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Set Theory and Algebra

3.1 Introduction

a set, since itis only a collection of elements.ie. A = {1.2,3)an
B=1{2,3 1)are both the same set. WesayA=R,

(b) Repetition of element s meaninglessin a set, since an element is

taken only onceie A= {1,2,23
andB={1,2, 3} are both the same sets.

3.2 Sets
Finite and Infinite Sets

nts are calleq finite sets

and those having infinite numberd
nS)or |s| denotes the

elements are calleg infinite sets, If S jg a set, then number of elements in S. n(S)ises

called as carding| number of § or cardinality of S,
Examples of finite set:
(i) Set of days in a week
(i1) Set of dates in a month
(iii) Set of chairs in a classroom



Examples of infinite set:

(i) Setofnatural number

(i) Setof points on a plane

(iii) Set of lines passing through one point

Equivalent Sets
Two finite sets are equivalent if their cardinal numbers are same. Notice that two equivalent sets need not
be equal.
Example: Let A={1,23)
B={xy 2z
then, A and B are equivalent sets.

Equal Sets
Two sets are equal if they have exactly same elements
Example: IfA={1,2,3}B={2 3, 1}then A=B.

Empty or Null Sets
A set which does not possesses any element is called empty or null or void set and is denoted by ¢ or { }.
Example: If A={x:xe Nand 2 <x < 3} then A =¢.

3.2.1 Subset

A set ‘A’ is subset of B if each element of A is also an element of B. A is called proper subset of B if B
has at least one element more than that of A and all elements of A are contained in B.

For subset we use < and for proper subset we use c.

Subset Properties:
1. If a set A has n elements, then total number of subsets of A is 2".
Example: If a set A is {1, 2}, then subsets of A are { }, {1}, {2} and {1, 2}
Here total number of subsets are 22i.e., 4.
2. IfXe A= X e B (where x is any arbitrary element)
Thenwe can say that AcB
This is the strategy that is used to check or to prove that A ¢ B.
3. AcBandBcAthenA=B
ie. AceBandBcA=A=B
This is the strategy that is used to prove that some two arbitrary sets are equal.
4. Power Set: Let A be a set, then power set of A is P(A) given by P(A) = {S : S c A}.
If A is the set of n elements, then the number of elements in P(A) is 2",
= n[P(A)] = 2".
Example: If S = {a, b, c}, then
P(S) = (¢, {a}, (b}, {c}. {a, b}, {a c}, {b, ¢}, {a b, c}}
Here S has 3 elements, 5o P(S) has 23 = 8 elements.
5. If Ais the subsect of B, then B is the superset of A Superset is denoted by the symbol “2".
ie. AcB=>B2A
6. Every setis a subset of itself and null set is a subset of every set.
i.e. AcA (for all A)
and ¢ c A (for all A)



3.22 Universal Set daration.
i g A sl th'e stits ggggir? %r;sclj?secrsssion. For example if we are discusg,
' ‘ ains all the sets in the ; - ' ince it containg
b % ahsrft ingzrgorr:tionm nos etc, the real no set is a convenient universal set s all the
numbers such as ' '

numbers discussed.

entof a Set - i
v E°t“L‘JP;°':n universal set and A be any element of it, then A€ or A" is the complement of A given by
etU be

AC={x:x¢ Aandx e U}
Let U = {1| 2! 3! 4' 5}
A={1,4),A={2,3,5)
Properties of Complements:
1. (ACC=Aor(AY=A .
(law of double complementation)
2. AUAC=UorAnAC=¢ - i
(That is to say that A and AC together contain everything and A and A€ have nothing in common
between themselves). ' _
. We can write AC = U - A (where “-" represent difference of two sets as will be discussed later).

3.24 Union of Sets

Let A and B be two sets, A set consisting of the elements of both A and B is called union of setAand B
and is denoted by A U B.

AUB={x:xe Aorxe B}

i.e. A U B contains elements belonging to A or B or both A and B. The “or” is being used in inclusive
Sense. (includes elements belonging to both A & B also).

So, “U" is the inclusive or,
Example:

LetA={g p, ¢ dh,B={a e f},
AUB={a, p, ¢ d e, f)

3.2.5 Intersection of Sets

Let A and B be two sets, then the set which consi
intersection of A and B and it is denoted by AnB.

= ANnB=[xr:xe Aandx e B)

Example: It A = {a,b, ¢ d),B= {a,e fl,then ANB = {a}. Properties of “U" & OV,

1. AgAuBanngAuB

2. AmBgAandAnBugB

3.2.6 DisjointSets

Two sets A and B are
disjoint sets, then A~ B = 0.

Example: Let A = {a b, ¢},B= {x

sts the common elements of A and B is called

said to be disjoint sets, if there is no common element in A and B. If A and B are

¥, Zlthen A and B are disjoint sets, because A A B = 0.
3.2.7 Difference of Sets
LetAand B be two sets, Then the set of all those eleme
of A and B and denoted byA-B= [x:xe A x ¢ B}
AlsoB-A={x:xe B.xeA)

nts of Awhich are notin B is called difference set



Example: If A={1,2,3,4),B=(2 3, 5)then A-B = {1, 4) and B - A = [5].
A - B includes all elements which belong to A only & (not B) and B - A includes all elements which
belong to B only (& not A) A - B is also called as relative complement of B in A.

Properties of Set Difference:
1. Ingeneral A-B#B-A
2. AC=u-A
3. A-B=A-(AnB)
[i.e. A~ B can be obtained by removing from A, the elements common to both A & B]
4, AuB=(A-B)u(B-A)uU(ANnB)=(Aonly)or (B only)or(both A &B)

3.2.8 Symmetric Difference of Sets

Let A and B be two sets. Then the set of all those elements which are in A but not in B or in B but not in
A is called symmetric difference of A & B, denoted by A @ B.

i.e. A ® B contains all elements belonging to either A only or B only but not both.

This is also called as the “XOR" operation. (Exclusive - or).

Example:

fA={1,2,34}andB={(3, 4,5, 6)

ThenA®B ={1, 2,5, 6}

Properties of Symmetric Difference:

1. A®B =B ® A (Commutative)

2. A@B=(A-B)u(B-A)=AonlyorBonly

3. A®B=(AuB)-(BnA)

4, A®(B®C)=(A®B)®C (Associative)

329 VennDiagrams
Most of relationship between the sets can be represented by diagrams known as venn diagrams.
A universal set U is represented by points in the interior of a rectangle and any of its non empty subsets by

points in interior of closed curves (usually circles).
The venn diagrams for common set operations is shown below.

U U u
EERIED €=
I AuB 3 AnB =rJ
u U _u u
A B A B A B
SOICEICE B
EJ A-B (Aonly) I B-A (B only) CAeB

RS

: NOT E:! Venn dtagrams can be effectlvely used for prm.;mg equahty of set expressions or for answermg %
{ questlon regardlng countmg of elements of sets i)



3.2.10 Fundamental Products

Fundamental products are the disjoint partitions (regions) of a venn diagram with two or mora
For example consider a venn diagram with two arbitrtory sets A and B, The four fundamenta
are shown below as (1), (2), (3) and (4).

Prodiey,

The number of fundamental products is always = 2", where n is the number of sets under congideration

1. AnBC [A only] [A and not B]
2. A°nB [B only] [B and not A]
3. AnB [A&B]

4. ACARC [neither A nor B)

Similarly for a 3 set venn diagram, there are 22 = 8 fundamental products as shown below:
1. AnBCnCC [Aonly]

2. A°ABnCC [Bonly] ' = Y
3. ACABCAC [C only] A 2 8

4. AnBCAC [A & C but not B] @

5. AnBnC® [A & B butnot C] W

6. ACNnBNC [B & C but not A]

7. AnBnC [all three] &

B. ACABCACC [none of them] -

Fundamental products are useful in counting since they are disjoint in nature and therefore provides no
chance for double-counting.

3.2.11 Lawof SetTheory

1. Aué¢=A Identity Laws
AnU=A
2 Aud=¢ Domination Laws
AuU=U
3. AUA=A Idempotent property
AnA=A
4. AuB=BUA Commutative Property
ANnB=BnA
5. Au(BuC)=(AuUB) uC} Associative property

An(BnC)=(AnB)nC

6. Au(BnC)=(AuB)n(AuUC) } Distributive property
An(BuC)=(AnB)u(AnC)



3.2.12

3.3

¢

8.
8.

C_
AUA® = u] Complement laws

ANAC = (1]

(A = A

(AUB)® = AC A RS
(AnB)® = ACURC

Law of double complement

Demorgan's Laws

Set Theory: More results

@ NGNS

A-B:AnBC-:A(AnB)

A-B=BC-AC

AcB e BCcAC

AcBandCcD=AxCcBxD

A UB) =n(A) +n(B)-n(ANB)

AU B UC) = n(A) + n(B) + n(C) - n(A ~ B) -n(ANC)-n(BNC)+nANBANC)
n(A€) = n(U) - n(A)

n(A-B)=n(ANBC)=n(A)-n(AnB) 10,11, 12and 13 are used in counting problem involving sets.

Cartesian Product of Sets

LetAand B betwo sets, then A x B ={(a, b): ae Aand be B) A x Bis called Cartesian product of sets.
The elements of A x B are of the form (&, b) called ordered pairs.

If A has m elements and B has n elements then A x B has mn elements.
Example: LetA ={a, b},B={c, d, e},then Ax B ={(a, c), (a d), (a e), (b, c), (b, d), (b, )}

BxA ={(c, a),(c, b),(d a),(d b), (e a), (e b)}

Here, A xB has?2 x 3 =6 elements

B x A also has 3 x 2 = 6 elements

Properties of Cartesian Product:

1. AxB#BxA 2. Ax(BuC)=(AxB)u(AxC(C)

3. AXxBNnC)=(AxB)n(AxC) 4, AxB-C)=(AxB)-(AxC)

5. (AxB)n(CxD)=(AnC)x(CnD) 6. AxB)u({CxD)=(AuC)x(BuD)
Relations

Definition:

Let A and B be two non empty sets, then a relation R from A to B is a subset of A x B.

1.

LetRc A xB.If (x, y) € Rthen we say “xis related to y", denote it by x Ry. In this notes, whenever
you see x Ry, read it as x related to y (by relation R).

LetRc A x B, given by R ={(x, y) : x € A, y € B}, then Domain (R) = {x : (x, y) € R}, and Range
(R) ={y:(x y) e R)

A relation R on set A is a subset of A x A and is called a binary relation on A.

Example: LetA={1,2,3)and B = (a, b, c, d}

Then a relation R defined on A x B Is any subset of A x B. For instance,

R={(1.a).(2 c) (2 b)

Now since (1, a) € R, we say 1Ra (1 is related to a by R)

Domain (R) = {1, 2}



[The set of all first elements of the ordere
Range (R) = (a, b, ¢}

[The set of all second elements of the ordered pairs of R)
Note: Since ¢ is also a eubset of A x Bitis also a relation,
R= ¢ =( ) is called the null relation or void relation,

Itis the smallest possible relation on A and B,

Since AxBcAxB. AxB itself is a refation. It is the biggest possible relation on A
contains all possible ordered pair combinations from element of A and B. Simijl
relation from a set A to itself is A x A, which is the universal relation in A,
3.3.1 R-relative Sets
For any element x e R, we can define a set called R-relative set of x as A(x) =
of x i3 all tha elements which are related to the element x by relation R,
Example: R

=1(1.1).(1,2),(1,3), (2, 1), (2, 2),(3,3)}
R(T)={1.2,3}

R(2)={1.2}andﬁ(3)={3}
Now for some Bg A we

d pairs of R]

and B, since
arly, the largest

{ylxRy}ie.R relative get

can define also R(B) = (y| xRy, v €B}. In example above, If B = {1. 3}, then
R(B) = ay elements related to 1 or3={(1,2,3],
3.3.2 Representatlon of Relations

Since relations are also sets (of ordered

pairs), They can be represented by listing,
Mmethods, used for represe et

set builderor statement
nting sets,
' However, relations can be represented by other methods such as matrix method, arrow diagram method,
graphical method or digraph methodg,
Considera relation Ron
A={1,23)
B=1{1,234 }
Set Builder: R = {(x, y) | x <

y}is a relation éxpressed in set builder method.

