
Chapter 4

Memory Management and
Virtual Memory

Basic concepTs
Uniprogramming system Main memory is divided into two parts
as follows:

1. Operating system (OS) part
2. Program part (which is currently being executed)

Multiprogramming system Here the user part of memory must be
further subdivided to accommodate multiple processes.

The task of subdivision is carried out dynamically by the OS
and is known as memory management.

Memory Hierarchy
The triangle in Figure 1 gives the hierarchy of memory. The mem-
ory hierarchy shows the performance issues.

Registers
Cache

Main memory

Magnetic disk

Magnetic tape

Figure 1 Memory hierarchy.

The memory hierarchy has different types of storage system in com-
puters which are arranged in hierarchy, with respect to speed and cost.

If one moves down the hierarchy, access time increases, the
cost per bit decreases, the memory capacity increases and memory
access frequency by the processor decreases.

The registers, cache and main memory are volatile, whereas
magnetic disc and magnetic tapes are non-volatile storage devices.

MeMory ManageMenT requireMenTs
Memory management requirements are as follows:

1. Relocation
2. Protection
3. Sharing
4. Logical organization
5. Physical organization

Relocation
 1. The role of relocation, the ability to execute processes

independently from their physical location in memory, is
central for memory management.

 2. In a general purpose multiprogramming environment, a
program cannot know in advance what processes will be
running in memory when it is executed, nor how much
memory the system has available for it, nor where it is located.

 3. Hence program relocation is required such that a program
must be compiled and linked in such a way that it can later
be loaded starting from an unpredictable address in memory,
an address that can even change during the execution of the
process itself, if any swapping occurs.

 Basic concepts

 Memory management requirements

 Relocation and memory mapping techniques

 Placement algorithm

 Dynamic partitioning

 Placement algorithm

 Buddy system

 Non-contiguous storage allocation methods

 Paging

 Segmentation

 Page table structure

 Hierarchical page table

 Inverted page table

 Address translation in a segmentation system

LEARNING OBJECTIVES

Chapter 4  •  Memory Management and Virtual Memory | 7.55

 4. The basic requirement for program relocation is that
all the references to memory it makes during execution
must not contain absolute (physical) address of
memory cells, but must be generated relatively, that
is, as a distance measured in number of contiguous
memory words, from some known point.

Protection
Each process should be protected against unwanted interfer-
ence by other processes, whether accidental or intentional.

Thus, programs in other processes should not be able to
reference memory locations in a process for reading or writ-
ing purpose without permission.

Sharing
 1. Any protection mechanism must have the flexibility

to allow several processes to access the same portion
of main memory.

 2. Processes that are cooperating on some task may
need to share access to the same data structure.

 3. The memory management system must therefore
allow controlled access to shared areas of memory
without compromising essential protection.

Logical Organization
Main memory in a computer system is organized as a linear
address space consisting of a sequence of bytes or words.
But most of the programs are organized into modules.

If the OS and hardware can effectively deal with user
programs and data in the form of modules, then there are
some advantages.

 1. Modules can be written and compiled independently.
 2. Different degrees of protection can be given to

different modules.
 3. It is better to share modules among processes.

Physical Organization
Computer memory is organized in two levels:

 1. Main memory
 2. Secondary memory

The flow of information between these two modules is a
major concern. If this is assigned to user, then there are
some problems:

 1. Overlaying may be possible. In overlaying concept,
the various modules of a program can be assigned to
the same region of memory, which causes wastage of
programmer time.

 2. The programmer does not know at the time of coding
how much space will be available or where that space
will be. So it must be handled by the system.

Address binding Addresses may be represented in different
ways during the program execution:

 1. Addresses in source program are generally symbolic.
 2. A complier will typically bind these symbolic

addresses to relocatable addresses.
 3. The linkage editor or loader will in turn bind the

relocatable addresses to absolute addresses.

So the binding of instructions and data to memory addresses
can be done at any step along the way:

 1. Compile time
 2. Load time
 3. Execution time

Compile time If you know at compile time where the
process will reside in memory, then absolute code can be
generated.

Load time If it is not known at compile time where the pro-
cess will reside in memory, then the compiler must generate
relocatable code.

Execution time If the process can be moved during its exe-
cution from one memory segment to another, then binding
must be delayed until run time.

Logical versus Physical Address Apace
Logical address An address generated by the CPU is com-
monly referred to as a logical address.

Physical address An address seen by the memory unit,
that is, one loaded into MAR is referred as a physical
address.

Notes:

 1. Logical and physical addresses differ in execution
time address-binding scheme.

 2. Logical and physical addresses are same in compile
time and load time address-binding schemes.

 3. The run-time mapping from logical to physical
address is done by a hardware device called the
memory management unit (MMU).

MeMory Mapping Techniques
The principle operation of memory management is to bring
processes into main memory for execution by the processor.
Let’s now discuss various memory management techniques
as follows:

 1. Fixed partitioning
 2. Dynamic partitioning
 3. Simple paging
 4. Simple segmentation
 5. Virtual memory paging
 6. Virtual memory segmentation.

7.56 | Unit 7  •  Operating System

Contiguous Non-contiguous

Memory allocation

 Fixed
 partition
allocation

Variable
partition

allocation

Paging Segmentation

Contiguous Storage Allocation
In this allocation, a memory resident program occupies a
single contiguous block of memory.

Fixed/Static Partitioning
The main memory is divided into a number of static parti-
tions at system generation time. Moreover, a process may be
loaded into a partition of equal or greater size.

Partition size Two alternatives of fixed partition are as
follows:

 1. Equal-size partitions
 2. Unequal-size partitions

OS
4M

OS
4M

4M 1M

4M 2M

4M 3M

4M 4M

Equal size Unequal size

Equal-size partitions: Any process whose size is less than
or equal to the partition size can be loaded into any available
partition.

Two problems with this technique are as follows:

 1. A program may be too big to fit into a partition. Use
overlaying to solve this problem.

 2. Main memory utilization is extremely inefficient, as
there is a possibility of internal fragmentation.

In internal fragmentation, there is a space wastage internal
to a partition due to the fact that the block of data loaded is
smaller than the partition.

Unequal-sized partition: Both the problems with equal-size
partition can be lessened by using unequal-sized partitions.

Placement algorithm: With equal-size partitions, the place-
ment of processes in memory is trivial. As all partitions are
of equal size, it doesn’t matter which partition is used.

With Unequal-size partitions, there are two possible
ways to assign processes to partitions:

 1. Assign each process to the smallest partition within
which it will fit.

New
processes

OS

 • Figure shows one process queue for partition.
 • Minimized internal fragmentation.
 • Possibility of unused partitions.

 2. Employ a single queue for all processes.

New
processes

OS

 • When it is time to load a process into main memory,
the smallest available partition that will hold the pro-
cess is selected.

Advantages
 1. Simple to implement.
 2. Little OS overhead.

Disadvantages
 1. Inefficient use of memory due to internal fragmen-

tation.
 2. Maximum number of active processes is fixed.

Dynamic Partitioning
With dynamic partitioning, the partitions are of variable
length and number. When a process is brought into main
memory, it is allocated exactly as much memory as it
requires and no more.

Example:

OSOSOSOS
P1

8 M

56 M

20 M

36 M

P3

P2

P1

P2

20 M

25 M

11 M

10 M

25 M

Allocate P1 Allocate P2 Deallocate
allocate P3

 • This method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory.

 • As time goes on, memory becomes more and more frag-
mented and memory utilization declines. This phenom-
enon is referred to as external fragmentation.

It indicates the memory that is external to all partitions
becomes increasingly fragmented.

