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Chapter 1
Fluid Properties
and Manometry

Introduction
Fluid Mechanics is defi ned as the science that deals with 
a fl uid’s behaviour, when it is at rest or in motion, and the 
 fl uid’s interaction with other fl uids or solids at the bound-
aries. Fluid Statics deals with fl uids at rest while Fluid 
Dynamics deals with fl uids in motion. The study of incom-
pressible  fl uids under static condition is called hydrostatic. 
The study of compressible static gases is called aeromatics.

Fluid
Matter can be primarily classifi ed as: 

 1. Solids 

 2. Liquids 

 3. Gases

MATTER
Inter-molecular

Space Cohesive Forces

Solids Small Large

Liquids Large Small

Gases Very large Very small

Liquids and gases (including vapours) are commonly 
referred to as fl uids. A fl uid is defi ned as a substance that 
deforms continuously under the infl uence of a shear stress 
of any magnitude, i.e., when subjected to an external shear 
force, of any magnitude, a fl uid will deform continuously 

as long as the force is applied. A fl uid has negligible shear 
resistance, i.e., it off ers negligible resistance towards an 
applied shear (or tangential) stress that tends to change the 
shape of the fl uid body.

Shear and Normal Stresses
Stress is defi ned as force per unit area (area upon which the 
force acts). Let us consider a small area dA, on the surface 
of a fl uid element, on which a force F acts as shown in the 
fi gure.

If the tangential and normal components of the force F 
are respectively Ft and Fn, then

Normal to the surface

Tangent to the
surface 

Fluid element surface

Fn F

dA
Ft

Shear stress (t) at the surface of the fl uid element 

= =
F

dA

F

dA
t cos

.
θ
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Normal stress at the surface of the fluid element 

= =
F

dA

F

dA
n sin

.
θ

Normal stress and shear stress are vector quantities.
For a static fluid body, i.e., a body of fluid that is at rest 

or has zero velocity, the shear stress is always zero. Also for 
static fluids, the normal stress is always positive.

SOLVED EXAMPLES

Example 1
A force F1 (= 20 N) is applied on an area A1 (= 0.1 cm2) at the 
surface of a fluid element in the outward direction. The force 
F1 acts at an angle of 60° from the tangential plane at the 
point of application of the force. Another force F2 (= 60 N) 
is applied, in the same manner as the force F1, on another 
area, A2 (= 0.2 cm2) at the surface of the same fluid element.  
The ratio of the normal stress at area A1 to the shear stress 
at area A2 is 

(A) 2 : 3 (B) 2 : 3 3

(C) 2 : 3  (D) 1 : 3

Solution
Area A1:

F1 sin 60°

F1 cos 60°

F1

= 60°

Plane surface

Normal stress acting on area A1

=
°
=

×
×

−

F

A
1

1
4

60 20

0 1 10

3

2

sin

.

= ×3 106 N/m2

Area A2:
F2 sin 60°

F2 cos 60°

F2

= 60°

Shear stress acting on area A2

= =
×

× ×−
F

A
2

2
4

60 60 1

0 2 10 2

cos

.

�

= ×1 5 106. N/m2

Ratio of the normal stress at area A1 to the shear stress at 
area A2

=
×
×

=
3 10

1 5 10

2

3

6

6.
 or = 2 3:

Hence, the correct answer is option (C).

Example 2
An example for a normal stress is 
(A) volume (B) shear stress
(C) pressure (D) temperature

Solution
Pressure is an example for a normal stress. In static fluids, 
the pressure at a given position is equal to the normal stress 
at that position.
Hence, the correct answer is option (C).

Example 3
On an area of 0.1 cm2 at the surface of a static fluid element, 
a force of 40 N is observed to act in the outward direction. If 
the force acts at an angle a from the tangential plane at the 
point of application of the force, and the fluid still remains 
static then the value of a is
(A) 0° (B) 30°
(C) 45° (D) 90°

Solution

Shear stress acting on the given area =
F

A

cosα

F2F sin

F cos

Area dA

For a static fluid element, shear stress = 0

⇒ =
F

A

cosα
0

or cos a = 0 (∵F ≠ 0, A ≠ ∞)
	 	 \ a = 90° 
Hence, the correct answer is option (D).

Fluid Properties
 1. Density (mass density or specific mass): Density is 

defined as mass per unit volume. If m is the mass of a 

fluid body having a volume V, then the density of the 

fluid, denoted by r, is ρ =
m

V
The SI unit of density 

is kg/m3. For practical calculations, the density of 
water is taken to be the density of water at 4°C which 
is 1000 kg/m3 or 1 g/cm3 or 1 kg/lit. For most gases, 
density is inversely proportional to the temperature 
and proportional to pressure. For liquids, variations in 
pressure and temperature induce a small (negligible) 
variation in the density.
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Example 4
A gas behaves like a real gas at temperature T1 and 
pressure P1. The gas can be made to behave approximately 

like an ideal gas by either changing the temperature from T1 
to T2 or by changing the pressure from P1 to P2. One may 
then conclude that

(A) T2 > T1 and P2 < P1 (B) T2 < T1 and P2 < P1

(C) T2 > T1 and P2 > P1 (D) T2 < T1 and P2 > P1

Solution
Real gases have been experimentally observed to behave 
like ideal gases at low densities.

The density of most gases can be reduced by increasing 

the temperature as ρ ∝







1

T
 or by decreasing the pressure 

(as r ∝ P).

\ T2 > T1 and P2 < P1.

Hence, the correct answer is option (A).

 2. Specific volume: Specific volume is defined as volume 
per unit mass. The reciprocal of a fluid’s density (r) is 

its specific volume (n), i.e., ν
ρ

= =
1 V

m
.  The SI unit 

of specific volume is m3/kg.

 3. Specific weight (weight density): Specific weight 
is defined as weight per unit volume. The specific 

weight of a fluid, ω ρ= = =
W

V

mg

V
g ,  where, g is 

the acceleration due to gravity and W, V, m and r are 
respectively the weight, volume, mass and density 
of the fluid. The SI Unit of specific weight is kg/
m2s2. For practical calculations, the specific weight 
of water is taken to be 9.81 kN/m3. Specific weight 
depends upon temperature, pressure and location.

 4. Specific gravity (relative density): Specific gravity 
of a fluid is the ratio of the density of the fluid to 
the density of a standard fluid. The standard fluid 
is taken to be pure water at 4°C. Sometimes for 
gases, the standard fluid is taken to be air at standard 
temperature and pressure.

   Specific gravity of a fluid, 

SGfluid
fluid

standard fluid

fluid

standard fluid

= =
ρ

ρ
ω

ω

  Where, w is the specific weight. Specific gravity is 
a dimensionless quantity, i.e., it has no units. For 
practical calculations, the specific gravities of water 
and mercury are taken to be 1 and 13.6 respectively.

Example 5
The specific weight of a body of fluid A is twelve times that 
of a body of fluid B. The acceleration due to gravity acting 

on the fluid A is four times that acting on the fluid B. If the 
specific gravity of fluid B is 1.2, then the density of fluid A 
(in g/cm3) is 
(A) 57.6 (B) 3.6
(C) 14.4 (D) 0.4

Solution

Specific weight of fluid 

Specific weight of fluid 

A

B
A

B

=
ω
ω

=
ρ
ρ

A A

B B

g

g
 (1)

It is given that 
ω
ω

A

B

=
12

1
 and 

g

g
A

B

=
4

1

From Eq. (1), we have 
ρ
ρ

A

B

=
3

1
.

Specific gravity of fluid A

= Specific gravity of fluid B A

B

×










ρ
ρ

= 1.2 × 3 = 3.6.

Density of fluid A = Specific gravity of fluid A × Density of 
pure water at 4°C

= 3.6 × 1 

= 3.6 gm/cm3.

Hence, the correct answer is option (B).

Example 6
Two immiscible liquids A and B, when poured into a cylin-
drical container, separate out into two distinct layers of dif-
ferent heights as shown in the following figure. The specific 
gravity of liquid A is thrice that of the liquid B. If the ratio 
h1 : h2 is 2 : 1, then the ratio of the mass of the liquid A to 
the mass of the liquid B in the container is

B

A

h1

h2

(A) 1 : 6   (B) 2 : 3
(C) 6 : 1 (D) 3 : 2

Solution
If mA and mB are the masses of the liquids A and B respec-

tively in the container, then m

m

V

V
A

B

A A

B B

=
SG

SG
,  where SG is the 

fluid’s specific gravity and V is the volume of the fluid.
Since the specific gravity of liquid A is greater than 

that of liquid B (SGA = 3 × SGB), liquid A is denser. 
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Hence, the height h2 corresponds to the liquid A, i.e., VA 
= h2 × a, where a is the area of the container base and VB 
= h1 × a.

∴ = =
m

m

h

h
A

B

A

B

SG

SG
2

1

3

2
.

Hence, the correct answer is option (D).

 5. Viscosity: Viscosity is the property of the fluid by 
virtue of which it resists fluid flow, i.e., viscosity 
represents the internal resistance (fluid friction) of a 
fluid to motion (or the fluidity) or to shearing stresses. 
The SI unit of viscosity is kg/ms or Ns/m2 or Pa/s. 
Another unit (in CGS units) for viscosity is poise. 

1 0 1 2poise  Ns/m= .

  Viscosity of water, for practical calculations, is taken 
to be 1 centipoise or 0.01 poise. The device that 
measures viscosity is called a viscometer. 

Variation of Viscosity of Fluids 
with Temperature
The cohesive forces and molecular momentum transfer 
result in viscous forces in fluids.

Since temperature affects both the cohesive forces 
and molecular momentum transfer, viscosity of fluids are 
affected by variations in temperature.

Liquids
As liquids have a closely packed molecular structure (com-
pared to gases), cohesive forces dominate over the molecu-
lar momentum transfer. With increase in temperature, the 
cohesive forces decrease in liquids, which in turn decreases 
the viscosity.

Hence, viscosity of liquids decrease with increase in 
temperature and vice versa.

The relation between viscosity and temperature in 
liquids is

m = µ
α β0 2

1

1+ +








t t

,

Where
m = Viscosity of liquid at t°C, in poise
m0 = Viscosity of liquid at 0°C, in poise
a, b = Constants for the liquid

The viscosity of water at 1°C is 1 centipoise. Liquids with 
increasing order of viscosity are gasoline, water, crude oil, 
castor oil, etc.

Gases
In the case of gases, the molecular momentum transfer domi-
nates over the cohesive forces. As the temperature increases, 
molecular momentum transfer also increases.

Hence, the viscosity of gases increases with increase in 
temperature and vice versa. 

