Solved Paper

Question 1

The diameter of a circle is 2.486m. Its area with due regard to significant figures is (Given $\pi=3.142$)

Options:

- A. 4.85454m²
- B. 4.8545m²
- C. 4.584m²
- D. 4.855m²

Answer: D

Solution:

Solution:

Question 2

The position of a particle as a function of time t is given by $x(t) = at + bt^2 - ct^3$ where, a, b and c are constants. When the particle attains zero acceleration, then its velocity will be

Options:

- A. a + $\frac{b^2}{4c}$
- B. a + $\frac{b^2}{3c}$
- C. a + $\frac{b^2}{c}$
- D. a + $\frac{b^2}{2c}$

Answer: B

Solution:

Solution:

Question 3

A particle moves in a circular arc of radius r. In half the period of revolution, its displacement and distance covered are

Options:

- A. 2r and 2πr
- B. 2r and πr
- $C.\ r$ and πr
- D. r and 2πr

Answer: B

Solution:

Solution:

Question 4

In a tug of war contest, two men pull a horizontal rope from opposite sides. The winner will be the

man wno
Options:
A. exerts greater force on the rope
B. exerts greater force on the ground
C. exerts force on the rope which is greater than the tension in the rope
D. makes a smaller angle with the vertical
Answer: B
Solution:
Solution:
Question 5
If m is the mass of a body and E its kinetic energy, then its linear momentum is
Options:
A. $\sqrt{2mE}$
B. $2\sqrt{mE}$
C. \sqrt{mE}
D. mE
Answer: A
Solution:
Solution:
Question 6
A rubber sheet is introduced between two charges separated by a distance. Then the force between them will
Options:
A. increase
B. decrease
C. remains the same
D. be reduced to zero
Answer: B
Solution:
Solution:
Question 7
What is the potential difference acquired by an alpha particle accelerated through a potential difference of $10^6 V$?
Options:
A. zero
B. 3.2×10^{-13} J
C. 1.6×10^{-19} J
D. 1 eV

Answer: B

Solution:

Solution:	
Question 8	
A stone is dropped into a lake from a tower of 500m high. The sound of the splash will be heard the top of the tower approximately after (given velocity of sound $= 330 \text{m}/\text{s}$)	at
Options:	
A. 11.5 seconds	
B. 1.5 seconds	
C. 10 seconds	
D. 14 seconds	
Answer: A	
Solution:	
Solution:	
Question 9	
The variation of resistance (R) as a function of temperature (T) for a certain material is shown in the graph. The material is most likely to be	n
R	
T T	
Options:	
A. pure metal	
B. impure metal	
C. semiconductor	
D. superconductor	
Answer: A	
Solution:	
Solution:	
Question 10	
A certain liquid taken in a watch glass is placed on closely spaced pole pieces of a magnet. The liquid then moves towards the pole pieces causing a depression at its center as shown. The liquid most likely to be	d is
Options:	
A. paramagnetic	
B. ferromagnetic	
C. diamagnetic	
D. ferrimagnetic	
Answer: C	
Solution:	
Solution:	

The following series resonant LCR circuit has a quality factor (Q-factor) of 0.4 and a bandwidth of

1.3 KHz. The value of inductance is then 0.1 μF $R = 2 K\Omega$ **Options:** A. 0.1H B. 0.94H C. 2H D. 10H **Answer: B Solution:** Solution: **Question 12** Semiconductors have **Options:** A. positive temperature coefficient of resistance B. negative temperature coefficient of resistance C. zero temperature coefficient of resistance D. positive temperature coefficient at lower temperature and negative temperature coefficient at higher temperatures **Answer: B Solution:** Solution: **Question 13** If the average time between collisions of electrons in Copper is 2.5×10^{-14} s and the average speed of the free electrons is $1.6 \times 10^6 \text{m}$ / s, then the mean free path of the electrons will be **Options:** A. 4×10^{-8} m B. 4×10^{-8} cm C. 4×10^8 m D. 4m **Answer: A Solution:** Solution:

Question 14

Which one of the following is an example of non-Ohmic resistance?

- A. Copper wire
- B. Tungsten wire
- C. Diode

Answer: C
Solution:
Solution:
Question 15
In a circuit containing two unequal resistors connected in parallel
Options:
A. the current is the same in both the resistors
B. a large current flows through the larger resistor
C. the voltage drop across both the resistances is same
D. the smaller resistance has smaller conductance
Answer: C
Solution:
Solution:
Question 16
Two identical fuses are rated at 10 A. If they are connected
Options:
A. in parallel, the combination acts as a fuse of rating 10 A
B. in parallel, the combination acts as a fuse of rating 20 A
C. in series, the combination acts as a fuse of rating 20 A
D. in series, the combination acts as a fuse of rating 5 A
Answer: B
Solution:
Solution:
Question 17
The number of electrons in 1 Coulomb of charge is
Options:
A. 6.25×10^{18}
B. 62.5×10^{18}
$C. 6.023 \times 10^{23}$
D. 1.6×10^{-19}
Answer: A
Solution:
Solution:
Question 18
In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change?

A. n = 2 to n = 1

Options:

D. Carbon resistance

B. $n = 3 \text{ to } n = 1$
C. $n = 4$ to $n = 2$
D. $n = 3$ to $n = 2$
Answer: B
Solution:
Solution:
Question 19
Numerical aperture of an optical fiber is a measure of
Options:
A. attenuation of light signals in the fiber
B. difference between the refractive indices of core and the cladding
C. light gathering power of the fiber
D. signal distortion in the fiber
Answer: C
Solution:
Solution:
Question 20
Shearing stress causes change in
Options:
A. Length
B. Area
C. Volume
D. Shape
Answer: D
Solution:
Solution:
Question 21
A liquid will not wet the surface of a solid if the angle of contact is
Options:
A. 0°
B. 45°
C. greater than 90°
D. 60°
Answer: C
Solution:
Solution:

If two liquids of same volume but different densities ρ_1 and ρ_2 respectively are mixed, then the

density of the mixture is
Options:
A. $\rho_1 + \rho_2$
B. $\frac{\rho_1 + \rho_2}{2}$
C. $\frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$
D. $\frac{2\rho_1\rho_2}{\rho_1 + \rho_2}$
Answer: B
Solution:
Solution:
Question 23
The wings or fins of aircraft are so designed that the speed of air
Options:
A. on the topside is more than on the lower side
B. on the topside is less than on the lower side
C. is same on both side
D. is turbulent
Answer: A
Solution:
Solution:
Question 24
A black body at high temperature T radiates energy at a rate of EW/ m^2 . When the temperature falls to one-half of its initial value, the radiated energy will be
Options:
A. $\frac{E}{4}$
B. $\frac{E^2}{4}$
C. 2E
D. $\frac{E}{16}$
Answer: D
Solution:
Solution:
Question 25
The efficiency of the reversible heat engine is η_R and that of irreversible heat engine is η_I . Whice one of the following relations is correct?
Options:
A. $\eta_R > \eta_I$
B. $\eta_R < \eta_I$

C. $\eta_R = \eta_I$

D. $\eta_R > 1$ and $\eta_I < 1$	
Answer: A	
Solution:	
Solution:	
Question 26	
The molar specific heat at constant pressure of an ideal gas is $(7/2)R$, where R is gas constant. The ratio of specific heat at constant pressure to constant volume is	
Options:	
A. 9 / 7	
B. 7 / 5	
C. 8 / 7	
D. 5 / 7	
Answer: B	
Solution:	
Solution:	
Question 27	
If P, V and T are the pressure, volume and temperature of a gas in jar A, and 2P, V / 4 and 2T at the pressure, volume and temperature of another gas in jar B, then the ratio of the number of molecules in the jar A and B will be	ìr
Options:	
A. 1:1	
B. 1:2	
C. 2:1	
D. 4:1	
Answer: D	
Solution:	
Solution:	
Question 28	
The volume of the cubic cell is 10^{-30} m 3 . Then its lattice parameter is	
Options:	
A. 10^{-30} m	
B. 10^{-10} m	
C. $\frac{1}{3} \times 10^{-30}$ m	
D. $\frac{3}{4\pi} \times 10^{-30}$ m	
Answer: B	
Solution:	
Solution:	
Question 29	