Compaction
Compaction is a technique by which the resident program
are relocated in such a way that the small chunks of free

Chapter 4  •  Memory Management and Virtual Memory | 7.57

memory are made contiguous to each other and clubbed
together into a single free partition that may be big enough
to accommodate more programs.

C
om

pa
ct

io
n

m
em

or
y

0 K 0 K

50 K 50 K

200 K 200 K

230 K

650 K 650 K

530 K

600 K

550 K

550 K
500 K

100 K

MM MM

50 K

OS OS

P3

P3 (50 K)P2

P2 (300 K)

P1 P1 (150 K)

30 K

20 K

Compaction

After

It should be noted that compaction involves dynamic relo-
cation of a program.

Placement algorithm
Memory compaction is a time-consuming process, and
hence the OS uses some placement algorithms.

The three most common strategies to allocate free parti-
tions to the new processes are as follows:

 1. First fit: Allocate the first free partition, large enough
to accommodate the process. IT executes faster.

 2. Best fit: Allocate the smallest free partition that meets the
requirement of the process. It achieves higher utilization
of memory by searching smallest free partition.

 3. Worst fit: Allocate the largest available partition to the
newly entered process in the system.

 4. Next fit: Start from current location in the list.

Example: Consider the following memory configuration
after a number of placement and swapping out operations.
The last block that was used was a 22 MB block from which
a 14 MB partition was created. The figure (b) shows 16 MB
allocation request.

8 M

12 M

22 M

18 M

8 M 8 M

2 M

14 M
14 M

20 M36 M

6 M 6 M

6 M

16 M

12 M

8 M

First fit

Best fit

Next fit

Last

block
(14 K)

allocated

 (a) Before allocation (b) After allocation

Allocated block
Free block
Possible new allocation

Advantages of dynamic partitioning
 1. Memory utilization is generally better as partitions

are created dynamically.
 2. No internal fragmentation as partitions are changed

dynamically.
 3. The process of merging adjacent holes to form a

single larger hole is called coalescing.

Disadvantages
 1. Lots of OS space, time, complex memory management

algorithms are required.
 2. Compaction time is very high.

Buddy system: Both fixed and dynamic partitioning
schemes have drawbacks.
In Buddy system, memory blocks are available of size 2K
words, L ≤ K ≤ U, where,

2L = Smallest-size block that is allocated.

2U = Largest-size block that is allocated.

Generally, 2U is the size of the entire memory available
for allocation. If a request of size‘S’ such that 2U–1 < S ≤ 2U
is made, then the entire block is allocated. Otherwise the
block is split into two equal buddies of size 2U–1. If 2U–2 < S ≤
2U–1, then the request is allocated to one of the two buddies.
Otherwise, one of the buddies is split in half again. This
process continues until the smallest block greater than or
equal to ‘S’ is generated and allocated to the request.

 1. At any time, the buddy system maintains a list of
holes of each size 2i.

 2. A hole may be removed from the (i + 1) list by splitting
it in half to create two buddies of size 2i in the ‘i’ list.

 3. Whenever a pair of buddies on the i list both become
unallocated, they are removed from the list and
coalesced into a single block on the (i + 1) list.

Example:

1 MB

1 MB

1 M
Block

Request

Request

Request

Request

Release

Release

Release

Release

A = 100 K
A = 128 K

A = 128 K

A = 128 K

A = 128 K

A = 128 K

A = 128 K

B = 256 K

B = 256 K

B = 256 K D = 256 K

D = 256 K

D = 256 K

D = 256 K

128 K

128 K

256 K 512 K

512 K

512 K

B = 240 K

D = 256 K

D

B

C

A

C = 64 K
C = 64 K

C = 64 K

C = 64 K

7.58 | Unit 7  •  Operating System

Non-contiguous Storage
Allocation Methods
Paging
In simple paging, the main memory is divided into a number
of equal-size frames. Each process is divided into a number
of equal-size frames. The chunks of processes are referred
as pages. A process is loaded by loading all of its pages into
available, not necessarily contiguous frames.

Example: At a point in time, some of the frames in memory
are in use and some are free. A list of free frames is main-
tained by the OS.

Consider four processes with their pages as displayed
below:

P.0 Q.0 R.0 S.0

P.1 Q.1 R.1 S.1

P.2 Q.2 R.2 S.2

P.3 R.3 S.3

S.4

Process P Process Q Process R Process S

Let the main memory consist of 15 frames:
Main memory

0 0 P.0

1 1 P.1

2 2 P.2

3 3 P.3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

Load P

0 P.0 0 P.0 0 P.0 0 P.0

1 P.1 1 P.1 1 P.1 1 P.1

2 P.2 2 P.2 2 P.2 2 P.2

3 P.3 3 P.3 3 P.3 3 P.3

4 Q.0 4 Q.0 4 4 S.0

5 Q.1 5 Q.1 5 5 S.1

6 Q.2 6 Q.2 6 6 S.2

7 7 R.0 7 R.0 7 R.0

8 8 R.1 8 R.1 8 R.1

9 9 R.2 9 R.2 9 R.2

10 10 R.3 10 R.3 10 R.3

11 11 11 11 S.3

12 12 12 12 S.4

13 13 13 13

14 14 14 14

Load Q Load R Swap Q Load S

 1. The OS maintains a page table for each process.
 2. The page table shows the frame location for each

page of the process.
 3. Within a program, each logical address consists of a

page number and an offset with in the page.
 4. Here a logical address is the location of a word

relative to the beginning of the program; the processor
translates that into a physical address.

 5. For this, the processor must know the following
details:

 • Logical address: Consists page number and offset.
 • Page table: Used to produce physical address

(Frame number, offset).

In the previous example, the page tables of each process
will be:

0 0 0 – 0 7

1 1 1 – 1 8

2 2 2 – 2 9

3 3 3 10

Process P Process Q Process R

 page table page table page table

0 4 13

1 5 14

2 6 Free frame list.

3 11

4 12

Process S
page table

Chapter 4  •  Memory Management and Virtual Memory | 7.59

Address mapping in paging

•

•

•

CPU

P

P

PMT

MMU

F

F

D D

LA

PA

Page
No

Offset Offset
Frame

No

FramePage
No

Page

(P)

Frame Number

0
1
2
3
4
5
6
7
8
9

10

11

12

Page 0
Page N
Page N-1

Physical or
main memory

(Memory management unit)

Example: Let 16-bit address is used by the processor and
the page size is 1 KB.

Then number of pages in main memory =
2

2

16

10 = 26.
\ Page number = 6-bits
Offset = 10-bits

10

Page number Offset

6

For the relative address 1502 =
0000010111011110
The page number = 000001 = 1
and offset = 0111011110 = 478, that is, the physical

location will be an offset (478)
10

 on page 1.
Let the page 1 is present in frame 6. Then the physical

address will be 0001100111011110.

000101
000110
011001

6-bit page no

1 1 1 1 1 1 1 10 0 0 0 0000

Process
page table

0 0 0 1 1 0 0 0 01 1 1 1 1 1 1

16-bit physical address

10-bit offset

Figure 2 Paging.

Steps for address translation
 1. Extract the page number from the logical address.
 2. Use the page number as an index into the process

page table to find the frame number.
 3. The physical address will be constructed by appending

the frame number to the offset.

Advantage
There is no external fragmentation.

Disadvantage
There is a small amount of internal fragmentation.

Segmentation
 1. Each process is divided into a number of unequal-size

segments.
 2. A process is loaded by loading all of its segments into

dynamic partitions that need not be contiguous.
 3. The logical address using segmentation consists of

two parts: segment number and an offset.
 4. The principle inconvenience of segmentation is that

the programmer must be aware of the maximum
segment size limitation.

