3}cm$	1⁄2
	[or]	
	P	
	Let \angle TPQ = θ	
	\angle TPO = 90° [Angle between the tangent and	
	the radius at the point of contact]	1⁄2
	$\angle OPQ = 90^{\circ} - \theta$	1
	TP = TQ [Tangents to a circle from an external	1
	point]	1
		1⁄2
	\angle TPQ = \angle TQP = θ [Angles opposite to equal sides of a triangle]	1⁄2
	In $\triangle PQT$, $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]	1⁄2
	$\theta + \theta + \angle PTQ = 180^{\circ}$	
	$\angle PTQ = 180^{\circ} - 2\theta$	1/2
	$\angle PTQ = 2 (90^{\circ} - \theta)$	1/2
	$\angle PTQ = 2 \angle OPQ [using (1)]$	<u> </u>
30.	Given, $1 + \sin^2\theta = 3\sin\theta\cos\theta$	1
	Dividing both sides by $\cos^2\theta$,	1
	$\frac{1}{\cos^2\theta} + \tan^2\theta = 3\tan\theta$	1
	$\sec^2\theta + \tan^2\theta = 3 \tan \theta$	1/2
	$1 + \tan^2\theta + \tan^2\theta = 3 \tan^2\theta$	1⁄2
	$1 + 2 \tan^2 \theta = 3 \tan^2 \theta$	1⁄2
	$2\tan^2\theta - 3\tan\theta + 1 = 0$	1⁄2
	If $\tan \theta = x$, then the equation becomes $2x^2 - 3x + 1 = 0$	1
		4

			$\Rightarrow (x-1)(x-1)$	(2x-1) = 0 x =	$1 \text{ or } \frac{1}{2}$		
				$\tan \theta = 1$. –		1
31.		ſ			-		
	Length [in mm]	Number of leaves (f)	CI	Mid x	d	fd	
	118 – 126	3	117.5-126.5	122	-27	-81	
	127 - 135	5	126.5-135.5	131	-18	-90	
	136 - 144	9	135.5–144.5	140	-9	-81	
	145 - 153	12	144.5 - 153.5	a = 149	0	0	
	154 - 162	5	153.5 - 162.5	158	9	45	2
	163 - 171	4	162.5 - 171.5	167	18	72	1/2
	172 - 180	2	171.5 - 180.5	176	27	54	1/2
		Mean	$= a + \frac{\sum fd}{\sum f} = 149 - 149$	$+\frac{-81}{10}$			
			2 <i>1</i> 1 = 149 – 2.025 = 1				
	Average length	of the leaves :	= 146.975 SECTI				
			SECT				
		Section D	consists of 4 qu	lestions of 5 n	narks each		
32.	The spee the spee	ed of the boat	ream be x km/h. upstream = (18 - lownstream = (18 upstream = $\frac{dista}{spe}$	(x) km/h and 8 + x) km/h. $\frac{nce}{24} = \frac{24}{24}$ h	ours		1
		taken to go d	ownstream = $\frac{1}{s_1}$	$\frac{stance}{peed} = \frac{24}{18+x}$	hours		1
	necording t	o the question	$\frac{24}{18-x} - \frac{24}{18+x}$	= 1			1
		x is the speed	-24(18 - x) = (1) $x^{2} + 48x - 324$ x = -324 of the stream, it the speed of the	= 0 = 6 or – 54 cannot be nega			1
			[0	rl			1
		-	the smaller pipe er pipe = $(x - 10)$	to fill the tank =	= x hr.		1⁄2
			by smaller pipe in	$\begin{array}{c} x\\ 1\end{array}$			1
			by larger pipe in 1 in 9 $\frac{3}{8} = \frac{75}{8}$ hour	x - 10	ipes together.		1⁄2
			o 8 by both the pipes	8			1⁄2
				/5		5	

	Therefore, $\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$	1/2
	$8x^2 - 230x + 750 = 0$	
	$x = 25, \frac{30}{8}$	1
	Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by	1⁄2
	the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe and	1/2
	the larger pipe will be 25 and $25 - 10 = 15$ hours, respectively.	72
33.	(a) Statement – $\frac{1}{2}$	
	Given and To Prove – $\frac{1}{2}$	
	Figure and Construction 1/2	3
	Proof – 1 ½ ^A	
	[b] Draw DG BE	
		1/2
	In \triangle ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]	12
	CF = FD [F is the midpoint of DC](i)	1/2
	In Δ CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem]	1/