The doping of the base of a transistor is **Options:** A. Equal to the emitter or collector B. Slightly more than that of emitter or collector C. Less than that of emitter or collector D. Much more than that of emitter or collector **Answer: C Solution:** Solution: Question 30 A source is moving away with a velocity 0.2v, where v is the velocity of sound. If the source sounds a frequency of 800 Hz, what is the apparent frequency heard by the stationary listener? **Options:** A. 660 Hz B. 867 Hz C. 667 Hz D. 956 Hz **Answer: C Solution:** Solution: Question 31 The change in potential energy, when a body of mass m is raised to a height nR from the earth's surface is (R = radius of earth)**Options:** A. mgR $\left(\frac{n}{n-1}\right)$ B. nmgR C. mgR $\left(\frac{n^2}{n^2+1}\right)$ D. $mgR\left(\frac{n}{n+1}\right)$ **Answer: D Solution:** Solution: **Question 32** If the decay constant of certain radioactive sample is 0.113 per minute, then the half-life of the sample is **Options:** A. 6.13 min B. 0.078 min C. 0.163 min D. 8.85 min

Answer: A
Solution:
Solution:
Question 33
A certain radioactive substance has a disintegration constant of 0.0231 per day. Then the time taken for $\frac{1}{8^{th}}$ of the original number of atoms to remain unchanged is
Options:
A. 39 days
B. 9 days
C. 90 days
D. 3.9 days
Answer: C
Solution:
Solution:
Question 34
If Δm is the mass defect of a nucleus and A its mass number, then the packing fraction is
Options:
Α. Δm/A
B. Δm.A
C. A/Δm
D.
$\Delta \mathrm{mc}^2$
E.
A.,
Answer: A
Solution:
Solution:
Question 35
Which one of the following statements about Peltier effect is INCORRECT?
Options:
A. Peltier effect occurs only at the junction
B. Peltier effect is irreversible
C. Peltier effect is reversible
D. In Peltier effect, heat evolved or absorbed depends on the nature of the metals and temperature
Answer: B
Solution:
Solution:

The magnetic field at any point on a straight current carrying conductor is

Options:
A. $\frac{\mu_o I}{4m^2}$
B. $\frac{\mu_o I}{4r}$
C. Zero
D. $\frac{\mu_o I}{2\pi r}$
Answer: C
Solution:
Solution:
Question 37
A coil has an inductance of 0.04 Henry. The e.m.f. induced in it when the current flowing through the coil is changing at the rate of $100A\/$ s is
Options:
A. Zero
B. 4V
C4V
D. 2.5 KV
Answer: C
Solution:
Solution:
Question 38
The current in a coil is changing at a rate of $10A\/$ s. Then an e.m.f. of $4V$ is induced in a neighboring coil. The mutual inductance of the pair of coils is then
Options:
A. 40H
B. 0.4H
C. 2.5H
D. 4H
Answer: B
Solution:
Solution:
Question 39
One atomic mass unit (amu) is equivalent to
Options:
A. 931 eV
B. 931 MeV
C. 931 keV
D. 931 milli eV

Answer: B Solution:

Solution:		
Ç	uestion 40	
	${\bf Z}$ is the atomic number and n is the principal quantum number, then the total energy of an ectron in the n $^{\rm th}$ orbit of an atom is given by	
\mathbf{O}_{1}	ptions:	
A.	$\frac{13.6Z^2}{n^2}eV$	
В.	$-\frac{13.6Z^{2}}{n^{2}}eV$	
C.	$-\frac{13.6}{\mathrm{n}^2}\mathrm{eV}$	
D.	$-\frac{13.6Z^{2}}{2}$ eV	

If m is the mass of the particle, its de Broglie wavelength $\boldsymbol{\lambda}$ is proportional to

The number of photons emitted per second from a lamp radiating a power of 10 Watt at a

Answer: B

Answer: B

Solution:

Question 41

Solution:

A. $\sqrt{\overline{m}}$

B. $\frac{1}{m}$

C. $\frac{1}{\sqrt{m}}$

D. m

Answer: B

Solution:

Question 42

A. 3×10^{18} per sec B. 3×10^{10} per sec

C. 3×10^8 per sec D. 1×10^{24} per sec

wavelength of 6000A° is about

Solution:

Options:

Solution:

Solution:

Question 43

Photometer is an instrument used for

Options:

A. counting the number of photons

B. measuring the photoconductivity of a substance
C. measuring the luminous intensities of light sources
D. studying photoelectric effect
Answer: C
Solution:
Solution:
Question 44
When light passes from one medium to another medium, then the physical property which does not change is
Options:
A. Velocity
B. Frequency
C. Wavelength
D. Refractive index
Answer: B
Solution:
Solution:
Question 45
Two thin lenses with focal lengths f_1 and f_2 have materials with dispersive powers ω_1 and ω_2
respectively. Then to form an achromatic combination of these lenses, essential condition is that
respectively. Then to form an achromatic combination of these lenses, essential condition is that
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options:
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: A. $\frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \ \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \ \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: A. $\frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ B. $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ C. $\omega_1 + \omega_2 = 0$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \ \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \ \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \ \omega_1 + \omega_2 = 0$ $D. \ f_1 + f_2 = 0$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \ \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0 \\ B. \ \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0 \\ C. \ \omega_1 + \omega_2 = 0 \\ D. \ f_1 + f_2 = 0$ Answer: B
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: A. $\frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ B. $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ C. $\omega_1 + \omega_2 = 0$ D. $f_1 + f_2 = 0$ Answer: B Solution:
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution:
respectively. Then to form an achromatic combination of these lenses, essential condition is that options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution: Solution: $C. \omega_1 + \omega_2 = 0$ $C. \omega_1 + \omega_2 = 0$ Answer: B The refractive indices for red and violet colours for crown glass are 1.5155 and 1.5245 respectively.
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution: Solution:
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: A. $\frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ B. $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ C. $\omega_1 + \omega_2 = 0$ D. $f_1 + f_2 = 0$ Answer: B Solution: Options: Question 46 The refractive indices for red and violet colours for crown glass are 1.5155 and 1.5245 respectively. Then the dispersive power of the crown glass is Options:
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution: Solution: $C. \omega_1 + \omega_2 = 0$ The refractive indices for red and violet colours for crown glass are 1.5155 and 1.5245 respectively. Then the dispersive power of the crown glass is Options: $A. 0.009$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution: Solution:
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A_{\frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0}$ $B_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ $C_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ $D_{\frac{\omega_1}{f_1} + \frac{f_2}{f_2} = 0}$ Answer: B Solution: Solution: $C_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ The refractive indices for red and violet colours for crown glass are 1.5155 and 1.5245 respectively. Then the dispersive power of the crown glass is Options: $A_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ Answer: $A_{\frac{\omega_1}{f_2} + \frac{\omega_2}{f_2} = 0}$ Answer: $A_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ Answer: $A_{\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0}$ Answer: $A_{\frac{\omega_1}{f_2} + \frac{\omega_2}{f_2} = 0$ Answer: $A_{\frac{\omega_1}{f_2} + \frac{\omega_2}{f_2} = 0}$ Answer: $A_{\frac{\omega_1}{f_2} + \frac{\omega_2}{f_2} = 0$ Answer: $A_{\frac{\omega_1}{f_2} + \frac{\omega_2}{f_2} =$
respectively. Then to form an achromatic combination of these lenses, essential condition is that Options: $A. \frac{\omega_1}{f_1} - \frac{\omega_2}{f_2} = 0$ $B. \frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ $C. \omega_1 + \omega_2 = 0$ $D. f_1 + f_2 = 0$ Answer: B Solution: Solution: $Column = C + C + C + C + C + C + C + C + C + C$

