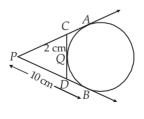
Sample Question Paper - 23 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :


- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

- 1. Find the roots of the quadratic equation : $x^2 3\sqrt{5}x + 10 = 0$
- 2. The mean of the given distribution is 18. Find the frequency *f* of the class 19-21.

Class	Frequency
11 - 13	3
13 - 15	6
15 - 17	9
17 - 19	13
19 - 21	f
21 - 23	5
23 - 25	4

- 3. The 17^{th} term of an A.P. is 5 more than twice its 8^{th} term. If the 11^{th} term of the A.P. is 43, then find its n^{th} term.
- **4.** In the given fig., *PA* and *PB* are tangents to be drawn from an external point *P*. *CD* is a third tangent touching the circle at *Q*. If *PB* = 10 cm, and *CQ* = 2 cm, what is the length of *PC* ?

OR

What is the distance between two parallel tangents to a circle of the radius 4 cm ?

5. The total surface area of a cube is $32\frac{2}{3}$ m². Find the volume of cube.

Maximum Marks: 40

The side of solid metallic cube is 50 cm. The cube is melted and recast into 8000 equal solid cubical dice. Determine the side of the dice.

6. In a village, number of members in 50 families are given in the following frequency distribution :

Number of members	1-3	3-5	5-7	7-9	9-11	11-13	13-15	15-17	17-19
Number of families	2	8	6	10	5	5	7	4	3

Find the mean of the above data.

SECTION - B

- 7. In which of the following situations, do the lists of numbers involved form an A.P.? Give reasons for your answers.
 - (i) The fee charged every month by a school from Classes I to XII, when the monthly fee for Class I is ₹ 250, and it increases by ₹ 50 for the next higher class.
 - (ii) The number of bacteria in a certain food item after each second, when they double in every second.

OR

If the m^{th} term of an A.P. is 1/n and n^{th} term is 1/m, then show that its $(mn)^{\text{th}}$ term is 1.

- 8. A man in a boat rowing away from a light house 100 m high takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°. Find the speed of the boat in metres per minute. [Use $\sqrt{3} = 1.732$]
- 9. Draw a circle of radius 4 cm. Draw two tangents to the circle inclined at an angle of 60° to each other.
- 10. If x = -2 is a root of the equation $3x^2 + 7x + p = 0$, find the values of k so that the roots of the equation $x^2 + k(4x + k 1) + p = 0$ are equal.

SECTION - C

11. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled into it. The diameter of the pencil is 7 mm, the diameter of the graphite is 1 mm and the length of the pencil is 10 cm. Calculate the weight of the whole pencil, if the specific density of the wood is 0.7 gm/cm³ and that of graphite is 2.1 gm/cm³.

OR

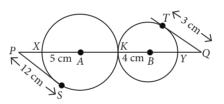
Water flows at the rate of 10 metre per minute from a cylindrical pipe 5 mm in diameter. How long will it take to fill up a conical vessel whose diameter at the base is 40 cm and depth 24 cm?

12. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of a 20 m high building, finds the elevation of the same bird to be 45°. The boy and the girl are on the opposite sides of the bird. Find the distance of the bird from the girl. (Given $\sqrt{2} = 1.414$)

Case Study - 1

13. An agency has decided to install customised playground equipments at various colony parks. For that they decided to study the age-group of children playing in a park of the particular colony. The classification of children according to their ages, playing in a park is shown in the following table.

Age group of children (in years)	6-8	8-10	10-12	12-14	14-16
Number of children	43	58	70	42	27



Based on the above information, answer the following questions.

- (i) Find the frequency of the class succeeding the modal class.
- (ii) Find the mode of the ages of children playing in the park?

Case Study - 2

14. In a maths class, the teacher draws two circles that touch each other externally at point *K* with centres *A* and *B* and radii 5 cm and 4 cm respectively as shown in the figure.

Based on the above information, answer the following questions.

- (i) Find the value of *PK*.
- (ii) Find the value of *QY*.

