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LEARNING OBJECTIVES

introduCtion
Combinational logic is a type of logic circuit whose output is a 
function of the present input only.

Combinational
circuits

Outputs
Z = F (X ) 

Inputs
X

CoMBinational loGiC desiGn
The design of combinational circuit starts from the problem, state-
ment and ends with a gate level circuit diagram.

The design procedure involves the following steps:

 1. Determining the number of input variables and output 
variables required, from the specifi cations.

 2. Assigning the letter symbols for input and output.
 3. Deriving the truth table that defi nes the required relationship 

between input and output.
 4. Obtaining the simplifi ed Boolean function for each output 

by using K-map or algebraic relations.
 5. Drawing the logic diagram for simplifi ed expressions.

We will discuss combinational circuits under the following  
categories:

 • Arithmetic circuits
 • Code converters
 • Data processing circuits

aritHMetiC CirCuits
Arithmetic circuits are the circuits that perform arithmetic opera-
tion. The most basic arithmetic operation is addition.

Half Adder
Addition is an arithmetic operation, and here to implement addi-
tion in digital circuits we have to implement by logical gates. So 
the addition of binary numbers will be represented by the logical 
expressions. Half adder is an arithmetic circuit which performs 
the addition of two binary bits, and the result is viewed in two 
outputsum and carry.

The sum ‘S’ is the X-OR of ‘A’ and ‘B’ where A and B are 
inputs.

∴ = + = ⊕S AB BA A B

The carry ‘C’ is the AND of A and B.

∴ C = AB

Table 1 Truth Table

Inputs Outputs

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

  So, half adder can be realized by using one X-OR gate and 
one AND gate.
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A

B
S

C

Half adder can also be realized by universal logic such as 
only NAND gate or only NOR gate as given below.

NAND logic

  S AB AB= +

    = + + +AB AA AB BB

     = + + +A A B B A B( ) ( )

    = ⋅AAB BAB

 C AB A B= = ⋅

A S
B

C

A · B

Half adder using NAND logic

NoR logic
S A B AB

AB AA AB BB

A A B B A B

A B A B

A B A B

C A

= ⋅ +

= + + +

= + + +

= + +

= + + +

=

( ) ( )

( ) ( )

( )

⋅⋅ = ⋅ = +B A B A B

A S

B

C

Half adder using NOR logic

Full Adder
Full adder is an arithmetic circuit that performs addition of 
two bits with carry input. The result of full adder is given by 
two outputssum and carry. The full adder circuit is used 
in parallel adder circuit as well as in serial adder circuit. 

For full adder, if total number of 1’s is odd at input lines, 
the sum output is equal to logic 1, and if total number of 
1’s  at input lines are more than or equal to 2, then the carry 
output is logic 1.

Figure 1 Block diagram

A
B

S

C in
Cout

Full adder

Table 2 Truth Table

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

    S ABC ABC AB C ABC= + + +in in in in

       = ⊕ ⊕A B Cin

C ABC ABC ABC ABCout in in in in= + + +

         = AB + (A ⊕ B) C
in

         = AB + A C
in
 + B C

in

Full adder can also be realized using universal logic gates, 
i.e., either only NAND gates or only NOR gates as explained 
below.

Figure 2 Block diagram of full adder by using Half adder

Cout = (A ⊕ B )C in + ABA

B
C in

HA

HA A ⊕ B

AB

(NC) S = A ⊕ B ⊕ C in

Figure 3 Logic diagram of full adder

A
B

C in

Cout

(A ⊕ B)C in + AB

S + A ⊕ B ⊕ C in

NAND logic

A B AAB BAB⊕ =

So A ⊕ B ⊕ C
in

Let  then in in inA B x s X XC C X C⊕ = = ⋅ ⋅

                    = X ⊕ C
in

A SB

C in Cout

Figure 4 Logic diagram of a full adder using only 2-input NAND gates
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NoR logic
Full adder outputs

Sum = a ⊕ b ⊕ c, carry = ab + bc + ac are self dual 
functions

[∴ A function is called as self dual if its dual is same as 
the function itself f D = f ]

For self dual functions, the number of NAND gates are 
same as number of NOR gates.

By taking the dual for above NAND gate implementa-
tion, all gates will become NOR gates, and the output is 
dual of the sum and carry, but they are self dual (f D = f ).

So, output remain same, and only 9 NOR gates are required for 
full adder, structure similar to NAND gate circuit.

Half Subtractor
Half subtractor is an arithmetic circuit which performs subtrac-
tion of one bit (subtrahend) from other bit (minuend), and the 
result gives difference and borrow each of one bit. The borrow 
output is logic 1 only if there is any subtraction of 1 from 0.

When a bit ‘B’ is subtracted from another bit ‘A’, a dif-
ference bit (d) and a borrow bit (b) result according to the 
rule given below.

Table 3 Truth Table

A B d b
0 0 0 0

1 0 1 0

1 1 0 0

0 1 1 1

d AB BA= +
    = A ⊕ B

 b AB=

Figure 5 Logic diagram of a half subtractor

A

B
d

b

A half subtractor can also realized using universal logic either 
using only NAND gates or only NOR gates as explained below.

NAND logic
 d = A ⊕ B

   = ⋅AAB B AB

b AB B A B B AB B AB= = + = = ⋅( ) ( )

A
B

A · AB

B · AB

d

b

NoR logic

d A B

AB AB

AB BB AB AA

B A B A A B

B A B A A B

b AB

A A

= ⊕

= +

= + + +

= + + +

= + + + + +

=

= +

( ) ( )

( BB

A A B

A A B

)

( )= +

= + +( )

Figure 6 Logic diagram of half subtractor using NOR gate

A
B d

b

B + A + B

A + A + B

Full Subtractor
Full subtractor is an arithmetic circuit similar to half sub-
tractor but it performs subtraction with borrow, it involves 
subtraction of three bitsminuend, subtrahend and borrow-
in, and two outputsdifference and borrow. The subtrac-
tion of 1 from 0 results in borrow to become logic 1. The 
presence of odd number of 1’s at input lines make difference 
as logic 1.

Table 4 Truth Table

A B bi d b

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

d ABb AB b AB b ABb

b AB AB b AB AB

b A B b A B

i i i i

i i

i i

= + + +

= + + +

= ⊕ + ⊕

=

( ) ( )

( ) ( )

AA B bi⊕ ⊕
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and

b A Bb ABb ABb

AB A B b

i i i

i

= + +

= + ⊕( )

A

B

bi

b

d = A ⊕ B ⊕ bi

NAND logic
d = A ⊕ B ⊕ b

i

  = ⊕ ⊕ ⊕( )( ) ( )A B A B b b A B bi i i

 b AB b A Bi= + ⊕( )

  = + ⊕AB b A Bi ( )

  = ⊕AB b A Bi ( )

  
= + + ⊕B A B b b A Bi i( ) ( )

Figure 7 Logic diagram of a full subtractor using NAND logic

A

b

B

bi

d

NoR logic
Output of full subtractor is also self dual in nature. So, same 
circuit, with all NAND gates, replaced by NOR gates gives 
the NOR gate full subtractor. 9 NOR gates required.

Example 1: How many NAND gates are required for 
implementation of full adder and full subtractor respectively?
(A) 11, 10 (B) 11, 11 (C) 9, 9 (D) 9, 10

Solution: (C)
From the circuit diagrams in the previous discussion, full 
adder requires 9 NAND gates and full subtractor requires 
9 NAND gates.

Binary Adder
A binary adder is a digital circuit that produces the arithme-
tic sum of two binary numbers.