 5. It makes use of a segment table for each process and
a list of free blocks of main memory.

 6. Each segment table entry would have to give the
starting address in main memory of the corresponding
segment. It also contains the length of the segment.

 7. Steps for address translation:
 • Extract the segment number from the logical address.
 • Use the segment number as an index into the process

segment table to find the starting physical address of
the segment.

7.60 | Unit 7  •  Operating System

 • Compare the offset to the length of the segment. If the
offset is greater than or equal to the length, the address is
invalid.

 • The desired physical address is the sum of the starting
physical address of the segment plus the offset.

Hardware support for segmentation

CPU s
s

d Limit Base

Segment
table

Yes
< +

No

Trap:Addressing error Physical
memory

Example: Consider the logical address 0001001011110000.
Let the segment number consists of 4-bits. Then segment

number = 0001 = 1
Offset = 001011110000 = 752.

+

0 0

0 0 1 0 0 0 1 1 0 0 0 0 0 0 01

0 0 0 01 1 1 1 1 1 0 0 0 0

0001011101110 0000010000000000

00100000001000001011110011110

Length Base

16-bit physical address

logical address

4-bits
12-bits

Advantages
 1. No internal fragmentation
 2. Improved memory utilization.
 3. Reduced overhead compared to dynamic partitioning.

Disadvantage
 1. External fragmentation.

VirTual MeMory
 1. In simple paging/segmentation, it is not necessary

that all of the pages or all of the segments of a process
be in main memory during execution.

 2. Suppose that it is time to bring new process into
memory. The OS begins by bringing in only one
or a few pages to include the initial program page
and initial data page to which those instructions
refer.

 3. The portion of a process that is actually in main
memory at any time is defined to be the resident set
of the process.

 4. If the processor encounters a logical address that is not
in main memory, it generates an interrupt indicating a
memory access fault.

 5. Then the OS brings the required page to the main
memory.

 6. With virtual memory,
 • More processes may be maintained in main memory.
 • A process may be larger than all of main memory,

then also it will be executed.
 7. Virtual memory is a storage allocation scheme in

which secondary memory can be addressed as though
it were part of main memory.

 8. Thrashing: When the OS brings one page in, it must
throw another out. If it throws out a page just before
it is used, then it will just have to go get that piece
again almost immediately. Too much of this leads to a
condition known as thrashing.

 If the system spends most of its time in swapping
rather than executing instructions then that situation
refers to thrashing.

 9. Principle of locality suggests that a virtual memory
scheme may work.

 10. Virtual memory will be practical and effective if
 • There is a hardware support for paging/segmenta tion.
 • The OS includes software for managing the move-
ment of pages/segments.

Paging with Virtual Memory
 1. The main difference between paging and virtual

memory paging is that in virtual memory paging
concept, not all pages of a process need to be in main
memory frames for the process to run. Pages may be
read in as needed.

 2. A page table is also needed for a virtual memory
scheme based on paging. Also it is typical to associate
a unique page table with each process.

 3. The virtual address and page table entries for virtual
memory paging are shown below:

Virtual address

Page table entry

Page number Offset

P M Other control bits Frame number

Chapter 4  •  Memory Management and Virtual Memory | 7.61

P: Present bit. This bit specifies whether that particular
page is present in main memory or not.

M: Modified bit. This bit indicates whether the contents of
the corresponding page have been altered since the page
was last loaded into main memory.

Page table structure
 1. To read a word from memory, translate the virtual or

logical address consisting of page number and offset
into physical address consisting of frame number and
offset, using a page table.

 2. Page table must be stored in main memory to access
it.

Hardware implementation
for virtual memory paging

Virtual address

Page #
Page #

Offset
offset

n -bits

Physical address

Register

Page table ptr

Page table

Frame

Paging
mechanism

Offset

Page
frame

main
memory

Program
+

Figure 3 Address translation in paging system.

 1. The amount of memory used by the page tables could
be high.

 2. To overcome this problem, most virtual memory
schemes store page tables in virtual memory rather
than real memory, that is, page tables are subject to
paging just as other pages are.

 3. When a process is running, at least a part of its page
table must be in main memory, including the page
table entry of the currently executing page.

 4. Some processors make use of a two-level scheme to
organize large page tables.

Hierarchical page table
 1. If page table size is large, then use hierarchical page

table.
 2. The logical address space is broken up into multiple

page tables.

Outer page
table

1

1
0

500
500

100

100

708
708

900

900
929

929Page table

Memory

A logical address space (on 32-bit machine with 1 K page size)
is divided into a page number consisting of 22-bits, page offset
consisting of 10-bits. The page number is paged, the page num-
ber is divided into 12-bit page number and 10-bit page offset.

Page number Page offset

P1 P2 D

12 10 10

Here, P
1
 is an index into the outer page table, P

2
 is the dis-

placement within the page of the outer page table.

Address translation (diagrammatic)

P1

P1

P2

P2 D

D

Logical address

Outer
page table Page of

page table

Drawback: Page table size is proportional to that of the vir-
tual address space.

Inverted page table
 1. Here, the page number portion of a virtual address is

mapped into a hash value, using simple hash function.
 2. The hash value is a pointer to the inverted page table,

which contains the page table entries.
 3. There is one entry in the inverted page table for each real

memory page frame rather than one per virtual page.
 4. Thus, a fixed proportion of real memory is required

for the tables.
 5. One virtual address may map into the same hash table

entry, so a chaining technique is used for managing
the overflow.

 6. The page table’s structure is called inverted, because
it indexes page table entries by frame number rather
than by virtual page number.

7.62 | Unit 7  •  Operating System

Virtual address
n-bits

Page no Offset

Control bits

Page
no

Process
id Chain

M -bits

n-bits

Hash
function

Inverted page table

OffsetFrame#

Real
address

M-bits

0

i

y

2M−1

Figure 4 Inverted page table structure.

Translation look-a-side buffer (TLB)
 1. The straight-forward virtual memory scheme would

have the effect of doubling the memory access time.
 2. To overcome this problem, most virtual memory

schemes make use of a special high speed cache for
page table entries, usually called TLB.

 3. TLB contains the page table entries that have been
most recently used.

Paging hardware with TLB
 1. Given a virtual address, the processor will first

examine the TLB. If the desired page table entry is
present, that is, TLB hit, then the frame number is
retrieved and real address is formed.

 2. If there is a TLB miss, the processor uses the page
number to index the process page table and examine
the corresponding page table entry.

 3. If present bit is set, then the page is in main memory
and the processor can retrieve the frame number from
the page table entry to form the real address.

 4. The processor also updates the TLB to include this
new page table entry.

 5. If the page is not in main memory, then page fault is
issued.

 6. Then the OS will load the needed page and updates
the page table.

Logical
address

CPU P

P

F

F

D

D

Page number frame number

TLB hit

Physical

Address

Physical
memory

Page table

TLB

TLB miss

Organization of TLB
 1. Each entry in TLB must include the page number and

the complete page table entry.
 2. The TLB may organized its entries either in

 • Direct mapping
 • Associative Mapping

 3. The hardware must also consider the ways in which
entries are organized and which entry to replace.

Note: The virtual memory mechanism must interact with
the main memory cache system also.

Page size The factors to be considered for page size are as
follows:

 1. If page size is smaller: Then internal fragmentation
is less. But it results in larger page tables. For large
programs, the page fault rate increases.

 2. Rotational secondary devices favour a larger page
size for more efficient block transfer.

P
ag

e
fa

ul
t r

at
e

Page size P

where P = size of entire process.
The above figure shows the relationship between page

size and page fault rate.

Chapter 4  •  Memory Management and Virtual Memory | 7.63

The page fault rate is also determined by the number
of frames allocated to a process. This relation is shown
below.