Listing: R = {(1,2),(1,3),(1, 4)(2,3),(2, 4) (3, 4)} is the same relation éxpressed in listing method.
1 2.3 4
110 1 1 1
Matrix: My=2(0 0 1 1

is @ matrix representation of the same relation.
3[0 0 0 1

If(x, ¥) € R, then there will be a 1 in the

position correspond ing to row representing element x and column
representing element y. All other entries in Mg are made zero.

Notice, that the row and column labels are shown for reference only and can be omitted as follows, if
order of elements listed in A and B is fixed,

The elements of M, may therefore be defined as to follows:

gy =1 {if there is a relation between element i of A and Element jof B}
I
= O otherwise
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The graphical representation of R would be as follows:
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Digraph
i AA Digraph (Directed graph) representation is suitable only if the relation is between a set A and itself, i.e.
onAxA. '
Example: A={1, 2, 3, 4,}
Consider a relation on A x A given as follows.
R={(1,1),(2,2),(1,2), (2,1) (2,3)}
The Digraph for the above relation is shown below.

The lines representing (1, 1) and'(2. 2) are called self loops.
Gipleta only when the sets Aand B are cieatly

R T T ey B T

@

o

["NOTE: The representation of a relation in set builder formis ¢

For Example R = {(x, y) / x < y} has a different meaning if specified on Z x Z;
R x R. (Note: the default set for numbers is the set of real nos).
So, if you wish to allow only integer values of x and y the correct representation will be, let

R={(x,y)/x<ylonZxZ

than when specified on

Identity Relation
Let A be a non empty set. Then the relation {(x, y) : x, y € A and x = y} is called identity relation.

Example: Let A = {a, b, ¢, d} thenthe identity relation 1, = {(a, a), (b, b), (c. c), (d, d)}
Identity relation is also known as diagonal relation, since in matrix representation of 7,, the diagonal

elements are all 1 (Identity matrix).



33.3 Operations on Relations ‘
Since relations are sets, all set operations can be performed on relations also. i.e. if R and § are fy,
relations, than the following are defined.
RuUS,RNnS RC SC, R-S, RUBS
Example: R={(1, 1), (1, 2), (2, 3))
S= {(1r2)| (2n 3)r (3'3)}
onAxAwhere A={1, 2 3}
RusS={1,1}(1,2),(2 3),(3,3)
RnS={(1,2),(23)

ﬁ = RC= U—R:(AXA)-H=[1-3)(2- 1)- (2- 2}1 (3- 1)(3- 2) (3- 3)}

S =8%=U-8S=(AxA)-S=((1,1),(1,3),(2 1),(22), (3, 1), (3 2)
R-S=R-(RnS)={(1, 1)}
S-R=8-(SnR)={(3, 3)}
R®S = (R-S)U(S-R)=(RUS)-(R NnS)={(1, 1), (3, 3)}
In addition to the above operations, the following are also defined on R and S.i.e. R, 5, RoS, SoR.
Definition: ‘
R = {(y,x)/ (x, y)€R)
In this example: R ={(1,1),(21),(3,2)
Note that if R relates x to y, then R relates yback to x.
$71=1{(2,1).(3.2),(3,3)
Using matrics My _; can be obtaines by taking transpose of M. i.e. Ma_ 1= (Mg)T
Composition of Relations
RoS = {(x, y)/(x, z2) € S and (z. y)e R}
RoS is called composition of S with R,
Similarly, SoR is composition of R with S.
To find elements of RoS., start with S andforeach (x, z) e S identify elements of the type (z, y) e Rand
write (x, z) € RoS. This must be done for each of the ordered pair of S.

Example: In above relation, with R = {(1, 1,(1,2),(2, 3)}and S ={(1, 2),

(2,3),(3,3)}

s

R S R e

There is no composition for ordered pairs

(2,3)and (3, 3) of S, since no element in R starts with 3. We

write
RoS = {(1, 3))
(1,1)eR&(1,2)eS. ~(1,2)e SoR
(1,2 e R&(2,3)e S, ~(1,3)e SoR

(2,3)e R&(3,3)e S. ~ (2,3)e SoR
SoR = {(1,2),(1,3), (2,3)}
Note: RoS # SoR (Composition is not commutative)
But, Ro (SoT) = (RoS) oT (Composition is Associative)
Using matrices for R & S, RoS can also be obtained as follows:
Maos = Ms© Mgwhere @ is boolean multiplication of matrices.



334 Typesof Relations

1.

Reflexive Relotion

A 1616tion 51 on A is calied .

i SCENGSIGHerive Y ye Sty o &
16.x e I, x [1x Yre b, nyet

E?-ﬂ!"pfﬂ' L&t 6 ba ae e o

’. o 7 A6t o sl 4‘!&':.4:?»‘ fine T ! oo
1 alas ool 2t ""g,‘!{’ ')‘. ;" ¥ TR R R St 1 -
refleyive because @very S fing dnrnSohrecty s oy, s

3 15 paralie) 1 dss
(5) The matriy of a refieys od ot . ey o
, 7 Q' ] !641,71 e f‘:uﬁ.{/)'] b/ fl f])’_fﬁﬁ{; 1 (] v’(,\ ;’;‘t' "'r‘}. ’jf{/f/fd‘ reicer,

Example;

L‘?t;n L ‘(1! 1,: (24 2): ‘3,3),‘1,2),"'2)}t@,¥/rﬂﬁ.’ﬂ,_;/”m,’f‘;’g;"5’:1’12‘3.:
111

Now, Mp=10 10
001

Natice that diagons! slements zre 24 1s,
s This is a reflerive relation,

(b) The digraph of a reflexive relation wifl have sif loops on every rode, For exarmpie for zoove

relation R, the digraph is

\

(c) Ris reflexive iff -1 Is refiexive,

(d) Note that when checking for reflexive property, check that every element is related to itself.

(e) Tocheck a get builder relation for reflexivity Iet x Ax for 2n arbitrary x and see i itis rue. Then @
is reflexive,
Example: R = {(x, ¥) | x divides y) Let x Rx = x divides x which is true V.
. Ris reflexive,

Symmetric Relation:
A relation R In A ls called symmetric relation iff (x, y) € R=>(y, x) € R
e, xRy=ryRxVx yeaA

(a) The matrix of a symmetric relation will be guch as that M, = M,E i.e. the matrix will be symmetric
matrix,
Since M[; represents the inverge relation A1, . anecessary & sufficient condition for a relation

to be symmetric ls A= A1
Example: R((1,1),(1,2),(2,1),(3,2), (2, 8)} is a symmelric relation

110
HOrO, Mn = 1 0 1
010

Notlce that My, Is a symmotric matrix,
Also, R-' = R & (M) = My



(b) The digraph of a symmetric relation will be such that all arrows (which are not self loops) y be
e
idirectional i.e. _

Il';'ld: :\frlznownagoes from (a) to (b), there will be an arrow from (b) to (a). Of course, smce self loopg

arz always bidirectional and can be excluded while checking a drgrapﬁ fqr symmetric propenyl
(c) The check a set builder relation for symmetry: Let xRy be true & see if this = yRx. If this ig 50,

then R is symmetric.

Example: R {(x, y) /x + y = 10}

Now, LetxRybetrue =x+ y=10

= y+x=10= yAx

~ R is symmetric. ‘ . .
(d) Since an implication is true whenever LHS is false, then if xRy itself false, then by default R is

symmetric,

= The empty relation is always symmetric.

3. Anti Symmetric Relation:
Arelation R on A is called anti symmetric iff xRy= yAx unlessx =y

However the following definition is easier to use in practice. A relation R is antisymmetric iff (x, y) € R
and (y,x) e Rox=y

i.e., xRy and YRx = x = y Vx, Ye A,
(&) Antisymmetric property basica
which are always two-ways).

(b) The matrix of an antisymmetric relation will have g *

as mirror) for every “1" in the off diagonal.
To check for antisymmetry,

lly means that all relations are one way, (Except for self loops,
0"in the mirror image position (using diagona)

check the 1sin off diagonal and see ifa “0" is there in corresponding
mirror image position. Ignore diagonal 1sin this check.

(c) Tochecka digraph for antisymmetry, ignore self loops and check that for every arrow going form
ato b(a, bdistinct), there is noarrow from bto g, i.e. All arrows (Except self loops) are unidirectional,

Example: R = {(1,1), (2 3), (1, 3)}is antisymmetric
10 1
Mg=(0 0 1
000

The digraph is unidirectional except for self-loops.

(d) Tocheck a set builder relation for anti
isx=y thenRis antisymmetric.
Example: R = {(x, ¥) / x divides VIx, ve N
Now Let xRy and ¥YRx = x divides yand ydivides x = x = Y.
* Ris antisymmetric.

(e) IfxRyand ¥Rx cannot be satisfied by any elements i.e. LHS is false, by default the implicatic”
becomes true, i.e. Ris antisymmetric.



Example: R = {(x, y) / x is father of y)

Now Let xRy and yRx

= x is father of y and y is father of x.

Now, this is not at all possible. Always false.

- by default the implication is true and the relation is antisymmetric.

4 Transitive Relation:

A relation R on A'is called transitive iff (v, y), (y 2)e R=>(x, 2) € R

i.e., xAyand yRz=>xRz Vx,y, ze A

Example: A relation “greater than" defined on the seto

ze Nifx>y,y> zthenx > z

(a) Transition property is difficult to check with a matrix.

(b) Transitive property can be checked on a digraph by scanning each
possible (x, ). (¥, 2) arrow and seeing if (x, 2) arrow also exists. Self loop

analysis since they always are transitive.
This procedure although tedious, can be used for checking a small digraph for transitivity.

(c) Tocheckaset builder relation for transitivity, Let xRy and yARzand solve these two equations. If
there is no solution, or if the solution results in xRz, then relation is transitive.

f natural numbers N is transitive because x, ¥,

node systematically all
s can beignored in this

Example: R={xy/x+Vyis even}

Now Let xRy and yRz

= x + y= 2k, . (1)
and y+2z=2k - (2)
Adding (1) and (2) we get

x+2y+2=2ktk)
= x+z=2(k1+k2-y)
- =x+ zis also even = xRz

- Ris transitive
(d) Notice that if xRy and yRzis always false (i.e. no solution to xRy and yRz), then by default Ris

transitive.

Irreflexive Relation:
A relation R on A is called irreflexive iff Vx € A, (x, x) ¢ R.

i.e.Vxe A, xPx

Example: Let S be the set of all straight lines, the relation R on S defined by “x is perpendicular to ¥y
is irreflexive, since no line is perpendicular 10 itself.
(a) Irreflexive property means strictly no self loops in

matrix representation. (i.e.all0'sin diagonal of Mg).
(b) In the builder form this can be checked by putting x Rx and seeing if this is always false.