F ·A F ·A F ·A F ·A

S3

A3B3 A2B2 A1B1 A0B0

Cout

C in

S2 S1 S0

C3 C2 C1

Four bit parallel adder the output carry from each full adder 
is connected to the input carry of next full adder.

The bits are added with full adders, starting from the 
LSB position to form the sum bit and carry bit.

The longest propagation delay time in parallel adder 
is the time it takes the carry to propagate through the full 
adders.

For n-bit parallel adders consider t
pds

 is the propagation 
delay for sum of each full adder and t

pdc
 is the propagation 

delay of carry.
The total time required to add all n-bits at the nth full 

adder is 

T
S
 = t

pds
 + (n – 1)t

pdc

So propagation delay increases with number of bits. To 
overcome this difficulty we use look ahead carry adder, 
which is the fastest carry adder.

Ai

Bi

Ci

Gi

Si

Pi Pi ⊕ Ci

Pi Ci  + Gi Ci + 1

Consider the full adder circuit for ith stage, in parallel adder, 
with two binary variables A

i
, B

i
, input carry C

i
 are:

Carry propagate (P
i
) and carry generate (G

i
)

P
i
 = A

i
 ⊕ B

i

G
i
 = A

i
 ⋅ B

i

The output sum and carry can be expressed as 

    S
i
 = P

i
 ⊕ C

i

C
i + 1 

= P
i 
C

i
 + G

i

Now, the Boolean functions for each stage can be calculated 
as substitute i = 0

C
0
 is input carry

C
1
 = G

0
 + P

0
 C

0

Substitute i = 1, 2 …

C
2
 = G

1
 + P

1
C

1
 = G

1
 + P

1
 (G

0
 + P

0
C

0
)

     = G
1
 + P

1
 G

0
 + P

1
 P

0
 C

0

C
3
 = G

2
 + P

2
 C

2
 = G

2
 + P

2
 (G

1
 + P

1
 G

0 
+ P

1
 P

0
 C

0
)

     = G
2
 + P

2
 G

1
 + P

2
 P

1
 G

0
 + P

2
 P

1
 P

0
 C

0

Since the Boolean function for each output carry is 
expressed in SOP form, each function can be implemented 
with AND–OR form or two level NAND gates.

From the above equations we can conclude that this cir-
cuit can perform addition in less time as C

3
 does not have to 

wait for C
2
 and C

1
 to propagate. C

3
, C

2
, C

1
 can have equal 

time delays.
The gain in speed of operation is achieved at the expense 

of additional complexity (hardware).
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n-bit Comparator
The comparison of two numbers is an operation that deter-
mines whether one number is greater than, less than, or 
equal to the other number.

A magnitude comparator is a combinational circuit that 
compares two input numbers A and B, and specifies the out-
put with three variables, A > B, A = B, A < B:

A

B

Magnitude
comparator

L

E

G

A < B

A = B

A > B

a

b

1-bit
Comparator

L

E

G

a < b

a = b

a > b

Figure 8 1-bit comparator will have only 1 bit input a, b.

a b a < b a = b a > b

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

By considering minterms for each output.

(a < b) = a′b
(a = b) = a′b′ + ab = a ⊙ b 
(a > b) = ab′

a1
a0

b0

b1

2-bit
Comparator

L

E

G

a < b

a = b

a > b

Figure 9 2-bit comparator will have 2-bit inputs a1 a0 and b1 b0.

a1 a0 b1 b0

L
a < b

E
a = b

G
a > b

0 0 0 0 0 1 0

0 0 0 1 1 0 0

0 0 1 0 1 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 0 1 0

(a < b) = S(1, 2, 3, 6, 7, 11)
(a > b) = S(4, 8, 9, 12, 13, 14)
(a = b) = S(0, 5, 10, 15)

00a1a0

b1b0

00

01

01

11

11

10

00

11 1

1

1

1

a < b = a
1
′a

0
′b

0
 + a

0
′b

1
b

0
 + a

1
′b

1

     L a b a b a b= +1 1 1 1 0 0( )�

Similarly, a > b = a
0
b

1
′b

0
′ + a

1
a

0
b

0
′ + a

1
b

1
′

G a b a b a b= +1 1 1 1 0 0( )�

a = b is possible when a
1
 = b

1
, a

0
 = b

0

So ( ) ( )( )a b a b a b= = 1 1 0 0� �

A3
A2
A1
A0

B3
B2
B1
B0

4-bit
Comparator

L

E

G

A < B

A = B

A > B

Figure 10 4-bit comparator will compare 2 input numbers each of 
4-bits A3 A2 A1 A0 and B3 B2 B1 B0 (A = B) output will be 1 when each 
bit of input A is equal to corresponding bit in input B.

So we can write (A = B) = (A
3
 ⊙ B

3
) (A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
) 

(A
0
 ⊙ B

0
).

To determine whether A is greater or less than B, we 
inspect the relative magnitudes of pairs of significant bits, 
starting from MSB. If the two bits of a pair are equal, we 
compare the next lower significant pair of bits. The com-
parison continues until a pair of unequal bits is reached.

for A < B, A = 0, B = 1
for A > B, A = 1, B = 0

A < B =  A
3
′B

3
 + (A

3
 ⊙ B

3
) A

2
′B

2
 + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
) 

× A
1
′B

1
 + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
) A

0
′B

0

A > B =  A
3
B

3
′ + (A

3
 ⊙ B

3
) A

2
B

2
′ + (A

3
 ⊙ B

3
) (A

2
 ⊙ B

2
) 

× A
1
B

1
′ + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
) A

0
B

0
′

4-bit comparator will have total 8 inputs and 28 = 256 input 
combinations in truth table.
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For 16 combinations (A = B) = 1, and for 120 combina-
tions A < B = 1.

For remaining 120 combination A > B = 1

Parity Bit Generator and Parity Bit Checker
When digital information is transmitted, it may not be 
received correctly by the receiver. To detect one bit error at 
receiver we can use parity checker. 

For detection of error an extra bit, known as parity bit, is 
attached to each code word to make the number of 1’s in the 
code even (in case of even parity) or odd (in case of odd parity).

For n-bit data, we use n-bit parity generator at the trans-
mitter end. With 1 parity bit and n-bit data, total n + 1 bit 
will be transmitted. At the receiving end n + 1 parity checker 
circuit will be used to check correctness of the data. 

For even parity transmission, parity bit will be made 1 
or 0 based on the data, so that total n + 1 bits will have 
even number of 1’s. For example, if we want to transmit data 
1011 by even parity transmission, then we will use parity bit 
as 1, so data will have even number of 1’s, i.e., data trans-
mitted will be 11011. At the receiving end this data will be 
received and checked for even number of ones. 

To transmit data B
3
B

2
B

1
B

0
 using even parity, we will 

transmit sequence P B
3
B

2
B

1
B

0
, where P = B

3 
⊕ B

2 
⊕ B

1 
⊕ B

0
. 

(Equation for parity generator)
At the receiving end we will check data received 

PB
3
B

2
B

1
B

0 
for error, E = P ⊕ B

3
 ⊕ B

2 
⊕ B

1 
⊕ B

0
 (equation 

for parity checker). If E = 0 (no error), or if E = 1 (1 bit error).
We use EX-OR gates for even parity generator/checker 

as EX-OR of bits gives output 1 if there are odd number of 
1’s else EX-OR output is 0. 

Odd parity generator/checker is complement of even 
parity generator/checker. Odd parity circuits check for pres-
ence of odd number of 1’s in data. 

Code Converters 
There are many situations where it is desired to convert 
from one code to another within a system. For example, the 
information from output of an analog to digital converter is 
often in gray code, before it can be processed in arithmetic 
unit, conversion to binary is required.