P
ag

e
fa

ul
t r

at
e

Number of page
frames allocated

W
N

where W = working set size
N = Total number of pages in process

Note: The design issue of page size is related to the size of
physical main memory and program size.

Advantages of virtual memory paging
 1. No external fragmentation
 2. Higher degree of multiprogramming
 3. Large virtual address space

Disadvantage
Overhead of complex memory management.

Segmentation with Virtual Memory
 1. Memory consists of multiple segments.
 2. Segments are of unequal and dynamic in size.
 3. It simplifies the handling of growing data

structures.
 4. It allows programs to be altered and recompiled

independently.
 5. It lends itself to sharing among processes.
 6. It lends itself to protection.
 7. A unique segment table is associated with each

process.
 8. The virtual address and segment table entries are as

shown below:

Virtual address

Segment number Offset

Segment table entry

P M Other control bits Length Segment base

 9. Only some of the segments of a process may be in
main memory. To identify which segment is present
in the main memory, use present bit P.

 10. To know whether the segment is modified or not, use
M-bit.

Address translation in a segmentation system
(using virtual memory)

Page # Segment table

Segmentation
mechanism

Segment

Main
memory

Length
Program

B
as

e

Seg table ptr

Offset = d

Base + d+

+

Advantages
 1. No internal fragmentation
 2. Higher degree of multiprogramming
 3. Large virtual address space.
 4. Protection and sharing support.

Disadvantage
 1. Overhead of complex memory management.

Combined paging and segmentation
 1. Here, the users address space is broken up into a

number of segments by the programmer.
 2. Each segment is, in turn, broken up into a number of

fixed size pages, which are equal in length to a main
memory frame.

 3. If a segment has length less than that of a page, the
segment occupies just one page.

 4. The virtual address, segment table and page table
entries are as shown below:

Virtual address

Segment number Page number Offset

Segment table entry

Control bits Length Segment base

Page table entry

P M Other control bits Frame number

7.64 | Unit 7  •  Operating System

Structure of combined segmentation/paging system

Page #Seg #

Virtual address

Segmentation
mechanism

Paging
mechanism

Page
frame

Main
memoryProgram

Page table

Seg table ptr

Offset = d

+

+

Frame # Offset

Notes:
 1. Segmentation lends itself to the implementation of

protection and sharing policies.
 2. To achieve sharing, it is possible for a segment to be

referenced in the segment tables of more than one
process.

os sofTware for MeMory
ManageMenT
We consider the following software policies for virtual
memory:

 1. Fetch policy:
 • Demand
 • Prepaging

 2. Placement policy
 3. Replacement policy:

 • Optimal
 • LRU
 • FIFO
 • Clock

 4. Resident set management
 • Resident set size

 I. Fixed
 II. Variable

 • Replacement scope
 I. Local
 II. Global
 5. Cleaning policy

 • Demand
 • Pre-cleaning

 6. Load control
 • Degree of multi-programming

Fetch policy Determines when a page should be brought
into main memory.

 1. Demand paging: Here a page is brought into main
memory only when a reference is made to a location
on that page.

 2. Prepaging: It is a technique that reduces the large
number of page faults at process start up.

 • Prepaging is used to get before all or some of the
pages a process will need, before they are referenced.

 • If prepaged pages are unused, I/O and memory
would be wasted.

 • Assume ‘s’ pages are prepaged and a of the pages
are used.

 • Cost of (s * a) to save page faults greater or less
than the cost of prepaging s × (1 – a) unnecessary
page. If a near zero ⇒ prepaging is lost.

Placement Policy
 1. Determines where in real memory a process piece is

to reside.
 2. In pure segmentation system, the policies like best fit,

first fit, etc., are used.
 3. For a system that uses either pure paging or paging

combined with segmentation, placement is usually
irrelevant.

Replacement policy This deals with the selection of a page
in main memory to be replaced when a new page must be
brought in. In a replacement policy, we have to consider the
following:

 1. How many page frames are to be allocated to each
active process.

 2. Whether the set of pages to be considered for
replacement should be limited to those of the process
that caused the page fault or encompass all the page
frames in main memory.

 3. Among the set of pages considered, which particular
page should be selected for replacement.

Page Fault
 1. Whenever a processor needs to execute a particular

page and that page is not available in main memory,
this situation is said to be page fault.

Chapter 4  •  Memory Management and Virtual Memory | 7.65

 2. When the page fault occurs, the page replacement
will be done.

 3. ‘Page Replacement’ means select a victim page in
the main memory, replace that page with the required
page from the backing store (disk).

 4. Some of the replacement algorithms are as follows:
 • FIFO
 • Optimal
 • LRU
 • Clock

FIFO (First-in-First-Out Algorithm)
 1. Replace a page that is the oldest page of all the pages

of the main memory.
 2. Focuses on the length of time a page has been in

memory rather than how much the page is being
used.

Example:
Consider the reference string: 0 1 2 3 0 1 2 3 0 1 2 3 1

0

0 0 0

1 1

2 2 2

F F F F F F
1 2 3

3 3 3

0

0 0

1

1

F F F F F F H
2

2 2 2 1 1 1

3 3 3 2 2 2

1 0 0 0 3 3

0

1

3 0 1 2 3 1

1*

Here the symbol ‘F ’ indicates page fault.
The number of page faults = 12
‘H ’ indicates the page is already in the memory. The

remaining pages are not present in memory that is why page
fault occurs. In general, the more frames there are, the less
page fault.

Page fault rate =
Number

Number of

 of page faults

 bits in reference string

= = =
12

13
0 923 92 3. . %.

Belady’s Anomaly
Example: Consider the reference string: 1, 2, 3, 4, 1, 2, 5,
1, 2, 3, 4, 5

Number of frames = 4

F
1 1

2 2 2 2 2
3 3 3
4 4 4

214321

3

1 1 1 1
F F F H H

F
5 5 5 4 45
2 1 1 1 1 5
3 3 2 2 2 2
4 4 4
5 1 2 3

3 3 3
4 5

F F F F F

The number of page faults = 10
Consider the same reference string with three frames.

F
1 1 4 4 41

2 2 2 1 1
3 3 3 2

1 2 3 4 1 2
F F F F F

F
5 1 2 3 4 5

H H F F H
5
1
2

5
1
2

5
1
2

5
3
2

5
3
4

5
3
4

Here number of page faults = 9
Here, as the number of frames increases the page fault

also increases. This is known as Belady’s anomaly.

Optimal page replacement algorithm
 1. Replace the page that will not be used for the longest

period of time.

Example: Consider the reference string: 1, 2, 3, 4, 1,
2, 5, 1, 2, 3, 4, 5 using four frames.

F

1 1
2
3

1 2 3 4
4

1
2
3
4

1 2

F F F H H

1

2

1

2

3

1
2
3
4

F
1 4 4
2 2 2
3 3 3
5
5 1 2 3

5 5
4 5

H H H F H
1
2
3
5

1
2
3
5

1
2
3
5

Number of page faults = 6

Disadvantage
It requires future knowledge of reference string, so used for
comparison studies.

LRU (least recently used) algorithm
 1. Replace a page that has not been used for the longest

period of time.
 2. It looks backward in time rather than forward.
 3. It associates with each page the time of that page last

used.
 4. Two methods of implementation:

 • Counters
 • Stack

Example: Consider reference String: 1, 2, 3, 4, 1, 2,
5, 1, 2, 3, 4, 5

7.66 | Unit 7  •  Operating System

Number of frames = 4

F

1 1
2
3

1 2 3 4
4

1
2
3
4

1 2

H H H F H

1

2

1

2

3

1
2
3
4

1
2
4

4
3

5
2
4
3

1 2

F F F
1
2
5
3

4

H
1
2
5
4

4

H
1
2
5
4

4

H
1
2
5
4

Number of page faults = 8 (less than FIFO)

Approach to Implement
LRU Replacement
LRU is a good page replacement policy, but the problem
with these is how to determine the frame used for the last
time.