	GE = CE(ii)	1⁄2
	$\angle CEF = \angle CFE $ [Given]	
	CF = CE [Sides opposite to equal angles](iii)	1/2
	From (ii) & (iii) $CF = GE(iv)$	
	From (i) & (iv) $GE = FD$	
	$\therefore \frac{AB}{BD} = \frac{AE}{GE} \Longrightarrow \frac{AB}{BD} = \frac{AE}{FD}$	
34.	BD GE BD FD	
	Length of the pond, l= 50m, width of the pond, b = 44m	
	Water level is to rise by, h = 21 cm = $\frac{21}{100}$ m	
		1
	Volume of water in the pond = lbh = $50 \times 44 \times \frac{21}{100} \text{ m}^3 = 462 \text{ m}^3$	1
	Diameter of the pipe = 14 cm_{7}	
	Radius of the pipe, $r = 7cm = \frac{7}{100}m$	
	Area of cross-section of pipe = πr^2	
	$= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$	1
		1⁄2
	Rate at which the water is flowing through the pipe, h = 15km/h = 15000 m/h Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water	1/2
	coming out of pipe	12
	$= \left(\frac{154}{10000} \times 15000\right) m^3$	1
	Time required to fill the need Volume of the pond	
	Time required to fin the poind = $\frac{Volume of water flowing in 1 hour}{Volume of water flowing in 1 hour}$	1
	$=\frac{462 \times 10000}{154 \times 15000} = 2 \text{ hours}$	
	154×15000 Speed of water if the rise in water level is to be attained in 1 hour = 30km/h	
	[or]	
	[01]	

		1.4			
	Radius of the cylindrical tent $(r) =$			•	
	Total height of the tent = Height of the cylinder =		\wedge	10.5m	
	Height of the Conical part =				1/2
	Slant height of the cone $(l) = \sqrt{h^2}$			¥	12
		$(15)^2 + (14)^2$	14m	3m	
	•	$\frac{1}{1.25 + 196}$			
		$\overline{0.25} = 17.5 \text{ m}$			1
	Curved surface area of cylindrical				
		$=2\pi rh$			
		$= 2x \frac{22}{7} \times 14 \times 3$	3		1
		7 = 264 m ²			
	Curved surface area of conical por				
		=πrl			
		$=\frac{22}{7} \times 14 \times 17.5$			1
		7 =770 m ²			1 1/2
	Total curved surface area = 264 n	-	1034 m ²		12
	Provision for stitching and wastag	ge =	26 m ²		
	Area of canvas to be purchased	_	1060 m ²		1⁄2
	Cost of canvas = Rate × Surface are		1000 1112		1/
					1⁄2
25	= 500 x 1060 = ₹ 5,	,30,000/-			
35.		Number of	Cumulative		
	Marks obtained	students	frequency		
	20 - 30	р	р		
	30 - 40	15	p + 15		
	40 - 50	25	p + 10 p + 40		
					1
	50 - 60	20	p + 60		
	60 - 70	q	p + q + 60		
	70 - 80	8	p + q + 68		1⁄2
	80 - 90	10	p + q + 78		1⁄2
		90			
	p + q + 78 = 90				
	p + q = 12				
	p + q = 12 Median =(l) + $\frac{\frac{n}{2} - cf}{f}$. h				
	f_{i}				
	$50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$				1/2
	20				1/2
	$\frac{45 - (p + 40)}{20} \cdot 10 = 0$				12
	45 - (p + 40) = 0 P = 5				1⁄2
	5 + q = 12				1⁄2
	q = 7				1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$. h				1
	2f1-f0-f2				

	25-15 10	
	$= 40 + \frac{25 - 15}{2(25) - 15 - 20} \cdot 10$	
	$=40 + \frac{100}{15} = 40 + 6.67 = 46.67$	
	SECTION E	
36.	(i) Number of throws during camp. a = 40; d = 12	1
	$t_{11} = a + 10d$	
	$= 40 + 10 \times 12$	
	= 160 <i>throws</i>	
	(ii) $a = 7.56 \text{ m}; d = 9 \text{ cm} = 0.09 \text{ m}$	1/2
	n = 6 weeks	1/2
	$t_n = a + (n-1) d$	1/2
	= 7.56 + 6(0.09)	
	= 7.56 + 0.54	1/2
	Sanjitha's throw distance at the end of 6 weeks $= 8.1 \text{ m}$	