Let us consider simple example of 3-bit binary to gray 
code converter. This will have input lines supplied by binary 
codes and output lines must generate corresponding bit com-
bination in gray code. The combination circuit code con-
verter performs this transformation by means of logic gates. 

The output logic expression derived for code converter 
can be simplified by using the usual techniques including 
‘don’t-care’ if any present. For example, BCD code uses 
only codes from 0000 to 1001 and remaining combinations 
are treated as don’t-care combinations. Similarly, EXS-3 
uses only combinations from 0011 to 1100 and remaining 
combinations are treated as don’t-care. 

The relationship between the two codes is shown in the 
following truth table:

Decimal B2 B1 B0 G2 G1 G0

0 0 0 0 0 0 0
1 0 0 1 0 0 1

2 0 1 0 0 1 1

3 0 1 1 0 1 0

4 1 0 0 1 1 0

5 1 0 1 1 1 1

6 1 1 0 1 0 1

7 1 1 1 1 0 0

For conversion we have to find out minimized functions of

G
2
(B

2
,
 
B

1
, B

0
) = ∑m(4, 5, 6, 7)

 

G
1
(B

2
,
 
B

1
, B

0
) = ∑m(2, 3, 4, 5)

G
0
(B

2
,
 
B

1
, B

0
) = ∑m(1, 2, 5, 6)

00B0B1

B2

0

01

1

11 10

1

11

1

G
0
(B

2
,
 
B

1
, B

0
) = B′

1
B

0
+ B

1
B′

0
= B

1 
⊕ B

0

00B0B1
B2

0

01

1

11 10

1 1

1 1

G
1
(B

2
, B

1
, B

0
) =

 
B′

1
B

2
+ B

1
B′

2
= B

2
 ⊕ B

1

00B0B1
B2

0

01

1

11 10

1 1 1 1

G
2
(B

2
,
 
B

1
, B

0
) = B

2

B1

B2

B0
G0

G1

G2

In similar fashion we can derive n-bit binary to gray code 
conversion as

 G
n
 = B

n

 G
n-1

 = B
n-1

 ⊕ B
n

G
i-1

 = B
i-1

 ⊕ B
i

Thus conversion can be implemented by n - 1 X-OR gates 
for n-bits.

For reverse conversion of gray to binary, by following 
similar standard principle of conversion, we will get 

B
0
 = G

0
 ⊕ G

1
 ⊕ G

2
, B

1
 = G

1
 ⊕ G

2
, B

2
 = G

2

B1

B0

B2G2

G1

G0
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In general for n-bit gray to binary code conversion

B
i
 = G

n
 ⊕ G

n-1
 ⊕ G

n-2
 …⊕ G

i-1
 ⊕ G

i

B
n
 = G

n 
(MSB is same in gray and binary). It also requires 

n-1 X-OR gates for n-bits.

Example 2: Design 84-2-1 to XS-3 code converter.

Solution: Both 84-2-1 and XS-3 are BCD codes, each needs 
4-bits to represent. The following table gives the relation 
between these codes. 84-2-1 is a weighted code, i.e., each 
position will have weight as specified. XS-3 is non-weighted 
code; the binary code is 3 more than the digit in decimal. 

Decimal
84-2-1

B3B2B1B0

XS-3
X3X2X1X0

0 0000 0011

1 0111 0100

2 0110 0101

3 0101 0110

4 0100 0111

5 1011 1000

6 1010 1001

7 1001 1010

8 1000 1011

9 1111 1100

We will consider minterm don’t-care combinations as 1, 2, 3, 
12, 13, 14. For these combinations 84-2-1 code will not exist 
and the remaining minterms can be found from truth table.

X
0
(B

3
, B

2
, B

1
, B

0
) = ∑m(0, 4, 6, 8, 10)

+∑ =Φ( )1, 2, 3, 12, 13, 14 B0

X
1
(B

3
, B

2
, B

1
, B

0
) = ∑m(0, 4, 5, 8, 9, 15)

+∑ =Φ( )1, 2, 3, 12, 13, 14 B1

X
2
(B

3
, B

2
, B

1
, B

0
) = ∑m(4, 5, 6, 7, 15)

+ ∑Φ(1, 2, 3, 12, 13, 14) = B
2

X
3
(B

3
, B

2
, B

1
, B

0
) = ∑m(8, 9, 10, 11, 15)

+ ∑Φ(1, 2, 3, 12, 13, 14) = B
3

deCoder
A binary code of n-bits is capable of representing up to 2n 
elements of distinct elements of coded information.

The three inputs are decoded into eight outputs, each rep-
resenting one of the minterms of the three input variables.

A decoder is a combinational circuit that converts binary 
information from n input lines to a maximum 2n unique out-
put lines.

A binary decoder will have n inputs and 2n outputs.

n × 2n

Decoder
n

Inputs

2n
Outputs

EN

Figure 11 2 × 4 decoder

2 × 4
Decoder

EN

B1

Y0
Y1
Y2
Y3

B0

Table 5 Truth Table

EN B1 B0 Y3 Y2 Y1 Y0

0 X X 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

Figure 12 2 × 4 decoder

A

B

EN

Y0 = EN ·A ·B

Y1 = EN ·A ·B

Y2 = EN ·A ·B

Y3 = EN ·A ·B

Decoder outputs are implemented by AND gates, but reali-
zation of AND gates at circuit level is done by the NAND 
gates (universal gates). So, the decoders available in IC form 
are implemented with NAND gates, i.e., the outputs are in 
complemented form and outputs are maxterms of the inputs 
rather than minterms of inputs as in AND gate decoders.

Furthermore, decoders include one or more enable inputs 
to control the circuit operation. Enable can be either active 
low/high input.

EN

2 × 4
Decoder

with NAND
gates

B1

B0

Y0 = EN + B1 + B0

Y1 = EN + B1 + B0

Y2 = EN + B1 + B0

Y3 = EN + B1 + B0

Figure 13 Active low 2 × 4 decoder

Table 6 Truth Table

EN B1 B0 Y3 Y2 Y1 Y0

1 X X 1 1 1 1

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1
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The block diagram shown here is 2 × 4 decoder with 
active low output and active low enable input.

The logic diagram is similar to the previous 2 × 4 decoder, 
except, all AND gates are replaced by NAND gates and EN 
will have inverter, EN is connected to all NAND inputs, as 
EN is active low input for this circuit.

The decoder is enabled when EN is equal to 0.
As shown in the truth table, only one output can be equal 

to 0 at any given time, all other outputs are equal to 1. The 
output whose value is equal to 0 represents the minterm 
selected by inputs, enable.

Consider a 3–8 line decoder

Table 7 Truth Table

Inputs Outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0
0
0
0
1
1
1
1

0
1
1
0
0
1
1

1
0
1
0
1
0
1

0
0
0
0
0
0
0

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
1

A 3–8 decoder has 3 input lines and 8 output lines, based 
on the combination of inputs applied for the 3 inputs, one of 
the 8 output lines will be made logic 1 as shown in the truth 
table. So, each output will have only one minterm.

A
B
C

D4 = ABC

D3 = ABC

D2 = ABC

D1 = ABC

D0 = ABC

D5 = ABC

D6 = ABC

D7 = ABC

Designing High Order Decoders from Lower 
Order Decoders
Decoder with enable input can be connected together to 
form larger decoder circuit.

The following configuration shows 3 × 8 decoder with 
2 × 4 decoders.

2 × 4
Decoder

EN
B1

Y4
Y5
Y6
Y7

B0

2 × 4
Decoder

EN
B1

B2

Y0
Y1
Y2
Y3

B0

When B
2
 = 0, top decoder is enabled and other is disa-

bled, for 000–011 inputs, outputs are Y
0
–Y

3
, respectively, 

and other outputs are 0.
For B

2
 = 1, the enable conditions are reversed.