This is implemented by using two approaches:

 1. Using counters
 2. Using stacks

Using counters, LRU is implemented as follows: Every
page entry has a counter, whenever a page is referenced, the
clock value is copied into the counter. If the page has to be
replaced, then it refers to the look up of the counter, which-
ever is having oldest time that is changed.

Using stack, LRU is implemented as follows: Form
a doubly linked list of page numbers and keep it in stack
whenever a page is referenced it is moved to the top of the
stack that is top of the stack contains recently referenced
page. Bottom of the stack will have least recently used one.

Clock replacement algorithm
 1. The simplest form of clock policy requires the

association of an additional bit with each frame,
referred to as the use bit.

 2. When a page is first loaded into frame in memory, the
use bit for that frame is set to 1.

 3. Whenever the page is subsequently referenced, its use
bit is set to 1.

 4. The set of frames that are candidates for replacement
is considered to be a circular buffer, with which a
pointer is associated.

 5. When a page is replaced, the pointer is set to indicate
the next frame in the buffer after the one just updated.

 6. When it comes time to replace a page, the OS scans
the buffer to find a frame with a use bit set to 0.

 7. Each time it encounters a frame with a use bit of 1, it
resets that bit to 0 and continues on.

 8. If any of the frames in the buffer have a use bit of 0
at the beginning of this process, the first such frame
encountered is chosen for replacement.

 9. If all of the frames have a use bit of 1, then the pointer
will make one complete cycle through the buffer,
setting all the use bits to 0 and stop at its original
position, replacing the page in that frame.

Example: Consider the reference string 1, 2, 3, 4, 1,
2, 5, 1, 2, 3, 4, 5, with three main memory frames:

1
1*

2
1*
2* 2*

3*
2
3

3
1*

4
4*

1

F F F F F

4*
1*
3

2 5
5*
1*

1 2 3

F F H H F

5*
3*
2

4*
1*
2* 2*

4 5

F F

5*
3*
4*

5*
1*
2*

5*
1*
2*

5*
3*
4*

\ Number of misses = 9

Note: The clock algorithm was approximately closer in per-
formance to LRU.

Effective memory access time
The percentage of times a page number is found in the asso-
ciative registers is called the hit ratio. If we fail to find the
page number in the associative registers, then we must first
access memory for the page table and frame number, and
then access the required byte in memory. To find the effective
access time, we should weigh each case by its probability.

EMAT: Is given as = p * s + (1 – p) * m.
Where

p = Page fault rate
s = Page fault service time
m = Main memory access time
(1 – p) = page hit ratio.

Frame locking Some of the frames in main memory may
be locked. When a frame is locked, the page currently stored
in that frame may not be replaced.

Page buffering To improve performance, a replaced page is
not lost but rather is assigned to one of two lists:

 1. The free page list if the page has not been modified or
 2. The modified page list if it has modified.

Resident set management
Resident set size The OS must decide how many pages to
bring in, that is, how much main memory to allocate to a
particular process. Two policies are there:

 1. Fixed allocation
 2. Variable allocation

Chapter 4  •  Memory Management and Virtual Memory | 7.67

Fixed allocation This policy gives to a process a fixed
number of frames in main memory within which to execute.

Variable allocation This policy allows the number of page
frames allocated to a process to be varied over the life time
of the process.

Replacement scope This is of two types as follows:

Local page replacement: When a process requests for a
new page to be brought in and there are no free frames in the
memory, we choose a frame allocated to only that process
for replacement.

Global replacement: It allows a process to select a replace-
ment frame from the set of all frames, even if that frame is
currently allocated to some other processes. So, one process
can take a frame from another.

Fixed allocation, local replacement

 1. Number of frames allocated to a process is fixed.
 2. Page to be replaced is chosen from among the frames

allocated to that process.

Variable allocation, global scope
 1. Page to be replaced is chosen from all available

frames in main memory.
 2. Size of resident set of processes varies.

Variable allocation, local scope

 1. The number of frames allocated to a process may be
changed from time to time.

 2. Page to be replaced is chosen from among the frames
allocated to that process.

Working set: This strategy is used to determine the resident
set size and the timing of changes.

The working set with parameter D for a process at virtual
time t, which we designated as W(t, D), is the set of pages of
that process that have been referenced in the last D virtual
time units.

Virtual time: Consider a sequence of memory references,
r(1), r(2), … in which r(i) is the page that contains the i th
virtual address generated by a given process.

Time is measured in memory references; thus, t = 1, 2, 3,
… measures the processes internal virtual time.

The variable ‘D’ is a window of virtual time over which
the process is observed.

The working set size will be a non-decreasing function
of the window size.

W(t, D + 1) ⊇ W(t, D).

For the sequence of page references 24, 15, 18, 23, 17, 15,
24, 18, 17, 17, 15. And window size = 2 then working set
will be

{24, {24, 15,}, {15, 18}, {18, 23}, {23, 24}, {24, 17}, {17,
18}, {18, 24}, {18, 24}, {18, 17}, {17}, {17, 15}}

Page fault frequency (PFF) algorithm

 1. The algorithm requires a use bit to be associated with
each page in memory.

 2. The bit is set to 1, when that page is accessed.
 3. When a page fault occurs, the OS notes the virtual

time since the last page fault for the process.
 4. A threshold F is defined. If the amount of time since

the last page fault is less than F, then a page added to
resident set of the process.

 5. Otherwise, discard all pages with a use bit of 0 and
shrink the resident set according.

Note: PFF does not perform well during the transient peri-
ods when there is a shift to a new locality.

Variable interval sampled working set (VSWS)

 1. The VSWS policy evaluates the working set of a
process at sampling instances based on elapsed
virtual time.

 2. VSWS considers three parameters:
M: The minimum duration of sampling interval
L: The maximum duration of sampling interval
Q: The number of page faults that are allowed to

occur between sampling instances.
 3. The policy works as following:

 • If virtual time since the last sampling instance reaches
L, then suspend the process and scan the use bits.

 • If, prior to an elapsed virtual time of L, Q page faults
occur,
I. If the virtual time since the last sampling

instance is less than M, then wait until the
elapsed virtual time reaches M to suspend the
process and scan the use bits.

II. If the virtual time since the last sampling
instance is greater than or equal to M, suspend
the process and scan the use bits.

Cleaning policy It determines when a modified page should be
written out to secondary memory. Two approaches are as follows:

 1. Demand cleaning
 2. Pre-cleaning

Demand cleaning A page is written out to secondary
memory only when it has been selected for replacement.

Pre-cleaning This policy writes modified pages before
their page frames are needed so that pages can be written
out in batches.

Load control It is concerned with determininig the number
of processes that will be resident in main memory, which
has been referred to as the multiprogramming level.

If too few processes are resident at any one time, it leads
to swapping. If too many processes are present, thrashing
will occur.

7.68 | Unit 7  •  Operating System

Cause of thrashing Consider the following scenario:

The OS monitors CPU utilization. If the utilization is too low,
we increase the degree of multiprogramming by introducing a
new process to the system. A global page replacement algo-
rithm is used, which replaces pages with no regard to the pro-
cess to which they belong. Now, say that a process enters a new
phase in its execution and needs more frames. It starts fault-
ing and taking frames away from other processes. These pro-
cesses need those pages, however and so they also fault, taking
frames from other processes. These faulting processes must
use the paging device to swap pages in and out. As they queue
up for paging device, the ready queue empties. As processes
wait, for the paging device, CPU utilization decreases the CPU
scheduler sees the decreasing CPU utilization; so it increases
the degree of multiprogramming. The new process tries to
get started by taking frames from running processes, causing

more page faults, and a longer queue for paging device. As a
result, CPU utilization drops even, further. The CPU scheduler
tries to increase the degree of multiprogramming even more.
Thrashing occurs, and the system throughput plunges. The
page fault rate (FT) increases tremendously. Effective memory
access time increases. No work is getting done because the
processes are spending all their time in paging.

