

DPP No. 13

Total Marks : 24

Max. Time : 24 min.

Topic : Rectilinear Motion

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.5 Comprehension ('-1' negative marking) Q.6 to Q.8 M.M., Min. (3 marks, 3 min.) [15, 15] (3 marks, 3 min.) [9, 9]

1. A lift starts from rest. Its acceleration is plotted against time in the following graph. When it comes to rest its height above its starting point is:

2. A particle moves through the origin of an xy-cordinate system at t = 0 with initial velocity u = 4i - 5 j m/s. The particle moves in the xy plane with an acceleration $a = 2i m/s^2$. Speed of the particle at t = 4 second is :

(A) 12 m/s (B)
$$8\sqrt{2}$$
 m/s (C) 5 m/s (D) 13 m/s

- **3.** The instantaneous velocity of a particle is equal to time derivative of its position vector and the instantaneous acceleration is equal to time derivative of its velocity vector. Therefore:
 - (A) the instantaneous velocity depends on the instantaneous position vector
 - (B) instantaneous acceleration is independent of instantaneous position vector and instantaneous velocity
 - (C) instantaneous acceleration is independent of instantaneous position vector but depends on the instantaneous velocity
 - (D) instantaneous acceleration depends both on the instantaneous position vector and the instantaneous velocity.
- The velocity of a car moving on a straight road increases linearly according to equation, v = a + b x, where a & b are positive constants. The acceleration in the course of such motion: (x is the displacement)
 (A) increases
 (B) decreases
 (C) stay constant
 (D) becomes zero
- 5. A point moves in a straight line under the retardation $a v^2$, where 'a' is a positive constant and v is speed. If the initial velocity is u, the distance covered in 't' seconds is:

(A) a u t	(B) $\frac{1}{a}$ In (a u t)	(C) $\frac{1}{a}$ ln (1 + a u t)	(D) a ln (a u t)
	u	u	

COMPREHENSION

The velocity 'v' of a particle moving along straight line is given in terms of time t as $v = 3(t^2 - t)$ where t is in seconds and v is in m/s.

6.	The distance travelled by particle from t = 0 to t = 2 seconds is :					
	(A) 2 m	(B) 3 m	(C) 4 m	(D) 6 m		
7.	The displacement of particle from $t = 0$ to $t = 2$ seconds is					
	(A) 1 m	(B) 2 m	(C) 3 m	(D) 4 m		
8.	The speed is min	imum after t = 0 second a	at instant of time			
	(A) 0.5 sec	(B) 1 sec.	(C) 2 sec.	(D) None of these		

Answers Key

			DPP	N	0	13		
1.	(D)	2.	(D)	3.	(B)	4.	(A)	5. (C)
6.	(B)	7.	(B)	8.	(B)			

Hint & Solutions

DPP NO. - 13

1.	At t = 4 sec, V = 0 + (4) (4) = 16 m/sec.
	At t = 8 sec, V = 16 m/sec.
	At t = 12 sec, V = 16 - 4 (12 - 8) = 0
	For 0 to 4 sec ; $s_1 = \frac{1}{2} at^2 = \frac{1}{2} (4) (4)^2 = 32 m$
	For 4 to 8 sec ; $s_2 = 16 (8 - 4) = 64 m$
	For 8 to 12 sec ; $s_3 = 16 (4) - \frac{1}{2} (4) (4)^2 = 32 m$
	So s ₁ + s ₂ + s ₃ = 32 + 64 + 32 = 128 m
	Alter : Draw v-t graph
	Area of v-t graph = displacement.
2.	Using $v_x = u_x + a_x t$ = 4 i + (2i) 4 = 12 i
	As $a_y = 0$, velocity component in y-direction remains unchanged. Final velocity = 12 i - 5j
	speed at t = 4 sec. = $\sqrt{12^2 + (-5)^2}$ = 13 m/s.
	$v_x = u_x + a_x t$
	= 4 i + (2i) 4
	= 12 i
4.	V = a + bx
	(V increases as x increases)
	$\frac{dV}{dx} = b; \frac{dx}{dt} = V$
	so, acceleration = V $\frac{dV}{dx}$ = V.b

hence acceleration increases as V increases with x.

5. The retardation is given by

$$\frac{dv}{dt} = -av^2$$

integrating between proper limits

 $\Rightarrow -\int_{u}^{v} \frac{dv}{v^{2}} = \int_{0}^{t} a dt$ or $\frac{1}{v} = at + \frac{1}{u}$ $\Rightarrow \frac{dt}{dx} = at + \frac{1}{u}$ $\Rightarrow dx = \frac{u dt}{1 + aut}$

integrating between proper limits

$$\Rightarrow \int_{0}^{s} dx = \int_{0}^{t} \frac{u \, dt}{1 + aut}$$

$$\Rightarrow S = \frac{1}{a} \ell n (1 + aut)$$

Sol. 6 to 8

The velocity of particle changes sign at

t = 1 sec.

 \therefore Distance from t = 0 to t = 2 sec. is

$$= \int_{1}^{0} v dt + \int_{2}^{1} v dt$$

$$= \left[\left(t^3 - \frac{3}{2} t^2 \right) \right]_1^0 + \left[\left(t^3 - \frac{3}{2} t^2 \right) \right]_2^1 = 3 \text{ m}$$

Displacement from t = 0 to t = 2 sec. is $\int_{0}^{2} v dt$

$$=\left[(t^3-\frac{3}{2}t^2)\right]_0^2 = 2 \text{ m}.$$