Example: R = {(x, ) / x is one inch from y} defined on set of pts in a plane.
Let xAx = ptx is one inch from itself. Which is always false. Hence R is irreflexive.
(©) An irreflexive relation is surely not reflexive, but a not reflexive relation may or may not be

irreflexive.
i.e. irreflexive = not reflexive
not reflexive 5= irreflexive

Example: R ={(1, 1), (2. 3), (3, 1)}on
A={1,2,3}is neither reflexive, nor irreflexive.

digraphs. Strictly no 1s in the diagonal of the



6. Asymmetric Relation:
A relation R on A is an asymmetric relation iff (x, y) € R= (v.x)e R xARy=yAx.
e unidirectional, except tha: ¢,

This is similar to antisymmetric property in that all relations ar e
antisymmetric the self loops are allowed, but here in asymmetry even self loops are notallowsd i o

strictly unidirectional).
Example: R = {(x, y) | x is father of ¥}
Let xRy =» x is father of y = y is not father of x

ie.xRy=s y Ax. .. Risasymmetric.

Notice that there are no self loops here, i.e. x cannot be father of x.
(2) The matrix of an asymmetric relation must have 0°Sin all diagonal positions (no self loops). Alsg
L o

wherever a “1" is in off diagonal, a “0" must be there in corresponding mirror image positicn

(b) The digraph of a relation can be easily checked for asymmetry, as follows.
Check that there are no self-loops. Also check that every arrow is unidirectional.

(c) To check a relation in set builder for asymmetry,

Let xAy. This must imply that y Ax.
(d) If xRyis always false, then by default the relation is asymmetric i.e.¢ is an asymmetric relation.

Equivalence Relation: A relation R on a non empty set A is called equivalence relation iif

(a) Risreflexivei.exAxVxe A

(b) R is symmetric i.e xRy = yRx

(c) Ristransitivei.exAyand yRz=xRz Vx, y,ze A

Example: R = ((x, ¥)| x || y) on straight lines on a plane. Here, Il means “Parallel to”.

LetxRArx.
xAx = x||x is always true since every line is parallel to itself.

= Ris reflexive.
SetxRy=x|| y= y||x = yRx

= R is symmetric

Now, LetxRyand yRe = x||yand y||z= x || z= xRz.

.= R s transitive.
Now we say that, R is an equivalence relation since it is reflexive, symmetric and transitive.

Partial Order Relation: A relation R on a non empty set A is called a partial order relation iff
(@) Ris reflexive Vx e A, xAx
(b) R is antisymmetric xAyand yAx = x = y

(c) R is transitive xRy and YRz = xRz
Example: R ={(A, B)| A c B} on sets

Now, VA A c A is true., ~ Ris reflexive
LetAcBandBc A

Now, this = A =B ~ Ris antisymmetric
LetAcBandBcC

Now, this= A =C -~ Ris transitive
We now say that R is a partial order relation, since it is reflexive, antisymmetric and transitive-



Equmlence Relation, Equivalence Classes ang Quotient Set
Let R be an equivalence relation on A x A
Now equivalence class of x € A can be written as [x].
We define [x] = {y| xRy} i.e. for every element of A we

: can i } e o
elements related to it. define its equivalence class as the set of 21
Example: R ={(1,1).(2.2). (3,3). (1. 2). (2. 1)} is an equivalence relationon A = {1, 2, 3}
Now, M={1.2
[2 = (2,1}
B = (3

Notice that [1] = !2] i.e. There are only 2 distinct equivalence classes, Now the set of all equivalence
classes i called the quotient set of A induced by R, denoted as AR .

Here AR ={[1], [2]. [3]}={{1, 2).{3}}

"-  NOTE = Theorem: Every quotient set A/R is also a partition of A.

—— : Here, the converse is also true. ;
: é .= Theorem: Corresponding to every partition P of A, there exists an unique eguivalenca
: - relation whose quotient set is exactly P.

To find the equivalence relation corresponding to a given partition, Simply take the union of the cross
product of the blocks of the partition with themselves.

Example: Let A ={1, 2, 3, 4}
Find the Equivalence relation corresponding to the partition P, ={{1, 2}, {3, 4}}
Now there are two blocks A, = {1, 2} & A, = {3, 4} in P,
The equivalence relation R corresponding to partition P, is simply,
R=AxAJUA XA,
R={(1,1),(1,2),(2,1).(22),(3.3).(3, 4), (4, 3), (4, 4)}
Similarly the equivalence relation corresponding to partition P, = {{1, 2, 3}, {4}} is
R=1{(1,1).(1,2).(1,3),(2.1).(2.2),(2,3).(3.1).(3,2). (3, 3). (4. 4)}
Theorem: The relation congruence modulo mis defined as R = {(x, y)} | x = ymod m} (where mis a fixed
integer). This relation partitions the set of integers Z into exactly m distinct equivalence classes.
It can be shown that the m distinct equivalence classes are
[0] = ly|y=km, ke 2
[ ={y|ly=km+1, ke Z}
[m=1] = {y|y = km + (m-1), ke 2]

These are also called residue classes since 0, 1, 2, ... m—1 are the residues obtained upon dividing any
integer by m.

Example-3.1

Set A has ‘m’ elements and Set B has ‘n’ elements. What is the total number
of relations possible on ARs (from A to B)?

Solution:

m n
The cross product A x B has m* n ordered pairs.

And every relation R is either a subset or proper subset of A x B. This problem reduces to number of
subsets of ordered pairs in A x B. There total number of relations are 2™




Vlf;mmplu 3.2
alamenits In the &sl,
Solution:
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1. Kk

Wa can raprasent relation as matrix of slze Kx K,

Thera ara'K' reflaxive palrs and hence diagonal elemants are fized a1,

Thera ara (K7 - K) non-diagonal pair, ‘

Therafore number of raflexive relations are 6qual to number of subeets of non-diagonal elerments,
?K' -I§

'
"

Example-3.3
'n elemenis?

Solution;

l-61 us conelder relation ag n “nmalrlx, There are'n’ ¢
oll loops, Therefore 27 subsals of relloxlve palre, In

symmetric relation, the ordered pairs above the
dingonal elements are mirror Image of the ordered p

alre below the diagonal,

Therelore ¥ =n I
b e paire aro 1o bo takan,

= r#an
4 Tolal 2'%2 2 =2 2 gymmotre relations

e

lagonal elerments repregenting reflexive pairsor |

What I8 the total number of symmetric, relations from set A o itself that has |

What lo the total number of antisymmetric relations from Set A to itself which
has 'n' elements?

Solution;

Sell loops are alwaya allowod, Thorefore 2n
ordored palre aro not allowad,

Lo If (a, b) exlsts then (b, &) should not be pragent,

eubgols of reflexive pairs. In antisymmetric relations symmetric

The Image palre can take (10,01, 00) but not (

11). Therefore, 3 possibilities for all [nzz- n] pairs.

2
1™ =1
“Tolal antleymmotric relations are 27 %3 2

2

Lot A = ((a, b), (b, o),

following Is transltive closure of A7
(a) ((a, b), (b, c), (o, d), (a, d)) (b) {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)}

(c, d)) be a relation on set {a, b, c, d}. Which of the

(c) {{a, b), (b, ¢), (c, d), (b, a), (¢, b), (d, o)) (d) None of these



solution: (b)
R = {(a, b), (b, ), (¢, d)}

Transitive closure of R = {(a, b), (b, ©). (c, d), (a, c), (b, d), (a, d)}
I |

Missing elements inR:
0 (a b)and (b, ¢) = (a, c)
(iti) (& c)and (c,d)= (a, d)

(i) (b,c)and(c,d)= (b, d)

3.4 Functions
Definition: A function or mapping Is a relation between the elements of A and those of B having no
ordered pairs with the same first component.
d relation. i.e. every element of A is mapped to only one

In other words, a function is a unique value
element of B. However, elements of B may be related to more than one element of A.
Note that every function is a relation, but a relation may or may not be a function.
If the first element may be thought of as input and the second element as output, then,

gvery input has a unigue output.
(1, 1), (2, 3), (3, 3)} is a function on A X A, where A={1,2, 3}

in a function,

Example: f=
Here, f(1) = {1}=1
f(2) ={3}=3
f(3)={3}=3
Whereas, R={(1,1).(23).(2 4), (3, 3)} is not function, since

R(1) = {11, R(2) = {3, 4, R(3) = {3}
Here R(2) has 2 values 3 and 4 and hence Risnota function.
There are two ways to write a function, one as a formula and other as a relation.
Example: f(x) =x?and f= (x, y) |y =x?} are both one and the same function.
Ifa function is written as f : A — B, it means that f is a mapping that takes all elements of A and maps each, to

aunique element of B. It must be noted here
() that there may be some element
(b) that each element of set A must be a
Then A is the domain of f and B is the Co-domain
If (x, y) € f, it is customary to write y = f(x). yis ca
of y.
yis also called value of f
of £. It is denoted by f(A).
Range of f=f(A) = {f(x)|xe A}
To check if a given relation is a functio
() Vxe A, is f(x) defined and belongs to B?
(i#) f(x)is unique, and single valued.
'-::Xample; S={(x,y)|y=3x+1JonRxR is a function, since,
(:_)‘ VxeR,S(x)=y3x+1eR
(i) 3x + 1 has a single value for any real value x,
~. Sis afunction, We say S: R—> Ror Sp,

s of the set B which are not associated to any element of set A.

ssociated with one and only one element of set B.
of “f".
lled the image of x and x is called the preimage

at x. The set consisting of all images of elements of A is called the range

n f: A — B check the following:



3'4.1

One-One Mapping
A function f: A — B Is said to be one-one if different elements of A have different f-imageg ing: '
ig

f(x,) = f(x,) = x, = x, or equivalently x, #x, = f(x,) # f (x,)

One-one mapping are also called injection.
To check if a function is one to one, Let f(x,) = f(x,) and see if this leads to a single solutioni.e. x. - x|
EX,

If so, fis one-to-one. Else, it is many to one. (Assuming, it is a function.)

34.2

in B.

343

Example: S = {(x, y)|y=3x +1JonRx R
We already have checked that indeed S is a function.

Now to check 1 -1, we set S(x,) = S(x,)
2 Y=Y, =23 +1=30,+1=2x=1x,
= S is one-to-one function.

Many-One Mapping
Afunction f: A — B is said to be many one iff two or more different elements in A have the same f-image

A function which is not one-to-one is many to one.

Example: T={(x, ¥)|y=x3onR xR
Not it can easily be checked that T is indeed a function.

Now let T(x,) = T(x,) = ¥, = ¥, = x2 = x5

Now, xZ = x5 has two solutions x, = x, or x, = -,
- We say, x12 = xgékp] =X,

r(x1) = T(xz)

T(x,) = T(x,) 2y Xy =%,

This means T is not one-to-one, i.e., It is many-to-one function.
Let f: A— B (here f: A— A since A =B)

.
o

Into-Mapping
The mapping fis said to be into iff there is at least one element in B which is not the Fimage of any

element in A.

344

In this case f(A) c B.

i.e., range of A Is a proper subset of B.

Example: f={(1, 1), (2, 3), (3, 4), (4, 3))

Where, A=B={1234)
Now, fiA) = (1,3,4) (1,23 4}

-~ fls an into function.

Onto Mapping ontinA
The mapping f Is sald to be onto iff every elements in B, is the f image of at least one elem

(i.e. every element of B has atleast one pre-image In A).