Degree of multiprogramming

C
P

U
 u

til
iz

at
io

n

Maximum CPU utilization

Thrashing

Thrashing

exercises

Practice Problems 1
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.
 1. Consider a 3-level memory hierarchy shown in the fol-

lowing table, with access times to memory:

Hierarchy level Cache hit ratio Page transfer time

M1 0.55 0.003 ms

M2 0.92 0.3 ms

M3 – 1.0 ms

 When a miss occurs, data is fetched from the next level.
Calculate the average time required for a process to
read one word from the memory system.

 (A) 0.379 (B) 0.162
 (C) 0.2798 (D) 0.172

 2. Consider a memory system with FIFO page replace-
ment algorithm policy. For an arbitrary page access
pattern, increasing the number of page frames in main
memory will

 (A) Always decrease the number of page faults
 (B) Always increase the number of page faults
 (C) Sometimes increase the number of page faults
 (D) Never effect the number of page faults

 3. Consider the below page address stream generated by
executing a program:

 4 5 4 3 7 4

 Assuming that LRU is used for page replacement and
at most three frames are available in the memory for the
process, find the number of page faults that can occur
(initially all frames empty).

 (A) 0 (B) 1
 (C) 3 (D) 4

 4. Consider a logical address space of four pages of 2048
words each mapped into a physical memory of 32
frames. How many bits in logical address?

 (A) 12-bits (B) 14-bits
 (C) 13-bits (D) 11-bits

 5. The time taken to service a page fault is on average 10
ms and the memory access time is 20 ms. If the hit ratio
is 70%, calculate the average access time.

 (A) 3018 ms (B) 4014 ms
 (C) 3014 ms (D) 4024 ms

 6. Consider the following page trace:

 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5

 Number of frames for the Job M = 4. Then the page fault
ratio using FIFO technique will be

 (A) 63% (B) 75%
 (C) 83% (D) 94%

 7. The available main memory for loading pages is 64
MB with a frame size of 8 MB. If pages of size 6 MB,
and 4 MB are loaded into memory, what is the percent-
age of the internal fragmentation resulted?

 (A) 42.5 (B) 37.5
 (C) 57.5 (D) 62.45

 8. A demand paging system takes 50 time units to handle
a page fault and 200 time units to replace a dirty page.
Access time of memory is 2 time units. Probability of
page fault and dirty page is P. Average access time is 4
time units. Then what is the value of P ?

 (A) 0.037 (B) 0.027
 (C) 0.012 (D) 0.042

 9. Assume that a total memory 20 KB is available with no
partition. If Buddy system technique is used and there
are total of four partitions to serve the request, the clos-
est range of the requested size is

Chapter 4  •  Memory Management and Virtual Memory | 7.69

 (A) 12.5 and 25 (B) 14.5 and 30
 (C) 15.5 and 25 (D) 14.5 and 40

 10. A system uses FIFO page replacement algorithm. It has
three page frames with no pages loaded. First 50 pages are
accessed in some order and the same pages are accessed
in the reverse order. What is the number of page faults?

 (A) 98 (B) 96
 (C) 97 (D) 95

 11. If 32-bit addressing is used for pages whose maximum
size is 512 KB, what is the maximum number of pages
that can be addressed?

 (A) 4096 (B) 2048
 (C) 8192 (D) 16384

 12. Calculate the overhead due to page table if given the
average process in bytes is 16-bytes, the page size is
32-bytes and the page entry is 2-bytes.

 (A) 15 (B) 17
 (C) 18 (D) 19

 13. In a system with 32-bit virtual address and 1 KB page
size, use of one-level page tables for virtual to physical
address translation is not practical because of

 (A) The large amount of internal fragmentation
 (B) The large amount of external fragmentation
 (C) The large memory overhead in maintaining page

tables
 (D) The large computation overhead in the translation

process

 14. If an instruction takes time 10 m sec if there is no page
fault and time 20 m sec if there is a page fault, what is the
effective instruction time if page fault occurs once every
5 instructions?

 (A) 12.5 msec (B) 12 msec
 (C) 14 msec (D) 15 msec

 15. Let an instruction take 10 ms and page fault takes an
additional 5 ms. If the average page fault occurs after
20 instructions, the effective instruction time will be

 (A) 10 ms (B) 10.25 ms
 (C) 0.25 ms (D) 10.75 ms

 16. A 0.8 MB-sized memory is managed using variable
partitions, while the rest of the memory is occupied

by a 0.26 MB partition, 0.27 MB partition and 0.25
MB partitions in the order. Best-fit strategy is being
adopted where would be a 0.18 MB allocation request
is fulfilled?

 (A) 0.26
 (B) 0.27
 (C) 0.25
 (D) Request will be denied

Common data for questions 17 and 18: Suppose that the
OS uses variable length partitions for memory manage-
ment. At some particular time, the running process occupies
a partition between physical addresses 20,000 and 40,000.

 17. The values of base and limit register are respectively
 (A) 20, 000, 40,000
 (B) 20,000, 20,000
 (C) 0, 10,000
 (D) 0, 40,000

 18. What physical address corresponds to a virtual address
of 13,000?

 (A) 13,000
 (B) 43,000
 (C) 33,000
 (D) Out of range

 19. Consider a page table where translation look ahead
buffer is used. TLB hit ratio is 0.95 and generally
takes 1 nanosecond to retrieve the frame number.
If a miss is recorded by the TLB then an additional
overhead of 10 nanoseconds should be taken into con-
sideration, further cache and main memory reference
takes 100 ns on average, what is the average memory
fetch time using the TLB? Assume main memory
accesses are always a success.

 (A) 101 ns (B) 105 ns
 (C) 200 ns (D) 205 ns

 20. Consider a 1 MB process which is divided into five
segments. Each segment is further divided into pages
whose size is 4 KB. What is the maximum segments
possible? Assume that the system is byte addressable.

 (A) 64 (B) 128
 (C) 256 (D) 512

Practice Problems 2
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.
 1. Consider a logical address space of 32 pages of 2048

words mapped into memory of 64 frames. Then the
number of bits required for logical address are

 (A) 16-bits (B) 17-bits
 (C) 18-bits (D) 20-bits

 2. In which of the page table techniques the logical
address space is broken into multiple page table?

 (A) Inverted Page Table
 (B) Hierarchical Page Table
 (C) Hashed Page Table
 (D) None of the above

 3. Consider a system with 70% hit ratio, 60 nanoseconds
time to search the associative registers, 800 nanosec-
onds to access memory. What is the effective memory
access time?

 (A) 1200 nsec (B) 1100 nsec

 (C) 1300 nsec (D) 2200 nsec

7.70 | Unit 7  •  Operating System

 4. On a system using fixed partitions, all of size 28, the
number of bits used by the limit register is

 (A) 128 (B) 256
 (C) 8 (D) 1024

 5. Working set (t, k) at an instant of time, t, is the set of
 (A) k future references that the operating system will

make
 (B) future references that the operating system will

make in the next ‘k’ time units
 (C) k references with high frequency
 (D) pages that have been referenced in the last k time

units.

 6. Cache and interleaved memories are ways of speeding
up memory access between CPUs and slower RAM.
Which of the following memory models are best
suited (i.e., improves performance the most) for which
programs?

 (i) Cached memory is best suited for small loops.