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

1. Given, $x^2 - 3\sqrt{5}x + 10 = 0$ Using quadratic formula,

$$x = \frac{3\sqrt{5} \pm \sqrt{(-3\sqrt{5})^2 - 4(1)(10)}}{2(1)} = \frac{3\sqrt{5} \pm \sqrt{5}}{2}$$

$$\Rightarrow x = \frac{4\sqrt{5}}{2} \text{ or } x = \frac{2\sqrt{5}}{2}$$

$$\Rightarrow x = 2\sqrt{5} \text{ or } x = \sqrt{5}$$

2. We have the following table :

Class	Class mark	Frequency	$f_i x_i$
interval	(x_i)	(f_i)	
11-13	12	3	36
13-15	14	6	84
15-17	16	9	144
17-19	18	13	234
19-21	20	f	$20 \times f$
21-23	22	5	110
23-25	24	4	96
		$N = \Sigma f_i$	$\Sigma f_i x_i = 704 + 20f$
		= 40 + f	

Mean,
$$\overline{x} = \frac{\Sigma f_i x_i}{N} \implies 18 = \frac{704 + 20f}{40 + f}$$

 $\implies 18(40+f) = 704 + 20f$

 \Rightarrow 720 + 18f = 704 + 20f

$$\Rightarrow 20f - 18f = 720 - 704 \Rightarrow 2f = 16 \Rightarrow f = 8.$$

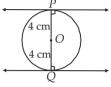
:. The frequency of class 19-21 is 8.

3. Let *a* be the first term and *d* be the common difference of the given A.P.

According to the question, $a_{17} = 2a_8 + 5$

 $\Rightarrow a + 16d = 2[a + 7d] + 5$ $\Rightarrow a + 16d = 2a + 14d + 5 \Rightarrow a = 2d - 5 \qquad \dots(i)$ Also, $a_{11} = 43 \Rightarrow a + 10d = 43$ $\Rightarrow (2d - 5) + 10d = 43 \qquad \qquad [Using (i)]$ $\Rightarrow 12d = 48 \Rightarrow d = 4$

3


$$\therefore a = 2d - 5 = 2(4) - 5 = 8 - 5 =$$

Thus at the term of the A D $a = a + 5$

Thus,
$$n^{\text{th}}$$
 term of the A.P., $a_n = a + (n - 1)d$
= 3 + (n - 1) 4 = 3 + 4n - 4 = 4n - 1

4. Given :
$$PB = 10$$
 cm,
 $CQ = 2$ cm
Since PA and PB are tangents
to be drawn from an external
point P.
 $\therefore PA = PB$

Similarly,
$$CA = CQ$$
 and $DB = DQ$
 $\therefore PA = PB = 10 \text{ cm}$
 $PA = PC + CA$
 $\Rightarrow PA = PC + CQ$
 $\Rightarrow PC = PA - CQ = 10 - 2 = 8 \text{ cm}$
OR

We know that two tangents are parallel if and only if tangents are drawn at the end point of diameter.

So *PQ* is a diameter of circle.

PQ = 2(radius of circle)

$$= 2 \times 4 = 8 \text{ cm}$$

Hence distance between two parallel tangents is 8 cm.

5. Let the side of the cube be x m.

$$\therefore$$
 Total surface area = $6x^2 \text{ m}^2$

$$\Rightarrow 6x^{2} = 32\frac{2}{3} \Rightarrow 6x^{2} = \frac{56}{3}$$
$$\Rightarrow x^{2} = \frac{98}{3} \times \frac{1}{6} = \frac{49}{9} \Rightarrow x = \frac{7}{3} \text{ m}$$
$$\therefore \text{ Volume of the cube} = x^{3} \text{m}^{3}$$

$$=\left(\frac{7}{3}\right) m^3 = \frac{343}{27}m^3 = 12\frac{19}{27}m^3.$$

OR

The side of the given metallic cube = 50 cm Then the volume of the melted metal = $(50)^3$ cm³ = 125000 cm³

Let *x* cm be the side of a cubical dice. Then volume of 8000 dice = $8000 \times (x^3)$ cm³ We have, the volume of 8000 cubical dice = The volume of the given solid metallic cube

 $\Rightarrow 8000 (x)^3 = 125000$

$$\Rightarrow x^3 = \frac{125}{8} = \left(\frac{5}{2}\right)^3 \Rightarrow x = \frac{5}{2} = 2.5$$

Hence, side of the dice = 2.5 cm

6. The frequency distribution table from the given data can be drawn as :

Number of members	(x_i)	(<i>f</i> _{<i>i</i>})	$f_i x_i$
1-3	2	2	4
3-5	4	8	32
5-7	6	6	36
7-9	8	10	80

9-11	10	5	50
11-13	12	5	60
13-15	14	7	98
15-17	16	4	64
17-19	18	3	54
		$\Sigma f_i = 50$	$\Sigma f_i x_i = 478$

$$\therefore \quad \text{Mean} = \frac{\sum f_i x_i}{\sum f_i} = \frac{478}{50} = 9.56$$

7. (i) The fee charged (in ₹) every month by a school from classes I to XII is 250, (250 + 50), $(250 + 2 \times 50)$, $(250 + 3 \times 50)$,... *i.e.*, 250, 300, 350, 400, ...

which forms an A.P., with common difference, d = 50(ii) Let the number of bacteria in a certain food = xSince, they double in every second

 $\therefore x, 2x, 2(2x), 2[2(2x)], ...$ i.e., x, 2x, 4x, 8x, ...Here, $a_1 = x, a_2 = 2x, a_3 = 4x$ and $a_4 = 8x$ Now, $a_2 - a_1 = 2x - x = x$ $a_3 - a_2 = 4x - 2x = 2x, a_4 - a_3 = 8x - 4x = 4x$

Since, the difference between two successive terms is not same. So, the list of numbers does not form an A.P.

OR

Let *a* be the first term and *d* be the common difference of the given A.P.

 r^{th} term of A.P., $a_r = a + (r - 1)d$ According to question,

$$a_m = a + (m-1)d = \frac{1}{n}$$
 ...(i)

and
$$a_n = a + (n-1)d = \frac{1}{m}$$
 ...(ii)

Subtracting (ii) from (i), we get

$$(m-n)d = \frac{m-n}{mn} \implies d = \frac{1}{mn}$$
Putting $d = \frac{1}{mn}$ in (i), we get
$$a + (m-1)\frac{1}{mn} = \frac{1}{n} \implies a + \frac{1}{n} - \frac{1}{mn} = \frac{1}{n} \implies a = \frac{1}{mn}$$

$$\therefore a_{mn} = a + (mn-1)d = \frac{1}{mn} + (mn-1)\frac{1}{mn}$$

$$= \frac{1+mn-1}{mn} = 1$$
8. Let $AB = 100$ m be the height A of the light house

100 m

R

30

of the light house. Let the initial distance be x m and angle is 60°.

In
$$\triangle ABC$$
,

 $\tan 60^\circ = \frac{AB}{BC} = \frac{100}{x}$

$$\Rightarrow \sqrt{3} = \frac{100}{x} \Rightarrow x = \frac{100}{\sqrt{3}}$$

Now, after two minutes, new distance be y m and angle is 30°.

In
$$\triangle ABD$$
,
 $\tan 30^\circ = \frac{AB}{BD} = \frac{100}{y}$
 $\Rightarrow \quad \frac{1}{\sqrt{3}} = \frac{100}{y} \quad \Rightarrow \quad y = 100\sqrt{3}$

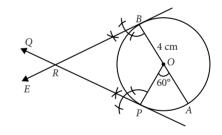
:. Distance travelled in 2 minutes =
$$y - x$$

= $100\sqrt{3} - \frac{100}{\sqrt{3}} = \frac{300 - 100}{\sqrt{3}}$
= $\frac{200}{\sqrt{3}} = \frac{200}{\sqrt{3}} = 115.47 \text{ m}$

$$\sqrt{3}$$
 1.732
Speed of boat = $\frac{\text{Distance}}{-}$

$$1 \text{ of boat} = \overline{\text{Time}}$$

 $=\frac{115.47}{2}=57.74$ metres/minute


9. Steps of construction :

Step-I : Draw a circle with centre *O* and radius 4 cm. **Step-II** : Draw any diameter *AOB*.

Step-III : Take a point *P* on the circle such that $\angle AOP = 60^{\circ}$.

Step-IV : Draw $PQ \perp OP$ and $BE \perp OB$. Let PQ and BE intersect at *R*.

Hence, *RB* and *RP* are the required tangents.

10. $\therefore x = -2$ is a root of the equation $3x^2 + 7x + p = 0$

$$\therefore 3(-2)^{2} + 7(-2) + p = 0$$

$$\Rightarrow 12 - 14 + p = 0 \Rightarrow p = 2$$

We have, $x^{2} + k(4x + k - 1) + p = 0$

$$\Rightarrow x^{2} + 4kx + k^{2} - k + 2 = 0 \quad (\because p = 2)$$

$$\because \text{ Roots are equal.} \therefore D = 0$$

$$\Rightarrow (4k)^{2} - 4(1)(k^{2} - k + 2) = 0$$

$$\Rightarrow 16k^{2} - 4k^{2} + 4k - 8 = 0 \Rightarrow 12k^{2} + 4k - 8 = 0$$

$$\Rightarrow 3k^{2} + k - 2 = 0 \Rightarrow (k + 1)(3k - 2) = 0$$

$$\Rightarrow k + 1 = 0 \text{ or } 3k - 2 = 0 \Rightarrow k = -1 \text{ or } k = \frac{2}{3}$$

11. We have,
Diameter of the graphite cylinder = 1 mm = $\frac{1}{10}$ cm

 \therefore Radius = $\frac{1}{20}$ cm

Length of the graphite cylinder = 10 cm Volume of the graphite cylinder

$$= \left(\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 10\right) \mathrm{cm}^3$$

Weight of graphite = Volume × Specific density

$$= \left(\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 10 \times 2.1\right) \text{gm}$$
$$= \left(\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 10 \times \frac{21}{10}\right) \text{gm} = 0.165 \text{ gm}$$
Diameter of pencil = 7mm = $\frac{7}{10}$ cm

 \therefore Radius of pencil = $\frac{7}{20}$ cm and

length of pencil =
$$10 \text{ cm}$$

:. Volume of pencil = $\frac{22}{7} \times \frac{7}{20} \times \frac{7}{20} \times 10 \text{ cm}^3$ Volume of wood

$$= \left(\frac{22}{7} \times \frac{7}{20} \times \frac{7}{20} \times 10 - \frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 10\right) \text{cm}^{3}$$

$$= \frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 10 \ (7 \times 7 - 1) \text{cm}^{3} = \frac{11}{7} \times \frac{1}{20} \times 48 \ \text{cm}^{3}$$

$$\therefore \text{ Weight of wood } = \left(\frac{11}{7} \times \frac{1}{20} \times 48 \times 0.7\right) \text{gm}$$

$$= \left(\frac{11}{7} \times \frac{1}{20} \times 48 \times \frac{7}{10}\right) \text{gm} = 2.64 \ \text{gm}$$

Total weight = (2.64 + 0.165)gm = 2.805 gm.

We have,

r = Radius of the base of the conical vessel = 20 cm h = Height of the conical vessel = 24 cm

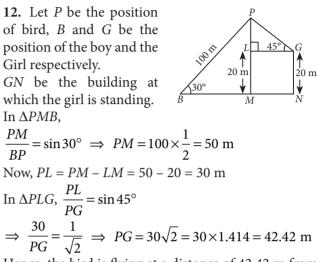
OR

 \therefore Volume of the conical vessel

$$=\frac{1}{3}\pi r^{2}h = \frac{1}{3} \times \frac{22}{7} \times 20 \times 20 \times 24 \text{ cm}^{3} \qquad \dots(i)$$

Suppose the conical vessel is filled in *x* minutes. Then, length of the water column

 $= (10 \times x) \text{ m} = 1000x \text{ cm}$ Clearly, water column forms a cylinder of length 1000 x cm, and radius = $\frac{5}{2}$ mm = $\frac{5}{20}$ cm = $\frac{1}{4}$ cm


 \therefore Volume of the water that flows in x minutes

$$= \left\{ \frac{22}{7} \times \left(\frac{1}{4}\right)^2 \times 1000x \right\} \text{ cm}^3 \qquad \dots \text{(ii)}$$

From (i) and (ii), we have

$$\frac{22}{7} \times \left(\frac{1}{4}\right)^2 \times 1000 x = \frac{1}{3} \times \frac{22}{7} \times 20 \times 20 \times 24$$
$$\Rightarrow x = \frac{20 \times 20 \times 24 \times 16}{3 \times 1000} \Rightarrow x = \frac{256}{5} = 51\frac{1}{5} \text{ minutes}$$
$$= 51 \text{ minutes } 12 \text{ secs}$$

Hence, the conical vessel is filled in 51 minutes 12 secs.

Hence, the bird is flying at a distance of 42.42 m from the girl.

13. (i) Since, the highest frequency is 70, therefore the maximum number of children are of the age-group 10-12.

Since, the modal class is 10-12.

 \therefore Lower limit of modal class = 10

Here,
$$f_0 = 58$$
, $f_1 = 70$ and $f_2 = 42$

Thus, the frequency of the class succeeding the modal class is 42.

(ii) Mode =
$$l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$

= $10 + \left[\frac{70 - 58}{140 - 58 - 42} \right] \times 2$
= $10 + \frac{12}{40} \times 2 = 10 + \frac{24}{40} = 10.6$ years

14. Here, AS = 5 cm, BT = 4 cm [:: Radii of circles] (i) Since, radius at point of contact is perpendicular to tangent.

:. By Pythagoras theorem, we have

$$PA = \sqrt{PS^2 + AS^2} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13 \text{ cm}$$

$$BQ = \sqrt{TQ^2 + BT^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ cm}$$

and $QY = BQ - BY = 5 - 4 = 1 \text{ cm}$