The bottom decoder outputs generates minterms 100–
111, while the outputs of top decoder are all 0’s. 5 × 32 
decoder with 3 × 8 decoders, 2 × 4 decoders

EN Y0

3 × 8
Dec

EN

B1

Y8

Y15B0

EN

2 × 4
Decoder

B4

B3

3 × 8
Dec

EN Y16

Y23

3 × 8
Dec

EN Y24

Y31

3 × 8
Dec

B2

B1
B0

B2

B1
B0

B2

B1
B0

B2

Y7

5 × 32 decoder will have 5 inputs B
4
 B

3
 B

2
 B

1
 B

0
. 3 × 8 decoder 

will have 8 outputs, so 5 × 32 requires four 3 × 8 decoders, and 
we need one of the 2 × 4 decoders to select one 3 × 8 decoders 
and the connections are as shown in the circuit above.

Combinational Logic Implementation
An n × 2n decoder provides 2n minterms of n input variables. 
Since any Boolean function can be expressed in sum-of-
minterms form, a decoder that generates the minterms of 
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the function, together with an external OR gate that forms 
their logical sum, provides a hardware implementation of 
the function.

Similarly, any function with n inputs and m outputs can 
be implemented with n × 2n decoders and m OR gates.

Example 3: Implement full adder circuit by using 2 × 4 
decoder.
  Sum = S (1, 2, 4, 7), Carry = S (3, 5, 6, 7)

Figure 14 Implementation of full adder circuit with decoder

3 × 8
Decoder

B1

B0

B2

0
1
2
3
4
5
6
7

A

B

C

Sum

Carry

The 3 × 8 decoder generates the 8 minterms for A, B, and 
C. The OR gate for output sum forms the logical sum of 
minterms 1, 2, 4 and 7. The OR gate for output carry forms 
the logical sum of minterms 3, 5, 6 and 7.

Example 4: The minimized SOP form of output F(x, y, z) is
(A) x′ y + z′ (B) x′ y′ + z′
(C) x′ y′ + z′ (D) x′ + y′ z

3 × 8
DecoderB1

B0

B2

0
1
2
3
4
5
6
7

x

y

z

F

Solution: (C)

The outputs of decoder are in active low state. So, we can 

express outputs as Y Y Y7 6 0, �
Outputs 0, 1, 3, 5, 7 are connected to NAND gate to form 

function F(x, y, z)

So        F Y Y Y Y Y= ⋅ ⋅ ⋅ ⋅0 1 3 5 7

   = Y
0
 + Y

1
 + Y

3
 + Y

5
 + Y

7

   = S(0, 1, 3, 5, 7)

By using K-maps

00x
yz

0
01

1

11 10

1
11 1

1

F = z + x′y′
Example 5. The minimal POS form of output function f(P, 
Q, R) is

(A) PQ PR+  (B) P QR+

(C) P Q R( )+  (D) Q P R( )+

3 × 8
Decoder

B1

B0

B2

0
1
2
3
4
5
6
7

R

Q

P

F (P, Q, R)

Solution: (C)
The outputs of decoder are in normal form. 0, 2, 3, 4, 6 
outputs are connected to NOR gate to form F(P, Q, R)

So                F Y Y Y Y Y= + + + +0 2 3 4 6

         = ⋅ ⋅ ⋅ ⋅Y Y Y Y Y0 2 3 4 6

Y
0
, Y

1
,…, Y

7
 indicate minterms, whereas Y Y Y0 1 7, , ,�  are 

maxterms.
So F = p (0, 2, 3, 4, 6)
Here, from the decoder circuit MSB is R, LSB is P.
By using K-map

00R
QP

0
01

1

11 10

0
00 0

0

F P Q R P R Q( , , ) ( )  = +

enCoders
It is a digital circuit that performs the inverse operation of 
a decoder.

An encoder has 2n (or fewer) input lines and n output 
lines.

It is also known as an octal to binary converter.
Consider an 8–3 line encoder:

Table 8 Truth Table

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1
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D1D2 D3 D4 D5 D6 D7

C = D1 + D3 + D5 + D7

B = D2 + D3 + D6 + D7

A = D4 + D5 + D6 + D7

Octal inputs

Binary outputs

Figure 15 Logic diagram

Priority Encoder
A priority encoder is an encoder circuit that includes the 
priority function.

When two or more inputs are present, the input with 
higher priority will be considered.

Consider the 4 × 2 priority encoder.

4 × 2
Encoder

I0
I1
I2
I3

B1

B0

V

I3 I2 I1 I0 B1 B0 V

1 X X X 1 1 1

0 1 X X 1 0 1

0 0 1 X 0 1 1

0 0 0 1 0 0 1

0 0 0 0 X X 0

I
3
-I

0
 are inputs and B

1
 B

0
 are binary output bits, valid (V) 

output is set to 1, when at least one input is present at input 
(I

3 
- I

0
).

When there is no input present, (I
3 
- I

0
 = 0000) then V = 0, 

for this combination the output B
1
B

0
 will not be considered.

The higher the subscript number, the higher the priority 
of the input. Input I

3
 has the highest priority, I

2
 has the next 

priority level. Input I
0
 has lowest priority level. The Boolean 

expressions for output B
1
 B

0
 are

 B I I I1 3 3 2= +
      = I

3
 + I

2

B I I I I0 3 3 2 1= +  

     = +I I I3 2 1

   V = I
3
 + I

2
 + I

1
 + I

0

Multiplexer
A multiplexer (MUX) is a device that allows digital infor-
mation from several sources to be converted on to a single 
line for transmission over that line to a common destination. 

The MUX has several data input lines and a single output 
line. It also has data select inputs that permits digital data 
on any one of the inputs to be switched to the output line.

Depending upon the binary code applied at the selection 
inputs, one (out of 2n) input will be gated to single output. 
It is one of the most widely used standard logic circuits in 
digital design. The applications of multiplexer include data 
selection, data routing, operation sequencing, parallel to 
serial conversion, and logic function generation.

2n inputs will be controlled by n selection lines and mul-
tiplexer will have 1 output, we denote it as 2n × 1 multi-
plexer (data selector).

In other words, a multiplexer selects 1 out of n input data 
sources and transmits the selected data to a single output 
channel, this is called as multiplexing. 

Basic 2 × 1 Multiplexer
The figure shows 2 × 1 multiplexer block diagram; it will 
have 2 inputsI

0
 and I

1
, one selection line S, and one output 

Y. The function table is as shown here. 

EN S Y

0 x 0

1 0 I0

1 1 I1

2 × 1
MUX

I0

S

I1

Y
EN

The output equation of 2 × 1 multiplexer is  
Y EN I S I S= +( ).0 1

When enable is 1, the multiplexer will work in normal 
mode, else the multiplexer will be disabled. 

Sometimes enable input will be active low enable EN , 
then Y EN I S I S= +( ).0 1

The 4 × 1 Multiplexer

4 × 1
MUX

D0

S1 S0

D1
D2
D3

y
Output

Data input’s

Selected
lines
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If a binary zero S
1
 = 0 and S

0
 = 0 as applied to the data select 

line the data input D
0
 appear on the data output line and so on.

S1 S0 y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

y S S D S S D S S D S S D= + + +1 0 0 1 0 1 1 0 2 1 0 3

D1

S1

D0

S0

D2

D3

y

Figure 16 Logic diagram

For 8 × 1 multiplexer with 8 inputs from I
0
–I

7
 based on 

selection inputs S
2 
S

1 
S

0
, the equation for output 

Y I S S S I S S S I S S S I S S S

I S S S I S S S I

= + + +

+ + +
0 2 1 0 1 2 1 0 2 2 1 0 3 2 1 0

4 2 1 0 5 2 1 0 6SS S S I S S S2 1 0 7 2 1 0+

From multiplexer equation, we can observe, each input is 
associated with its minterm (in terms of selection inputs).