Question 47 For a given material of the glass, the refractive index of the glass prism depends on **Options:** A. the angle of the prism B. the angle through which it deviates an incident beam of light C. the wavelength of the light D. the intensity of the incident light **Answer: C Solution:** Solution: **Question 48** Which one of the following phenomena is NOT common to both sound and light waves? **Options:** A. Interference B. Polarization C. Diffraction D. Reflection **Answer: B Solution:** Solution: **Question 49** If i is the polarizing angle and r is the angle of refraction, then A. $i - r = 90^{\circ}$ B. $i + r = 60^{\circ}$ C. $i + r = 90^{\circ}$ D.i = r**Answer: C Solution:** Solution: **Question 50** If the refractive index of glass is 1.5, the speed of light in glass is (Velocity of light in vacuum is $3 \times 10^8 \text{m} / \text{s}$) **Options:** A. 3×10^{8} m / s B. 3×10^{10} m / s

C. $0.5 \times 10^8 \text{m} / \text{s}$ D. $2 \times 10^8 \text{m} / \text{s}$

Answer: D

Solution:		
Solution:		
Answer: D		
D. 3.1 eV		
C. 1.5 eV		
$\rm B.~2.0eV$		
A. 1.1 eV		

If the full wave rectifier is operating from $50\,\mathrm{Hz}$ mains, then the fundamental frequency in the ripple will be

Options:

A. 50 Hz

B. 60 Hz

C. 100 Hz

D. 25 Hz

Answer: C

Solution:

Solution:

Question 56

In the following circuit, the current in each resistor is

Options:

A. 0.5A

B. 0A

C. 1A

D. 0.25A

Answer: B

Solution:

Solution:

Question 57

The logic circuit below represents which one of the following gates?

Options:

A. XOR gate

B. NAND gate

C. XNOR gate

D. NOR gate	
Answer: A	
Solution:	
Solution:	
Question 58	
The fundamental radio antenna is a me	tal rod which has a length equal to
Options:	
A. λ in free space at the frequency of operation	
B. λ / 2 in free space at the frequency of operation	
C. λ / 4 in free space at the frequency of operation	
D. 3λ / 4 in free space at the frequency of operation	
Answer: C	
Solution:	
Solution:	
Question 59	
If the carrier power of a 100% modulate will be	ed AM wave is suppressed, the percentage saving in power
Options:	
A. 50%	
B. 100%	
C. 66.66%	
D. 75%	
Answer: C	
Solution:	
Solution:	
Question 60	
Parsec is the unit of	
Options:	
A. Time	
B. Distance	
C. Luminosity	
D. Escape velocity	
Answer: B	
Solution:	
Solution:	
Question 61	

The conclusion that every additional electron enters the orbital with lowest possible energy has been drawn from

A. Hund's rule	
B. Aufbau principle	
C. Pauli's exclusion principle	
D. De-Broglie's principle	
Answer: B	
Solution:	
Solution:	
Question 62	
The cathode rays have same charge to m	ass ratio as
Options:	
A. Anode rays	
B. γ-particles	
C. β-particles	
D. α-particles	
Answer: C	
Solution:	
Solution:	
The phenomenon of splitting of spectral Options: A. Stark effect B. Zeeman effect	lines under the influence of electric field is known as
C. Compton effect	
D. Photoelectric effect	
Answer: A	
Solution:	
Solution:	
Question 64	
The phenomenon of splitting of spectral	lines under the influence of electric field is known as
Options:	
A. Stark effect	
B. Zeeman effect	
C. Compton effect	
D. Photoelectric effect	
Answer: A	
Solution:	
Solution:	

Which of the following is NOT a state function?
Options:
A. Internal energy
B. Gibbs free energy
C. Work
D. Enthalpy
Answer: C
Solution:
Solution:
Question 66
In an isolated system, a liquid is in equilibrium with its vapour. Then the molar entropy of the vapour is
Options:
A. equal to that of liquid
B. less than that of liquid
C. more than that of liquid
D. equal to zero
Answer: A
Solution:
Solution:
Question 67
The rate constant for a first order reaction is $2.44 \times 10^{-3} \text{ s}^{-1}$. Then the half-life for the reaction i
Options:
A. 264 s
B. 274 s
C. 284 s
D. 294 s
Answer: C
Solution:
Solution:
Question 68
Calculate the weight of Copper deposited at cathode when one Faraday of electricity is passed through ${\rm CuSO}_4$ solution (Given: Atomic mass of Cu is 63.50, and current efficiency for copper deposition is 100%).
Options:
A. 15.87g
B. 21.16g
C. 31.75g

D. 63.50g **Answer: C**

Solution:

Solution:
Question 69
The potential of calomel electrode with 0.01M KCl is (E $^\circ$ for calomel electrode is 0.268V)
Options:
A. 0.150V
B. 0.268V
C. 0.327V
D. 0.386V
Answer: D
Solution:
Solution:
Question 70
For a reaction; aA → bB, the rate of reaction is doubled when the concentration of A is increased l four times. The order of the reaction is equal to
Options:
A. 0
B. 0.5
C. 1
D. 2
Answer: B
Solution:
Solution:
Question 71
The coordination number of Zn^{2+} and S^{2-} ions in the zinc blende (ZnS) type structure is
Options:
$A.\ 4:4$
B. 6 : 6
C. 8 : 8
D. 4:8
Answer: A
Solution:
Solution:
Question 72
The ionic strength of 0.01M solution of an electrolyte of the type M_2X_3 is
Options:
A. 0.01

B. 0.03C. 0.06D. 0.15

Answer: D
Solution:
Solution:
Question 73
The number of radial nodes in 5 s atomic orbital is
Options:
A. 5
B. 4
C. 3
D. 0
Answer: B
Solution:
Solution:
Question 74
Which of the following lines in the atomic spectrum of H appear in the visible region?
Options:
A. Lyman
B. Balmer
C. Paschen
D. Pfund
Answer: B
Solution:
Solution:
Question 75
Which among the following undergoes SN2 substitution at the fastest rate?
Options:
A. iodomethane
B. iodoethane
C. 2-iodopropane
D. 2-iodo-2-methylpropane
Answer: A
Solution:
Solution:
Question 76
In the following preparation of Nylon 6, identify compounds A and B.

$$\mathbf{A} \xrightarrow{\text{ii}) \text{H}_2 \text{SO}_4} \mathbf{B} \xrightarrow{\text{260} - 270^{\circ} \text{C}} \mathbf{Nylon}$$

Options:

A.

and o
В.
and NH
c.
and NH
D.
and o
Answer: B
Solution:
Solution:
Question 77
Phenol is more acidic than methanol due to
Options:
A. aromaticity of phenol
B. resonance stabilization of phenoxide ion
C. less efficient solvation of phenol
D. weaker hydrogen bonding between phenol molecules that enables easier removal of protons
Answer: B
Solution:
Solution:
Question 78
Which among the following methods is NOT suitable for the preparation of benzaldehyde?
Options:
A. Reaction of benzene with carbon dioxide and HCl in the presence of anhydrous aluminum chloride
B. Controlled reduction of methyl benzoate with DIBAL-H
C. Reaction of benzal chloride (a gem-dihalide) with water at 373 K
D. Reaction of benzonitrile with stannous chloride in the presence of HC1 followed by hydrolysis under acidic condition
Answer: A

Solution:

Solution:

Question 79

The IUPAC name of the following compound is

Options:

- A. 2-amino-5-hydroxycyclohexan-1-one
- B. 2-hydroxy-5-aminocyclohexan-1-one
- C. 1-amino-4-hydroxycyclohexan-2-one
- D. 1-hydroxy-4-aminocyclohexan-3-one

Answer: A

Solution:

Solution:

Question 80

Following organic compound is the structure of paclitaxel which is an anti-cancer chemotherapeutic drug. What are the functional groups present in paclitaxel?