	(or)	
	a = 7.56 m; d = 9 cm = 0.09 m	1/2
	$t_n = 11.16 \text{ m}$	1/2
	$t_n = a + (n-1) d$ 11 16 - 7 56 + (n 1) (0 00)	
	11.16 = 7.56 + (n-1) (0.09) 3.6 = (n-1) (0.09)	1/2
	3.6	
	$n-1 = \frac{3.6}{0.09} = 40$	
	n = 41	1/2
	Sanjitha's will be able to throw 11.16 m in 41 weeks.	
	(iii) a = 40; d = 12; n = 15	
	$S_n = \frac{n}{2} [2a + (n-1) d]$	1/2
	$S_n = \frac{15}{2} [2(40) + (15-1) (12)]$	
	$=\frac{15}{2}[80+168]$	
	$=\frac{15}{2}$ [248] =1860 throws	1⁄2
37.	(i) Let D be (a,b), then	
	Mid point of AC = Midpoint of BD	
		1/2
	$\left(\frac{1+6}{2},\frac{2+6}{2}\right) = \left(\frac{4+a}{2},\frac{3+b}{2}\right)$	
	4 + a = 7 $3 + b = 8$	
	a=3 $b=5$	
	Central midfielder is at (3,5)	1/2
	$\mathbf{C} = \mathbf{C} = $	/2

(ii) $GH = \sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$ $GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$ $HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$ $GK + HK = GH \Rightarrow G, H \& K \text{ lie on a same straight line}$ $CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ $CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E $\Rightarrow B$ is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) (i) tan $45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
$GK = \sqrt{(0 + 3)^{2} + (3 - 5)^{2}} = \sqrt{9 + 4} = \sqrt{13}$ $HK = \sqrt{(3 - 0)^{2} + (1 - 3)^{2}} = \sqrt{9 + 4} = \sqrt{13}$ $GK + HK = GH \Rightarrow G, H \& K \text{ lie on a same straight line}$ $CJ = \sqrt{(0 - 5)^{2} + (1 + 3)^{2}} = \sqrt{25 + 16} = \sqrt{41}$ $CI = \sqrt{(0 + 4)^{2} + (1 - 6)^{2}} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, -\frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ $C \text{ is NOT the mid-point of IJ}$ $(iii) A, B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B \text{ is the mid-point of AE} \left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3) 1 + a = 4; a = 3. 4+b = -6; b = -10 \text{ E is } (3, -10) (ii) \tan 45^{\circ} = \frac{80}{CB} \Rightarrow CB = 80\text{m}$
HK = $\sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$ GK +HK = GH \Rightarrow G,H & K lie on a same straight line [or] CJ = $\sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ CI = $\sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a = 4; a = 3. $4+b = -6; b = -10$ E is (3,-10) 38. (i) tan 45° = $\frac{80}{CE}$ \Rightarrow CB = 80m
$\begin{bmatrix} [or] \\ CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41} \\ CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41} \\ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) \\ Mid-point of IJ = \left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right) \\ C \text{ is NOT the mid-point of IJ} \\ \end{bmatrix} = \left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right) \\ C \text{ is NOT the mid-point of IJ} \\ \end{bmatrix} \begin{bmatrix} (iii) & A,B \text{ and E lie on the same straight line and B is equidistant from A and E} \\ \Rightarrow B \text{ is the mid-point of AE} \\ \left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3) \\ 1+a=4; a=3. \qquad 4+b=-6; b=-10 \text{ E is } (3,-10) \\ \end{bmatrix} \begin{bmatrix} (i) & \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) & \tan 30^\circ = \frac{80}{CE} \\ \end{bmatrix}$