The relation between viscosity and temperature for 
gases is

m = m0 + at - bt2 ,

Where
m = Viscosity of gas at t°C, in poise
m0 = Viscosity of gas at 0°C, in poise
a, b = Constants for the gas

The relation between absolute temperature (T) and dynamic 
viscosity of an ideal gas is given by Sutherland equation, 
which is

µ
µ0 0

3 2
0=











+
+

T

T

T S

T S

/
( )

( )

Where
m = Viscosity at absolute temperature T
m0 = Viscosity at absolute temperature T0
S = Sutherland temperature of the gas (in Kelvin)

Velocity Gradient
Consider the flow of a fluid over a solid surface as shown in 
the figure below. Consider in this fluid flow, two fluid layers 
which are at a distance ‘dy’ apart. The upper fluid layer (at, y 
+ dy) is assumed to move at a velocity of (u + du), while the 
lower fluid layer (at y) is assumed to move at a velocity of u.

y

y + dy

y
dy

Upper
layer
Lower
layer

u

u + du

u

Solid surface
Then, the velocity gradient 

             =
+ −
+ −

=
( )

( )

u du u

y dy y

du

dy

du

dy

u

y

u u

y y
y y y y≈ =

−

−
= =∆

∆
2 1

2 1

This equation is valid when y2 is very close to y1 or for a 
linear velocity profile.

Now consider a fluid layer between two very large paral-
lel plates, separated by a distance l, as shown in the follow-
ing figure. 

y = l

l

y = 0

Upper plate

Lower plate

y

x

u = Vl

Velocity
Vl

(Vu > Vl)0

u = Vu
Force F

Velocity
Vu
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Let a constant parallel force F be applied to the upper plate 
which would move it at a constant speed Vu, after the ini-
tial dynamics. This force would move the fluid layer in 
contact with the upper plate at the same speed Vu in the 
direction of motion of the upper plate (due to no-slip condi-
tion). Similarly, if the lower plate moves with a velocity Vl 
the fluid in contact with the lower plate would move with 
the same velocity Vl in the direction of motion of the lower 
plate.

If the fluid flow between the plates is steady and laminar, 
then a linear velocity profile is seen to develop in the fluid 
layer. That is, the fluid velocity between the plates vary lin-
early between Vl and Vu.

For the linear velocity profile, the velocity gradient,

du

dy

V V

l

V V

l
u l u l=
−
−

=
−

0

The linear velocity profile is given by, u y
y

l
V Vu l( ) ( )= −

Case 1: When the lower plate is held fixed In this case, Vl 
= 0. Therefore, the velocity gradient,

du

dy

V

l
u=

Case 2: When the lower plate moves in the direction oppo-
site to that of the upper plate motion.

In this case, velocity gradient, 

du

dy

V V

l

V V

l
u l u l=
− −

=
+( )

For a fluid element, it can be shown that the velocity gradi-
ent is equivalent to the rate of deformation or the rate of 
angular displacement or the rate of shear strain.

Newton’s Law of Viscosity
When two fluid layers move relative to each other, the vis-
cosity and the relative velocity causes a shear stress to act 
between the fluid layers. The top fluid layer causes a shear 
stress on the adjacent lower layer while the lower fluid layer 
causes a shear stress on the adjacent top layer. Newton’s 
law of viscosity states that the shear stress acting on a fluid 
layer is directly proportional to the rate of deformation or 

the velocity gradient, i.e., τ α
du

dy
 or τ µ=

du

dy
, where m is 

known as the coefficient of viscosity or the dynamic viscosity 
or the absolute viscosity or simply as viscosity. Fluids which 
follow this law are generally referred to as Newtonian fluids.

For most fluids, shear stress is directly proportional to 
the velocity gradient or the rate of deformation or the rate of 
angular displacement or the rate of shear strain. 

Direction for solved example 7 and 8:
A fluid flowing over a flat solid surface develops a parabolic 
velocity distribution. The vertex of the parabolic distribution 

is situated 10 cm away from the solid surface, where the 
fluid velocity is 1.5 m/s. The shear stress at a point 5 cm 
from the solid surface is determined to be 30 N/m2. The 
fluid follows Newton’s law of viscosity.

Example 7
The viscosity of the fluid is 
(A) 0.2 poise (B) 2 poise
(C) 0 poise (D) 0.1 poise

Solution
Let the parabolic velocity distribution be
  u(y) = ay2 + by + c (1)

10 cmy

Vertex of the
parabola

(u = 1.5 m/s)

Solid surface

At y = 0, u = 0 (no slip condition)
\ From Eq. (1), we have c = 0.
\  u(y) = ay2 + by (2)
At y = 0.1 m (10 cm), u = 1.5 m/s
\ From Eq. (2), we have 
  150 = a + 10b (3)
At the vertex of the parabolic velocity distribution, i.e., at y 

= 0.1 m (10 cm), we have, 
du

dy
= 0

Hence, from Eq. (2), we have,
  2a + 10b = 0 (4)
Solving Eqs. (3) and (4), we get
a = -150 and b = 30
\	 	 u(y) = -150y2 + 30y (5)
At y = 0.05 m (5 cm),

τ = 30 2 N/m

That is, 30 = m
du

dy y











=0 05.

 (6)

(∵  Fluid follows Newton’s law of viscosity).
Inserting the differential of Eq. (5) in Eq. (6) and substi-

tuting the value of y by 0.05, we get

µ = =2 0 22Ns/m .  poise.

Hence, the correct answer is option (A).

Example 8
The shear stress at the solid surface is 
(A) 30 N/m2 (B) 10 N/m2

(C) 60 N/m2 (D) 0 N/m2
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Solution

Now, shear stress τ µ=
du

dy

From Eq. (5), 
du

dy
y= − +300 30

At the solid surface, y = 0
\ Shear stress at the wall 

= µ
du

dy y











=0

= 2 × 30 = 60 N/m2.

Hence, the correct answer is option (C).

Example 9
A square thin plate, of length 80 cm and mass 30 kg, slides 
parallel to a solid plane surface inclined at an angle of 60° to 
the horizontal. A Newtonian fluid layer of thickness 2 mm is 
present in between the plate and the plane surface. Had the 
plane been horizontal, a constant force of 192 N would have 
been required to move the plate at a constant velocity of 3 m/s.  
If the fluid’s velocity profile can be assumed to be linear, 
then the constant force to be applied, parallel to the inclined 
plane, on the plate to make it slide at a instant velocity of 
6 m/s is
(A) 254.87 N (B) 129.13 N
(C) 384 N (D) 89.7 N

Solution
When the plane is horizontal

y = l

l

Plate (area = A)

y

u = V
Force F

Velocity V

Stationary plane

Here, shear stress τ µ= =
F

A

du

dy

(∵  Fluid is Newtonian) 

Since the velocity profile is linear, 
du

dy

V

l
=

          ∴ =F
AV

l

µ
 (1)

Given, F = 192 N, V = 3 m/s, 
A = 0.8 × 0.8 m2 and l = 0.002 m. Substituting these 

values in Eq. (1), we get

µ = 0 2 2. . Ns/m

When the plane is inclined: Constant force to be applied 
on the plate to make it slide down with a constant velocity 

of 6 m/s, F
AV

l
= =

× × ×µ 0 2 0 8 0 8 6

0 002

. . .

.
 = 384 N.

Part of this constant force to be applied will be taken 
care of by the component of the weight of the plate in the 
downward direction parallel to the inclined plane surface, 
i.e., by Wsin 60°.

PlateFluid

W cos 60° W sin 60°
W

60°

 60°

\ Constant force to be applied 

= 384 - Wsin 60°

= 384 - 30 × 9.81 × 
3

2
= 129.13 N

Hence, the correct answer is option (B).

Example 10
In a journal bearing of length 500 mm, a 200 mm diameter 
shaft is rotating at 1000 rpm. The uniform space between 
the shaft and the journal bearing is completely filled with an 
oil (Newtonian fluid) having a viscosity of 900 centipoise. 
If energy is being dissipated as heat at the rate of 15.5 kJ/s, 
while overcoming friction, and the velocity profile in the oil 
is linear, then the thickness of the oil layer between the shaft 
and the bearing is 
(A) 5 mm (B) 1 mm
(C) 2 mm (D) 3 mm

Solution
The rate of energy dissipation as heat, while overcoming 
friction, can be considered to be the power dissipated as 
heat or the power utilized (or lost) to overcome the resist-
ance imparted by the fluid viscosity.

d

l

δ

Oil (viscosity =   )µ

If the shaft is rotating at N rpm, then the tangential velocity 

of the shaft, u
dN

=
π

60
,  where d is the diameter of the shaft 
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∴ =
× ×

u
π 0 2 1000

60

.
 

      =10 472.  m/s

We have, F = m A 
du

dy

         0.9 × 0.2 × 0.5 
10 472.

δ






  (1)

But F × u = P = 15500

F = 
15500

10 472
1480 14

.
.=

\	From Eq. (1) d = 2 mm.
Hence, the correct answer is option (C).

Example 11
A solid cylinder of diameter d, length l and density rc falls 
due to gravity inside a pipe of diameter D. The clearance 
between the solid cylinder and the pipe is filled with a 
Newtonian fluid of density r and m. For this clearance fluid, 
the terminal velocity of the cylinder is determined to be V, 
assuming a linear velocity profile. However, if the clearance 
fluid was changed to a Newtonian fluid of density 2r and 
viscosity 2m, then for an assumed linear velocity profile, the 
terminal velocity of the cylinder was determined to be V1. 
From the results of these experiments, one may write that
(A) V1 = V (B) V = 2V1
(C) 2V = V1 (D) V = 4V1

Solution
Resolving the forces acting on the cylinder, F = W – Fd or 
ma = W – Fd, 

Viscous drag (Fd)

W

F = ma

Where m, W and a are the mass, weight and acceleration 
respectively of the solid cylinder.

When the cylinder attains terminal velocity, a = 0

	 	 \ W - Fd = 0 (1)

Now Fd = t A
Since the fluid is Newtonian, 

F
V

D d
dld = −

×
µ

π

2

 (for the first experiment) (2)

Now the weight of the cylinder, W g
d

lc= × × ×ρ π
2

4  
(3)

Substituting Eqs. (2) and (3) in Eq. (1) and rearranging, 
we get 

V
g d D dc=
× −ρ
µ
( )

8
\ The terminal velocity of the cylinder does not depend on 
the density of the fluid.

Hence
V

V
1

2
=
µ
µ

or V =	2V1.

Hence, the correct answer is option (B).