Options:

- A. Ester, Ether, Primary Alcohol and Alkene
- B. Ester, Ketone, Secondary Alcohol, Aldehyde
- C. Ketone, Amide, Ester, Alkene
- D. Peptide linkage, tert-Alcohol, Ether, Ketone

Answer: C

Solution:

Solution:

Question 81

What is the order of stability of the following carbanions?

Options:

A.
$$IV > III > II > I$$

B.
$$III > IV > II > I$$

$$\mathrm{C.\ IV} > \mathrm{III} > \mathrm{I} > \mathrm{II}$$

D. III
$$>$$
 IV $>$ I $>$ II

Answer: A

Solution:

Solution:

Question 82

Identify the yellow precipitate formed in the following reaction.

	Q
	ОН
R	

C. CHI₃

D.

Answer: C

Solution:

Solution:

Question 83

One of the products of the following reaction is a gas under standard pressure and temperature. Identify that gaseous product.

Options:

A. H₂

B. CO_2

C. CH₄

D. CO

Answer: C

Solution:

Solution:

Question 84

 $Which \ pair \ will \ be \ the \ best \ suited \ for \ Williams on \ ether \ synthesis \ of \ propoxycyclohexane?$

Options:

Α

R

C.

D

Answer: C

Solution:
Solution:
Overtion 95
Question 85
Which conformation of butane is most stable?
Options:
A.
H CH ₃ H H
В.
H CH ₃ H CH ₃
C.
H ₃ C CH ₃
D.
H CH ₃ CH ₃
Answer: B
Solution:
Solution:
Question 86 Number of peptide bond(s) present in the following compound is,
Options:
A. 1
B. 2
C. 3
D. 4
Answer: A
Solution:
Solution:
Question 87

Which of the following combinations of enzyme, substrate and product is CORRECT?

Options:

A. Enzyme: Maltase, Substrate: Maltose, Product: Glucose + Fructose

B. Enzyme: Sucrase, Substrate: Sucrose, Product: Glucose + Fructose

C. Enzyme: Amylase, Substrate: Lactose, Product: Galactose + Fructose
D. Enzyme: Invertase, Substrate: Sucrose, Product: Glucose + Mannose
Answer: B
Solution:
solution:
Question 88
Ethylenediaminetetraacetate (EDTA) ion is
Options:
A. hexadentate ligand with four " O ", and two " N " donor atoms
3. unidentate ligand
C. bidentate ligand with two " N " donor atoms
D. tridentate ligand with three " N " donor atoms
Answer: A
Solution:
Solution:
Question 89
Zr(Z = 40) and $Hf(Z = 72)$ have similar atomic and ionic radii because of
Options:
A. belonging to same group
3. diagonal relationship
C. lanthanoid contraction
D. having similar chemical properties
Answer: C
Solution:
colution:
Question 90
The INCORRECT statement among the following is
Options:
A. Actinoid contraction is greater for element to element than Lanthanoid contraction
3. Most of the trivalent lanthanoid ions are colourless in the solid state
C. Lanthanoids are good conductors of heat and electricity
D. Actinoids are highly reactive metals, especially when finely divided
Answer: B
Solution:
Solution:

 $\label{lem:correct} \textbf{Identify the INCORRECT statement from the following}$

A. Pig iron contains about 4% carbon and many impurities in smaller amount and it can be moulded into a variety of shapes
B. Wrought iron is the purest form of iron
C. Vapour phase refining is carried out for nickel by Mond's process
D. Blister copper has blistered appearance due to evolution of CO_2
Answer: D
Solution:
Solution:
Question 92
The type of hybridization of boron in diborane is
Options:
A. sp-hybridization
B. sp ² - hybridization
C. sp ³ -hybridization
D. $\mathrm{sp}^3\mathrm{d}$ - hybridization
Answer: C
Solution:
Solution:
Question 93
Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
Options:
A. O_2
B. N_2
C. C ₂
D. Be ₂
Answer: C
Solution:
Solution:
Question 94
Identify the INCORRECT statement related to PCl ₅ from the following
Options:
A. Three equatorial P – Cl bonds make an angle of 120° with each other
B. Two axial P-Cl bonds make an angle of 180° with each other
C. Axial P – Cl bonds are longer than equatorial P – Cl bonds
D. PCl ₅ molecule is non-reactive
Answer: D
Solution:
Solution:

Question 95 The existence of two different coloured complexes with the composition of [Co(NH₃)₄Cl₂]⁺is due to A. linkage isomerism B. geometrical isomerism C. coordination isomerism D. ionization isomerism **Answer: B Solution:** Solution: **Question 96** Which of the following statements is FALSE? **Options:** A. Ca²⁺ ions are important in blood clotting B. Ca²⁺ ions are not important in maintaining the regular beating of the heart C. Mg²⁺ ions are important in the green parts of plants D. Mg²⁺ ions form a complex with ATP Answer: B **Solution:** Solution: **Question 97** Bronze is an alloy of **Options:** A. Copper and Nickel

- B. Copper and Iron
- C. Copper and Tin
- D. Copper and Aluminium

Answer: C

Solution:

Solution:

Question 98

Pure ozone is a

Options:

- A. violet gas, dark blue liquid and pale blue solid
- B. pale blue gas, dark blue liquid and violet-black solid
- C. green gas, pale blue liquid and dark blue solid
- D. pale green gas and dark blue solid and liquid

Answer: B

Solution:

Match the following.

i.	Gypsum	a.	PbS
ii.	Epsom salt	b.	$\rm MgSO_4 \cdot 7H_2O$
iii.	Baryte	C.	CaSO ₄ · 2H ₂ O
iv.	Galena	d.	BaSO ₄

Options:

A. i-c, ii-b, iii-d, iv-a

B. i-b, ii-d, iii-c, iv-a

C. i-d, ii-c, iii-a, iv-d

D. i-b, ii-c, iii-d, iv-a

Answer: A

Solution:

Solution:

Question 100

Which among the following is the correct formula of chloric acid?