In this case f(A) = B

I.e., the range of = Co-domain
Onto Mapping is also called surjectlon.



Example: Let f:AaBbe

f=1(1,1).(2.3), (3, 4),(4,2)
A=B={1234)
fA)={1,2,3,4)=8

where,

Now,

= fis an onto function.

We say, fis Aonto B,

To check if a given function
ye Bhas a preimage in A

Example: Check if f: R — R

f(x) = 3x+1is onto or not

given in formula or set builder notation is onto or not, see if every element

Let, f(x) = y=3¢+1
Now solve x in terms of Y.
i.e. Xs —-—0'-1)

3
VyeR, %'_1 is &lso real

ie.Vye R, xe R
< Every element yin second set has a primage in the first set. i.e. fis onto function.

B _ﬁaféfgﬁﬂéﬁc;ﬁf{i:;é is both one-one and onto, then it called a bijsction functon or
. bilectionis also called a one-one correspondence between Aand B. e,

ftwo sets A and B are in 1-1 cormespondence, then | A| = |B], thatis they have exactly same number
of elements.

abijection. A

345 Composition of Function

Definition:

letf:A-Bandg:B—>C

The composition of f and g denoted by gof, read as gof results in a new function from A—Candisgiven
by(gofl). () =glf(x)) VyeA

Example: LetA={1,2,3},B = {a. b}and C ={r, s}and f : A - Bis defined byf(l)=aand f(2) = a
and f(3) = band g: B — C be defined bygla)=s, gb)=r.

Then gof : A — C is defined by,

(gof) (1) = g(f(1)) = gla) = s

(gof) (2) = g(f(2)) = gla) = s

(gof) (3) = g(f(3)) = g(b) = r

Example:

Letf:R—>Rbef(x)=x+2

Letg:R— Rbe g(x) = x2

Now (gof) (x) = g(f(x)) = glx + 2) = (x + 2)2

(fog)(x) = f(g(x)) = f(x2) = x2+ 2

Note that fog # gof (composition is not commutative)

However, fo(goh) = (fog)oh (composition of functions is associative)
Theorems

(a) If fand g are one-one then gof is one-one
(b) If fand g are onto, then got is onto
(c) If fand g are bijections, then gof is also a bijection.



Identity Mapplng

It Ais a non-

empty set then f: A — B such that f(x) = x,
by s A

Vxe Ais called identity mapping. It is dengy
8
Inverse Mapping

Iftis one-one and onto (bijective), from f: A = B, then £ exists and it carries elements of B back toa
Example: Let f= {(1, 2),(2,3), (3, 1)} is a functionon f: A — A where A= (1, 2, 3) '
Now f-'={(2, 1), (3, 2), (1, 3)}is the inverse function.

f(1) = 2and f-1(2) =1

To find inverse of set builder functions, the following procedure is given:

Example: Find inverse of flx) =3x +1, f: RS R

f(x)=y=3x+1
1. Write x in terms of y
- Y-l
=3

2. Now,iff(x) =y, x= ~y)
AF )=z X1
3
Le. F(y) = ¥=1
3
3. Sinceyisa dummy variable, we can replace it with x also.
e flx) = X=1
Le. f-l(x) = 3
. e x-1
~iff(x) =3x + 1, then f x) = =

Here the inverse exists because f(x) =3x + 1is a bijection from R to R.

Example-3.6 How many onto functions from a set with six elements to a set with three
elements? )
Solution:
LetP,, P,

n(R R Ry) = Total # of functions possible — [n(P,) + n(P,) + n(P,)]
+[(P,P,) + n(P,P,) + n(P,P,)] - n(P,P,P,)

at do not have b, in their range.

that do not have b,and b;in their range.

ns that do not have b, bjand b, in their range.

n(F,) — is the number of functions th
n(F,F) — is the number of functions
(P, F;P,) = is the number of functio
The total number of functions are 36
n(P,) = 28 (since b, is not in ran

ge every element in domain have two choices (b, and b,).
Similarly,




= NPyP,) = n(P,P,

12 2P3) = N(P\Py) = 18 = 1
(Every element In the domain will have only one choice)
= ﬂ(P1P2P3) =0
Because this term is the number of functions th
there are no such functions.

Number of ONTO functions = 3% - 3 « 26 +3x19=729-192 + 3 =540
Note: Let m and n be positive integers with m> n, then there are .
nm="Cy (n=1)"+1C, (n-2)m - "Cy(N=3)" 4 ... 4(-1)1-1nC_ qm

ONTO functions from a set with m elements to a set et

at have none of b,, b, and b, in their range. Clearly,

with n elements.

How many ways are there to assign five different jobs to four different
employees if every employee Is assigned to atleast one job?

Solution:

Consider the assignment of jobs as a function from the set of five jobs to the set of four employees. An

assignment where every employee gets atleast one job is same as an onto function from the set of jobs
to the set of employees.

Hence number of onto functions are:

A" ="Cy(n=1)"+ "Cy(n-2)m- "Cy(n=3)" +...+ (-1)"-1.nC 1m
wheren=4,n=5 "
. 4°-4C\(3)°+4C,(2)5~4C,(1)5 = 1024 - 4 x 243 + 6 x 32— 4 = 240

Let f be the function from (a, b, ¢, d} to {1, 2, 3, 4} with f(a) = 4, f(b) = 2,
f(c) = 1 and f(d) = 3. Is fa bijection.

Solution:

The function fis one-to-one and onto. It is one-to-one because no two values in the domain are assigned
the same function value. It is onto because all four elements of the co-domain are images of elements
in the domain. Hence f is a bijection.

Figure displays four functions where the first is one-to-one but not onto, the second is onto but not one-
to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one nor onto. The fifth
correspondence in figure is not a function, because it sends and element to two different elements.
Suppose that fis a function from a set A to itself. If A is finite, then fis one-to-one if and only ifitis onto.

This is not necessarily the case if A is infinite.

(a) One-to-one (b) Onto (c) One-to-one  (d) Neither one-to-one (e} Not a function
non onto not one-to-one and onto nor onto
] ae ae o1 ae e 1
ae o1 >< ae
¢2 be be *2 be / *2 . *2
L ]
b e3 Ceo ‘2 ce e3 <Ceo *3 .3
Ce 3 / ce
4 de de o4 de o4 "’

Examples of different types of comrespondences

Example-3.9 Lot fbe the function from {a, b, ¢} to (1, 2, 3} such that f(a) = 2, f(b) = 3, and
f(c) = 1. Is finvertible and If it is what Is Its inverse?

Solution:
; o -1
The function f is invertible because it is a one-to-one correspondence. The inverse function f-' reverse

the correspondence given by f, so - (1) = ¢, '(2) = & and f(3) = b.




T5i7- 7 Z be such that f(x) = x + 1. Is fInvertible, and If tis, what Is s |
inverse?

Solution:
The function fhas an inverse because it is a one-lo-one correspondence, as we have shown. To reverse

the correspondence, suppose that yis the Image of x, so thal y = x + 1. Thenx = y— 1. This means that
y— 1 is the unique element of Z that is sent to y by . Consequently, ~1(y=y-1.

EZEIIEXIN Lot fbe the function from Rio R with (x) =% Is invertible?

Solution:
Because f(-2) = f(2) = 4. { is not one-to-one. If an inverse function were defined, it would have to

assign two elements to 4. Hence fis not invertible. Sometimes we can restrict the domain or the
co-domain of a function, or both, to obtain an invertible function.

Show that if we restrict the function f(x) = x2 in example previous to a function
from the set of all non-negative real numbers to the set of all non-negative real numbers, then fis
invertible.

Solution:

The function f(x) = x2 from the set of non-negative real numbers to the set of non-negative real numbers
is one-to-one. To see this note that if f(x) = f(x), thenx2 = y2, s0x? - y? = (x + y) (x — ¥) = 0. This means
thatx + y=0orx—-y=0,s0x=-yorx = y. Because both x and y are non-negative, we must have
x = y. So, this function is one-to-one. Furthermore, f(x) = x2 is onto when the codomain is the set of all
non-negative real numbers, because each none-negative real number has a square root. That s, if yis

anon-negative real number, there exists a non-negative real number x such that x = \ff which means

that x2 = y. Because the function f(x) = x2 from the set of non-negative real numbers to the set of non-

negative real numbers is one-to-one and onto, it invertible. Its inverse is given by the rule f-'(y) = /y.

Let g be the function from the set (a, b, ¢} to itself such that g(a) = b,
g(b) = ¢, and g(c) = a. Let fbe the function from the set {a, b, c} to the set {1, 2, 3} such that f(a) = 3,
f(b) = 2, and f(c) = 1. What is the composition of fand g, and what is the composition of g and f?

Solution:

The composition f o g is defined by (f o g) (a) = f(g(a)) = f(b) = 2, (f o @) (b) = f(g(b)) = f(c) =1,

and (fog) (c) = f(g(c)) = f(a) = 3. Note that g o f is not defined, because the range of fis not a subset
of the domain of g.

==

Let fand g be the functions from the set of integers to the set of integers

defined by f(x) = 2x + 3 and g(x) = "
of gand f? g(x) = 8x+ 2. What Is the composition of fand g? What is the composition

Example-3.14

Solution:
(fog) (x) = f(glx)) = f(3x + 2) = 2(3x + 2)+3=6x+7

and (gof)(x) = g(f(x)) = g(2x + 3)
= 3(2x +3) + 2 = 6x + 11




3,5 Equal Functions

Two functions f and g on samo domain A are qual if f(x) = glx), Vx e A

symmetric Function
If fand /- aro equal then { Is sald to bo symmotrle func
Lot f={(2,7), (3,8), (7, 2), (8, 3) then 11 = {(7, 2), (
Here f= {1
Henco fis symmetric function.

tion for example
8,3),(2,7),(3,8)

Binary Operation as a Function

Conslder a set 'A"and an operation denoted by ‘** which when placed between two elements a and b
produces a unique result denoted by a * b which may or may not belong to A,

It '+'Is binary operationon Aand a* be AV a, be A, then '*' is said tolbia closad and ey A le
closed with respect to binary operation '»',

Since a * b is unique (single valued) and also if “*" is closed on A, then we may look at a binary
operation as a function from A x Ato A,

In such a case instead of a* b, we may even write it In functional notation as  (, b).

For example: a+ b =+ (a, b) defined on Z x Z maps pairs of integers to a value which is their sum. i.e.
+(1,2)=1+2=3

~ (1, 2) is mapped to 3.

~ Inthiscase thisisafunction +:ZxZ > Z

A binary operation may be defined as a formula or as a binary operation table.

Example: a* b= a+ b-abis a binary operation defined by formula method

Say * is defined in Z

Then2*3=2+3-2x3=-1

1+2=1+2-(1x2)=1andsoon.

Example: Let a binary operation be defined as in the following binary operation table.

*

abec
alc a b
bk & ©
cla b b

from table we can see thata* b=a& b*b=c&ax(b*c)=a*c=b

3.6 Groups ;

Algebralc Structure: A non empty set S along with one or more binary operations is called an algebraic
structure, Suppose * is binary operation on S. Then (S, ) is an algebraic structure. (N, 24 2R x)
are all examples of algebraic structures.

3.6.1 SemiGroup
An algebraic structure (G, *) is called a semi group if the binary oper
be G)and is associative in G ((a* b) * c = a* (b* ¢) Va, b, ¢ € G).
Example: (Z , +) is a semi group since
1. Va be Z a+ be Z(closure)
2. Va,bceZa+(b+c)=(a+b)+cC

ation *is closedonG(a*be GVa,



—— T
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However, (Z, -) is not semigroup since although closure property holds, associative property doeg -
hold for "-", a- (b-c¢)'(a-b) - c.