CJ = $\sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ CI = $\sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) 38. (i) tan 45° = $\frac{80}{CE}$ 2
CI = $\sqrt{(0 + 4)^2 + (1 - 6)^2} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1 + a = 4; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
CI = $\sqrt{(0 + 4)^2 + (1 - 6)^2} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1 + a = 4; a = 3. $4+b = -6; b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) 38. (i) tan $45^\circ = \frac{80}{CB} \Rightarrow$ CB = 80m (ii) tan $30^\circ = \frac{80}{CE}$
C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is $(3,-10)38. (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m(ii) \tan 30^\circ = \frac{80}{CE}$
C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is $(3,-10)38. (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m(ii) \tan 30^\circ = \frac{80}{CE}$
(iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ $1+a=4$; $a=3$. $4+b=-6$; $b=-10$ E is (3,-10)38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$
$\Rightarrow B \text{ is the mid-point of AE} \begin{pmatrix} \frac{1+a}{2}, \frac{4+b}{2} \end{pmatrix} = (2, -3) \\ 1+a = 4; a = 3. \\ 4+b = -6; b = -10 \text{ E is } (3, -10) \\ \hline 38. \\ (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) \tan 30^\circ = \frac{80}{CE} \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\$
$\Rightarrow B \text{ is the mid-point of AE} \begin{pmatrix} \frac{1+a}{2}, \frac{4+b}{2} \end{pmatrix} = (2, -3) \\ 1+a = 4; a = 3. \\ 4+b = -6; b = -10 \text{ E is } (3, -10) \\ \hline 38. \\ (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) \tan 30^\circ = \frac{80}{CE} \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\$
$1 + a = 4$; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$ 1/2
$1 + a = 4$; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$ 1/2
$ \begin{array}{c} 1 + a = 4; a = 3. \\ 38. (i) \tan 45^{\circ} = \frac{30}{CB} \Rightarrow CB = 80m \\ (ii) \tan 30^{\circ} = \frac{80}{CE} \\ 1 & 80 \\ \end{array} $
$\begin{array}{c c} 38. & (i) & \tan 45^\circ = \frac{30}{CB} \Rightarrow CB = 80m \\ \hline & (ii) & \tan 30^\circ = \frac{80}{CE} \\ & 1 & 80 \\ \hline \end{array}$
(ii) $\tan 30^\circ = \frac{80}{CE}$ 1 80
$\begin{array}{c} CE \\ 1 & 80 \end{array}$
$\Rightarrow \frac{1}{\sqrt{3}} = \frac{80}{CE}$
$\Rightarrow CE = 80\sqrt{3}$
Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3} - 80 = 80(\sqrt{3} - 1)$ m
(or)
$\tan 60^\circ = \frac{80}{CC}$
$\Rightarrow \sqrt{3} = \frac{CG}{CG}$
$\Rightarrow \sqrt{3} = \frac{1}{CG}$
\Rightarrow CG = $\frac{80}{\sqrt{3}}$
$\sqrt{3}$ Distance the ball travelled after hitting the tree =FA=GB = CB -CG
GB = 80 - $\frac{80}{\sqrt{3}}$ = 80 (1 - $\frac{1}{\sqrt{3}}$) m
(iii) Speed of the bird = $\frac{Distance}{Time \ taken} = \frac{20(\sqrt{3}+1)}{2} \text{ m/sec}$
Time taken 2
$= \frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$