Alternative solution:
At the condition of terminal velocity force of the drag is the 
weight. Force of drag

F = 6pamv

Where, m = the Coefficient of viscosity

\ FD a mv
\ mv1 =  m2 v2

        v
v

2
1 1

2

=
µ
µ

												=
µ
µ
1 1

12

v
⋅ = 

v1

2

       v
v

2
1

2
= .

Example 12
A vertical gap, of width 5 cm and of an infinite extent, 
contains a Newtonian fluid of viscosity 3 Ns/m2 and specific 
gravity 0.5. A metal plate (1.5 m × 1.5 m × 0.5 cm) with a 
weight of 50 N is to be lifted with a constant velocity of 0.5 
m/s as shown in the following figure. 

Metal plate

Vertical gap
containing a fluid 

If the plate is lifted such that the plate is parallel apart from 
the left side of the gap by a distance of 2 cm always, then the 
force required to pull the plate, neglecting buoyancy effects 
and assuming linear velocity profiles, is
(A) 468.81 N (B) 929 N
(C) 353.75 N (D) 390.25 N

Solution
The shear force acting on the left side of the metal plate, 

F A
V

d
l

l

= × ×
−







µ

0
,  where A is the surface area of the 
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plate, m is the fluid viscosity, V is the constant velocity with 
which the plate moves and dl is the distance of the plate 
from the left side of the vertical gap.

\ Fl = 1.5 × 1.5 × 3 × 
0 5

0 02

.

.

									= 168.75 N
The shear force acting on the right side of the metal plate, 

Fr = A × m × 
V

dr

−









0
, where dr is the distance of the 

plate from the right side of the vertical gap.
Here, dr = 0.05 - 0.02 - 0.005 

                   = 0.025 m

\ Fr = 1.5 × 1.5 × 3 × 
0 5

0 025

.

.
= 135 N

If buoyancy effects were not neglected, then an upward 
thrust experienced by the metal plate due to buoyancy 
should be accounted for in the calculations to follow.

Shear force
(Fr )

Shear force
(Fl)

FB upward
thrust by
buoyancy

(neglected)  W
(weight)

F

\ Force required to lift the plate 

= Fl + Fr + W - FB
= 168.75 + 135 + 50 

(∵  FB is neglected)

= 353.75 N.

Hence, the correct answer is option (C).

Classification of Fluids
Fluids can be classified into the following types.

 1. Ideal fluid (hypothetical fluid) or perfect fluid

 2. Real fluid (practical fluid)

 3. Newtonian Fluid

 4. Non-Newtonian Fluid

These are explained as follows:

Ideal Fluid or Perfect Fluid
These fluids have zero viscosity (i.e., inviscid) and are 
incompressible (i.e., constant density). These fluids do 
not offer shear resistance when the fluid is set in motion. 

Though ideal fluids are hypothetical (i.e., they do not exist 
in reality), this concept is used in mathematical analysis of 
flow problems. Surface tension is zero for ideal fluid.

Real Fluid
Real fluids have non-zero viscosity and hence they offer 
resistance when set in motion. Real fluids have variable 
density and hence they have some compressibility. Surface 
tension is not zero for real fluids.

Newtonian Fluid
These are real fluids. These fluids obey Newton’s law of 
viscosity, i.e., the shear stress in the fluid is directly pro-
portional to the rate of shear strain (which is also known as 
velocity gradient). For such fluids, the graph of shear stress 
versus velocity gradient is a straight line passing through 
the origin (point of zero shear stress and zero velocity 
gradient). The slope of the graph is constant and represents 
the constant viscosity of the fluid at a given temperature.

Air, water, light oils, gasoline, etc., are examples of 
Newtonian fluids.

For Newtonian fluids,

τ µ=
du

dy

Where
t = Fluid shear stress
m = Viscosity of fluid
du

dy
= Velocity gradient (or rate of shear strain) 

The density of Newtonian fluids can be constant or variable 
(i.e., they can be compressible or incompressible).

Non-Newtonian Fluid
These are real fluids in which the shear stress is not equal 
to rate of shear strain. i.e., these fluids do not obey the 
Newton’s law of viscosity.

For non-Newtonian fluids,

τ µ≠
du

dy
The relation between shear stress and velocity gradient for 

non-Newtonian fluid is τ =








 +A

du

dy
B

n

 

Where, A and B are constants that depend upon type of 
fluid and condition of flow.

The non-Newtonian fluids can further be classified as 
shown below.

Time Independent Non-Newtonian Fluids
These are of two types. The first type of fluids start flow-
ing as soon as a shear stress is applied and do not require 
any minimum shear stress to cause flow. Dilatant fluids and 
pseudoplastic fluids belong to this category.
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For dilatant fluids, n > 1, A = m and B = 0

Examples: Butter, quick sand.
For pseudo-plastic fluids, n < 1, A = m and B = 0.
Examples: Lipsticks, paints, blood, paper pulp, rubber 

solution, polymeric solutions, etc.
The second type of time independent  non-Newtonian 

fluids are called ideal plastics or bingham plastic fluids. 
For these fluids, the flow occurs only when the shear stress 
exceeds the yield stress. Once this yield stress is exceeded, 
increase in shear stresses are proportional to the velocity 
gradient. Hence for bingham plastic fluids, n = 1, A = m and 
B ≠ 0 but independent of time.

Examples: Tooth paste and gel, drilling mud, sewage 
sludge, etc.

Time Dependent Non-Newtonian Fluids
For these fluids, flow occurs only when the shear stress 
exceeds the yield stress.

For thixotropic fluids, n < 1, A = m and B ≠ 0. Also B is 
a function of time (t).

Hence, shear stress is of the form, τ µ=








 +

du

dy
f t

n

( )

Examples: Printer ink, enamels.
Viscosity increases with time for such fluids.
For rheopectic fluids, n > 1, A = m and B ≠ 0 and B is a 

function of time (t).

\	 τ µ=








 +

du

dy
f t

n

( )

Viscosity decreases with time for such fluids. 
Examples: Gypsum solution in water, Bentonite solution.
For non-Newtonian fluids also, the density may be con-

stant or variable, hence non-Newtonian fluids can be incom-
pressible or compressible.

The variation of shear stress with velocity gradient for 
various types of fluids is shown below.

Rheopectic

Ideal plastic
(Bingham plastic)

Thixotropic

Pseudoplastic

Newtonian fluid

Dilatant fluid

Ideal fluid

In
iti

al
 s

tr
es

s
S

he
ar

st
re

ss

E
la

st
ic

 s
ol

id

B

(velocity gradient)

dy
du →

Apparent Viscosity
The slope of the shear stress versus velocity gradient curve 
at a point is the apparent viscosity of the respective fluid at 
that point.

Kinematic Viscosity
Kinematic viscosity (g) of a fluid is the ratio of the dynamic 

viscosity (m) to the density (r) of the fluid, i.e., γ
µ
ρ

= .  The 

SI unit of kinematic viscosity is m2/s. Another unit (in CGS 
units) for kinematic viscosity is stoke.

1 1 102 4 2stoke  cm /s m /s.= = −

Example 13
The kinematic viscosity of air at 70°C is 2.11 × 10-5 m2/s. 
If the Sutherland temperature for air is 110.4 K, then the 
kinematic viscosity of air at 50°C is
(A) 2.11 × 10-5 m2/s  (B) 1.9 × 10-5 m2/s 
(C) 1.5 × 10-5 m2/s  (D) 3 × 10-5 m2/s 

Solution
Sutherland equation relating absolute temperature and the 
dynamic viscosity of an ideal gas is,

µ
µ0 0

3 2
0=











+
+









T

T

T S

T S

/

Where
m = Viscosity at absolute temperature T
m0 = Viscosity at absolute temperature T0
S = Sutherland temperature.

For air, 
ρ
ρ0

0=
T

T

(∵  Air is assumed as an ideal gas at constant pressure.)

Now      
γ
γ

µ ρ
ρµ0

0

0

= = 
µ
µ0 0

T

T











γ
γ 0 0

5 2
0=











+
+









T

T

T S

T S

/

,

Where
S = 110.4 K
T = 323.15 K,
T0 = 343.15 K,
γ 0

52 11 10= × −.  m /s2  

										g = the kinematic viscosity

\ Kinematic viscosity of air at  

50°C = g = 1.8996 × 10-5 m2/s..

Hence, the correct answer is option (B).

Example 14
Between two large fixed parallel plane surfaces, a thin plate 
is pulled, parallel to the lower plane surface, with a constant 
force. The space between the plate and the plane surface is 
filled with two types of oil where the top oil (oil at the top 
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side of the plate) and the bottom oil (oil at the bottom side 
of the plate) have different kinematic viscosities. The dis-
tance between the plate and the lower plane surface is one 
fourth the distance between the two plane surfaces. In this 
horizontal position, the force required to drag the plate is 
the minimum compared to that required for any other hori-
zontal positions. If the ratio of the specific mass of the top 
oil to that of the bottom oil is 1 : 3, then the corresponding 
ratio of their kinematic viscosities, should be
(A) 27 : 1 (B) 9 : 1
(C) 3 : 1 (D) 1 : 3

Solution
For a thin plate, it can be assumed that the plate thickness 
is negligible

h

y Velocity = V

Thin plate (area = A)

Upper fixed plane surface

Lower fixed
plane surface

Top oil
Viscosity =
Density = 

µ1
ρ1

Bottom oil
Viscosity =
Density = 

µ2
ρ2

Given, 
ρ
ρ

1

2

1

3

1

4
= =and

y

h
The oils are assumed to be Newtonian fluids. A linear 

velocity profile is assumed to be present in the oils. 
Shear force on the top side of the plate, 

F A
du

dy
A

V

h y
t = =

−
µ µ1 .

Similarly shear force on the bottom side of the plate, 

Fb = Am2 
v

y
.

Total force required to drag the plate, F = Ft + Fb

=
−

+








AV

h y y

µ µ1 2 .

For the required force to be minimum for a given hori-

zontal position of the plate, 
∂
∂

=
F

y
0

⇒
−

−
−

=
µ µ1

2
2

2
0

( )h y y

\	 	
µ
µ

1

2

2

2

3

4

1

4

9=

















= .

Ratio of kinematic viscocities

r

r
1

2

1

1

2

2

=
µ
ρ

ρ
µ

 = 9 × 3 = 27 or 27:1.

Hence, the correct answer is option (A).

Vapour Pressure
Vapour pressure of a liquid, at a particular temperature, 
is the pressure exerted by its vapour in phase equilibrium 
(when the vapour is saturated) with the liquid at that 
temperature. As the temperature increases, vapour pressure 
also increases. When the vapour pressure of a liquid is equal 
to the external environmental pressure, the liquid will start 
to boil. Vapour pressure depends upon molecular activity 
which is function of temperature. Vapour pressure increases 
with increase in temperature.

