INTRODUCTION

IDEAL FLUID AND REAL FLUID

- Ideal fluid: A fluid is said to be ideal if it is assumed to be both incompressible and non-viscous. Its bulk modulus is infinite.
- Real fluid: Real fluid have viscosity, finite compressibility and surface tension.

- · Ideal fluid has no surface tension.
- Ideal fluid are imaginary and do not exist in nature.

SPECIFIC WEIGHT, SPECIFIC VOLUME, SPECIFIC GRAVITY

• Specific weight (ω) or weight density = $\frac{\text{Weight}}{\text{Volume}} = \frac{\text{mg}}{\text{V}} = \rho g$

Here, $\rho = Density$

g = Acceleration due to gravity

Specific weight of water = 9810 N/m³

- Specific Volume = $\frac{1}{\text{Density}}$
- Specific gravity (S) or Relative density

$$Specific gravity = \frac{Density of fluid}{Density of standard fluid}$$
$$= \frac{Specific weight of fluid}{Specific weight of standard fluid}$$

- Specific gravity for water is 1.0 at 4°C and for mercury it is 13.6
- Specific gravity varies with temperature therefore it should be determined at specified temperature (4°C or 27°C).

NEWTON'S LAW OF VISCOSITY

$$\tau = \mu \cdot \frac{du}{dy} = \mu \frac{d\theta}{dt}$$

 τ = shear stress

μ = coefficient of viscosity or absolute viscosity or dynamic viscosity

Here,
$$\frac{du}{dy}$$
 = Velocity gradient $\frac{d\theta}{dt}$ = Rate of angular deformation or Rate of shear strain

For newtonian fluid, coefficient of viscosity remains constant.

VISCOSITY/KINEMATIC VISCOSITY

Due to viscosity a fluid offer resistance to flow

- (i) Dynamic Viscosity (u)
 - Its SI unit is pascal-second or N-sec/m²
 - Its CGS unit is Poise = Dyne-sec/cm²
 - 1 poise = 0.1 N-s/m^2
- (ii) Kinematic Viscosity

$$v = \frac{\text{Dynamic viscosity } (\mu)}{\text{Mass density } (\rho)}$$

- Its SI unit is m²/s.
- Its CGS unit is cm²/s or stoke.
- 1 stoke = 10^{-4} m²/s

- Viscosity of *liquids* decreases with temperature whereas viscosity of *gases* increases with increase in temperature.
- Liquids with increasing order of viscosity are gasoline, water, crude oil, castor oil.
- Viscosity of water at 1°C is 1 centipoise.
- Viscosity of liquids is due to cohesion and for gases it is due to molecular momentum transfer.

TYPE OF FLUID

Non-Newtonian Fluids: These do not follow Newton's law of viscosity. The relation between shear stress and velocity gradient is

$$\tau = A \bigg(\frac{du}{dy} \bigg)^n + B$$

where A and B are constants depending upon type of fluid and condition of flow.

- (i) For Dilatant Fluids: n > 1 & B = 0, Ex. Butter, Quick sand.
- (ii) For Bingham Plastic Fluids: n = 1 & B ≠ 0
 Ex. Sewage sludge, Drilling mud, tooth paste and gel.
 These fluids always have certain minimum shear stress before they yield.
- (iii) For Pseudoplastic Fluids: n < 1 & B = 0 Ex. Paper pulp, Rubber solution, Lipsticks, Paints, Blood, Polymetric solutions etc.
- (iv) For Thixotropic Fluids: n < 1 & B ≠ 0Viscosity increases with time.Ex. Printers ink and Enamels.
- (v) For Rheopectic Fluids: n > 1 & B ≠ 0Viscosity decreases with time.Ex. Gypsum solution in water & Bentonite solution.

COMPRESSIBILITY (β), ISOTHERMAL BULK MODULUS (k_T) AND ADIABATIC BULK MODULUS

• Compressibility (β): It is inverse of bulk modulus of elasticity.

$$\beta = \frac{1}{k} = \frac{-dv}{vdp}$$

$$\beta = \frac{d\rho}{\rho \cdot dP}$$

Here, k = bulk modulus of elasticity

$$\rho = Density$$

- Isothermal bulk modulus (k_T) $k_T = P_{final} = \rho RT$
- Adiabatic bulk modulus $k_a = \gamma \cdot P_{final}$

Here, C_p = Specific heat at constant pressure C_v = Specific heat at constant volume

SURFACE TENSION/PRESSURE INSIDE DROP, BUBBLE AND JET

Surface tension occur at the interface of liquid and a gas *or* at the interface of two liquid. Surface tension is inversely proportional to temperature and it also acts when fluid is at rest.

Pressure inside drop (Solid like sphere)

- Pressure inside bubble $P = \frac{8}{3}$
- Pressure inside jet $P = \frac{2\sigma}{d}$ Here, d = Diameter of drop <math>P = Gauge pressure

- It is a *surface* phenomenon
- It is force per unit length (N/m)
- For water-air interface at 20°C its value is 0.0736 N/m
- Remember
- At critical point, liquid-vapour state are same thus surface tension = 0
- It is due to *cohesion* only

CAPILLARY ACTION

· Height of water in capillary tube

$$h = \frac{4 \sigma \cos \theta}{\rho q d}$$

 $4 \sigma \cos \theta$ Where, h = rise in capillary

 σ = surface tension of water & glass

d = dia of tube

 θ = angle of contact between the liquid and the material.

 $\theta = 0^{\circ}$ for water and glass

 $\theta = 128^{\circ}$ for mercury and glass

 When a liquid surface supports another liquid of density "p_b", then rise in capillary is given as

$$h = \frac{4 \sigma \cos \theta}{(\rho - \rho_b) gc}$$

- Capillary action is due to adhesion and cohesion, both.
- For capillary action diameter of tube should be less than 3 cm.