Options:

A. HOClO₂

B. HOCIO

C. $HOCIO_3$

D. HOCl

Answer: A

Solution:

Solution:

Question 101

If n!, $3 \times n!$ and (n + 1)! are in G.P, then n!, $5 \times n!$ and (n + 1)! are

Options:

A. in A.P

B. not in A.P

C. in G.P

D. not in G.P

Answer: A

Solution:

Solution:

Question 102

The simplest form of $\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2+2\cos 4x}}}}$ is

Options:
A. $\sec \frac{\pi}{2}$
B. secx
C. cos x
D. 1
Answer: A
Solution:
Solution:
Question 103
Sum of two positive numbers is \boldsymbol{k} and the sum of whose squares is minimum. Then the numbers are
Options:
A. $\frac{\mathbf{k}}{2}$, $\frac{\mathbf{k}}{2}$
B. k – 1, 1
C. k, 0
D. k, k – 5
Answer: A
Solution:
Solution:
Question 104
The differential equation of the family of circles with fixed radius 5 units and center on the line $y=2$ is
Options:
A. $(y-2)^2y^2 = 25 - (y-2)^2$
B. $(x-2)^2y^2 = 25 - (y-2)^2$
C. $(y-2)y^2 = 25 - (y-2)^2$
D. $(x-2)y^2 = 25 - (y-2)^2$
Answer: A
Solution:
Solution:

If $x^2 + 6x - 27 > 0$ and $x^2 - 3x - 4 < 0$, then

Options:

B.
$$x > 3$$

C.
$$3 < x < 4$$

D.
$$x = \frac{7}{2}$$

Solution:

Solution:

Question 106
If $\cos \frac{x}{a} = \sin \frac{x}{b}$, then $ a \cos 2x + b \sin 2x $ is equal to
Options:
$A. \sqrt{a^2b}$
$3. \sqrt{ab^2}$
C. b
D. a
Answer: C
Solution:
Solution:
Question 107
an 5 x tan 3 x tan 2 x is equal to
Options:
$A. \tan 5 x + \tan 3 x + \tan 2 x$
3. 0
C. $\tan 5 x - \tan 3 x - \tan 2 x$
D. 1
Answer: C
Solution:
solution:
Question 108
Let 1, a_1 , a_2 ,, a_{10} be the 11 th roots of unity. Then $(1 + a_1)$ $(1 + a_{10})$ is equal to
Options:
A. 1
3. 2
C. 11
). ∞
Answer: A
Solution:
olution:
Question 109
The region of the argand diagram defined by $ z - i < 3$ represents
Options:
A interior of a circle with centre on v avic

Answer: A

D. a pair of straight lines

B. interior of a circle with centre at originC. interior of a circle with centre on y axis

Solution:
Solution:
Question 110
The first and last terms of an AP are 1 and 11. If the sum of its terms is 36 , then the number of terms will be
Options:
A. 3
B. 4
C. 5
D. 6
Answer: D
Solution:
Solution:
Question 111
Let $y = \cos^{-1}\left(\frac{2\cos x - 3\sin x}{\sqrt{13}}\right)$. Then $\frac{dy}{dx}$ is equal to
Options:
A. 0
B. x
C. 2x
D. 1
Answer: D
Solution:
Solution:
Question 112
\triangle ABC has vertices (0, 0), (10, 20), and (40, 0). If the line y = kx cuts the triangle into two triangles of equal area, then k is equal to
Options:
A. $\frac{4}{5}$
B. $-\frac{5}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$
Answer: A
Solution:
Solution:
Question 113
The value of $\lim_{x \to 2} \frac{e^{3x-6}-1}{\sin{(2-x)}}$ is

A. $\frac{3}{2}$
B. 3
C3
D1
Answer: C
Solution:
Solution:
Question 114
$\int \frac{\mathrm{d}x}{x(x+1)}$ is equal to
Options:
A. $\log \left \frac{x+1}{x} \right + c$
B. $\log \left \frac{x}{x+1} \right + c$
C. $\log \left \frac{x-1}{x} \right + c$
D. $\log \left \frac{x-1}{x+1} \right + c$
Answer: B
Solution:
Solution:
Question 115
If \vec{a} and \vec{b} are two non-zero, non-collinear vectors, then $2[\vec{a}, \vec{b}, \hat{i}]\hat{i} + 2[\vec{a}, \vec{b}, \hat{j}]\hat{j} + 2[\vec{a}, \vec{b}, \hat{k}]\hat{k} + [\vec{a}, \vec{b}, \vec{a}]$ is equal to
Options:
A. $2(\vec{a} \times \vec{b})$
$\vec{a} \times \vec{b}$
\vec{c} . $\vec{a} + \vec{b}$
$\vec{a} - \vec{b}$
Answer: A

Solution:

Solution:

Question 116

Solution of $\frac{dx}{dy}$ + mx = 0, where m < 0

A.
$$x = ce^{my}$$

B.
$$x = ce^{-my}$$

$$C. x = c + my$$

$$D. x = c$$

Answer: B
Solution:
Solution:
Question 117
The sum of the infinite geometric series $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots$ is
Options:
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{5}{3}$
D. $\frac{4}{3}$
Answer: D
Solution:
Solution:
Question 118
If $\int_{1}^{b} (b-4x) dx \ge 6-5b$ and $b > 1$, then b equals
Options:
A. 3
B. 2
C. 1
D. 4
Answer: B
Solution:
Solution:
Question 119
If the line $y = 3x + \lambda$ touches the hyperbola $9x^2 - 5y^2 = 45$, then the value of λ^2 is
Options:
A. 45
B. 36
C. 6
D. 15
Answer: A
Solution:
Solution:
Question 120

The unit vector parallel to the resultant of the vectors $2^{\vec{i}} + 3^{\vec{j}} - ^{\vec{k}}$ and $4^{\vec{i}} - 3^{\vec{j}} + 2^{\vec{k}}$ is Options:

A. $\frac{6\vec{i} + \vec{k}}{\sqrt{17}}$
B. $\frac{6\vec{j} + \vec{k}}{\sqrt{17}}$
C. $\frac{6\vec{i} - \vec{k}}{\sqrt{37}}$
D. $\frac{6\vec{i} + \vec{k}}{\sqrt{37}}$
Answer: D
Solution:
Solution:
Question 121
If $2f(x) = f'(x)$ and $f(0) = 3$, then $f(2)$ equals
Options:
$A. 4e^3$
$B. 3e^4$
C. $2e^3$ D. $3e^2$
Answer: B
Solution:
Solution:
Question 122
If the expression $\left(ax-1+\frac{1}{x}\right)$ is non-negative for all positive real x, then the minimum value of a
must be
Options:
A. 0
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{3}$
Answer: C
Solution:
Solution:
Question 123
The differential equation for $y = A\cos\alpha x + B\sin\alpha x$, where A and B are arbitrary constants, is
Options:
$A. \frac{d^2y}{dx^2} - \alpha^2y = 0$
$B. \frac{d^2y}{dx^2} + \alpha^2y = 0$
ux

$D. \frac{d^2y}{dx^2} + \alpha y = 0$
Answer: B
Solution:
Solution:
Question 124
If \vec{a} , \vec{b} and $\sqrt{3}\vec{a}$ – \vec{b} are unit vectors, then the angle between \vec{a} and \vec{b} is
Options:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$
Answer: A
Solution:
Solution:
Question 125
Suppose two cards are selected at random from a deck of 52 cards. Let X be the number of queen obtained. Then $E\left(X\right)$ =
Options:
A. $\frac{1}{13}$
B. $\frac{2}{13}$
C. $\frac{5}{13}$
D. $\frac{37}{221}$
Answer: B
Solution:
Solution:
Question 126
If n is even, then the sum of n terms of the series $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$ is
Options:
A. $\frac{-n(n+1)}{2}$
B. $-n(n + 1)$
C. $\frac{n(n+1)}{2}$
D. $\frac{n^2 - n}{4}$
Answer: A
Solution:
Solution:

Question 127
$\lim_{x \to 0} \frac{1 + x + x^2 - e^x}{x^2} =$
Options:

Optioi

A. 1

B. 2

C. $\frac{1}{2}$

D. $-\frac{1}{2}$

Answer: C

Solution:

Solution:

Question 128

A function y = f(x) has a second order derivatives f''(x) = 6(x - 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x - 5, then the function is

Options:

A. $(x - 1)^3$

B. $(x + 1)^3$

C. $(x - 1)^2$

D. $(x + 1)^2$

Answer: A

Solution:

Solution:

Question 129

The function $f(y) = \sin^{-1}(\tan y)$ is not differentiable at

Options:

A. y = 0

B. $y = -\frac{\pi}{6}$

C. y = $\frac{\pi}{6}$

D. y = $\frac{\pi}{4}$

Answer: D

Solution:

Solution:

Question 130

The angle between the curves $y = x^2$ and $y = (x - 2)^2$ at their point of intersection is Options:

A.
$$\theta = \sin^{-1}\left(\frac{1}{2}\right)$$

B.
$$\theta = \frac{\sin{(\pi)}}{\cos{(0)}}$$

If $A = \cos^2 x + \sin^4 x$, then, for all values of x,
Options:
$A.\ 1 \le A \le 2$
B. $\frac{3}{4} \le A \le 1$
C. $\frac{13}{16} \le A \le 1$
D. $A = 3$
Answer: B
Solution:
Solution:
Question 135
Let z_1 and z_2 be two different complex numbers such that $ z_1 = 1$ and $ z_2 = 1$
Then $\left \frac{z_2 - z_1}{1 - \overline{z}_1 z_2} \right $ is equal to
Options:
A. 1
B. 1/2
C. 2
D. 0
Answer: A
Solution:
Solution:
Question 136
Let a > 1, b > 1, c > 1 be in Geometric Progression. Then $\frac{1}{1 + \log_e a}$, $\frac{1}{1 + \log_e b}$, $\frac{1}{1 + \log_e c}$ are
Options:
A. in Arithmetic Progression
B. in Geometric Progression
C. in Harmonic Progression
D. not in any progression
Answer: C
Solution:
Solution:
Question 137
Let n be an integer which leaves remainder one when divided by three. Then $(1+\sqrt{3}i)^n+(1-\sqrt{3}i)^n$ equals

Options:

A. 2 ⁿ
B. 2 ^{n + 1}
C. $(-1)^{n+1}2^n$
D2 ⁿ
Answer: C
Solution:
Solution:
Question 138
Let $P = (-\sin(\beta - \alpha), -\cos\beta)$, $Q = (\cos(\beta - \alpha), -\cos\beta)$
$R = (\cos(R - \alpha + A) \cdot \sin(R - A)) \cdot \left(0 < \alpha \cdot R \cdot A\right)$

Let $P=(-\sin{(\beta-\alpha)},-\cos{\beta}),\ Q=(\cos{(\beta-\alpha)},\sin{\beta})$ and $R=(\cos{(\beta-\alpha+\theta)},\sin{(\beta-\theta)}),\ \left(0<\alpha,\beta,\theta<\frac{\pi}{4}\right)$ be the three points in a plane. Then

Options:

A. P, Q, R are non-collinear

B. Q lies on the line segment of RP

C. R lies on the line segment of PQ

D. P lies on the line segment of QR

Answer: A

Solution:

Solution:

Question 139

The image of the point P(2, 3) with respect to the line x = y is the point Q and the image of Q with respect to the line x = 0 is A(x, y). Then

Options:

A. x = 3, y = -2

B. x = -3, y = 2

C. x = 3, y = 2

D. x = -3, y = -2

Answer: B

Solution:

Solution:

Question 140

All chords of the curve $3x^2-y^2-2x+4y=0$ that subtends a right angle at the origin, pass through a fixed point whose coordinates are

Options:

A. (1, -2)

B. (-1, -2)

C. (1, 2)

D. (-1, 2)

Answer: A

Solution:

Question 141
The locus of the middle points of chords of the parabola $y^2 = 8x$ drawn through the vertex is a parabola whose
Options:
A. focus is (2, 0)
B. latus rectum = 4
C. latus rectum = 8
D. focus is $(0, -1)$
Answer: B
Solution:
Solution:
Question 142
The equation of the common tangent touching the circle $(x - 3)^2 + y^2 = 9$ and parabola $y^2 = 4x$ below the x-axis is
Options:
$A. \sqrt{3}y = -x + \sqrt{3}$
$B. \sqrt{3}y = x + \sqrt{3}$
$C. \sqrt{3}y = x - \sqrt{3}$
$D. \sqrt{3}y = 2x - \sqrt{3}$
Answer: A
Solution:
Solution:
Question 143
It is given that the tangent at the point (2 $\sec\theta$, $3\tan\theta$) of the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to the line $3x - y + 4 = 0$. Then the value of θ is
Options:
A. 90°
B. 60°
C. 45°
D. 30°
Answer: D
Solution:

A common tangent to $9x^2 - 16y^2 = 144$ and $x^2 + y^2 = 9$ is

Options:

A. $y = \frac{3x}{\sqrt{7}} + \frac{15}{\sqrt{7}}$

B. $y = \frac{3x}{\sqrt{7}} - \frac{15}{\sqrt{7}}$

Assume that $\sum\limits_{n=1}^{n} n$, $\sum\limits_{n=1}^{n} n^2$, $\sum\limits_{n=1}^{n} n^3$ are in a geometric progression. Then the value of n is

Options:

- A. 12
- B. 14
- C. 6
- D. 4
- Answer: D

If $s_n = \sum_{k=1}^{n} \frac{1+2+2^2+... \text{ to } k \text{ terms}}{2^k}$, then s_n is equal to

Options:

A.
$$n - 1 + \frac{1}{2^n}$$

B.
$$1 - \frac{1}{2^n}$$

C.
$$2^n - (n + 1)$$

D.
$$2^{n} - 1$$

Answer: A

Solution:

Solution:

Question 149

If a, b, c, d, e, f are in Arithmetic Progression, then e-c is equal to

Options:

A.
$$2(b - c)$$

C.
$$2(d - c)$$

D.
$$2(f - d)$$

Answer: C

Solution:

Solution:

Question 150

The sum of the infinite series $\left(\frac{1}{3}\right)^2 + \frac{1}{3}\left(\frac{1}{3}\right)^4 + \frac{1}{5}\left(\frac{1}{3}\right)^6 + \dots$ is equal to

Options:

A.
$$\frac{1}{4}\log 2$$

B.
$$\frac{1}{6}\log 2$$

C.
$$\frac{1}{4}\log 3$$

D.
$$\frac{1}{6} \log 3$$

Answer: B

Solution:

Solution:

Question 151

If $y = \sin x$, then $\frac{d^2}{dy^2}(\cos^7 x)$ is equal to

Options:

A. $35\cos^3 x - 42\cos^5 x$

Let g(x) be the inverse function f(x) and f'(x) = $\frac{1}{1+x^3}$, then g'(x) is equal to

Options:

Solution:

A.
$$\frac{1}{1 + (g(x))^3}$$

B.
$$\frac{1}{1 + (f(x))^3}$$

C.
$$1 + (g(x))^3$$

D.
$$1 + (f(x))^3$$

Answer: B

Solution:

Solution:

Question 153

The domain of the function $f(x) = \sin^{-1} \left(\frac{4}{3 + 2\cos x} \right)$ is

Options:

A.
$$2n\pi - \frac{\pi}{6} \le x \le 0$$
, n is an integer

B.
$$2n\pi - \frac{\pi}{6} \le x \le 2n\pi + \frac{\pi}{6}$$
, n is an integer

C.
$$0 \le x \le 2n\pi + \frac{\pi}{6}$$
, n is an integer

D.
$$2n\pi - \frac{\pi}{3} \le x \le 2n\pi + \frac{\pi}{3}$$
, n is an integer

Answer: D

Solution:

Solution:

Question 154

Let [,] be the greatest integer function. If [x + [2x]] < 3, then

Options:

A.
$$x \in (-\infty, 1)$$

B.
$$x \in [0, 1)$$

C.
$$x \in [-\infty, 3/2)$$

D.
$$x \in [0, 3/2)$$

Answer: A

Solution:

Let $f: R \to R$ be defined by $f(x) = (x+1)^2 - 1$, $x \ge -1$. Then the set of values of x for which $f(x) = f^{-1}(x)$ is given by

Options:

A. {0}

B. $\{0, -1\}$

C. {0, 1}

D. $\{0, ∞\}$

Answer: B

Solution:

Solution:

Question 156

$$\lim_{x \to \infty} \left(\begin{array}{c} \frac{x^2 + 5x + 3}{x^2 + x + 2} \end{array} \right)^x$$
 equals

Options:

A. e^2

B. e^3

 $C. e^4$

D. e^5

Answer: C

Solution:

Solution:

.....