3.6.2 Monoid
An algebraic structure ( M, *) is called a monoid, if.
() "+*"isclosedon G
(i) " * "is associative &

(i) ee GsuchthatVaeM,e+a=a=a*e , nold.
Such an element *¢" is unique and is called the identity element for the mona

| .‘N‘.)TE;E‘:'éFY—monoid isa semigroup but the converse in not true.
Example: (Z, +) is not only a semigroup, but is also a monoid since
S Bl ey oo “+" on z. Notice that (N,+) is also a monoid since Oe N,

.. Ois the identity element for the binary operation .+ )
However, (Z*, +) is semigroup, but not a monoid since 0 & Z I

' NOTE:N=1{0,1,234..] « (setof +ve integers) s

Set of non - negative integer '
5Z+=(1,2,34..)&Z =(-1,-2,-3, ..} &Z = {0, 1, +2, ...} « set of integers

3.63 Group . N - "
An algebraic structure (G, *) is called a group, if the binary operation satisfies the following postulates

1. Closure property: a*be GVa, be G
2. Associativity: (a* b)xc=a*(b*c)Va b, ce G
3. Existence of identity: There exists an element ee G suchthat e* a=a=a* eVae G. The element

eis called identity for ‘*' in G.'
4. Existence of inverse: Each element of G possesses an inverse. In other words for each ae G, there

exists anelement be G. Such that a* b= b+ a= e. The element b is called inverse of a and we write
b=a" Thus a'isanelementof G, suchthata*a'=g '+ a= e
Example: (Z, +) is not only a semigroup and a monoid, but it is also a group.
(Z, +) has already has been shown to satisfy (i) closure (ii) association property and (#ii) existence of
identity. Now we shall show that condition (#v) for group, also holds for (Z, +).
Vx e Z, If inverse exists it must satisfy., x * x 1= x1 % x =
= x+x'=x"4+x=0(since0is the identity element for +)
= x'=_xsince-xe z s Vxe Z x e Zexists
Just like identity element, the inverse is also unique for a given element. Notice, however that there is
only one identity element for the entire group, whereas there is a unique inverse for each element of G.
In(Z, +), the identity element is O for the entire group, while inverse of 1is -1, inverse of 2is -2, and soon.
Note however that (Z, x) is not a group since although it is closed, associative, identity exists (= 1),

inverse does not exist for all elements.
a*al=alsa=1og1=1
a

but 0 € Z and does not have an inverse, since 01 =oog 7

* (Z, x) is not a group.



3.,6.4 Abelian Group or Commutative Group 7
Agroup Gis said to be abelian or commut
ative, if | iti
ostuates &0 also satiefen N addition to the above four Postulates, the following
Commutative: l.e,a*b=h« g Va be G
Example: (Z, +) is an abelian grou

P, since it has alre
commutation property also. ady been shown to be a group, and it has the

le.Vx,yeZx+y=yq4x
Notice that Ithe set of (2 x 2 non singular matrices, *) when “+" is matrix multi
an abelian group, since matrix multiplication is not commutative |

plicationis a group but not
e A*B2B*A VA Be (2x 2non singular matrices)

3.6.5 Finite orInfinite Groups

Ifin a group G, the underlying set G consists of a fini
_ ; inite number of el -
finite group, otherwise as infinite group. ements, then the group is called

Order of the Group

The number of elements in a finite group is called the order of a group. An infinite group is said to be of
infinite order.

Some General Properties of Groups:

Suppose our group consists of a non-empty set G equip

1. The identity element in a group is unique.

2. Theinverse of each element of a group is unique.

3. Iftheinverse of ais a™, then the inverse of a-'isai.e (a')' = a.

4. Theinverse of the product of two elements of a group G is the product of the inverse taken in reverse
order (ab)'=b'a'Va, be G.

5. Ifa, b, care any elements of G, then ab = ac= b = ¢ (Left Cancellation Law) ba= ca= b= c. (Right
Cancellation Law).

6. If a, bare any two elements of a group G, then the equation ax = b and ya = b have unique solution
in G, given by x = a-'band y = ba™!, respectively.

7. The left inverse of an element is also its right inverse i.e if a'is left inverse of a(i.e. a'a = €), then
aa! = e, which means that a! is also the right inverse of a.

3.6.6 CayleyTable

The binary operation table for a finite group are called cayley tables.
A cayley table for a group with only 4 elements is presented below:

ped with a binary operation denoted by *. Then,

*le a b c
ele a b ¢
ala b ¢ e
b|b ¢ e a
clc e a b

i inthe
It can be verified that ({e, a, b, ¢}, *) is indeed a group. Itis conventional to put the Identity elementin
front of both row and column in a cayley table.



Properties of Cayley Tables:

—_—

1. The row and column containing e will be a copy of the column headers & row headers respectively,
This is because by defintionx*e=e*x=x Vxe G
-2

Since ax = band ya = b have a unique solution, Every elementin every row ( or column) of the table
must be different.

Thatitto say that no element can be repeated in any row (or column)i.e. Each row or column is only
a permutation of the element of G.

Inthe example given each row and column can be seen to be a permutation of &, a, b, c.
3.

The cayley table tells us if the group is abelian or not. If the cayley table is symmetric about the
diagonal (as is the case in the example given), then the group is abelian.

Inthe cayley table, if e appears anywhere in off diagonal, then another e has to appear in its mirror
image location (using diagonal as the mirror).

Thisis because, an off diagonal e means a# band a* b= e, but, this implies that b * a= ¢, Thereby
the mirror image location must also have an e.

e appears in the diagonal, then the corresponding element is its own inverse.

Theorem: If every element of a group is its own inverse, then the group is abelian. (The converse is not
necessarily true).

In other words, if G is a group and Vx e G if x2= g, then the group is abelian.
Multiplication Modulo p

We shall now define a new type of multiplication known as ‘multiplication modulo p’ and written as a x b

where aand bare any integers and p s a fixed positive integer. By definition. We have ax LP=rosr< pwhere
ris the least nonnegative remainder when ab is divided by p. For Ex.

Bx 3 =4(since24=4(5) +4)
Also, 4x,2=1(since4x2=8=1(7)+1)
Some Properties of Integers:
Let, Z={..-3,-2,-1,0,1,2, 3...... } be the set of integers
Division Algorithm

Letae Zand de Z*. Then we can divide a by bto get nonnegative remainder rwhich is smaller in size
than b. In other words if ae Z and d e Z*, then there exist unique integers q and rsuch that
a=dq+rwhereo< r<d
Example: 2=23, d=3,then23=3x7 + 2.
(qis called quotient and ris called as reminder).
Divisibility in Set of Integers

Leta, b#0e|. Wesaythatais divisible b
ais a multiple of b.

y bif a= bmwhere mis some integer. i.e. if b divides a, then
Greatest Common Divisor

e Letaand b be any two integers. Then the positive integer ¢ s said to be greatest common divisor of
() claandc|b

(i) Whenever d|aand d | b, then dle

The greatest common divisor of integer aand b will be symbollically denoted by GCD (a, b).



367 Some Classic Examples of Group’s
1. LetB={0, 1} & operation + is defined as:

+{0 1
0o 1
111 0
Then (B, +) is an abelian group wi
Infact this + as defined in table i i
2. (Z, +4)is an abelian group fo:Se\r:zS"rfebuZt}he ol
relation congruence modulo m & +nisthe mo

ement is its own inverse,
tion

c,j where Zm‘i‘s the set of equivalence classes for the
ulo m addition. The operation table for (Z, +5) is

100 M [2 (3 [4
O [ O T (2 [3} H
1M @ [§ 4 [
@ B[4 o [
Bl B[4 o [ [
CIM O 1 2 [

Here, [1] = set of all integers which leave a remainder of 1 when divided by 5 = {46, +11, +16, +....
+ (5m +1)} of course, a simpler form of this is simply ({0, 1, 2, 3, 4}, +). |

+s

P WN a O|lo
O b N 22
- O b W MM

0
1
2
3
4

N = O b W
W N a2 O D

3. When pis prime, ({1,2, 3, .... p-1}, xp) is always on abelian group.
Example: ({1, 2, 3, 4}, x5)

xs |1 2 3 4
111 2 3 4
212 4 1 3
313 1 4 2
414 3 2 1

Here the inverse of 2is 3, 3is 2, 4 is 4 & 1is 1. Amore general version of this is {Zp-{O}. Xg}, is also
an abelian group.

xs | [1 [2 [3 [4]
A1 @ 6B M
2@ [ [0 6
(B3 M [ [
[ 14 [ [




4. Symmetric group of permutations: , _
Let S = (1. 2, 3} Let S, be the sst of all permutations on S. There are 3! = & permutationg Eagy
cermutEtons is a ons-ons, orto map from S to S. The S form & group under the operation Composcy
of mapings This group 5, s called the symmetric group of pemutations of order .

Cons}de" S = {1‘ 2_ 3}, Then 53 = {pp pzv p3- pd’ ps' p6}7' Where

123 _123p=[123]
Pi=ly 2 3|P2"|g 1 3] [3 2 1

12 3 _123]p=[123]
.D4=132'p5__231'6312

The compositions 0 are givenin table below:

O|lp, P P3 P+ Ps Ps
py| B P2 P3 P2 Ps Ps
Do |P2 P Ps Ps Pa P3
Ps|P3s Ps Pi Ps P2 Pa
Ps |Ps Ps Ps P1 Pz P2
Ps|Ps P3 P2 P2 Ps P
Ps |Ps P2 P2 P3 Pi Ps

D.. is the identity element. S, is called the group of symmetric of a triangle.
This group is not abelian.
Power of an Element
Let(G, =) beagroup and etz G, forany position integer m, we define, @"=axa=a=.__. =3 (miimes)
and 27 =(g7) = (g7)*(2").... = (27) (mtimes) &° = eand if m & n are position integers, then &7+" = g7+ z
Example: On (z, +) whichis a group
B=1+1+1=3
B=2+2+2=6
23=21+ 27"+ 271=(-2) + (2) + (-2) =6
Order of an Element of a Group
Suppose G is group. By the order of an element ae G, is meant the least positive integer n, if one exists,
such that 2”7 = e (the identity of G).
If there exists no positive integer n such that 27 = e, then we say thata is of infinite order. We shall use
the symbol O(a) to denote the order of a.
Example: Consider the group given below

®
)
o
9]

0::-mm|
O O n o

© QO T n
n O OO
o o O

The order of the group = |G| = 4

The order of element eis 1 since e' = e

The order of element ais 4 since 8 =a* a* g+ 2= b*ax*a=c*a=e.

The order of element bis 2 since b= b* b = eand the order of element cis 4 since ¢* = C* C_* e
=b#*c#*c=a*c=ein(Z +), the order of each element other than 0 is « and the order of element 018 1',\
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gome Results Regarding Order of an Element
0

4. Theorder of every element of a finite group is finite and is less th

The order of an element a of a group is the same as that of its i an or eq1ua| to order of group.
The order of any integral power of an element a, cannot ex its inverse &,

If the element a of G is of order m, then a" = e'iﬁ P d.cfed the order of a.

The order of_the elements a and x~' ax are the same wherl: ;o; Z:en '

Order of ab is same as that of ba where a and b are any e'en}em Efiny two elements of a group.
If a is an element of order nand p is prime to n, then & is also of or?j:r : group.