Basic Gates by Using MUX

2 × 1
MUX

I0

S

I1

Y

B

B

A

Figure 17 X-OR gate by using 2 × 1 MUX

Y AB AB= + = X-OR  gate, we can interchange inputs A 
and B also,

By interchanging inputs I
0
 and I

1
,Y A B AB= + , X-NOR  

gate. 
Similarly, we can build all basic gates by using 2 × 1 

multiplexer.

Example 6: If I
0 
= 1, I

1 
= 0, S = A, then Y is

Solution: Y I S I S A= + =( ) .0 1  It Implements NOT gate.

Example 7: What should be the connections to implement 
NAND gate by using 2 × 1 MUX?

Solution: Y AB A B A AB A B A= = + = + = ⋅ + ⋅1

By considering I
0 

= 1, I B1 = ,  S = A, we can implement 
NAND gate, or by interchanging A and B also we can get 
the same answer.

4 × 1
MUX

I0
I1

Y1

1

I2
I3 S2S1

0

0

A B

For the above 4 × 1 multiplexer Y AB AB= + = X-NOR gate, 
similarly to implement 2 input gates by using 4 × 1 multiplexer, 
the inputs I

0
, I

1
, I

2
, I

3
 should be same as the terms in the truth 

table of that gate.

Logic Function Implementation 
by Using Multiplexer
Let us consider a full subtractor circuit (borrow) to be 
implemented by using multiplexer.  

Full subtractor borrow (B) is a function of 3 inputs X, Y, 
Z. The truth table is 

X Y Z B 4 × 1 MUX 2 × 1 MUX

0 0 0 0
B = Z

B = Y + Z
0 0 1 1

0 1 0 1
B = 1

0 1 1 1

1 0 0 0
B = 0

B = YZ
1 0 1 0

1 1 0 0
B = Z

1 1 1 1

To implement borrow by using 8 × 1 multiplexer, connect 
the three variables X, Y, Z directly to selection lines of the 
multiplexer, and connect the corresponding values of B to 
inputs, i.e., for I

0 
= 0, I

1 
= 1, I

2 
= 1, etc. as per above truth table. 

To implement borrow by using 4 × 1 multiplexer, con-
nect any two variables to selection lines (in this case X, Y) 
and write output (B) in terms of other variable, for XY = 00, 
output B is same as Z, so connect I

0 
= Z, similarly 1, 0, Z for 

remaining inputs.
To implement the function by using 2 × 1 multiplexer, 

connect 1 variable as selection line (in this case consider X) 
and write output (B) in terms of other variables, for X = 0, 
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output B is varies as B = Y + Z, so connect I
0 
= Y + Z. For X 

= 1, output B varies as B = YZ, connect I
1 
= YZ.

N–variable function can be implemented by using 2N-1 × 
1 multiplexer without any extra hardware.

Implementation of Higher Order 
Multiplexer by Using Lower 
Order Multiplexers
By using lower order multiplexers, we can implement higher 
order multiplexers, for example by using 4 × 1 multiplexer, 
we can implement 8 × 1 MUX or 16 × 1 MUX or other 
higher order multiplexers.

Let us consider implementation of 16 × 1 MUX by using 
4 × 1 MUX. 16 × 1 MUX will have inputs I

0
–I

15
 and selec-

tion lines S
0
–S

3
, whereas 4 × 1 MUX will have only 4 input 

lines, and 2 selection lines, so we require four 4 × 1 MUX 
to consider all inputs I

0
–I

15
, and again to select one of the 

four outputs of these four multiplexers one more 4 × 1 mul-
tiplexer is needed (for which we will connect higher order 
selection lines S

2
 and S

3
). So, total of 5, 4 × 1 multiplexers 

are required to implement 16 × 1 MUX.

I0 S1 D

I3 S4
C2C1

S1S0

S1 D

S4

C2C1

S3S2

I8 S1 D

I11 S4 C2C1

S1S0

I12 S1 D

I15 S4 C2C1

S1S0

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer
I4 S1 D

I 7 S4 C2C1

S1S0

Figure 18 Realization of 16 x 1 multiplexer by using 4 x 1 multiplexers

In a similar fashion, to design 4 × 1 MUX, we require 3, 2 × 1 
multiplexers, and to design 8 × 1 multiplexer, we require 7, 
2 × 1 multiplexers.

deMultiplexer
The demultiplexer [DeMUX] basically serves opposite of 
the multiplexing function. It takes data from one line and 
distributes them to a given number of output lines.

The other name for demultiplexer is data distributor, as it 
receives information on a single line and distributes it to a 
possible 2n output lines, where n is the number of selection 
lines, and value of n selects the line.

1 × 4
DEMUX

D0

D1
E

D2

D3

S0S1

input

S1 S0 D3 D2 D1 D0

0 0 0 0 0 E

0 1 0 0 E 0

1 0 0 E 0 0

1 1 E 0 0 0

When S
1
S

0
 = 10; D

2
 will be same as input E, and other 

outputs will be maintained at zero (0).

S1 S0

E D0 = ES1S0

D1 = ES1S0

D2 = ES1S0

D3 = ES1S0

Figure 17 Logic diagram

Solved Examples

Example 1: The multiplexer shown in the figure is a 4 : 1 
multiplexer. The output z is 

MUX
4 × 1

I3

I2 Z
I1

I0 S0S1

A B

C

C
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Solution:

A
1

B
0

Z

0 0 C
0 1 C

1 0 C

1 1 C

  ∴ = + + +Z A BC ABC ABC ABC

            

= + + +

= + + + =

B AC AC B AC AC

AC AC B B x x

( ) ( )

( )( )( )1

      ∴ = + = ⊕AC AC A C

Example 2: The logic circuit shown in figure implements 

3 to 8
Decoder

I0

I1

I2

D0
D1
D2
D3
D4
D5
D6
D7

A

D

B

C

Solution: z D A BC A BC ABC ABC ABC= + + + +( )

          = + + + +D A B C C BC A A ABC( ( ) ( ) )

                        × + +D B A BC BC( )

                    = +D B C AB( )Θ

Example 3. The network shown in figure implements

MUX

f2

f 1

S0

B

c

1

A

0

1

MUX

S0

0 0

1

Solution: f C CB CB f CB1 10= + = =,

                 F f f A A CB CB2 1 1= + = ⋅ +  

                      = +A CB

                      = + + =A C B ABC

∴ NAND Gate 

Example 4: In the TTL circuit in figure, S
2
–S

0
 are select 

lines and x
7
–x

0
 are input lines. S

0
 and X

0
 are LSBs. The 

output Y is 

8 : 1 MUX
S1

S2

S0

X0 X1 X3X2 X4 X5 X6 X7

A
B

C

y
0

1
0

Solution: S
2
 = A, S

1
 = B, S

0
 = C

S2(A) S1(B) S0(C) Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

  Y A BC ABC ABC ABC= + + +

      = + + +C A B AB C AB AB( ) ( )

  Y C A B C A B A B C= ⊕ + ⊕ = ⊕( ) ( ) �

Example 5: The logic realized by the adjoining circuit is 

MUX

Select
lines

0

1
F

2

3

B C

S1 S0

A

A

MSB

Solution: F BCA BCA BC A BC A= + + +

  

× + + +

× + + = ⊕

C BA BA C BA BA

AB AB C C A B

( ) ( )

( )

Example 6: Consider the following multiplexer, where I
0
, 

I
1
, I

2
, I

3
 are four date input lines selected by two address 

line combinations A
I
A

0
 = 00, 01, 10, 11, respectively and f 
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Practice Problems 1
Directions for questions 1 to 21: Select the correct alterna-
tive from the given choices.
 1. The binary number 110011 is to be converted to gray 

code. The number of gates and type required are 
 (A) 6, AND (B) 6, X-NOR
 (C) 6, X-OR (D) 5, X-OR

 2. The number of 4-to 16-line decoder required to make 
an 8- to 256-line decoder is 

 (A) 16 (B) 17
 (C) 32 (D) 64

 3. f (x
2
, x

1
, x

0
) = ?