Question 157

 $\lim_{x\to\infty}(\sin\sqrt{x+1}-\sin\sqrt{x})$ is equal to

Options:

A. 1

B. -1

C. 0

D. ∞

Answer: C

Solution:

Solution:

Question 158

If f (x) = $\begin{cases} \frac{1-\cos x}{x} & x \neq 0 \\ k & x = 0 \end{cases}$. is continuous at x = 0, then the value of k is

Options:

A. 0

B. $\frac{1}{2}$

C. $\frac{1}{4}$
D. $-\frac{1}{2}$
Answer: A
Solution:
Solution:
Question 159
Let f be a function which is continuous and differentiable for all real x. If $f(2) = -4$ and $f'(x) \ge 6$ for all $x \in [2, 4]$, then
Options:
$A. f(4) \le 8$
$B. f(4) \ge 8$
$C. f(4) \ge 12$
D. $f(4) \le 12$
Answer: B
Solution:
Solution:
Question 160
Let f (x) = $\frac{x^2-1}{x^2+1}$ for every real number x. Then the minimum value of f
Options:
A. does not exist because f is unbounded
B. is not attained even though f is bounded
C. is equal to 1
D. is equal to -1
Answer: D
Solution:
Solution:
Question 161
The set of all values of a satisfying $\log_2(ax^2 + x + a) \ge 1$ for all $x \in \mathbb{R}$, is
Options:
$A \left(0, 1 + \frac{\sqrt{5}}{3} \right)$

A.
$$\left(0, 1 + \frac{\sqrt{5}}{2}\right)$$

B.
$$\left(1+\frac{\sqrt{5}}{2},\infty\right)$$

C.
$$(0, 1 - \frac{\sqrt{5}}{2})$$

D.
$$\left(1 - \frac{\sqrt{5}}{2}, 1 + \frac{\sqrt{5}}{2}\right)$$

Answer: B

Solution:

Question 162 If the roots of the equation $(a^2 + b^2)y^2 - 2(ac + bd)y + c^2 + d^2 = 0$ are equal, then Options: A. ab = dc

Options:

A. ab = d c

B. ac = bd

C. ad = -bc

D. ad = bc

Answer: D

Solution:

Question 163

The number of integers k such that $1 \le k \le 100$ and $2^k + 3^k + 5^k$ is divisible by 4 is

Options:

A. 47

B. 48

C. 49

D. 50

Answer: C

Solution:

Solution:

Question 164

The number of ways of arranging letters of the word BACANA so that \boldsymbol{C} and \boldsymbol{N} do not appear together is

Options:

A. 30

B. 40

C. 60

D. 80

Answer: D

Solution:

Solution:

Question 165

The system of equations $2x\cos^2\theta + y\sin 2\theta - 2\sin \theta = 0$ $x\sin 2\theta + 2y\sin^2\theta = -2\cos\theta$ $x\sin \theta - y\cos \theta = 0$ for all values of θ , can

Options:

A. can have a unique non-trivial solution

B. cannot have a solution

C. can have infinite number solutions

D. can have only trivial solution

Answer: B	
Solution:	
Solution:	
Question 166	
$\frac{1}{n!}$ + $\frac{1}{2!(n-2)!}$ + $\frac{1}{4(n-4)!}$ + + ∞ is equal to	
Options:	
A. $\frac{2^{n}}{n!}$	
B. $\frac{2^n}{(n+1)!}$	
C. $\frac{2^{n-1}}{n!}$	
D. $\frac{2^{n-2}}{(n+1)!}$	
Answer: C	
Solution:	
Solution:	
Question 167	
An elevator starts with m passengers and s passengers alight at the same floor is	teps at n floors (m \leq n). The probability that no two
Options:	
A. $\frac{^{n}P_{m}}{m^{n}}$	
B. $\frac{^{n}C_{m}}{m^{n}}$	
C. $\frac{^{n}C_{m}}{n^{m}}$	
D. $\frac{^{n}P_{m}}{n^{m}}$	
Answer: D	
Solution:	

Question 168

10 different books and 2 different pens are given to 3 boys so that each gets equal number of things. The probability that the same boy does not receive both the pens is

Options:

Solution:

- A. $\frac{7}{11}$
- B. $\frac{5}{11}$
- C. $\frac{2}{3}$
- D. $\frac{5}{11}$

Answer: B

Solution:

Question 169
If $tan^2\theta = 2tan^2\phi + 1$, then $cos 2\theta + sin^2\phi$ is equal to
Options:
A1
B. 0
C. 1
D. 2
Answer: B
Solution:
Solution:
Question 170
If $\sin \theta = 3\sin (\theta + 2\alpha)$, then the value of $\tan(\theta + \alpha) + 2\tan \alpha$ is
Options:
A. 3
B. 2
C. 1
D. 0
Answer: D
Solution:
Solution:
Question 171
If P is a point on the altitude AD of the triangle ABC such that $\angle CDP = \frac{B}{3}$, then AP is equal to
Options:
A. $2asin \frac{C}{3}$
B. $2bsin \frac{C}{3}$
C. $2 \operatorname{csin} \frac{B}{3}$
D. $2 \operatorname{csin} \frac{C}{3}$
Answer: C
Solution:
Solution:
Question 172
The equation of the family of curves which intersect the hyperbola $xy = 2$ orthogonally is
Options:
$A. y = \frac{x^2}{4} + C$