N bR N

368 Cyclic Group

A group (a *)is c-alled a cyclic group if there exists an element a e G such that every element of G can
ttenas & for.some integer n. Thatis G = (a"ln e z). We say that G is generated by a. ais the generator of
may then write G - {a} or G (a). Naturally, a cyclic group is abelian.

The order of a cyclic group is same as that of its generator.

1. (Z, +)isacyclic group generated by 1.

2 {Z., t,)is generated by [1].

Note that in example 1, order of G = order of 1 = « and in example 2, orderof G = | Z,,| = order of

m

be wri
G| We

[1]=m
properties of Cyclic Group:
1. Everycyclic group is an abelian group.
o |fais generatorofa cyclic group G, then a-'is also a generator of G.
3. Acyclic group G with generator a of finite order n, is isomorphic to multiplicative group of n, n™ roots

of unity.

4. Acyclic

classes modulo n.
5. If afinite group of order 11 contains element of order n, the group must be cyclic.

group G with a generator of finite order n is isomorphic to the additive group of residue

6. Every group of prime order is cyclic.
7. Every subgroup of a cyclic group is cyclic.

Method for Finding the number of generators of a cyclic group of order n: The number of generators
f numbers from 1to n, which are relatively prime to n.

of a cyclic group of order n is same as the number 0
Method for finding the number of numbers from 1 to n, which are relatively prime to n: The number
of numbers from 1 to n, which are relatively prime to n ie,gcd(mn)=1, is given by the Euler Totient function

9(n). If nis broken down into its prime factors as 1= pi - p?.... where py. P etc. are distinct prime nUMbErs, then

o(n) = ¢(p™) ¢(p)... then by using the property
#(p*) = p¥-p¥!

we can find each of ®(p{"), (p2°)..- €tC:

For example, let us find the number of generators of a cyclic group of order 80:

The number of generators of a cyclic group of order 80 = The number of number
relatively prime to 80.

Since 80 = 24 x 5.

sfrom 1ton, which are
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The number of numbers from 1 to n, which are relatively prime to 80 = $(80) = 9(2%) x ¢(5")
Now ¢ (29) = 24-23= 16-8 = 8,

Simllarly, ¢ (6" = 5' =50 5~ 1 = 4,

S0, ¢ (80) =8 x 4 = 32,

So, the number of generators of a cyclic group of order 80 Is exactly 32.

3.6.9 Subgroup
Let(G,*)bea group. A non empty subset H of G is called a subgroup of G if the following Conditiong are

salisfied.

"
2.
3.

aeH beH=sa*be H(closure)
The identity e e H also (existence of Identity)
ae H=» a~'e H (existence of inverse)

In other words, (H,*) is a subgroup of (G,*), if H < G and (H, ) is itself a group (since associative |qy,
holds in H also.)
Example: (E, +) where E is the set of even integers is a subgroup. In fact, (kz, +) when ke ' isa

subgroup of (2, +).

Properties of Subgroup:

1.

2.
3.

4.

Forany group (G, *), ({e}, *) and (G, *) are called trivial subgroups. Other subgroups (if any) of (G.#)
are called proper subgroups.

The identity of a sub group is same as that of the group (as seen in definition).

The inverse of any element of a subgroup is same as the inverse of that element when regarded as
part of the group.

The order of any element of a subgroup is same as the order of that element when regarded as
member of the group.

Important Results

1.

Qo0 ew

[

A necessary and sufficient condition for a non-empty subset H of a group to be a subgroup is
thatae H, be H, = ab~' € H where b-'is the inverse of bin G.

A necessary and sufficient condition for a non empty finite subset H of a group G, to be a subgroup
is that H must be closed with respect to multiplicationi.e ae H, be H=> abe H.

If H, K are two subgroups of a group G, then HK is a subgroup of G iff HK = KH.

If H, K are subgroups of an abelian group G, then HK is subgroup of G.

If H,, H, are two subgroups of a group G, then H, n H, is also a subgroup of G.

Arbitrary intersection of subgroups i.e the intersection of any family of subgroups of a group is @
subgroup.

The union of two subgroups is not necessarily a subgroup.

Cayley's Theorem
Every finite group G is isomorphic to a permutation group.

Cosets

Let (G, *) be a group and (H, *) be a sub group of G for any a e G, the set
aH = {a* h|he H} is called the left coset of H, determined by a.
Ha = {h* alhe H}Is called the right coset of H, determined by a.



gxample: Consider the group ({0, 1, 2, 3), +,), whose table is given below:

+|0 1 2 3
0o 1 2 3
111 - 2.8 ©
212 3 0 14
|3 0% 3

Now consider H = {0, 2}

Hsince HE G,

ae H,be H,a*be H,(itis closed), identity e=0 e H,

o'=0eHand2'=2¢eH

- His clearly a subgroup of G.

Now the left coset determined by O is {0, 2}

Now the left coset determined by 1 s {1, 3}

Now the left coset determined by 2 is {0, 2}

Now the left coset determined by 3 is {1, 3}

. There are only two distinct left cosets of H in G.

Note:lfae H,aH=H

Similarly the right coset determined by 0 is {0, 2}

Similarly the right coset determined by 1 is {1, 3}

Similarly the right coset determined by 2 is {0, 2)

Similarly the right coset determined by 3 is {1, 3}

Since in this subgroup the set of left cosets & right cosets of H in G are same, H is a normal subgroup of G.

Notice that although H = {0, 2} is a subgroup of G, T = {1, 3} is not a subgroup of H (closure property does
not hold).

3.6.10 Normal Subgroup

A subgroup H of a group G is said to be a normal subgroup of GiffaH =Ha VYae G (WhereaHand Ha
are the left and right cosets of H in G).

Alternatively, if for every x € G, and for every he H,x h x~1 e H, then H is a normal subgroup of G.

A group having no proper normal subgroups is called a simple group.

Some important results on normal subgroups:

1. Asubgroup H of a group G is normal iff x Hx™' = H Vx € G.

2. Asubgroup H of a group G is a normal subgroup of G iff each left coset of H in G is a right coset of

HinGieaH=HaVae G.
3. Theintersection of any two normal subgroups of a group is a normal subgroup.
4. The intersection of any collection of normal subgroups is itself a normal subgroup.

Lagrange’s Theorem
The order of each subgroup of a finite group is a divisor of the order of the group.

l*:-m..(. -

HNOTE:

Converse of Lagrange's theorem is nottrue.



o subgroups of a group G.

- rderoﬂhaproductoftw
Eeolrlriog:dw;(%a finite subgroups of a group G.
O(H)oO(K)
OHK) = ~G{HAK)
ranges theorem:
‘E:';al:f::\’/l; sfggrlwataat ir? the group ({0 1,2,8) +4)
g [ Dl o B3
oo 1 2 3
111 2 3 0
212 3 0 1
/3 o 1 2

H={0,2}isa sub group.

The order of this group is

The order of this subgroup is [H| =2

Clearly |H| divides |G | . which verifies the lagranges theorem.

In fact from lagranges theorem, we can conclude that in this case a subgroup of order 3 is o
Poss;

since 3 does not divide 4.

lc| =4

ble

3.7 Lattice

Posets: A non empty set
poset if following conditions are satisfied

1. Reflexivity: aRaforallae 2

2. Anti symmetry: If a b and b Rathen a=b(Va, be P)

3. Transitivity: If a Ac, b Ac then aRc (Va, b, ce P)
In other words, a non empty set P, together with a partial order relation is called as a poset (or partialy

ordered set.)
" Fc_‘r convenience, we generally use the symbol < in place of R. We read < as “less than or equal o’
( ouglt; it may have n.othmg 1o do with the usual “less than or equal to” that we are so familiar with).
o aasb ? or b< aina poset, we say that aand bare comparable. Two elements of a poset may or may not
par e.I Ifa<g b:.-fnd a# b, we will write a < b (and read as “ais less than b").
B Sefimiﬂ'lhnL T: e: (S, c) - poset where S is the set of all sets. So if (P(A), <) where P(A)is the
i Se:»; ZSftd(_Z: <) is also a poset where “<" is the usual numerical <.
, divides) denoted also as (Z*, I) is also a poset where “I' symbol means aRb iffa| b (adMides y

37.1 TOSET

P, together with a binary relation R is said to form a partially ordered
Setorg

power setofé

If(P,,<,)and (P,
o T ,S,) are twi -
which s (P, x P,, <) in lhiSS:.'ay o partial order. Then we define a new partial order called prod



(31v b‘l) = (32. b2) i . 51 32 e b1 52 b2 where (al' b‘l)l (32' bZ) € P1 X PZ

gxample: 1 (1,1)
0,1) (1,0)
0 (0,0)
(P, 9 (Pyx P,
Here, R0, 1) = Pz(P1>‘P2- <)

If the posets P, and P, are lattices, then (Pyx P,, <) is called the product lattice.

372 Hasse Diagram

The digraph of a poset may be very complicated. To simplify this diagram while retaining the essential
features of the poset, a diagram called Hasse diagram is drawn. The Hasse diagram contains all
regarding poset; butis much more simplified and easier to inter

constructing a Hasse diagram of a poset is as follows:
1. Draw the digraph of the poset, so that all arrows are pointing upwards.
Reduce the circle of the nodes to points with labels adjacent to the points.
Remove all self loops (since it is understood that a partial order relation is always reflexive)

Remove all arrows which can be inferred by transitive property (i.e. aRb, bRc and afce, thenremove
arrow corresponding to aRc.)

information
pretand use than a digraph. The procedure for

2.
3.
4,

5. Remove allthe arrow heads (since it is understood that the arrows are pointing upwards)
The result of the above 5 steps is a Hasse diagram of the poset.
""NOTE: The Hasse d
. chain). o

e e B e € 3 e T it LW 2 b

iagram of a Toset (or a chain) will have no branches. (i.. f wil bealine of nodesina

e e 2 P TR e SRS A S

Example: The dlgraphz;nd the co}rééaonding héééé dlz;gram for the Poset ( P(A),c), where A = {a, b} is

shown next page:
{a, b}

{a} {v}

[
Hasse Diagram

373 Supremum and Infimum of Poset

Let S be a non empty subset of a poset P. An element ae Pis called an upper boundof Sifx<aVxe S.
Further if a s an upper bound of S such that a < b for all upper bounds bof s, then ais called least upper bound
(£ u. b) or supremum of S. We write sup S for supremum S. e

Itis important to note that there can be more than one upper bound of a set. But sup, if it exists, will be
Unique, Again comparing with the definition of greatest element we notice whereas the greatest element belonged
10the set itself, an upper bound or sup can lie outside the set.
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An element a e P will be called a lower bound of S if a< x, Vx € S and a will be called Qreatest lowey

bound (?' £. b) orinfimum S or Int S, if b < a for all lower bounds b of S.
n the hasse diagram example above, if we take say S = {{a)}, {b}}, then LUB(S) =Sup (s) =
GLB(S) = Inf (S) = ey
In the hasse diagram given below:

a
Let, S={b, ¢, d}, Now UB (S) = upper bounds of S = (d, e}

LUB (S) =Sup (S) =

GLB(S)=Inf(S)=a
NOTE Mounds fora_'g"rv‘en subsetSofaposet there canbg

NOTE. Although there may ber many upper -and Iower b
only one LUB and one GLB of S r e LUB (or Sup (S)) and GLB (or Inf (S))‘e’f‘_ §._T_L{n'99?