 (ii) Interleaved memory is best suited for small loops.

 (iii) Interleaved memory is best suited for large loops.

 (iv) Cache memory is best suited for large sequential
code.

 (A) (i) and (ii) are true
 (B) (i) and (iii) are true
 (C) (iv) and (ii) are true
 (D) (iv) and (iii) are true

 7. A paging system with a page table in memory every
reference to memory takes 100 ns. The TLB hit ratio is
85% and the time needed for searching TLB is almost
negligible. What is the effective memory access time?

 (A) 115 ns (B) 135 ns
 (C) 145 ns (D) 125 ns

 8. Consider the page sequence 4, 2, 1, 5, 3, 2, 1, 5, 0, 2, 5.
If FIFO page replacement algorithm is used and frame
size is 3, then the percentage of page fault is

 (A) 99% (B) 90.9%
 (C) 80.8% (D) 89.9%

 9. If the page size is 32 KB, primary page table contains
4096 entries and the secondary page table contains 256
entries, then what is the size of logical address in bits?

 (A) 15-bits (B) 20-bits
 (C) 32-bits (D) 35-bits

 10. If page size is 2 KB and logical address is 20-bit, then
the number of entries in the page table is

 (A) 2048 B (B) 256 B
 (C) 512 B (D) 1 MB

 11. Consider a paging system with the page table stored in
memory. If a memory reference takes 200 ns, how long
does a paged memory reference take?

 (A) 100 ns (B) 200 ns
 (C) 300 ns (D) 400 ns

 12. Consider a logical address space of eight pages of 1024
words each mapped onto a physical memory of 32
frames. How many bits are there in the logical address
and in the physical address?

 (A) 10, 18 (B) 13, 18
 (C) 13, 15 (D) 10, 5

 13. For a paged system, TLB hit ratio is 0.9. Let the RAM
access time ‘t’ be 20 ns and the TLB access time ‘T ’ be
100 ns. Then effective memory access (with TLB) will
be

 (A) 120 ns (B) 200 ns
 (C) 130 ns (D) 150 ns

 14. Assume that a user program is 100 K words and sec-
ondary storage device is a fixed hard disk with an
average latency of 8 ms and a transfer rate of 2,50,000
words/second. Then find the swap time of a transfer of
100 K words to or from memory.

 (A) 816 ms (B) 408 ms
 (C) 204 ms (D) 8 ms

 15. Consider the following segment table:

Segment Limit Base

0 1000 1400

1 400 6300

2 400 4300

3 1100 3200

4 1000 4700

 The physical address for a logical address which is in
segment 2 with offset 253 is

 (A) 4553 (B) 6353
 (C) 6253 (D) 4453

 16. Consider a process of size 2 MB. If the page size is 0.5
KB, what is the size of the page table (assuming that
each page is mapped by a 32-bit size page table entry)?

 (A) 8 KB (B) 16 KB
 (C) 24 KB (D) 32 MB

 17. A CPU generates 32-bit virtual address. The page size
is 2 KB. The translation look-aside buffer (TLB) which
can hold 256 page table entries and is two-way set asso-
ciative mapping. The number of bits in the TLB tag is

 (A) 10-bits (B) 12-bits
 (C) 14-bits (D) 15-bits

 18. Assume that a total memory M is available with no
partitions made yet. If Buddy system strategy is being
used and a total of n partitions have been made to serve
the request. The closest range of the requested size is

 (A)
M M
n n2 1 2+

 and (B)
M

n

M

n
 and

−1

 (C) M M
n n2 2 1

 and −
 (D) M

n

M

n+1
 and

Chapter 4  •  Memory Management and Virtual Memory | 7.71

 19. The memory has four free blocks of sizes 2K, 6K, 20K,
4K. The request blocks are allocated according to best
fit allocation method. The allocation requests are stored
in queue as shown:

R
eq

es
t

no
. P1 P2 P3 P4 P5 P6 P7

R
eq

es
t

si
ze

s 4 K 10 K 2 K 3 K 5 K 4 K 2 K

U
sa

ge

tim
e 1 4 2 6 3 1 8

 The time at which request for P
7
 will be completed is

 (A) 10 unit time
 (B) 14 unit time
 (C) 20 unit time
 (D) 15 unit time

 20. A memory page containing a heavily used variable
that was initialized very early and is in constant use is
removed when _____ page replacement is used.

 (A) LRU
 (B) FIFO
 (C) LFU
 (D) Optimal

preVious years’ quesTions

 1. A processor uses 36-bit physical addresses and 32-bit
virtual addresses, with a page frame size of 4 K bytes.
Each page table entry is of size 4 bytes. A three-level
page table is used for virtual to physical address trans-
lation, where the virtual address is used as follows:
 [2008]

 • Bits 30–31 are used to index into the first level
page table

 • Bits 21–29 are used to index into the second level
page table

 • Bits 12–20 are used to index into the third level
page table, and

 • Bits 0–11 are used as offset within the page

 The number of bits required for addressing the next
level page table (or page frame) in the page table
entry of the first, second and third level page tables
are, respectively,

 (A) 20, 20 and 20 (B) 24, 24 and 24
 (C) 24, 24 and 20 (D) 25, 25 and 24

 2. How many 32 K × 1 RAM chips are needed to pro-
vide a memory capacity of 256 K bytes? [2009]

 (A) 8 (B) 32
 (C) 64 (D) 128

 3. In which one of the following page replacement policies,
Belady’s anomaly may occur? [2009]

 (A) FIFO (B) Optimal
 (C) LRU (D) MRU

 4. The essential content(s) in each entry of a page table
is/are [2009]

 (A) Virtual page number
 (B) Page frame number
 (C) Both virtual page number and page frame number
 (D) Access right information

 5. A multilevel page table is preferred in comparison to
a single-level page table for translating virtual address
to physical address because [2009]

 (A) It reduces the memory access time to read or
write a memory location.

 (B) It helps to reduce the size of page table needed to
implement the virtual address space of a process.

 (C) It is required by the translation look-aside buffer.
 (D) It helps to reduce the number of page faults in

page replacement algorithms.

 6. A system uses FIFO policy for page replacement. It
has four-page frames with no pages loaded to begin
with. The system first accesses 100 distinct pages in
some order and then accesses the same 100 pages but
now in the reverse order. How many page faults will
occur? [2010]

 (A) 196 (B) 192
 (C) 197 (D) 195

 7. Let the page fault service time be 10 ms in a com-
puter with average memory access time being 20 ns.
If one page fault is generated for every 106 memory
accesses, what is the effective access time for the
memory? [2011]

 (A) 21 ns (B) 30 ns
 (C) 23 ns (D) 35 ns

 8. Consider the virtual page reference string

 1, 2, 3, 2, 4, 1, 3, 2, 4, 1

 on a demand paged virtual memory system running
on a computer system that has main memory size of
three-page frames which are initially empty. Let LRU,
FIFO and OPTIMAL denote the number of page
faults under the corresponding page replacement pol-
icy. Then [2012]

 (A) OPTIMAL< LRU < FIFO
 (B) OPTIMAL < FIFO < LRU
 (C) OPTIMAL = LRU
 (D) OPTIMAL = FIFO

 9. A RAM chip has a capacity of 1024 words of 8 bits
each (1 K × 8). The number of 2 × 4 decoders with

7.72 | Unit 7  •  Operating System

enable line needed to construct a 16 K × 16 RAM
from 1 K × 8 RAM is [2013]

 (A) 4 (B) 5
 (C) 6 (D) 7

Common data for Questions 10 and 11: A computer
uses 46-bit virtual address, 32-bit physical address, and a
three-level paged page table organization. The page table
base register stores the base address of the first-level table
(T

1
), which occupies exactly one page. Each entry of T

1

stores the base address of a page of the second-level table
(T

2
). Each entry of T

2
 stores the base address of a page of

the third-level table (T
3
). Each entry of T

3
 stores a page

table entry (PTE). The PTE is 32-bits in size. The proces-
sor used in the computer has a 1 MB 16-way set associa-
tive virtually indexed physically tagged cache. The cache
block size is 64 bytes.