3 to 8
Decoder

I0

I1

I2

D0
D1
D2
D3
D4
D5
D6
D7

x2

x1

x0

f

 (A) p(1, 2, 4, 5, 7) (B) S(1, 2, 4, 5, 7)
 (C) S(0, 3, 6) (D) p(0, 2, 3, 6)

 4. A 3-to-8 decoder is shown below 

3

2

1

1
2
3
4
5
6
7
8

G2 G

Input Output

Enable
decoder

Signal
decoder

  All the output lines of the chip will be high except pin 
8, when all the inputs 1, 2, and 3

 (A) are high; and G, G
2
 are low 

 (B) are high; and G is low G
2
 is high 

 (C) are high; and G, G
2
 are high 

 (D) are high; and G is high G
2
 is low 

 5. The MUX shown in figure is 4 × 1 multiplexer the 
output z is

MUX
4 × 1

I0

I1
Z

I2

I3
S0S1

A B

C

+ 5 V  

 (A) A B C
 (B) A ⊕ B ⊕ C

 (C) A Q B Q C

 (D) A + B + C

 6. If a 4 to 1 MUX (shown below) realizes a three vari-
able function f x y z xy xz( , , ) = + then which of the 
following is correct?

4 to 1
MUX

I0

I1
F(x, y, z)

I2

I3
S1 S0

Y Z
(MSB)

 (A) I
0
 = X, I1 = 0, I

2
 = X, I

3
 = X

 (B) I
0
 = 0, I

1
 = 1, I

2
 = Y

1
, I

3
 = X

 (C) I
0
 = X, I

1
 = 1, I

2
 = 0, I

3
 = X

 (D) I
0
 = X, I

1
 = 0, I

2
 = X, I

3
 = Z

exerCises

is the output of the multiplexer. EN is the enable input, the 
function f (x, y, z) implemented by the below circuit is 

4 × 1
MUX

F (x, y, z)

x

z

y
I3

I2

I1

A0

I0

A1

EN

Solution: A y A z EN z1 0= ⋅ = =,

A1 A0 S I

0 0 ( )yz x

0 1 (y z) x

1 0 ( )y z y

1 1 ( y z ) y

f x y z xy yz EN( , , ) ( )= = + + ⋅S.I 0

              = ⋅xy z
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 7. The circuit shown in the figure is same as 

4 : 1I0

I1
y

I2

I3
S1 S0

b
c

a

 (A) two input NAND gate with a and c inputs 

 (B) two input NOR gate with a and c inputs 

 (C) two input X-OR gates with a and b inputs 

 (D) two input X-NOR gate with b and c inputs

 8. If the input x
3
, x

2
, x

1
, x

0
 to the ROM in the figure are 

8421 BCD numbers, then the outputs y
3
, y

2
, y

1
, y

0
 are

x3 x2 x1 x0

y0

D0 D1 D8 D9

y1

y2

y3

BCD to Decimal decoder

ROM

 (A) gray code numbers  (B) 2421 BCD 
 (C) Excess – 3 code numbers (D) 84–2–1

 9. A 4-bit parallel full adder without input carry requires 
 (A) 8 HA, 4 OR gates (B) 8 HA, 3 OR gates
 (C) 7 HA, 4 OR gates (D) 7 HA, 3 OR gates

 10. In the circuit find X.

4 × 1

I0

I1

I2

I3

A B

0

1

1

0

4 × 1

I0

I1
xyy

I2

I3
S0S1S0S1

C

0

1

1

0

 (A) ABC ABC ABC ABC+ + +

 (B) ABC ABC ABC ABC+ + +

 (C) AB + BC + AC
 (D) AB BC AC+ +
 11. Find the function implemented.

4 × 1

I3

I2

I1

I0
S1 S2

R S

Z

P

P

P

P
Q

Q

 (A) PQ PS QRS+ +

 (B) PQ PQR PQS+ +

 (C) PQR PQR PQRS QRS+ + +

 (D) PQR PQRS PQRS Q R S+ + +
 12. Which function is represented by the given circuit?

A
B x

yC

 (A) Full adder (B) Full subtractor
 (C) Comparator (D) Parity generator

 13. Which of the following represents octal to binary 
encoder?

 (A) 

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

 (B) 

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

 (C) 

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7
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 (D) 

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

 14. For a MUX to function as a full adder what should be 
the input provided to the I

0
, I

1
, I

2
, I

3
 if the A and B are the 

select lines?

4 × 1

I0

I1

I2

I3

F

S0S1

A B

 (A) I I C I I C0 1 2 3= = = =in in;

 (B) I I C I I C0 1 2 3= = = =in in;

 (C) I I C I I C0 3 1 2= = = =in in;

 (D) I I C I I C0 3 1 2= = = =in in;

 15. The given circuit act as 

MUX
1

0

y0

y1

y2

S0

MUX
1

0
S0

S0

MUX
1

0

a

c

c

bb

a

c

 (A) Full adder (B) Half adder
 (C) Full subtractor (D) Half subtractor

 16. For a 4 × 16 decoder circuit, the outputs of decoder 
(y

0
, y

1,
 y

4
 . y

5
 . y

10
 . y

11
 . y

14
 . y

15
) are connected to 8 input 

NOR gate, the expression of NOR gate output is 
 (A) A ⊕ D (B) A ⊙ D
 (C) A ⊙ C (D) A ⊕ C

 17. The function implemented by decoder is

3 to 8
Decoder

D0
D1
D2
D3
D4
D5
D6
D7

C

B

A
X

Y

 (A) X = A′BC′ + B′C′, y = A + B

 (B) X = A′C′ + B′C′, y = 1

 (C)  X A y= =, 0

 (D)  X A y= =, 1

 18. A relay is to operate with conditions that it should be on 
when the input combinations are 0000, 0010, 0101, and 
0111.  The states 1000, 1001, 1010 don’t occur.  For 
rest of the status, relay should be off.  The minimized 
Boolean expression notifying the relationship is 

 (A) BC + ACD

 (B) BD ABD+  
 (C) BD + AC
 (D) AB + CD

 19. If a function has been implemented using MUX as 
shown, implement the same function with a and c as 
the select lines 

4 × 1

a

a

1
0 y

b c

 (A) 

4 × 1

b
b
0
0

a c

 (B) 

4 × 1

0
1
b
b

a c

 (C) 

4 × 1

b
b
1
0

a c

 (D) 

4 × 1

1
1
1
1

a c

 20. The circuit is used to convert one code to another. 
Identify it.

B0

B1

B2

B3

A0

A1

A2

A3

 (A) Binary to gray
 (B) Gray to binary
 (C) Gray to XS–3
 (D) Gray to 8421
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 21. The Boolean function realised by logic circuit is

I0

I1 4 : 1
MUX F(A, B, C, D)

I2

I3
S0S1

A B

D

C

Y

 (A) F = Sm(0, 1, 3, 5, 9, 10, 14)