3.7.4 Maximal and Minimal Elements of Poset
An element a e P is called maximal if there exist no element x such that a <x. (i.e. no element is aboye

ain hasse diagram) An element ae P is called minimal if there exist no element x such thatx < a. (i.e. no element

is below a in the hasse diagram).
Example: In the hasse diagram below:

e and fare maximal elements of the poset.
aand b are the minimal elements of the poset.

e s o

NOTE. There can be more than one maxrmai"or

R S S R R S S e SR AR e

3.7.5 Greatest and Least Elements of a Poset
An element a € P is called the greatest element if Vx € P, x £ a. (Usually the greatest element s

sometimes devoted by | in the hasse diagram) (i.e. In hasse diagram, element a is above all elements of the

poset).
. Anelement ae Pis called the least element if. Vx € P, a<x (i.e. in hasse diagram, element ais below
every element of the poset). Usually the least element is sometimes denoted by 0 in the Hasse diagram.

Example:



e Intho hasso dlagram shown above, g4 (h
0, NOWOVEY, that thera are two minimal olome
llce,
:rc(,a not comparablo).

-

O gront ; oo
greatost alomany, Buttharg |4 N0 logst sloment jr
ONG et which 14 the lanst eer

nte In thig pone| QUIETTTr

arit(since they
@iOTE T nera ORIL LB MY S entand only ong | i
| Gyl g otolllcomPaTablo clomonts g an a4 M0, 1y

; ’;1 !f { f A : \ ‘ ¥l
“ lﬂ a a'.’l 0' ﬂ” lllf!fjrllpmﬂblfj ‘jll‘]fl‘jf}fjf_,“j fn [ ’]rj.-:(}f‘ :
|I| (¢) h n a a f

pual of the Above Theorem

If the longest antichain has size ¢, than the set can ho Partitioned Into f.ch

alng,
Lattices
A poset (L, <) Is sald to form a lattice if for :
1 p every pair of elements g, b e L. Sup(a, b} and Inf (a, b} erist
nk.
In that case, we write
Sup{a, b} = av b (read ‘ajoin b') = LUB (g, b)
Inf{a, b} = a A b (read ‘ameet b') = GLB (a, b)
0 g
d e/\f
d
b c b c
C
- - N
a b
1 n |
() isalattice, while I and III are not lattices,
(i1) is not a lattice, since bv ¢ does not exist (There are two upper bounds to (b, ¢}, which are dand e.
But dand e are not comparable, hence no LUB,
(ifi) is not an lattice since, GLB (a, b) does not exist.
- Dual Lattice

For a lattice (P, <), the dual is (P, 2). The duals are shown in figure below. The diagram of (P, ) is obtained
from that of (P, <) by simply turning it upside down.

a e
b c g
d b ¢
pd a
asbsdse ezdzbza

ascsdse edzcza



<) of all subset of A is a lattica Here 15, A

t (P(A),
Example: Let A be a non empty set then the poset (

= and AvB=AUB. : 6= LCM (4, 6) does ot g,
Be PAYAAB :h N B ot (2, 8, 4, 6) under divisibility Is not a lattice as 4 v ( tesigy
Example: The poset (2, 3, 4,

t e i (e gt ey e CEe e peg e ""';‘“}T;U—‘—- Rl Af ‘L H‘avsvsap—-a‘ndd h:'%, "
+ NOTE: A poset (L £) s a e every o smply e aubsetof L s sup and I,

Some Lattice Results
IfLIs any lattice, then for any a, b, c L, the following results hold

1. aanbsgabgavh
2. asbeanb=ga
< avb=p
3. ana=aava=a (Idempotency)
4. an b=baa avb=bva (Commutativity)
5. an(ba c)=(aab)ac (Associativity)
av(bvc)=(avb)vc
6. Domination Laws:
If0, I e L, then
OAa=0,Ova=a
lAa=a,!va=l
7 an(avp)=gq ‘ (Absorption Laws)
av(aab)=g
8. asb.csdaaAcsbAd
avespvg
In particular

(Consistency)

aA(bvc)z(aA b) v (aa c)
an(ba c)s(avb)A(av c)

10. In any lattice L, the modular inequality holds,
aA(bvc)abvaA &

holds for all g, p, ¢ €L, axp,
1. In any lattice |_

(aAb)V(bAC)V(CAE)S(aVb)A(bV



m Dual of lattice Is a lattice,
4 . Product of two lattice Is a lattico.
- = Afinite lattice surcly has least and
I bounded.
m  Every chain Is a lallica,
. m Theset (D, I)is always a latlice, i i
i HerelLUB ?a. b) = LCKA (a, b) andwgﬁéa(gn; thé% ?; d;;qsors s
! m Thesot(Z1)is also a lattice. il

. m Theset(P(A),c)isal -
T B). <)is alattice, (In fact, itis also a Boolean Algebra). Here for any two -

| LUB(A B)=AUB and GLB(A, B) = A nB.

greatest elements I.e. a finite lattice Is always |
]

3.8 Types of Lattices

Bounded Lattice: A Lattice ( L, <) is called bounded, if the lattice has a greatest and least element,
ysually genoted by | and O respectively. (or sometimes 1 and 0).

381 Bounded Lattice Properties

1. vael 0<ast,
2. 0na=0, Ovaca

Example: (P (A), ) is bounded where A = {a, b} with | = {a, b} & 0 = ¢ while (Z, <) is an unbounded lattice.

382 Complemented Lattice
The complement a of any element in a lattice (L, <) is an element which satisfies both the properties give

below:
arnad=08&and =
Obviously, complement is defined only for a bounded lattice. Ifin a lattice (L, ), if at least one complement

exists for every element a e L, then such a lattice is called a complemented lattice.

383 Distributive Lattice
A Lattice (L, <) is called distributive, if it satisfies both the distributive laws.
ie.Va b ce L
avibac)=(avb)a(avco)
an(bvc)=(aab)v(aac)

Checking if a given hasse diagram correspon
However the following result is useful for chec

ds to a distributive lattice or not, is tedious.
king if a lattice is non distributive or not.

Theorem

‘ A lattice is non-distributive iff it contains @ sublattice,
given below,

isomorphic to one of the non distributive lattices

Another result that is useful for establishing if a lattice Is distributive or not is the following.



it is unique.
i hen it is uniq .
t exists, ! liment for som
g butive bounded lattice, if 2 complemen there is more than one comp € elemen
In a distributiv

i ifi HE, sed to prove that the |attieq ;
derstand this is that i in e is theorem cannot be U p ice ig
Another way to unders T be distibutive. Thi ki
i uch a lattice ca e is non-di e
it o ly be used to show that a laice 2 =73 also called a Boolean Algebra.
distributive. It can tJf\.‘)f_w_i____r_ gei;g,;a"a'i‘éi'r'i'éutive jattice is also called 2 Boolean 7
- NOTE: A bounded, complemen
3.84 Semilattices
1. Aposet (P, 2)is called a meel >
2. A non empty set P together with &
() ana=2a
(i) anb=baa
(i) an(bac)=(anblac

b} exists.

b iadti 1 alla, be P Inf{a, T

t semi lamci g:prosition ais called a meet semi lattice if a, b, ¢ ¢ p
binary

Lattices 45 Sup and Infin L
s :T;:t‘izfl:lt_eis called a complete lattice if every non empty subset of L has its Sup

Results
icei lete.
1. Dual of a complete lattice is comp |
2. If (P, <)is a poset with greatest element | such that every non empty subset S of P has Inf, then Pig
a complete lattice.

3. If(P,<)is a poset with least element O such that every non empty subset S of P has S
a complete lattice.

3.8.6 Sub-lattices

A non empty subset s of a lattice L is called a sublattice
that A and v are taken in L)

up then, Pjg

Example: Consider the lattice given below-

if.,a,be S=>anb,avbes (itis understoog

A Sublattice § of a lattice Lis Called g

Results Hegarding Sub-latticeg
1 ¢

9 is a subset of ey



———

{a}isa Sublattice of _

. ce (called a sybeha;
The union of two sublattice may not be a sublattic chain)

e.
A lattice is a chain iff every non-empty subset of itis a sublattice

If Lis any lattice and a e L be any element then
Every non empty subset of a chain ig 5 sublattj

o ;> W

3.9 Boolean Algebra
' Definition: A Lattice is called

aboolean algebra it
A non empty set alongwith two b

's bounded, complemente Fiittha
_ nary operations “y" d and distributive.
pgebra if it is satisfies the following 6 axiomg.

and “A" (i.e, Sup and Inf), is called a Boolean
We may substitute + 4 for v and . for A in aBoolean Algebra,

Axioms

Closure: Va, be S,a+be Sape g
Commutativity: Va, be S, g + b = b+aab=pg
Associativity: Va, b, ce S, a + (b+c)=

(@a+b)+ca (be)= (a.b).c
Distribullvty: Va, b, ¢ < S, a4 (b.0) = (a+ bh(a+ o) ab+ o) = (a) s (a.0)
Existence of Identity: Vae S, 3¢ (unique) such that 2 + e = e+a=a
Existence of Compliment: Vae S 3¢/ ¢ such that a

td=d+a=1andad=a.2=0
Other Derived Laws of Boolean Algebra

o v o W NP

a+a=a| .
1. aa=ga |'dempotent laws 2. (') = a- double complement law

i 4. :
a(a+ b) - a]absorptton laws (ab) gt b] Demorgan's Laws

g, =0 Domination Laws
a+i=1 ai=a

Operator Precedence in Boolean Expressions

1. Expressions are scanned from left to right.

2. Expressions are evaluated with following precedence, ( ), complement, ., +
Examples: A + B. C will be Evaluated as A + (B. C)

—_—

In (A+B), (A+B) is evaluated first and then complemented.
Simplification of Boolean Expressions

Boolean algebraic expressions may be simplified by using axioms ar‘\d derived laws of Boolean Algebra.
Example: (a+ aby (a+ b) =(a) (a+Db) {Atl)so.rptlf:n law}

=g a+ab (Distributive law)

=0+db (Complement law)

=ab (Domination law)



Summary

Sols whioh have a finita number of elements are called finite sets and those haying -

d Infinite sets.
umber of elements areé calle .
:\r;fciagltli? rolationship between the sets can be represented by diagrams known ag

rams. . ' |
\\;2:1: zlizgrams can be effectively used for proving equality of set expressions or for
answering question regarding counting of elements of sets.

rtles of Cartesian Product:
I:FOF;\BXB;,&BXA 2 AX(BUC):(AxB)U(AxC)
‘ 4, Ax(B-C)=(AxB)-(AxC)

. BAC =(AxB)n(AxC)
g. Cﬁ.xx(B)(:w(()Jth(AnC)x(CnD) 6. (AxB)uU(CxD)=(AuUC)x(BuD)

The representation of a relation in set builder form is complete only when the sets A

and B are clearly specified.
A relation R on A is called reflexive, i
A relation R in A is called symmetric relation iff (x, ) e R=(y, x

ie., xAy=yRxVx, ye A

Arelation R on A is called anti symmetric iff xRy = y}zfx, unlessx =y

A relation R on A is called transitive iff (x, y), (v, z) € R= (X, 2)eR
ie,xAyandyRz=>xRz Vx, y,Z€ A

A relation R on A is called irreflexive iff Vx € A, (x, x) ¢ R.i.e. Vx e A, xAx

fyxe A(x,x)e Rie.Vxe A xfAx
Ye R

A relation R on A is an asymmetric relation iff (x, y) € R= (y, x) ¢ R xRy= yAx.
A relation R on a non empty set A is called equivalence relation iff

(a) Ris reflexive i.e x Ax Vx e A

(b) Ris symmetrici.ex Ry=y Rx

(c) Ristransitivei.ex Ryand yRz=x Rz Vx,y,ze A

A relation R on a non empty set A is called a partial order relation iff.