 10. What is the size of a page in KB in this computer?
 [2013]

 (A) 2 (B) 4
 (C) 8 (D) 16

 11. What is the minimum number of page colours needed
to guarantee that no two synonyms map to different
sets in the processor cache of this computer? [2013]

 (A) 2 (B) 4
 (C) 8 (D) 16

 12. Assume that there are three page frames which are
initially empty. If the page reference string is 1, 2, 3,
4, 2, 1, 5, 3, 2, 4, 6, the number of page faults using
the optimal replacement policy is ––––––. [2014]

 13. A computer has 20 physical page frames which con-
tain pages numbered 101 through 120. Now a pro-
gram accesses the pages numbered 1, 2, … 100 in
that order, and repeats the access sequence THRICE.
Which one of the following page replacement policies
experiences the same number of page faults as the
optimal page replacement policy for this program?
 [2014]

 (A) Least-recently used (B) First-in-first-out
 (C) Last-in-first-out (D) Most-recently-used

 14. A system uses three page frames for storing process
pages in main memory. It uses the Least Recently
Used (LRU) page replacement policy. Assume that
all the page frames are initially empty. What is the
total number of page faults that will occur while
processing the page reference string given below?
 [2014]

 4, 7, 6, 1, 7, 6, 1, 2, 7, 2

 15. Consider a paging hardware with a TLB. Assume
that the entire page table and all the pages are in the
physical memory. It takes 10 milliseconds to search
the TLB and 80 milliseconds to access the physical

memory. If the TLB hit ratio is 0.6, the effective mem-
ory access time (in milliseconds) is ––––––– [2014]

 16. Consider a system with byte-addressable memory,
32-bit logical addresses, 4 kilobyte page size and page
table entries of 4 bytes each. The size of the page table
in the system in megabytes is _______. [2015]

 17. Consider a main memory with five page frames and
the following sequence of page references: 3, 8, 2, 3,
9, 1, 6, 3, 8, 9, 3, 6, 2, 1, 3. Which one of the following
is true with respect to page replacement policies First
In First Out (FIFO) and Least Recently Used (LRU)?

 [2015]
 (A) Both incur the same number of page faults
 (B) FIFO incurs 2 more page faults than LRU
 (C) LRU incurs 2 more pages faults than FIFO
 (D) FIFO incurs 1 more page faults than LRU

 18. Consider six memory partitions of sizes 200 KB, 400
KB, 600 KB, 500 KB, 300 KB and 250 KB, where KB
refers to kilobyte. These partitions need to be allotted
to four processes of sizes 357 KB, 210 KB, 468 KB
and 491 KB in that order. If the best fit algorithm is
used, which partitions are NOT allotted to any pro-
cess? [2015]

 (A) 200 KB and 300 KB
 (B) 200 KB and 250 KB
 (C) 250 KB and 300 KB
 (D) 300 KB and 400 KB

 19. A computer system implements 8 kilobyte pages and
a 32-bit physical address space. Each page table entry
contains a valid bit, a dirty bit, three permission bits,
and the translation. If the maximum size of the page
table of a process is 24 megabytes, the length of the
virtual address supported by the system is _______
bits. [2015]

 20. Consider the following two C code segments. Y and X
are one and two dimensional arrays of size n and n ×
n respectively, where 2 ≤ n ≤ 10. Assume that in both
code segments, elements of Y are initialized to 0 and
each element X[i] [j] of array X is initialized to i + j.
Further assume that when stored in main memory all
elements of X are in same main memory page frame.

 Code segment 1: [2015]

 //initialize elements of Y to 0

 //initialize elements X[i] [j] of X to
i + j

 for (i = 0; i < n; i++)

 Y[i] += X[0] [i];

 Code Segment 2:

 //initialize elements of Y to 0

Chapter 4  •  Memory Management and Virtual Memory | 7.73

 //initialize elements X[i] [j] of X
to i + j

 for (i = 0; i < n; i++)

 Y[i] += X[i] [0];

 Which of the following statements is/are correct?

 S
1
: Final contents of array Y will be same in both code

segments

 S
2
: Elements of array X accessed inside the for loop

shown in code segment 1 are contiguous in main
memory

 S
3
: Elements of array X accessed inside the for loop

shown in code segment 2 are contiguous in main
memory.

 (A) Only S
2
 is correct

 (B) Only S
3
 is correct

 (C) Only S
1
 and S

2
 are correct

 (D) Only S
1
 and S

3
 are correct

 21. Consider a computer system with 40-bit virtual
addressing and page size of sixteen kilobytes. If the
computer system has a one-level page table per pro-
cess and each page table entry requires 48 bits, then
the size of the per-process table is ______ megabytes.

 [2016]

 22. Consider a computer system with ten physical page
frames. The system is provided with an access
sequence (a

1
, a

2
, ….., a

20
, a

1
, a

2
,……. a

20
), where each

ai is a distinct virtual page number. The difference in
the number of page faults between the last-in-first-
out page replacement policy and the optimal page
replacement policy is ______. [2016]

 23. In which one of the following page replacement algo-
rithms it is possible for the page fault rate to increase
even when the number of allocated frames increases?
 [2016]

 (A) LRU (Least Recently Used)
 (B) OPT (Optimal Page Replacement)
 (C) MRU (Most Recently Used)
 (D) FIFO (First In First Out)

 24. Recall that Belady’s anomaly is that the page-fault
rate may increase as the number of allocated frames
increases. Now, consider the following statements:

 S1: Random page replacement algorithm (where a
page chosen at random is replaced) suffers from
Belady’s anomaly

 S2: LRU page replacement algorithm suffers from
Belady’s anomaly

 Which of the following is CORRECT? [2017]
 (A) S1 is true, S2 is true
 (B) S1 is true, S2 is false
 (C) S1 is false, S2 is true
 (D) S1 is false, S2 is false

 25. Consider a process executing on an operating sys-
tem that uses demand paging. The average time for a
memory access in the system is M units if the corre-
sponding memory page is available in memory and D
units if the memory access causes a page fault. It has
been experimentally measured that the average time
taken for a memory access in the process is X units.

 Which one of the following is the correct expression
for the page fault rate experienced by the process?
 [2018]

(A) (D – M)/(X – M) (B) (X – M/(D – M)
(C) (D – X/(D – M) (D) (X – M/(D – X)

answer Keys

exercises

Practice Problems 1
 1. B 2. B 3. D 4. C 5. C 6. C 7. B 8. A 9. A 10. C
11. C 12. B 13. C 14. B 15. B 16. C 17. B 18. C 19. A 20. C

Practice Problems 2
 1. B 2. B 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C
 11. D 12. B 13. C 14. A 15. A 16. B 17. C 18. C 19. A 20. B

Previous Years’ Questions
 1. D 2. C 3. A 4. B 5. B 6. A 7. B 8. B 9. B 10. C
 11. C 12. 7 13. D 14. 6 15. 122 16. 4 17. A 18. A 19. 36 20. C
 21. 384 22. 1 23. D 24. B 25. B

	Unit 7: Operating System
	Chapter 4: Memory Management and Virtual Memory
	Basic Concepts
	Memory Management Requirements
	Memory Mapping Techniques
	Virtual Memory
	OS Software for Memory Management
	Exercises
	Previous Years’ Questions
	Answer Keys