This property plays a role in the phenomenon called 
cavitation. Cavitation, which is highly undesirable due to 
its destructive properties, is the formation and collapse 
of vapour bubbles in liquid flow systems. Vapour bubbles 
are formed at locations where the pressure in the liquid 
flow system is below the vapour pressure of the liquid. 
Cavitation usually occurs in hydraulic structures like spill-
ways, sluice gates and hydraulic machinery such as turbine 
and pumps.

Difference between Vapourisation 
and Boiling
The translational momentum of some surface molecules of 
the liquid enable them to overcome the molecular attractive 
force and these molecules escape into the free space above 
the liquid surface to become vapour. This process is vapour-
isation and it can occur at all temperatures. Vapourisation 
can be minimized by increasing the pressure over the 
free surface of liquid.

When the pressure above the liquid free surface is less 
than or equal to the vapour pressure of the liquid at that 
temperature, there is continuous escape of liquid mol-
ecules from the free surface into the space above the liquid 
surface. This process is called boiling.

Bulk Modulus (K)
It is also known as bulk modulus of elasticity, coefficient of 
compressibility or bulk modulus of compressibility.

K V
P

V

P
= −

∂
∂






 =

∂
∂








ρ

ρ
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The SI unit of the bulk modulus is N/m2 or Pascal. It is also 
defined as the ratio of the compressive stress to the volu-
metric strain. Bulk modulus increases for gases as pressure 
and temperature increases. As temperature increases bulk 
modulus decreases for liquids.

Lower the value of the bulk modulus of a fluid, more 
compressible is the fluid considered to be. For a truly incom-
pressible fluid (i.e., fluid whose volume cannot be changed),  
K = infinity. Liquids are usually considered to be incom-
pressible, i.e., they have a large value of bulk modulus.

The reciprocal of the bulk modulus is called as the com-

pressibility (a), i.e., α =
1

K
Gases are usually considered to be compressible, i.e., 

they have a large value of compressibility. Gases com-
pressibility becomes important only when the gas velocity 
becomes more than 20% of the velocity of sound waves in 
that gas.

Isothermal bulk modulus,

KT =V
P

V T

∂
∂






 (i.e., at constant temperature T)

Adiabatic bulk modulus, 

KS = −
∂
∂






V

P

V S
(i.e., at constant entropy S).

Isothermal compressibility, 

αT
TV

V

P
=
− ∂

∂








1
(i.e., at constant temperature T)

Adiabatic compressibility,

αS
SV

V

P
=
− ∂

∂








1
 (i.e., at constant entropy S)

Example 15
In a piston cylinder arrangement containing gas A, it is 
found that to reduce isothermally the volume of the gas to 
75% of its original volume, an additional pressure of 2 atm 
is required. In another piston cylinder arrangement contain-
ing gas B (density = 1.5 kg/m3), it is found that the density 
of the gas can be increased by 1.5 kg/m3

 
at a constant tem-

perature, if a pressure change of 6 bar is provided. From 
these observations, one can state that 
(A) gas A and gas B have equal isothermal compressibility.
(B)  gas A is 1.2 times more isothermally compressible than 

gas B.
(C)  gas B is 1.35 times more isothermally compressible 

than gas A.
(D)  enough information is not available for the comparison 

of the isothermal compressibility of the two gases.

Solution
For gas A, let V1 and V2 be the original volume and the vol-
ume of the gas after compression respectively.

Given, V2 = 0.75 V1

⇒ =
−

= −
∆V

V

V V

V
2 1

1

0 25.

       DP = 2 at m = 2 × 1.01325 bar

    K V
P

V
TA

T

= −
∂
∂








            ≅ −

















∆

∆

P
V

V T

            ≅ −
×
−

≅
2 1 01325

0 25
8 106

.

.
. bar

For gas B, r = 1.5 kg/m3

							DP = 1.5 kg/m3

      
∆ρ
ρ

=1    

							DP = 6 bar

  ∴ =
∂
∂








 ≅ ≅K

P
TB

T

ρ
ρ

6

1
6 bar

∴ = =
K

K
TA

TB

8 106

6
1 35

.
.

\ Gas B is 1.35 times more isothermally compressible than 
gas A.
Hence, the correct answer is option (C).

Coefficient of Volume Expansion (b)
It is also known as volume expansivity.

β
ρ

ρ
=

∂
∂







 = −

∂
∂








1 1

V

V

T TP P
. 

The SI unit of the coefficient of volume expansion is 1/K.

Example 16
If the isothermal compressibility and volume expansivity of 
a fluid are aT and b respectively, then the fractional change 

in the volume 
dV

V







 of the fluid for a change in temperature 

(dT) and change in pressure (dP) is equal to.

(A) aT  dT - bdP
(B) bdT - aT  dP
(C) aT  dT + bdP
(D) aT  dP + bdT

Solution
The volume of the fluid (V) is a function of temperature (T) 
and pressure (P). This can be written as 

V = V(T, P)

Differentiating, we get 
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              dV
V

T
dT

V

P
dP

P T

=
∂
∂







 +

∂
∂







  (1)

Now,αT
TV

V

P
= −

∂
∂









1
and β =

∂
∂









1

V

V

T P

Substituting the above relations for aT and b in Eq. (1) 
and rearranging, we get

dV

V
dT dPT= −β α

Hence, the correct answer is option (B).

Surface Tension
The layer of molecules at the surface of a liquid, in contact 
with a gas (or another immiscible liquid), tends to behave 
like a stretched membrane (membrane on which a tensile 
force is exerted).

This behaviour is a result of the inward pull, arising due 
to the cohesive forces (intermolecular forces of attraction 
between molecules of the same liquid), experienced by the 
liquid’s surface molecules.

At the liquid surface, the tensile force dF acting parallely 
to the plane of the surface (or tangentially to the surface) 
over a surface length dl is given by the equation:

dF = sdl , where s is called as the coefficient of surface 
tension of the liquid. Hence, surface tension is equal to the 
magnitude of the tensile force acting tangentially at the sur-
face per unit length of the surface. The SI unit of surface 
tension is N/m.

Imagine a metallic frame in which a liquid film is main-
tained as shown in the following figure.

Rod

New area

Liquid film

When the rod is slightly pulled down, the liquid film gets 
stretched over a larger area. The work done for creating the 
new area is the surface energy.

Surface energy

New area created
Surface tension=

\ Surface energy per unit area = Surface tension
Surface tension (in N/m or J/m2) thus also represents 

the amount of stretching work required to increment the 
surface area by an unit amount. Surface tension of a liquid 
decreases with temperature and becomes zero at the criti-
cal point. The effect of pressure on the surface tension of a 
liquid can be considered to be negligible. Surface tension of a 
liquid can be increased or decreased by adding impurities. 
For example, surface tension of water can be decreased or 
increased by adding surfactants or NaCl respectively.

Example 17
A solid cylindrical needle (density = 7.8 g/cm3) of length 5 
cm is placed very gently on the surface of a body of water 
(surface tension = 73 dynes/cm) such that it floats on the 
water surface. Neglect buoyancy effects and surface tension 
effects at the circular faces of the needle. The maximum 
diameter that the needle can have, such that it will still be 
able to float on the water surface, is
(A) 1.56 mm (B) 4.88 mm
(C) 5.26 mm (D) 1.31 mm

Solution

F Fθ θ

needle

Water

W

Let F be the force, due to surface tension of water, acting 
along the length of the needle on either side as shown in the 
above figure. Let W be the weight of the needle.

Now, F = sL, where s is the surface tension of water and 
L is the length of the needle.

If q is the angle that the force F makes with the vertical, 
then writing a force balance on the needle gives:

W = F cos q + F cos q 
	 	 = 2 sLcos q (1)

If d and r are the diameter and density of the needle, then 
from Eq. (1) we can write

π ρ σ θ
d

L g L
2

4
2= cos

              d
g

=
8σ θ
πρ

cos

The maximum value of d (dmax) is obtained when q = 0° 
(provided all other parameters are fixed).

\  dmax = 
8σ
πρg

=
×
× ×
8 0 073

3 14 7800 9 81

.

. .
 1 10 5dyne N= −  = 1.56 mm.

Hence, the correct answer is option (A).

Example 18
A liquid film, exposed to the atmosphere on both sides, is 
present in the area ABCD of the metallic frame work shown 
in the following figure.
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Rod

CA

B D
Liquid film

The side CD, of length 10 cm, is movable and can be 
pulled with the help of a rod. The work done to increase the 
length of side BD by 1 mm, still maintaining the liquid film 
(Surface tension = 0.073 N/m) in the area ABCD, is 
(A) 7.3 × 10-6 J (B) 1.46 × 10-5 J
(C) 1.46 × 10-4 J (D) 7.3 × 10-5 J

Solution
Let L be the length of the side CD. Then, L = 10 cm = 0.1 m.

At the side CD, there are two lengths on which surface 
tension acts since the film of liquid is exposed to the atmos-
phere on both sides. Hence the length along which the sur-
face tension acts at the side CD = 2L.

\ Work done = s2L Dx, where s2L represents the force 
due to surface tension acting at the side CD.

Here, Dx = 1 mm = 1 × 10-3 m

s = 0.073 N/m

Work done = 0.073 × 2 × 0.1 × 1 × 10-3

= 1.46 × 10-5 J.

Hence, the correct answer is option (B).

Effects of Surface Tension

 1. A falling rain drop attaining a spherical shape.

 2. Sap rising in a tree.

 3. Birds being able to drink water from ponds.

 4. Capillary rise.

 5. Dust particles collecting on the surface of a liquid.

 6. Liquid jets breaking up.

Excess Pressure
In liquid droplets, gas bubbles, soap bubbles and liquid jets, 
an amount of pressure in excess to the external pressure is 
present due to surface tension for maintaining the shape.

 1. Liquid droplet or gas bubble:

P P P
d

i − = =0
4

∆
σ

,

  Where, Pi is the pressure inside the liquid droplet 
or gas bubble, P0 is the pressure outside the liquid 
droplet or gas bubble, d is the diameter of the 
(spherical) liquid droplet or gas bubble and DP is the 
excess pressure.

 2. Soap or liquid bubble:

  A soap or liquid bubble has air both inside and outside 
it and hence it has two free surfaces on which surface 
tension acts.

P P P
d

i − = =0
8

∆
σ

 

  Where, d is the outer diameter of the soap or liquid 
bubble.

 3. Cylindrical liquid jet:

P P P
d

i − = =0
2

∆
σ

  Where, d is the diameter of the cylindrical jet.

Example 19
The pressures inside and outside of a water bubble and 
water drop are found to be the same. If d is the diameter of 
the water bubble and if the bubble and drop are at the same 
temperature, then the diameter of the water drop is
(A) d (B) 3d
(C) 2d (D) d/2

Solution
Since the inside and outside pressures of the water drop are 
equal to that of the water bubble, we have

Excess pressure inside the water drop = Excess pressure 

inside the water bubble, i.e., 
4 8σ σ
d dd b

= ,

where dd and db  are the diameters of the water drop and 
water bubble respectively.

∴ = =d
d d

d
b

2 2

Hence, the correct answer is option (D).

Example 20
Two cylindrical liquid jets A and B have the surface tensions 
sA and sB respectively such that sA = 2sB. The jets A and B 
are exposed to the respective external pressures PA and PB, 

such that PB - PA = 
2σB

Bd
, where dB is the diameter of the 

cylindrical jet B. If the two jets have the same inside pres-
sure, then the diameter of the cylindrical jet A is
(A) dB (B) 2dB
(C) 0.5 dB (D) 4dB

Solution
Given, sA = 2sB and 

  P P
d

A B
B

B

− =
2σ

 (1)

Jets A and B have the same inside pressure, hence

  
2 2σ σA

A
A

B

B
B

d
P

d
P+ = + , (2)
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Where, dA is the diameter of the cylindrical jet A.

P P
dA

B A− = −
2

2
σ

σA
B

But PB – PA = 
2σB

Bd

Equating,

∴ =
2 2σ σB A

dB dA
- 2sB/dB

   
4 2σ σB A

B Ad d
=

\																																dA = dB. 

Hence, the correct answer is option (A).

Capillarity
When a small diameter tube is inserted into a body of liquid, 
the liquid rises or falls in the tube giving rise to the phenom-
enon known as capillarity. Capillarity is due to the forces of 
cohesion (attraction between the same molecules) between 
the liquid molecules and the forces of adhesion (attraction 
between different molecules) between the liquid and solid 
(constituting the tube) molecules.

The rise of the liquid is called as the capillary rise 
while the fall is called as the capillary drop or capillary 
depression. Capillarity or capillary effect can be termed to 
be a consequence of surface tension.

The strength of capillarity (or capillary effect) is quanti-
fied by a parameter called as the contact (or wetting) angle 
(q). The contact angle is defined as the angle between the 
solid surface and the tangent to the liquid surface at the 
point of contact between the two surfaces. The surface ten-
sion force acts along the tangent towards the solid surface. 
The magnitude of the capillary rise of a liquid (surface ten-
sion = s, density = r) having a contact angle q with a tube 
of constant diameter d is given by

h
gd

=
4σ θ
ρ

cos

The contact angle of water with clean glass is nearly zero, i.e., 
q ≈ 0°. (If 0°, then it is called complete or perfect wetting).

For glass tubes with diameters greater than 1 cm the cap-
illarity effect of water is negligible.

Liquid Wets Solid Surface

h > 0

θ

Meniscus

Tube

Liquid

 1. Contact angle q	is less than 90°.

 2. When a small diameter tube made of the solid is 
dipped in the liquid, capillary rise occurs.

 3. Magnitude of cohesive forces < Magnitude of 
adhesive forces

 4. For example, water glass

 5. Capillary drop = h

Liquid does not Wet Solid Surface

Tangent

Tube

θ

Meniscus h < 0

Liquid

 1. Contact angle q is greater than 90°.

 2. When a small diameter tube made of the solid is 
dipped in the liquid, capillary drop occurs.

 3. Magnitude of adhesive forces < Magnitude of 
cohesive forces.

 4. Liquid is termed as a non-wetting liquid.

 5. For example, mercury-glass

 6. Capillary drop = |h|

Example 21
When tube A is dipped into the body of a liquid, the liquid 
makes a contact angle of 30° with the tube. When tube B 
of different material having twice the diameter of tube A, is 
dipped into the same liquid body, the liquid makes a contact 
angle of 120° with the tube. The ratio of the capillary rise 
seen in one of the tubes to the capillary drop seen in the 
other is 
(A) 0.28 (B) 1.73
(C) 3.46 (D) 0.58

Solution
Let, dA and qA be the diameter and contact angle for tube A.

Let, dB and qB be the diameter and contact angle for tube 
B.

Given dB = 2dA, qA
 = 30° and qB = 120°.

Since, qA < 90°, capillary rise (hr) will be seen when tube 
A is dipped.

  ∴ =h
gd

r
4σ θ
ρ

cos A

A
 (1)

Since qB > 90°, capillary drop (hd) will be seen when tube 
B is dipped.

  ∴ =
−

h
gd

d
4σ θ
ρ

cos B

B
 (2)
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(Negative sign is introduced since hd is already referred to 
as capillary drop)

From Eqs. (1) and (2), we have 

∴ =
− ×

×
h

h

d

d
r

d

cos

cos

θ
θ

A B

B A
 

        =
− °×

°×
=

cos

cos
. .

30 2

120
3 46

d

d
A

A

Hence, the correct answer is option (C).

Example 22
The maximum diameter that a capillary tube can have to 
ensure that a capillary rise of at least 6 mm is achieved when 
the tube is dipped into a body of liquid with surface tension 
= 0.08 N/m and density = 900 kg/m3, is 
(A) 3 mm (B) 6 mm
(C) 5 m (D) 8 mm

Solution

The capillary rise h
gd

=
4σ θ
ρ

cos
, where s, q, r, g and d have 

their usual meanings.

\ Diameter of the capillary tube d
gh

=
4σ θ
ρ
cos

.

Here q is taken to be 0°. The diameter d gets the maxi-
mum value (dmax) when h is minimum (i.e., h = hmin)

Given, hmin = 6 mm

∴ = =
×

× ×
d

gh
max

min

.

. .

4 4 0 08

900 9 81 0 006

σ
ρ

  = 6 mm.
Hence, the correct answer is option (B).

Pressure
Pressure is defined as a normal force exerted by a fluid per 
unit area. The normal stress on any plane through a fluid 
element at rest is equal to the fluid pressure. The SI unit 

of pressure is Pascal (Pa) or N/m2 1 1 2Pa  N/m= .  Other 

units for pressure are atm (1 atm = 101325 Pa), psi (1 atm 
= 14.696 psi) and bar (1 bar = 105 Pa). Pressure is a scalar 
quantity. At a point on a surface which is in contact with a 
fluid, the pressure force exerted by the fluid is normal to the 
surface.

Atmospheric, Absolute and Gauge 
Pressure
Atmospheric pressure (Patm) is the pressure exerted on 
a surface by a planet’s atmosphere (Example: the Earth’s 
atmosphere) present above the surface.

Absolute pressure (Pabs) is the pressure measured rela-
tive to an absolute vacuum (where Pabs = 0). At any given 
position, the actual pressure is the absolute pressure.

Gauge pressure (Pgauge) is the pressure indicated by a 

pressure measuring device (or pressure gauge) relative 
to the local atmospheric pressure. This is stated with the 
assumption that the pressure gauge is calibrated with the 
local atmospheric pressure as reference.

Pgauge = Pabs - Patm 

If Pabs < Patm, then Pgauge is negative and the negative of 

the gauge pressure is called as the vacuum pressure (Pvac). 

Pressure gauges measuring vacuum pressures are called as 
vacuum gauges.

Pvac = Patm - Pabs

Pressure Varying with Elevation or Depth 
(for Static Fluids)
Consider a static body of liquid (density = r, specific weight 
= w) of height h present in a container as shown in the fol-
lowing figure.

4

2

1

3

Depth

Elevation

z = h

z = z2

z = z1

z = 0

z

The variation of pressure P in the liquid with respect to the 
elevation z is given by, 

  
dP

dz
g= − = −ρ ω  (1) 

Eq. (1), called as the hydrostatic (differential) equation, cor-
responds to the hydrostatic law which states that ‘The rate 
of increase of pressure in a vertically downward direction 
must be equal to the specific weight of the fluid’.

Conventionally at z = 0, elevation = 0 and depth = h, 
while at z = h, elevation = h and depth = 0. If P1 and P2 are 
the pressures at points 1 (z = z1) and 2 (z = z2), from Eq. (1)’ 
we have

  P P P gdz
z z

z z

2 1

1

2

− = = −
=

=

∫∆ ρ  (2)

For liquids, usually the density is considered to be constant 
upto certain large depths. If the acceleration due to gravity 
(g) is also constant with respect to the elevation z, then

 P2 - P1 = rg (z1 - z2) = - rg Dz  (3)

Where, Dz (= z2 - z1) is sometimes called as the pressure 
head and is interpreted as the height of a column of liq-
uid of density r required to provide a pressure difference of 
P1 - P2. 
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If the surface of the liquid in the container is exposed to 
the atmosphere and r and g are assumed to be constant with 
respect to z, then

Pabs at point 4 = Patm
Pabs

 at point 2 = Patm
 + rg(h - z2)

Pgauge at point 1 = rg(h - z1)
Pabs at point 3 = Patm + rgh

Eq. (1) is also applicable for gases. However, as gases have 
a low density, the variation of pressure with height (for 
small to moderate heights) can be considered to be negli-
gible for a gas.

Pressure Varying Horizontally 
(for Static Fluids)
For a fluid resting inside a container, pressure does not 
depend on the shape or cross-section of the container. Also, 
the pressure is the same at all points on any horizontal plane 
considered in the fluid present in the container.

Consider three containers, open to the atmosphere, of 
different shapes where the free surface of the liquids in them 
are at the same level as shown in the following figure.

A  B E   F

Liquid 2 (density =    )ρ
2

Liquid 1 (density =    )ρ
1

h1 h2 C D

The points A, B, C, D, E and F all lie on the same horizontal 
plane. Here,

PA = PB = PE = PF and PC = PD 

Since r2 > r1, it can be seen that PC
 > PB

 and hence PC ≠ PB.

Pascal’s Law
Pascal’s law states that the pressure at a point in a static fluid 
has the same magnitude in all directions. This is also true 
for non-static fluids which have no shear stress, for exam-
ple, for fluids which move like rigid bodies where there is 
no relative motion between the fluid elements.

Another version of Pascal’s law states that when there is 
an increase in pressure at any point in a confined fluid, there 
is an equal increase in the pressure at every other point in 
the confined fluid. Pascal’s law forms the underlying princi-
ple of the hydraulic jack and hydraulic press.

Example 23
A hydraulic press has a plunger of 5 cm diameter. If the weight 
lifted by the hydraulic press is twice the force applied at the 
plunger, then the diameter of the ram of the hydraulic press is 
(A) 5 cm (B) 10 cm

(C) 5 2 cm (D) 10 2 cm

Solution
Let the force applied at the plunger be F. Then weight lifted 
by the hydraulic press, W = 2F. (1)

Let d and D be the diameters of the plunger and ram 
respectively and let a and A be their respective areas.

  ∴ =a
dπ 2

4
 and A

D
=
π 2

4
 (2)

From Pascal’s law, 
F

a

W

A
=  (3)

Substituting Eqs. (1) and (2) in Eq. (3), we get

D d= 2

Given d = 5 cm \ D = 5 2  cm.
Hence, the correct answer is option (C).

When the plunger and the Ram are of circular Cross sec-
tion and ‘F’ is the load applied at the plunger, load lifted 
at the ram is,

=
F

Ad

D
2

2

4

4
×
π

 

= F
D

d

2

2

Here, F
D

d

2

2  = 2F; ∴ =D d2

NOTE

Example 24
Oil weight density = 8.5 kN/m3

 
is present in a tank upto a 

depth of 6 m. It is observed that an immiscible liquid, with a 
depth of 2 m, is present in the tank below the oil. The read-
ing on the pressure gauge connected to the tank’s bottom is 
70 kPa. The specific gravity of the immiscible liquid is 
(A) 0.982 (B) 0.968
(C) 0.873 (D) 0.893

Solution
Let the weight density of the immiscible liquid and the oil 
be wL and wO respectively.

Pressure at the bottom of the tank,

Pb = 6 × wO + 2 × wL

Given Pb = 70 kPa and wO = 8.5 kN/m3

∴ =
× − × ×

ωL
70 10 6 8 5 10

2

3 3.
 

										= 9500 N/m3

Specific gravity of the liquid, SG
g

L
L=
×

ω
ρω

,

Where, ρω ( )=1000 kg/m3  is the density of pure water 
at 4°C.

\  SGL = 
3500

1000 9 81× .
 = 0.968

Hence, the correct answer is option (B).
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Manometry (Some Cases to Measure 
the Gauge Pressure)
Manometers are pressure measuring devices which employ 
liquid columns in vertical or inclined tubes to measure 
pressure. Manometers are classified as, 

 1. Simple manometers 

 2. Differential manometers.

Simple Manometers
A simple manometer consists of a tube whose one end is 
connected to a point where the pressure is to be measured 
and the other end is open to the atmosphere. The common 
types of simple manometers are 

 1. Piezometer 

 2. U-tube manometer 

 3. Single column manometer.

For the following discussion, consider P1 and PA
 to be the 

pressures at points 1 and A respectively.

Piezometer

h

1
Liquid (density =   )ρ

A

Analysis: P1 – Patm + hrg

PA = P1, since the points A and 1 are at the same eleva-
tion and in the same liquid.

\   P P h gA = +atm ρ

It is implicitly assumed here that surface tension effects 
(capillary rise) are negligible.

NOTE

U-tube Manometer

 1. 

Fluid (density =    ) X X
B

A

h1

h2

ρ1

Liquid density = ρ2

C

  Analysis: Along the section XX, pressure at point B 
= Pressure at point C Flaid 

   (∵  Points B and C are at the same elevation and in 
the same liquid)

i.e.,    PA
 + h1 r1 g = Patm + h2 r2 g

P P h h gA = + −atm ( )2 2 1 1ρ ρ

 2. 

Fluid (density =    )

A

h1

h2ρ1

Liquid (density =    )ρ2

P P h h gA = − +atm ( )1 1 2 2ρ ρ

PA is vacuum pressure
NOTE

 3. 

A
h1

h2
L

θFluid (density =    )ρ1

Liquid (density =    )ρ2

P P g h h P g L hA = + − = + −atm atm( ) ( sin )2 2 1 1 2 1 1ρ ρ θρ ρ

Vertical Single Column Manometer

A

Fluid
(density =    )ρ

1

Reservoir

h1

h2

Right
limb

Liquid (density =    )ρ2

P P
a h

A
g g h gA = +

×
− +atm

2
2 1 2 2( )ρ ρ ρ

Where, A and a are the cross-sectional areas of the reservoir 
and the right limb respectively.

Inclined Single Column Manometer

Right
limb

Liquid (density =    )ρ2

θ

h2
h1

L

A

Fluid
(density =    )ρ

1

Reservoir
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P P
a h

A
g g h g h g

P P
a L

A
g g

A

A

= +
×

− + −

= +
×

−

atm

atm

2
2 1 2 2 1 1

2 1

( )

sin
(

ρ ρ ρ ρ

θ
ρ ρ )) sin+ −L g h gθρ ρ2 1 1

Where, A and a are the cross-sectional areas of the reservoir 
and the right limb respectively. 

Sensitivity of the instrument is inversely proportional to 
sin q.

Sensitivity ∝
1

sin
.

θ

Differential Manometers
Differential manometers are the devices used for measuring 
the difference between the pressure at a given point in a fluid 
and the pressure at some other point in the same or differ-
ent fluid. A differential manometer consists of a U-tube, in 
which a heavy liquid is present, where two ends are con-
nected to points whose pressure difference is to be meas-
ured. Most common types of differential manometers are: 

 1. U-tube differential manometer

 2. Inverted U-tube differential manometer

For the following discussion, consider PA and PB to be the 
pressures at the points A and B respectively.

U-tube Differential Manometer

A

B

h

y
x

Fluid
(density =    )ρ

1

Fluid
(density =    )ρ

1

Liquid (density =    )ρ2

P P h g y g x gA B− = − + −( )ρ ρ ρ ρ2 1 3 1

Inverted U-tube Manometer

A

h1

h2

h

Fluid
(density =    )ρ

3

B

Liquid
(density =    )ρ2

Fluid (density =    )ρ1

P P h g h g h gA B− = − −1 1 2 3 2ρ ρ ρ

Example 25
A closed tank consists of oil (density = r1) and compressed 
air as shown in the following figure. 

Air

PG

Oil

XX

h2
h4

h3

h1

A U-tube manometer using a liquid with density = r2, is 
connected to the tank. The variation of pressure with height 
is negligible in the tank volume occupied by air. If the pres-
sure reading in the pressure gauge connected to the top of 
the tank is PG , then an expression for the height of oil in the 
tank can be

(A) h
P

g
hG

3
1

2 1
4

ρ
ρ ρ









 − −

(B) h
P

g
hG

3
2

1 1
4

ρ
ρ ρ









 − −

(C) h
P

g
hG

3
2

1 1
2

ρ
ρ ρ









 − −

(D) h
P

g
hG

3
1

2 2
4

ρ
ρ ρ









 − −

Solution
Equating pressures at a point in the left limb and at a point 
in the right limb, where both the points lie on a horizontal 
plane passing through the meniscus of the liquid (density 
= r2) in the left limb of the U-tube manometer, gives

 Pair + (h1 + h2) r1 g = Patm + h3 r2 g (1)

Now              PG = Pair - Patm (2)

From the figure in the question it can be shown that the 
height of the oil in the tank, h = h1 + (h2 - h4) (3)

Substituting Eqs. (2) and (3) in Eq. (1) and rearranging, 
we get

h h
P

g
hG=









 − −3

2

1 1
4

ρ
ρ ρ

Hence, the correct answer is option (B).
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Example 26
A fluid (weight density = w1) flows through a pipe as shown 
in the following figure. A differential U-tube manometer, 
with a liquid of weight density = w2, is fitted to the pipe in 
order to determine the pressure difference (PA - PB), where 
PA and PB are the pressures at the respective points A and 
B on the pipe. 

A B

→ fluid flow

h1

h2

From the set of variables {h1, h2, w1, w2}, the set of the least 
number of variables whose values are to be known in order 
to determine the required pressure difference (PA - PB) is
(A) {h1, h2, w1, w2} (B) {h1, w1, w2}
(C) {h2, w2} (D) {h2, w1, w2)

Solution
Equating pressures at a point in the left limb and at a point 
in the right limb, where both points lie on a horizontal plane 
passing through the meniscus of the liquid (weight density 
= w2 in the left limb of the differential U-tube manometer, 
gives 

PA - h1
 w1 = PB - (h1+ h2)w1 + h2w2

or  PA - PB = h2 (w2 - w1)
\ The set of variables whose values are to be known = 

{h2, w1, w2}. 

Hence, the correct answer is option (D).

Example 27
An inclined single column manometer is connected to a pipe 

transporting a liquid of specific weight ( ) . ,ω1
39 81=  kN/m  

as shown in the following figure. The area of the reservoir 
is very large compared to the area of the right limb of the 
manometer. The specific weight (w2) of the manometric 

fluid is 13.6 kN/m3. The length (L) of the manometric fluid 
in the right limb, above the manometric fluid’s surface in the 
reservoir, is 100 cm. The gauge pressure (P) at the point A 
in the pipe is 3.857 kPa. If the value of h is 30 cm, then the 
right limb of the manometer is inclined to the horizontal at 
an angle of 

Pipe

Reservoir

A

Right limb

Manometric fluid

h

(A) 45° (B) 60°
(C) 30° (D) 15°

Solution
Let q be the angle at which the right limb is inclined to the 
horizontal.

If a and A are the respective cross-sectional areas of 
the right limb and the reservoir, then p is very small and 
negligible (∵  A > > > a).

For the inclined column manometer, one can write,

P
a

A
L L h= × × − + −sin ( ) sinθ ω ω θ ω ω2 1 2 1

Since 
a

A
 is negligible, P = L sin q w2 - hw1

∴ =
+

sinθ
ω

ω
P h

L
1

2  
=

× + × ×
× ×

3 857 10 0 3 9 81 10

1 13 6 10

3 3

3

. . .

.

That is, q = 30°.
Hence, the correct answer is option (C).

Exercises

 1. The normal stress is the same in all directions at a point 
in a fluid only when

 (A) the fluid is frictional.
 (B) the fluid is frictionless and incompressible.
 (C) the fluid has zero viscosity and is at rest .
 (D)  one fluid layer has no motion relative to an adja-

cent layer.

 2. An incompressible fluid (kinematic viscosity, 7.4 
× 10-7 m2/s, specific gravity 0.88) is held between two 
parallel plates. If the top plate is moved with a velocity 
of 0.5 m/s while the bottom one is held stationary, the 
fluid attains a linear velocity profile in the gap of 0.5 
mm between these plates; the shear stress in Pascals on 
the surface of top plate is
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 (A) 0.651 × 10-3 (B) 0.651
 (C) 6.51 (D) 0.651 × 103

 3. For a Newtonian fluid
 (A) shear stress is proportional to shear strain.
 (B) rate of shear stress is proportional to shear strain.
 (C) shear stress is proportional to rate of shear strain.
 (D)  rate of shear stress is proportional to rate of shear 

strain.

 4. Match List I (Flows over or inside the systems) with 
List II (Type of flow) and select the correct answer 
using the codes given below the lists:

List I List II

a. Flow over a sphere 1. Two-dimensional flow

b. Flow over a long 
 circular cylinder

2. One-dimensional flow

c. Flow in a pipe bend 3. Axisymmetric flow

d. Fully developed flow in 
a pipe at constant flow 
rate

4. Three-dimensional flow

  Codes:
  a   b   c   d  a   b   c   d
 (A) 3   1   2   4 (B) 1   4   3   2
 (C) 3   1   4   2 (D) 1   4   2   3

 5. Consider the following statements:
 I. Viscosity
 II. Surface tension
 III. Capillarity
 IV. Vapour pressure

  Which of the above properties can be attributed to the 
flow of jet of oil in an unbroken stream?

 (A) I Only (B) II Only
 (C) I and III (D) II and IV

 6. The dimensions of a pressure gradient in a fluid flow are
 (A) ML-1T 2 (B) ML-3T -2

 (C) ML-2T -2 (D) M -1L-3T -2

 7. Shear stress develops on a fluid element, if 
 (A) the fluid is at rest.
 (B)  the fluid container is subject to uniform linear 

 acceleration.
 (C) the fluid is inviscid.
 (D) the fluid is viscous and the flow is non-uniform.

 8. If, for a fluid in motion, the pressure at a point is same 
in all directions, then the fluid is

 (A) a real fluid.
 (B) a Newtonian fluid.
 (C) an ideal fluid.
 (D) a Non-Newtonian fluid.

 9. The unit of dynamic viscosity of a fluid is
 (A) m2/s (B) Ns/m2

 (C) Pa s/m2 (D) kg s2/m2

 10. Two pipelines, one carrying oil (mass density 900 kg/
m3) and the other water, are connected to a manometer 

as shown in the figure. By what amount the pressure 
in the water pipe should be increased so that the 
mercury levels in both the limbs of the manometer 
become equal? (Mass density of mercury = 13550 kg/
m3 and g = 9.81 m/s2)

3 m

Water

1.5 m

Mercury
20 cm

Oil

 (A) 24.7 kPa (B) 26.5 kPa
 (C) 26.7 kPa (D) 28.9 kPa

 11. What is the capillary rise in a narrow two-dimensional 
slit of width ‘w’?

 (A) Half of that in a capillary tube of diameter ‘w’.
 (B)  Two-third of that in a capillary tube of diameter 

‘w’.
 (C)  One-fourth of that in a capillary tube of diameter 

‘w’.
 (D)  One-fourth of that in a capillary tube of diameter 

‘w’.

 12. A cubic block of side ‘L’ and mass ‘M’ is dragged over 
an oil film across table by a string which connects to a 
hanging block of mass ‘m’ as shown in the figure. The 
Newtonian oil film of thickness ‘h’ has dynamic viscos-
ity ‘m’ and the flow condition is laminar. The accelera-
tion due to gravity is ‘g’. The steady state velocity ‘v’ 
of block is

h

M
v

g

m

μ

 (A) ⋅

Mgh

Lµ 2  (B) ⋅

Mgh

µ

 (C) ⋅

mgh

Lµ 2  (D) ⋅

mgh

µ
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 13. Consider the following statements:
 I. A small bubble of one fluid immersed in another 

fluid has a spherical shape.
 II. The droplets of a fluid move upward or downward 

in another fluid due to unbalance between gravita-
tional and buoyant forces.

 III. Droplets of bubbles attached to a solid surface can 
remain stationary in a gravitational fluid if the sur-
face tension exceeds buoyant forces.

 IV. Surface tension of a bubble is proportional to its ra-
dius while buoyant force is proportional to the cube 
of its radius.

 Which of these statements are correct?
 (A) I, II, III and IV (B) I, II and IV only
 (C) I and III only (D) II, III and IV only

 14. In a quiescent sea, density of water at free surface is 
r0 and at a point much below the surface density is 
r. Neglecting variation in gravitational acceleration g 
and assuming a constant value of bulk modulus K, the 
depth ‘h’ of the point from the free surface is

 (A) 
K

g

1 1

0ρ ρ
+









  (B) 

K

g

( )

( )

ρ ρ
ρ ρ
−
+

0

0
2

 (C) 
K

g

1 1

0ρ ρ
−









  (D) 

K

g

ρρ
ρ ρ

0

0+










 15. In the inclined manometer shown in the given figure the 
reservoir is large. Its surface may be assumed to remain 
at a fixed elevation. A is connected to a gas pipeline and 
the deflection noted on the inclined glass tube is 100 
mm. Assuming q = 30o and the manometric fluid as oil 
with specific gravity of 0.86, the pressure at A is

A

B

100 mm

θ

 (A) 43 mm water (vacuum)
 (B) 43 mm water
 (C) 86 mm water
 (D) 100 mm water

 16. Assertion (A): U-tube manometer connected to a ven-
turimeter fitted in a pipeline can measure the velocity 
through the pipe.

  Reason (R): U-tube manometer directly measures 
dynamic and static heads.

 (A)  Both A and R are true and R is the correct explana-
tion of A.

 (B)  Both A and R are true but R is not a correct expla-
nation of A.

 (C) A is true but R is false.
 (D) A is false but R is true.

 17. The pressure gauges G1 and G2 installed on the sys-
tem show pressure of PG1 = 5.00 bar and PG2 = 1.00 
bar. The value of unknown pressure P is, Given atmos-
pheric pressure 1.01 bar

G2

G1P

 (A) 1.01 bar (B) 2.01 bar
 (C) 5.00 bar (D) 7.01 bar

 18. Two parallel glass plates, each of width W and negligi-
ble thickness, are dipped vertically into a body of liq-
uid (surface tension = s, density = r). If the distance 
between the plates is t and the contact angle is q, then 
the capillary rise of the liquid between the plates is 
given by 

 (A) 
2σ θ

ρ
cos

W g
 (B) 

2σ θ
ρ
cos

t g

 (C) 
4σ θ

ρ
cos

t g
 (D) 

σ θ
ρ
cos

t g

 19. In the given figure, air is contained in the pipe and 
water in the manometer liquid.

500 mm

200 mm
Air

Water

A

 The pressure at A is approximately
 (A) 10.14 m of water absolute
 (B) 0.2 m of water
 (C) 1.2 m of water vacuum
 (D) 4901 Pa
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 20. A mercury manometer is fitted to a pipe. It is mounted 
on the delivery line of a centrifugal pump. One limb of 
the manometer is connected to the upstream side of the 
pipe at A and the other limb at B, just below the valve V 
as shown in the figure.

h

• A • B

V

  The manometer reading ‘h’ varies with different valve 
positions.

  Assertion (A): With gradual closure of the valve, the 
magnitude of ‘h’ will go on increasing and even a situ-
ation may arise when mercury will be sucked in by the 
water flowing around B.

  Reason (R): With the gradual closure of the valve, the 
pressure at A will go on increasing.

 (A)  Both A and R are true and R is the correct explana-
tion of A.

 (B)  Both A and R are true but R is not a correct expla-
nation of A.

 (C) A is true but R is false.
 (D) A is false but R is true.

 21. The reading of gauge A shown in the figure is

Air

0.25 mOil

Gauge
‘A’

Relative
density

of oil 0.8

(Relative density
of mercury 13.6)

4 m

 (A) –31.392 kPa (B) –1.962 kPa
 (C) 31.392 kPa (D) +19.62 kPa

22. The balancing column shown in the following figure 
contains 3 liquids of different densities r1, r2 and r3. 
The liquid level of one limb is h1 below the top level 
and there is a difference of ‘h’ relative to that in the 
other limb.

h

p p

h1

ρ1

ρ2

ρ3

  What will be the expression of h?

 (A) 
ρ ρ
ρ ρ

1 2

1 3
1

−
−









h  (B) 

ρ ρ
ρ ρ

2 3

1 3
1

−
−









h

 (C) 
ρ ρ
ρ ρ

1 3

2 3
1

−
−









h  (D) 

ρ ρ
ρ ρ

1 2

2 3
1

−
−









h

 23. Two spherical soap bubbles, one having a smaller diam-
eter than the other, are present at the two ends of a hollow 
horizontal cylindrical tube. A restriction at the centre of 
the tube prevents the flow of air between the two bubbles.  
If the restriction is removed, then which one of the fol-
lowing is the ONLY possible consequence?

 (A) Smaller bubble grows in size.
 (B) Both the bubbles do not change in size.
 (C) Larger bubble grows in size.
 (D) Larger bubble could grow or shrink in size.

 24. The viscous torque on a disk of radius R1, rotating at an 
angular velocity of w1 inside a container containing a 
Newtonian fluid of viscosity m as shown in the figure is 
determined to be T1. To determine the viscous torque, a 
linear velocity profile is assumed and the shear on the 
outer disk edges is neglected. For another disk of radius 
R2 rotating at an angular velocity of w2 inside the same 
container containing the same fluid, the viscous torque 
on the disk is determined to be T2. If the clearance of 
the disk surfaces from the container edges are the same 
in both cases, w2 = 8w1, and R2 = 0.5R1, then 

Container

Newtonian fluid
(viscosity =   )

Disk h

R

h

ω

µ

 T2 is equal to
 (A) 2T1 (B) 0.25T1
 (C) 0.5T1 (D) 4T1
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25. A thin square plate (10 cm × 10 cm) is pulled with a 
force of 1.625 N horizontally through a 6 mm thick 
layer of Newtonian fluid (viscosity = 1 poise) between 
two plates, where the top plate is stationary and the bot-
tom plate is moving with a velocity of 0.5 m/s, as shown 
in the following figure. If a linear velocity profile is 
assumed, then the minimum distance from the bottom 
plate, at which the velocity of the fluid is zero, is

Stationary plate

Velocity = 0.5 m/s

2 mm

4 mm

Force = 1.625 N

 (A) 6 mm (B) 5 mm
 (C) 2 mm (D) 0.8 mm

 26. A hydraulic jack has a large piston of diameter 15 cm 
and a small piston of 5 cm diameter. The small piston is 
above the large piston by a height h. If a force of 100 N 
applied on the small piston lifts a load of 990 N placed 
on the large piston, then the value of h (in cm) is

 (A) 14 (B) 67
 (C) 40 (D) 52

 27. What are the forces that influence the problem of fluid 
statics?

 (A) Gravity and viscous forces.
 (B) Gravity and pressure forces.
 (C) Viscous and surface tension forces.
 (D) Gravity and surface tension forces.

 28. A stepped cylindrical container is filled with a liquid as 
shown in the figure 

h

h

2 d

d

  The container with its axis vertical, is first placed with 
its large diameter downward and then upward. The 
ratio of the forces at the bottom in the two cases will be

 (A) 1

2
 (B) 1

 (C) 2 (D) 4

 29. When pressure is increased, the bulk modulus of elas-
ticity ‘K’+

 (A) decreases.
 (B) increases.
 (C) remains same.
 (D) decreases then increase.

 30. The viscosity of water and the viscosity of air with 
increase in temperature

 (A) decrease and increases.
 (B) increases and decreases.
 (C) decreases and decreases.
 (D) decreases and remains same.

 31. Pascal’s law for a fluid is not valid if 
 (A) fluid is at rest.
 (B) fluid is at constant rotational velocity in a container. 
 (C) fluid is at constant linear acceleration.
 (D) None of these

 32. An inverted U-tube manometer is more sensitive than 
an upright manometric because 

 (A) the height of levels is greater.
 (B)  the manometric fluids are heavier than working 

fluids.
 (C)  the manometric fluids are lighter than working 

 fluids.
 (D) None of these

 33. Surface Tension is
 (A) also known as capillarity.
 (B) is a function of curvature of interface.
 (C) decreases with fall in temperature.
 (D)  acts in a plane of interface normal to any line in 

the surface.

 34. An inverted U-tube differential manometer is used to 
measure pressure difference in an inclined water pipe 
as shown in the figure. The manometer fluid is oil, of 
specific gravity 0.75

Water 0.5 m

1.2 m

0.7 m

0.8 m

0

Oil

0

A

B
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  Pressure difference between points A and B in N/m2 is
 (A) 1792 (B) 2882
 (C) 3679 (D) 4216

 35. 

Mercury

Oil

Carbon tetrachloride

3 m

1 m

h

A

B

  Referring to the figure, pipe A contains carbon tetra-
chloride of specific gravity 1.59 under a pressure of 
105 kN/m2 and pipe B contains oil of specific grav-
ity 0.8 under pressure 170 kN/m2. Level difference h 
shown by the manometric fluid mercury is

 (A) 72 mm (B) 83 mm
 (C) 95 mm (D) 115 mm

 36. A U-tube mercury manometer is used to measure pres-
sure of oil flowing through a pipe at a point. Specific 
gravity of oil is 0.8 and the level of mercury is as shown 
in the figure. The pressure in kPa is 

Oil (SG : 0.8)

150 cm

50 cm

A

 (A) 196.20 (B) 147.15
 (C) 110.36 (D) 73.58

 37. A glass tube of 3.7 mm diameter is dipped in water. If the 
contact angle at the meniscus is 0° and surface tension is  
0.074 N/m determine the capillary effect in mm. (Take 
specific weight of water as 10000 N/m2)

 (A) 4 mm (dep) (B) 4 mm (rise)
 (C) 8 mm (dep)  (D) 8 mm (rise)

 38. Differential pressure head measured by a mercury oil 
differential manometer is 9.5 m of oil.  If specific grav-
ity of oil is 0.68, difference in level of mercury is 

 (A) 300 mm (B) 400 mm
 (C) 500 mm (D) 600 mm

 39. Water

Oil
A B

Water

0.8 m
1 m

Mercury

0.
5 

m

0.
4 

m

0.
6 

m

  For the compound manometer shown in the figure, the 
pressure difference between points A and B in kN/m2 is 
______.

  (Given that specific gravity of mercury = 13.6 and spe-
cific gravity of oil = 0.85)

 (A) 115 (B) 125
 (C) 135 (D) 150

 40. Open end

0.5 m

Air

G

Water

2 m

Mercury

  Refer to the figure given above. The tank is filled 
with water upto 2 m from the gauge G. The manom-
eter shows a level difference of 0.5 m as shown. Local 
atmospheric pressure is 750 mm of mercury.

 41. Fluids which follow a linear relationship between shear 
stress and rate of deformation is known as

 (A) ideal fluid.
 (B) Newtonian fluid.
 (C) non-Newtonian fluid.
 (D) dilatant fluid.
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 42. An example of thyxotropic substance is:
 (A) Sewage sludge (B) Milk
 (C) Mercury (D) Printer’s ink

 43. 

1 m

1 m

Mercury
(S = 13.6)

Oil
(S = 0.75)

A

  For the U-tube arrangement shown in the figure, pres-
sure at A(in kN/m2) is______.

 (A) 140.23 (B) 140.77
 (C) 140.98 (D) 140.62

 44. Piezometric head means
 (A) Velocity head + Pressure head
 (B) Pressure head + Elevation head
 (C) Velocity head + Elevation head
 (D) None of these

 45. 
2.4 m

1.2 m

A

B

h

  Two pipes A and B containing different liquids are con-
nected by a U-tube manometer containing mercury. 
Specific gravities of liquids in A and B are 1.6 and 0.8 
respectively. If pressure in A and B are 102 kN/m2 and 
170 kN/m2 respectively, level difference of mercury (in 
mm) is______.

 (A) 112.5 (B) 118.5
 (C) 116.5 (D) 110.3

 46. A flat thin plate of 0.3 m2 area is dragged through oil 
between two large fixed parallel planes, at a velocity of 
0.25 m/s. Viscosity of oil is 0.97 Ns/m2. If the plate is 
equidistant from both the planes, the drag force (in N) 
required is______.

 (A) 26.4  (B) 29.1
 (C) 26.2  (D) 28.3

 47. Two vertical parallel glass plates with 1 mm gap 
between them are immersed in water. If surface tension 
is 0.073 N/m and angle of contact is zero, rise of water 
(in mm) in the gap is______.

 (A) 0.0128 (B) 0.0149
 (C) 0.90 (D) 0.98

 48. A 150 mm diameter shaft rotates in a 180 mm long 
journal bearing at 1450 rpm. Radial clearance in the 
bearing is 0.25 mm. If the clearance is filled with oil of 
dynamic viscosity 0.8 poise, power dissipated as heat 
in the bearing (in kW) is

 (A) 3.522 (B) 4.635
 (C) 4.842 (D) 5.083

 49. 

Vh

x

h − x

  A large thin plate is pulled at a constant velocity V 
through the gap between two parallel planes as shown 
in the figure. The upper side of the plate is having oil of 
viscosity μ and the lower side is having oil of viscosity 
am. The gap width between the planes is h and between 
upper plane and plate is x. Total drag force to be mini-
mum, value of x is equal to

 (A) 
h

1+α
 (B) 

h

1+ α

 (C) 
h

1−α
 (D) 

h

1− α

Previous Years’ Questions
 1. Oil in a hydraulic cylinder is compressed from an ini-

tial volume of 2 m3 to 1.96 m3. If the pressure of oil in 
the cylinder changes from 40 MPa to 80 MPa during 
compression, the bulk modulus of elasticity of oil is 
 [GATE, 2007]

 (A) 1000 MPa (B) 2000 MPa
 (C) 4000 MPa (D) 8000 MPa

 2. A journal bearing has a shaft diameter of 40 mm and a 
length of 40 mm. The shaft is rotating at 20 rad/s and 

viscosity of the lubricant is 20 mPa-s. The clearance 
is 0.020 mm. The loss of torque due to the viscosity of 
the lubricant is approximately. [GATE, 2008]

 (A) 0.040 Nm
 (B) 0.252 Nm
 (C) 0.400 Nm
 (D) 0.652 Nm

 3. A lightly loaded full journal bearing has journal 
diameter of 50 mm, bush bore of 50.50 mm and bush 
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length of 20 mm. If rotational speed of journal is 1200 
rpm and average viscosity of liquid lubricant is 0.3 
Pa-s, the power loss (in W) will be [GATE, 2010]

 (A) 37 (B) 74
 (C) 118 (D) 237

 4. For an incompressible flow field, V
��

, which one of the 
following conditions must be satisfied?  
 [GATE, 2014]

 (A) ∇⋅ =V
��

0  (B) ∇× =V
��

0

 (C) ( )V V
�� ��
⋅∇ = 0  (D) 

∂
∂

+ ⋅∇ =
V

t
V V

��
�� ��

( ) 0

 5. The dimension for kinematic viscosity is  
 [GATE, 2014]

 (A) 
L

MT
 (B) 

L

T 2

 (C) 
L

T

2

 (D) 
ML

T

 6. Three rigid buckets, shown as in the figures (1), 
(2) and (3), are of identical heights and base areas. 
Further, assume that each of these buckets have neg-
ligible mass and are full of water. The weights of 
water in these buckets are denoted as W1, W2, and W3 
respectively. Also, let the force of water on the base of 
the bucket be denoted as F1, F2 and F3 respectively. 
The option giving an accurate description of the sys-
tem physics is  [GATE, 2014]

(1) (2) (3)

h h h

 (A) W2 = W1 = W3 and F2 > F1 > F3
 (B) W2 > W1 > W3 and F2 > F1 > F3
 (C) W2 = W1 = W3 and F2 = F1 = F3
 (D) W2 > W1 > W3 and F2 = F1 = F3

 7. List I contains the types of fluids while List II contains 
the shear stress—rate of shear relationship of different 
types of fluids, as shown in the figure. [GATE, 2016]

List I List II

P.  Newtonian fluid 1. Curve 1

Q. Pseudo plastic fluid 2. Curve 2

R.  Plastic Fluid 3. Curve 3

S.  Dilatant fluid 4. Curve 4

5. Curve 5

Rate of shear
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ar
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1

2

3

4

5

  The correct match between List I and List II is 
 (A) P-2, Q-4, R-1, S-5  (B) P-2, Q-5, R-4, S-1
 (C) P-2, Q-4, R-5, S-3  (D) P-2, Q-1, R-3, S-4

Answer Keys

Exercises
 1. D 2. B 3. C 4. C 5. A 6. C 7. D 8. C 9. B 10. A
11. A 12. C 13. A 14. C 15. B 16. A 17. D 18. B 19. A 20. A
21. B 22. C 23. C 24. C 25. D 26. D 27. B 28. D 29. A 30. A
31. D 32. C 33. C 34. C 35. B 36. A 37. D 38. C 39. C 40. B
41. B 42. D 43. B 44. B 45. C 46. B 47. B 48. A 49. B

Previous Years’ Questions
1. B 2. A 3. A 4. A 5. C 6. D 7. C
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