 (B) F = Sm(2, 3, 5, 7, 8, 12, 13)

 (C) F = Sm(1, 2, 4, 5, 11, 14, 15)

 (D) F = Sm(2, 3, 5, 7, 8, 9, 12)

Practice Problems 2
Directions for questions 1 to 21: Select the correct alterna-
tive from the given choices.
 1. For a binary half subtractor having two input A and B, 

the correct set of logical expression for the outputs D 
= (A minus B) and X (borrow) are 

 (A) D AB AB X AB= + =,

 (B) D AB AB AB X AB= + + =, ,

 (C) D AB AB X AB= + =,

 (D) D AB A B X AB= + =,

 2. The function ‘F’ implemented by the multiplexer chip 
shown in the figure is

I3I2

F

I1I0

S0

S1A

1 0 10

B
Y

 (A) A (B) B

 (C) AB  (D) AB AB+
 3 The following multiplexer circuit is equal to

4 : 1
MUX

0

1
y

2

3

b
c

a S0S1

 (A) implementation of sum equation of full adder
 (B) implementation of carry equation of full adder 
 (C)  implementation of borrow equation of full 

substractor 
 (D) all of the above 

 4 The output ‘F’ of the multiplexer circuit shown in the 
figure will be

4 : 1
MUX

I0

I1
F

I2

I3
S1S0

B
A

C

C

C

C

 (A) AB BC CA BC+ + +  (B) A ⊕ B ⊕ C
 (C) A ⊕ B (D) B ⊕ C

 5. Full subtractor can be implemented by using 
 (A) 3-to-8 line decoder only
 (B) 3-to-8 line decoder and one OR gate
 (C) 3-to-8 line decoder and two OR gates 
 (D) None 

 6. What are the difference and borrow equations for the 
above circuit?

 (A) D = x Q y Q z, B = x′y + yz + zx′
 (B) D = X ⊕ y ⊕ z, B = xy + yz + zx
 (C) D = x ⊕ y ⊕ z, B = x′y + yz + zx′
 (D) A and C both

 7. Combinational circuits are one in which output depends 
_________, whereas sequential circuit’s output depends 
_________

 (A) only on present input, only on past input
 (B) only on present input, only on past and future input
  (C)  only on present input, only on present input and 

past output
 (D) on present input, on past and present output 

 8. The sum output of the half adder is given by (assume A 
and B as inputs)

 (A) S AB A B= +( )  (B) S A B AB= +( )

 (C) S A B AB= +( )( )  (D) S A B AB= +( )( )

 9. MUX implements which of the following logic?
 (A) NAND–XOR (B) AND–OR
 (C) OR–AND (D) XOR–NOT

 10. A DeMUX can be used as a 
 (A) Comparator (B) Encoder
 (C) Decoder (D) Adder
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 11. If we have inputs as A, B and C and output as S and D. 
We are given that S = A ⊕ B ⊕ C. D BC AB AC= + + .
Which of the circuit is represented by it?

A
C

SS

BA
D

D

Output

D DC

X

Y

B

S

A
C

B

S

A
C

B

 (A) 4-bit adder giving X + Y
 (B) 4-bit subtractor giving X - Y
 (C) 4-bit subtractor giving Y - X
 (D) 4-bit adder giving X + Y + S

 12. The Boolean function f implemented in the figure using 
two input multiplexers is 

A

f
D

S0 S0
C

0

1

10

1 B

 (A) AC AD DC ABD ABC+ + + +
 (B) A AC AD DC+ + +
 (C) B AC AD DC+ + +
 (D) AC AD A B+ + +
 13. The carry generate and carry propagate function of the 

look ahead carry adder is
 (A) CG = A + B, CP = A ⊕ B
 (B) CG = A ⊕ B, CP = A + B
 (C) CG = AB, CP = A ⊕ B
 (D) CG = AB, CP = A + B

 14. If we have a comparator and if E represents 
the condition for equality i.e., (A

n
 ⊕ B

n
), if A

n
 

and B
n
 are to be compared then the expression 

A B E A B E E A B E E E A B3 3 3 2 2 3 2 1 1 3 2 1+ + + . . r e p r e s e n t s 
which of the condition for a 4-bit number?

 (A) A > B (B) B > A
 (C) A = B (D) None of these

 15. When full adder is used to function as a 1-bit incremen-
tor, which of the circuit configurations must be used?

 (A) 

c

AF

a 0

0

s

 (B) 

c

AF

a

s

0

0

 (C) 

c

1

0

AF

a

s

 (D) 

c

1
AF

a

s

0

 16. Identify the circuit.

Y1

Y2

Y3

A
B

 (A) Half adder
 (B) Full adder
 (C) 1-bit magnitude comparator
 (D) Parity generator 

 17. In order to implement n variable function (without any 
extra hardware) the minimum order of MUX is

 (A) 2n × 1 (B) 2n × 1
 (C) (2n - 1) × 1 (D) (2n - 1) × 1

 18. A full adder circuit can be changed to full subtractor by 
adding a 

 (A) NOR gate (B) NAND gate
 (C) Inverter (D) AND gate

 19. The half adder when implemented in terms of NAND 
logic is expressed as

 (A) A ⊕ B (B) A AB B AB⋅ ⋅ ⋅

 (C) A AB B AB⋅ ⋅ ⋅  (D) A ABB AB⋅ ⋅

 20. For a DeMUX to act as a decoder, what is the required 
condition?

  (A)  Input should be left unconnected and select lines 
behave as a input to decoder

  (B)  Input should be always 0 and select line behave as 
inputs to decoder

  (C) Both are same
  (D)  Input should become enable and select lines 

behave as inputs to decoder

 21. For a full subtractor, which of the combination will give 
the difference?

 (A) ( )( ) ( )A B A B b b A B bi i i⊕ ⊕ ⋅ ⊕

 (B) B AB b A Bi⋅ ⋅ ⊕( )

 (C) A B b A Bi+ + + ⊕

 (D) None of these
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 1. A 4-bit carry look ahead adder, which adds two 4-bit 
numbers, is designed using AND, OR, NOT, NAND, 
NOR gates only. Assuming that all the inputs are 
available in both complemented and uncomplemented 
forms and the delay of each gate is one time unit, what 
is the overall propagation delay of the adder? Assume 
that the carry network has been implemented using 
two-level AND–OR logic. [2004]

 (A) 4 time units (B) 6 time units
 (C) 10 time units (D) 12 time units

 2. 

f

MUX

MUX

x

z

x

y

0
1

0
1

y

  Consider the circuit above. Which one of the follow-
ing options correctly represents f (x, y, z)? [2006]

 (A) xz xy yz+ +  (B) xz xy yz+ +
 (C) xz xy yz+ +  (D) xz xy yz+ +

 3. Given two 3-bit numbers a
2
a

1
a

0
 and b

2
b

1
b

0
 and c, the 

carry in, the function that represents the carry generate 
function when these two numbers are added is [2006]

  (A)  a
2
b

2
 +

 
a

2
a

1
b

1 
+ a

2
a

1
a

0
b

0 
+ a

2
a

0
b

1
b

0 
+ a

1
b

2
b

1 
+ a

1
a

0
b

2
b

0
 

+ a
0
b

2
b

1
b

0

  (B)  a
2
b

2
 + a

2
b

1
b

0 
+

 
a

2
a

1
b

1
b

0 
+ a

1
a

0
b

2
b

1 
+ a

1
a

0
b

2 
+ a

1
a

0
b

2
b

0 

+ a
2
a

0
b

1
b

0

  (C)  a
2
 + b

2 
+ (a

2 
⊕ b

2
) (a

1 
+ b

1 
+ (a

1 
⊕ b

1
)(a

0 
+ b

0
))