B. $y = \frac{x^3}{6} + C$

C. $y = -\frac{x^3}{6} + C$

Topins T	If $\begin{vmatrix} g(y) & g'(y) \\ g(y) & g'(y) \end{vmatrix} = 0$, $g(0) = 1$ and $g'(0) = 2$, then $g(1)$ belongs to the interval	
A. [5, 7] B. [8, 10] C. [9, 12] D. [6, 9] Answer: D Solution: Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and M X = N be an inconsistent system of equations. Then the highes possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nur differentiable Answer: C Solution: Solution: Solution: Question 179 The value of cos 105° is equal to Options:	•	
B. [8, 10] C. [9, 12] D. [6, 9] Answer: D Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and M X = N be an inconsistent system of equations. Then the highes possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: Question 179 The value of cos 105' is equal to Options:		
C. [9, 12] D. [6, 9] Answer: D Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and MX = N be an inconsistent system of equations. Then the highes possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable D. neither continuous nor differentiable Solution:		
D. [6, 9] Answer: D Solution: Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and MX = N be an inconsistent system of equations. Then the highes possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous and differentiable D. neither continuous nor differentiable D. neither continuous nor differentiable Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution:		
Answer: D Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and MX = N be an inconsistent system of equations. Then the highest possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f(x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous and differentiable D. neither continuous nor differentiable Answer: C Solution:		
Solution: Solution: Question 177 Let M be a 3 × 4 real matrix and M X = N be an inconsistent system of equations. Then the highes possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f(x) = x+1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution:		
Solution: Question 177 Let M be a 3 × 4 real matrix and MX = N be an inconsistent system of equations. Then the highest possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f(x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: Question 179 The value of cos 105° is equal to Options:		
Question 177 Let M be a 3 × 4 real matrix and M X = N be an inconsistent system of equations. Then the highest possible rank of M is Options: A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: Question 179 The value of cos 105° is equal to Options:		
A. 4 B. 3 C. 2 D. 1 Answer: C Solution: Solution: Muestion 178 The function f(x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: Question 179 The value of cos 105° is equal to Options:	Question 177 Let M be a 3×4 real matrix and MX = N be an inconsistent system of equations. Then the h	ıighes
B. 3 C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: The value of cos 105° is equal to Options:	Options:	
C. 2 D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Solution: The value of cos 105° is equal to Options:	A. 4	
D. 1 Answer: C Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	B. 3	
Answer: C Solution: Solution: Question 178 The function f(x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	C. 2	
Solution: Solution: Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: The value of cos 105° is equal to Options:	D. 1	
Question 178 The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Ouestion 179 The value of cos 105° is equal to Options:	Answer: C	
Question 178 The function f(x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Ouestion 179 The value of cos 105° is equal to Options:	Solution:	
The function f (x) = x + 1 on the interval [-2, 0] is Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Ouestion 179 The value of cos 105° is equal to Options:		
Options: A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	Question 178	
A. differentiable but not continuous B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	The function $f(x) = x + 1 $ on the interval $[-2, 0]$ is	
B. continuous and differentiable C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	Options:	
C. continuous but not differentiable D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	A. differentiable but not continuous	
D. neither continuous nor differentiable Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	B. continuous and differentiable	
Answer: C Solution: Solution: Question 179 The value of cos 105° is equal to Options:	C. continuous but not differentiable	
Solution: Solution: Question 179 The value of cos 105° is equal to Options:	D. neither continuous nor differentiable	
Question 179 The value of cos 105° is equal to Options:	Answer: C	
Question 179 The value of cos 105° is equal to Options:	Solution:	
The value of cos 105° is equal to Options:	Solution:	
Options:	Question 179	
	The value of cos 105° is equal to	
A. $\frac{1}{4}(\sqrt{2}-\sqrt{3})$	Options:	
	A. $\frac{1}{4}(\sqrt{2}-\sqrt{3})$	

B. $\frac{1}{\sqrt{2}}(2-\sqrt{6})$

C. $\frac{1}{4}(\sqrt{2} - \sqrt{6})$

D. $\frac{\sqrt{6}}{4}$

Let $z^3 = \overline{z}$, where z is a complex number not equal to zero. Then z is a solution of the equation
Options:
A. $z^2 = 1$
$B. z^3 = 1$
C. $z^4 = 1$
D. $z^9 = 1$
Answer: C
Solution:
Solution:
Question 184
The equation of the line normal to the function $f(x) = (x - 8)^{\frac{2}{3}} + 1$ at the point (0, 5) is
Options:
A. y = 3x - 5
B. $3y = x + 15$
C. $3y = x - 15$
D. $y = 3x + 5$
Answer: D
Solution:
Solution:
Question 185
The fifth term of a G.P is 2 . Then the product of first 9 terms is
Options:
A. 128
B. 512
C. 256
D. 64
Answer: B
Solution:
Solution:
Question 186
If the non-zero numbers x , y , z are in A.P, and $tan^{-1}x$, $tan^{-1}y$, $tan^{-1}z$ are also in A.P, then
Options:
A. x = y = z
B. $xy = yz$
$C. x^2 = yz$
$D. z^2 = xy$
Answer: A
Solution:

Question 187	
Let $f(x) = m + nx + x ^2$, where m, n, and are real constants. Then $f'(0)$ exists if	
ptions:	
$\mathbf{A}.\ \mathbf{n} = 0$	
3.1 = 0	
C. m = 0	
0. n = m	
Answer: A	
Solution:	
Solution:	
Question 188	
From a pack of playing cards, two cards are drawn at random. The probability that both cards be a king, if the first card is not replaced is	will
Options:	
A. $\frac{1}{221}$	
B. $\frac{1}{169}$	
C. $\frac{1}{52}$	
D. $\frac{1}{26}$	
Answer: A	
Solution:	
Solution:	
Question 189	
$\lim_{x\to 0} \frac{ x }{x}$	
Options:	
A. is zero	
B. is infinity	
C. does not exist	
D. is -1	
Answer: C	
Solution:	
Solution:	
Question 190	
Consider the region $5x + y \le 100$, $x + y \le 60$, $x \ge 0$, $y \ge 0$. In this region, the point (26, 39)	
Options:	
A. lies inside	
B. lies outside	

C. lies on the boundary

Answer: B
Solution:
Solution:
Question 191
If $C_n = a^n + b^n$, $a + b = 1$, $ab = -1$, $C_{n-1} = 11$, $C_{n+1} = 29$, where $n \in []$, then $(C_n)^2 = []$
Options:
A. 98
B. 246
C. 324
D. 420
Answer: C
Solution:
Solution:
Question 192
The value of $\lim_{x \to 8} \frac{x^{1/3} - 2}{x - 8}$ is
Options:
A. $\frac{1}{16}$
B. $\frac{1}{12}$
C. $\frac{1}{8}$
D. $\frac{1}{4}$
Answer: D
Solution:
Solution:
Question 193
Assume that the duration in minutes of a telephone conversation follows the exponential distribution $f(x) = \frac{1}{5}e^{x/5}$, $x \ge 0$. The probability that the conversation will exceed five minutes is
Options:
A. $\frac{1}{e}$
B. $1 - \frac{1}{e}$
C. $\frac{1}{e^2}$
D. $1 - \frac{1}{e^2}$
Answer: A
Solution:
Solution:

D. is the only point in the region

Question 194 Let $\mathbf{t_n}$ denote the $\mathbf{n^{th}}$ term of the infinite series $\frac{1}{1!} + \frac{10}{2!} + \frac{21}{3!} + \frac{34}{4!} + \frac{49}{5!} + \dots$ Then $\lim_{n \to \infty} \mathbf{t_n}$ is **Options:** A. 0 В. е $C. e^2$ D. 1 **Answer: A Solution:** Solution: **Question 195** Let \vec{v} be a differentiable vector function and f be a differentiable scalar function. Then curl $(f\vec{v}) =$ **Options:** A. $\vec{0}$ B. f curl (\vec{v}) C. (grad f) $\times \vec{V}$ D. $(\operatorname{grad} f) \times \overrightarrow{v} + (f \operatorname{curl}(\overrightarrow{v}))$ **Answer: D Solution:** Solution: **Question 196** If |z| = |z - 1|, then **Options:** A. Re(z) = 1B. Re(z) = $\frac{1}{2}$ C. Im(z) = 1D. Im(z) = $\frac{1}{2}$

Answer: B

Solution:

Solution:

Question 197

If θ is an acute angle such that $\tan^2 \theta = \frac{8}{7}$, then the value of $\frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)}$ is

Options:

A.
$$\frac{8}{7}$$

B.
$$\frac{7}{8}$$

C. $\frac{7}{4}$
D. $\frac{64}{49}$
Answer: B
Solution:
Solution:
Question 198
Let R be a relation defined on the set Z of all integers and xRy when $x + 2y$ is divisible by 3 . Then
Options:
A. R is not transitive
B. R is symmetric only
C. R is an equivalence relation
D. R is not an equivalence relation
Answer: D
Solution:
Solution:
Question 199
The range of the function $f(x) = \sqrt{\frac{x}{1+x}}$ is
Options:
A. (0, ∞)
B. (0, ∞]
C. $(0, \infty] - \{1\}$
D. [0, ∞)
Answer: C
Solution:
Solution:
Question 200
If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (a, b) is parallel to the line $x - y = 4$, then the value of b is
Options:
A. $\frac{3}{2}$
B. $-\frac{2}{3}$
C. $\frac{2}{3}$
D. $-\frac{3}{2}$
Answer: D
Solution:
Solution: