11. QUADRATIC EQUATIONS

1. Quadratic Equation : $a x^2 + b x + c = 0$, $a \ne 0$

 $x=\frac{-\,b\pm\sqrt{b^2-4\,a\,c}}{2\,a}\,,\, The\,\, expression\,\, b^2-4\,\,a\,\,c\equiv D\,\, is\,\, called\,\, discriminant\,\, of\,\, quadratic\,\, equation.$

If α , β are the roots, then (a) $\alpha + \beta = -\frac{b}{a}$ (b) $\alpha \beta = \frac{c}{a}$

A quadratic equation whose roots are $\alpha \& \beta$, is $(x - \alpha)(x - \beta) = 0$ i.e. $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

2. Nature of Roots:

Consider the quadratic equation, a x^2 + b x + c = 0 having α β as its roots; D = b^2 - 4 a c

a = 1, b, $c \in I \& D$ is a perfect square

⇒ Roots are integral.

3. Common Roots:

Consider two quadratic equations $a_1x^2 + b_1x + c_1 = 0 & a_2x^2 + b_2x + c_2 = 0$.

- (i) If two quadratic equations have both roots common, then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.
- (ii) If only one root α is common, then $\alpha = \frac{c_1 a_2 c_2 a_1}{a_1 b_2 a_2 b_1} = \frac{b_1 c_2 b_2 c_1}{c_1 a_2 c_2 a_1}$

4. Range of Quadratic Expression f (x) = $ax^2 + bx + c$

Range in restricted domain: Given $x \in [x_1, x_2]$

(a) If
$$-\frac{b}{2a} \notin [x_1, x_2]$$
 then, $f(x) \in [\min\{f(x_1), f(x_2)\}, \max\{f(x_1), f(x_2)\}]$

$$\text{(b)} \qquad \text{If} - \frac{b}{2a} \in \left[\mathbf{x}_1, \, \mathbf{x}_2 \right] \text{ then}, \ \ f(\mathbf{x}) \in \left[\min \left\{ f\left(\mathbf{x}_1\right), \, f\left(\mathbf{x}_2\right), \, -\frac{D}{4a} \right\}, \ \ \max \left\{ f\left(\mathbf{x}_1\right), \, f\left(\mathbf{x}_2\right), \, -\frac{D}{4a} \right\} \right]$$

5. Location of Roots:

Let $f(x) = ax^2 + bx + c$, where $a > 0 \& a^{-}b^{-}c \in R$.

- (i) Conditions for both the roots of f (x) = 0 to be greater than a specified number' x_0 ' are $b^2-4ac \ge 0$; f (x_0) > 0 & (-b/2a) > x_0 .
- (ii) Conditions for both the roots of f(x) = 0 to be smaller than a specified number ' x_0 ' are $b^2 4ac \ge 0$; $f(x_0) > 0 & (-b/2a) < x_0$.
- (iii) Conditions for both roots of f(x) = 0 to lie on either side of the number ' x_0 ' (in other words the number ' x_0 ' lies between the roots of f(x) = 0), is $f(x_0) < 0$.
- (iv) Conditions that both roots of f(x) = 0 to be confined between the numbers x_1 and x_2 , $(x_1 < x_2)$ are $b^2 4ac \ge 0$; $f(x_1) > 0$; $f(x_2) > 0$ & $x_1 < (-b/2a) < x_2$.
- (v) Conditions for exactly one root of f(x) = 0 to lie in the interval (x_1, x_2) i.e. $x_1 < x < x_2$ is $f(x_1)$. $f(x_2) < 0$.