  (D) a b a a b a a a b a a b b2 2 2 1 1 2 1 0 0 2 0 1 0+ + +

   + + +a b b a a b b a b b b1 2 1 1 0 2 0 0 2 1 0

 4. We consider the addition of two 2’s complement num-
bers b

n-1
b

n-2
 … b

0
 and a

n-1
a

n-2
 … a

0
. A binary adder 

for adding unsigned binary numbers is used to add 
the two numbers. The sum is denoted by c

n-1
c

n-2
 … c

0
 

and the carry-out by c
out

. Which one of the following 
options correctly identifies the overflow condition?
 [2006]

 (A) c a bn nout ( )− −⊕1 1

 (B) a b c a b cn n n n n n− − − − − −+1 1 1 1 1 1

 (C) c
out

 ⊕ c
n-1

 (D) a
n-1

 ⊕ b
n-1

 ⊕ c
n-1

 5. Consider numbers represented in 4-bit gray code. Let 
h

3
h

2
h

1
h

0
 be the gray code representation of a number 

n and let g
3
g

2
g

1
g

0
 be the gray code of (n + 1) modulo 

16 value of the number. Which one of the following 
functions is  correct? [2006]

 (A) g
0
 (h

3
h

2
h

1
h

0
) = S(1, 2, 3, 6, 10, 13, 14, 15)

 (B) g
1
 (h

3
h

2
h

1
h

0
) = S(4, 9, 10, 11, 12, 13, 14, 15)

 (C) g
2
 (h

3
h

2
h

1
h

0
) = S(2, 4, 5, 6, 7, 12, 13, 15)

 (D) g
3
 (h

3
h

2
h

1
h

0
) = S(0, 1, 6, 7, 10, 11, 12, 13)

 6. How many 3-to-8 line decoders with an enable input 
are needed to construct a 6-to-64 line decoder without 
using any other logic gates? [2007]

 (A) 7 (B) 8
 (C) 9 (D) 10

 7. Suppose only one multiplexer and one inverter are 
allowed to be used to implement any Boolean function 
of n variables. What is the minimum size of the multi-
plexer needed? [2007]

 (A) 2n line to 1 line (B) 2n+1 line to 1 line
 (C) 2n–1 line to 1 line (D) 2n–2 line to 1 line

 8. In a look-ahead carry generator, the carry generate 
function G

i
 and the carry propagate function P

i
 for 

inputs A
i
 and B

i
 are given by:

  P
i
 = A

i
 ⊕ B

i
 and G

i
 = A

i
B 

i

  The expressions for the sum bit S
i
 and the carry bit 

C
i+1

 of the look-ahead carry adder are given by:

  S
i
 = P

i
 ⊕ C

i
 and C

i+1
 = G

i
 + P

i
C

i
, where C

0
 is the input 

carry.

   Consider a two-level logic implementation of the 
look-ahead carry generator. Assume that all P

i
 and 

G
i
 are available for the carry generator circuit and 

that the AND and OR gates can have any number 
of inputs. The number of AND gates and OR gates 
needed to implement the look-ahead carry generator 
for a 4-bit adder with S

3
, S

2
, S

1
, S

0
 and C

4
 as its outputs 

are respectively: [2007]
 (A) 6, 3 (B) 10, 4
 (C) 6, 4 (D) 10, 5

 9. The Boolean expression for the output f of the multi-
plexer shown below is

f

R

R
R
R

0
1
2
3

S1
S0

P Q

 (A) P Q R⊕ ⊕

 (B) P ⊕ Q ⊕ R
 (C) P + Q + R

 (D) P Q R+ +

previous Years’ Questions
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 10. The amount of ROM needed to implement a 4-bit 
multiplier is [2012]

 (A) 64 bits
 (B) 128 bits 
 (C) 1K bits
 (D) 2K bits

 11. In the following truth table, V = 1 if and only if the input 
is valid.

Inputs Outputs

D0 D1 D2 D3 X0 X1 V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

 What function does the truth table represent? [2013]

 (A) Priority encoder

 (B) Decoder

 (C) Multiplexer

 (D) Demultiplexer

 12. Consider the 4-to-1 multiplexer with two select lines 
S

1 
and S

0
 given below. 

4 to 1
Multiplexer

00

1
F

2

3
S0S1

P Q

1

R

R

  The minimal sum-of-products form of the Boolean 
expression for the output F of the multiplexer is
 [2014]

 (A) PQ QR PQR+ +

 (B) PQ PQR PQR PQR+ + +

 (C) PQR PQR QR PQR+ + +

 (D) PQR PQR PQR QR PQR+ + +

 13. Consider the following combinational function block 
involving four Boolean variables x, y, a, b, where x, a, 
b are inputs and y is the output. [2014]

  f(x, y, a, b)

  {

  if (x is 1) y = a;

  else y = b;

  }

  Which one of the following digital logic blocks is the 
most suitable for implementing this function?

 (A) Full adder (B) Priority encoder
 (C) Multiplexer (D) Flip–flop

 14. Let ⊕ denote the Exclusive OR (X-OR) operation. 
Let ‘1’ and ‘0’ denote the binary constants. Consider 
the following Boolean expression for F over two vari-
ables P and Q:

  F(P, Q) = ((1 ⊕ P) ⊕ (P ⊕ Q)) ⊕ ((P ⊕ Q) 
⊕ (Q ⊕ 0)) [2014]

  The equivalent expression for F is 

 (A) P + Q (B) P Q+

 (C) P ⊕ Q (D) P Q⊕

 15. A half adder is implemented with XOR and AND 
gates. A full adder is implemented with two half adders 
and one OR gate. The propagation delay of an XOR 
gate is twice that of an AND/OR gate. The propaga-
tion delay of an AND/OR gate is 1.2 microseconds. 
A 4-bit ripple-carry binary adder is implemented by 
using four full adders. The total propagation time of 
this 4-bit binary adder in microseconds is _____

 [2015]

 16. Consider the two cascaded 2-to-1 multiplexers as 
shown in the figure.

minimal sum of products form of the output x is

  The minimal sum of products form of the output X is
 [2016]

  (A)  P  Q  + PQR  (B)  P  Q + QR

  (C) PQ + P  Q   R  (D)  P  Q   + PQR

 17. When two 8-bit numbers A
7
… A

0
 and B

7
… B

0
 in 2’s 

complement representation (with A
0
 and B

0
 as the 

least significant bits) are added using a ripple-carry 
adder, the sum bits obtained are S

7
…S

0
 and the carry 

bits are C
7
…C

0
. An overflow is said to have occurred 

if [2017]
 (A) the carry bit C

7
 is 1

 (B) all the carry bits (C
7
,…,C

0
) are 1

 (C) 7 7 7 7 7 7( )A B S A B S⋅ ⋅ + ⋅ ⋅  is 1

 (D) 0 0 0 0 0 0( )A B S A B S⋅ ⋅ + ⋅ ⋅  is 1
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answer KeYs

exerCises

Practice Problems 1
 1. D 2. B 3. B 4. D 5. D 6. A 7. C 8. B 9. D 10. A
 11. A 12. B 13. B 14. C 15. C 16. D 17. D 18. B 19. C 20. A
 21. D

Practice Problems 2
  1. C 2. B 3. A 4. D 5. C 6. C 7. C 8. B 9. B 10. C
 11. B 12. C 13. C 14. A 15. C 16. C 17. B 18. C 19. C 20. D
 21. A 

Previous Years’ Questions
 1. B 2. A 3. A 4. B 5. C 6. C 7. C 8. B 9. B 10. D
 11. A 12. A 13. C 14. D 15. 19.2 16. D  17. C
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