(@) Risreflexive Vx € A, xAx

(b) Ris antisymmetricxRyand yRx=>x=y

(c) Ris transitive xRy and yRz = xRz

Every quotient set A/R is also a partition of A. Here, the converse is also true.

Corresponding to every partition P of A, there exists an unique equivalence relation
whose quotient set is exactly P.

Afunction or mapping is a relation between the elements of A and those of B having
no ordered pairs with the same first component.

Ifinagroup G, the underlying set G consists of a finite number of elements, then the
group is called finite group, otherwise as infinite group.

Properties of Cyclic Group:;

1.~ Every cyclic group is an abelian group.

2. lfais generator of a cyclic group G, then a-' is also a generator of G.

3. Acyclic group G with generator a of finite order n, is isomorphic to multiplicatvé

group of n, n!" roots of unity.



 group of residue classes modulo

If a finite group of order n contains
Every group of prime order is cycli
7. Ev_ery subgroup of a cyclic group is cyclic
Every finite group G is isomorphicto a ;
Asubgroup Hof a group Gis saidto b
(Where aH and Ha are the left and rig

i * Aposet(P <)
Eloorb<a)

i --pf S in unique,

“Students
@ | Assignment

Q1

Q2

Q3

Q4

Qs

An equivalence relation is a relation which is
(a) Reflexive and symmetric

(b) Symmetric and Transitive

(c) Reflexive, Symmetric and transitive

(d) None of the above

Afunction f: N = N defined by f(n) =2n+ 3 is
(a) Surjective (b) Injective
(c) Both (d) Noninjective

Let L be the set of lines in the Euclidean plane.
Let R be the relation on L defined by “is paratiel
to". Then which of the following is true?

(a) Risan equivalence relation

(b) Ris POSET

(c) Ris reflexive symmetric

(d) None of the above

If a lattice is distributive, then
@ a*(b-c)=(a-b)*(b-c)
(b) a-(b*c)=(a-b)*(a-0)
(c) a*(b*xc)=(axb)-(a*c)
(d) Noneofthese

Let A and B be sets with cardinalities 2 anfj 4
respectively. The number of one-oneé mapping
fromAto B is

Q.6

Q.7

Q.8

n.

element of order n, the group must be cyclic.
¥ :

permutation group.

eanormal subgroup of G iff aH = Ha Vae G
ht cosets of Hin Q).

inwhich every pair of element a, be P are comparable (i.e.eithera<h

is called a toset (totally ordered set) i
or a chain. Example (Z, <) is at
Although, there may be many upper & lower bounds i e

: for a given subs ;
' there canbe only one LUB and one GLB of S. .. LU ; mgdlelicol

B (or Sup (S)) & GLB (or Inf (S)) .

(a) 4

(b) *P,
(c) 4l

(d 1
Match List-I with List-1l and select the correct
answer using the codes given below the lists:

List-I List-ll
A. Identity 1. Monoids
B. Associativity 2. Abelian groups
C. Commutative 3. Semi groups
D. Leftinverse 4. Groups
Codes:

A B C D
@1 3 2 4
)1 2 3 4
)4 3 1 2
@2 3 4 1

Given set S = {1, 5,7, 11}. Then Sis a group
w.rt.

(a) multiplication modulo 12

(b) addition modulo 6

(c) summation modulo 8

(d) Sisnotagroup

Let P and Q be any two equivalence relations on
a non-empthy set S, then choose the correct.one
(@ PuQ.PN Q, are both equivalence relations
(b) PuQisan equivalence relation
i [ lation
nQisan equivalence r_e .
EZ}) IF:Jeither puQnorPnQisan equivalence

relation



Q9 Cansider the following binary relation
s={x.y) | y=x+1and
x,ye (0,12}
The symmetric closure of S is
(3 (x Y)|x=y+1andx ye {0, 1.2 )
® (= y|y=x+1andxye (0,12 2
© . |ly=x£1 andx, ye (0,1,2, )
(d) None of the above

Q.10 Which of the following statements is not true?

{a) If zis the set of integers and < is the usual
ordering on z, then [z, <] is partially ordered
znd totally ordered.

(b) If zis the set of integers and < is the usual
ordering on z, then [z <] is partially ordered
but not totally ordered

(¢) U be an arbitrary set and A = P (U) be the
collection of all subsets of U. Then [P (U); <]
is a poset.

(d) If U contains more than one element then it
is not totzlly ordered.

Q.11 Consider the following relation:

{(a. a).(a.b).(a. c)}c{a b, c}x{a, b, c}
Which of the following statement is true about
the zbove relation
(2) Itisnota function
{(b) It is a function which is not one-to-one or

onto
(c) Itis a function which is one-to-one but not

onto

(d) Itisafunction which is both one-to-one and
onto

Q.12 N denotes the set of natural numbers,
{0,1,2,...3). Zdenotes the integers, {..=2,-1,
0, 1,2, ...} which of the following statements are
true?

() Forallpe Z, p>5—There exists x e N, x2
=1(modp)

(i#) If mis any natural number satisfying m =
1(mod2), then the equation 2048 x = 1(modm)
is guaranteed to have a solution for x.

(a) Only(i)is true

(b) Only (i) is true

() Both (i) and (if) are true

(d) Both (#) and (ii) are false

.13 If |Al = kand |B| = m, how many relation 4,
between A and B? Ifin addition lc | =n how Many
relations are there between therein A x B )
(@) k+mandk+m+n
(b) kxmand kxmxn
(c) 2k+mand 2k+Mm*"

(d) okm and okmn

Q.14 (G, *)is an abelian group. Then
(@) X =X, for any X belonging to G
(b) X = X2, for any X belonging to G
©) X*Y)?= X2 * Y2 forany X, Y be|0nging
to G
(d) Gis of finite order

Q.15 Enumerate each of the following sets
(i) ¢x(3,59}
(i) 2¢
(iii) 23.5.9)
(@) ¢.(9).{0.{3}.15).19).{3,5).15.9},{39}.{359))
(o) (6}, {0, {3}.{5} {9} {3.5}.{5.9}. 13,9}, {359}

(©) {9} 9. {6, {3}, {5}, {9}, 15,9}, {39}, {3,5,9}}
(d) Noneofthese

Q.16 LetRcAx Aand S c A x A be a binary relations

as defined below:

Let A be the set of positive integers. And

R = {(a, b)| bis divisible by a).

LetA=NxNandS={((a b), (c. d))|a<cor

b<d}.

Which of the following statements are true?

(@) Ris partial order but not total order and Sis
partial order but not a total order

(b) Ris both partial order and total order andS
is neither partial order nor a total order

(c) Ris partial order but not total order and Sis
neither partial order nor a total order

(d) R is neither partial order nor a total order
and Siis neither partial order nor a total order

Q.17 N denotes the set of natural numbers,
{0,1,2,.....). Z denotes the integers,
{0 2,-1,0,1,2, .2
which of the following statements are true?
() Vwez3xe 7 Vye 2 3ze z suchthat ¥
tx=y+2z
(i) Axe N, Vpe z,p> 5 — x2=1(mod p)



—_ .
5) Only (i) istrue
p) Only (i) s true
Both (i) and (ii) are true

(d Both (i) and (ii) are false

gRCAX Aand S c B x B be binary relationg
0.18 Ls defined below:
ietA=Nand R ={(ef, b)lb=aorb=a4 1}

LetBbethe setof Englishwords. and let (g, b)e S

whena is not longer than b.

@ Ris partial order but not total order and S is
partial order but not a total order.

©) Ris both partial order and total order and S
is neither partial order nor a total order,

(c) Ris partial order but not total order and S is
neither partial order nor a total order.

(d) Ris neither partial order nor a total order
and S is neither partial order nor a total order,

Q.19 Which of the following statements are true?
() LetE, ={a b}and =, = {0, 1, 2} be disjoint
alphabets.
Let Z,* be the set of (finite-length) strings

over S, and letZ,* be the set of (finite-length)
strings over S,.

We can show that card (Z,*) = card (Z,*)

(i) LetS={2 lie N} be the set of integers that
are powers of two. We can show that S. is
uncountable.

(a) Only (i) is true

(b) Only (ii) is true

(c) Both (i) and (i) are true

(d) Both (i) and (ii) are false

Q.20 Each of the following defines a relation on the
set N of positive integers. Determine which of
the following relations are reflexive.

(@) R:xis greater than y
() S:x+ y=10

© Tix+4y=10

(d) None of the above

Q.21 Which of the following are symmetric
@ R:xis greater than y
®) S:x+y=10
© Tix+ay=10
(&) None of the above

Q.22 Let P(X) be the collection of all subsets of a set

X with atleast three elements. Each of the
following defines arelation on P(X):
R:AcB
S Alis disjoint from B
T:AuB=YX
Determine which of the following relation is
antisymmetric,
(@ R:AcB
(b) S:Ais disjoint from B
€ T:AuB=X
(d) None of the above

Q.23 Determine which of the following relation is
transitive

(@ R:AcB

(b) S:Ais disjoint from B
() T:AuB=X

(d) None of the above

Q.24 Find the transitive closure R# of the relation R on
A ={1,2,3, 4} defined by the directed graph

(a) R*={(1.2).(2:3).(13).(14).(3:2) (3.3). (3.4)}
(b) R*={(1,2),(1,3).(1.4), (3.2). (3,3). (3,4)}
(€) R*={(1,1),(2.2), (3.3), (4.4)}

(d) None of the above

Q.25 LetS={1, 2, 3, 4, 5, 6}. Determine which of the
following is a partition of S:
@@ P,=[(1 2,3}, {1.4,5.6}1]
(o) P,=[{1.2}.(3,5.6]]
(¢) Py=[{1.35),{2:4}16)]
(d) P,=[{1.35).{2.4,6.7}]

X={1,2 ..879) .
a%e lIE)(zzitermh!u’-; whether each of the following is a
partition of X
() [(1,3,6).(28).(57.8}]
(i) [(1.5.7h (2,4,8.9},{3.5.6]]
(¢ii) [{2,4,5.8}, {1 9}, (3,6,7)]
(iv) [(1,27), (3.5}, (4,888} (3.5)]



(b) (i) and (iii)
(d) (iv)and ()

be the relation

(a) ()and (i)
() (i) and (iv)

Q.27 Let Abe setof integers andlet ~

on A x A defined by
(a, b) ~ (¢ d)iﬁa+d=b+c

This relation satisfies
(a) Reflexive, symmetric
(b) Symme\ric,transilive
(c) Reflexive, symmelrlc an
(d) None of above

d transitive

Q.28 The relation R = (1, (1,2), (2,1) (2,.2), (3.3)] is
an equivalence relation of the set s=1{1,23}
Find the quotient S/R
(a) {[2]) ) {(11.[2)
(© {10 (@ {(1.[3))

Q.29 Determine which of the following is a partition of
the set R of real numbers.
(@) [{x:x> 4), {x : x < 5}]
(b) [fx:x>0),{0) {xix< 0)]
© [x:x2>11}, x:2<11]]
(d) Noneofthe above

Common Data Questions (30 and 31):

Functions f,: A= B, ,: B> C, ;: C > Dand
f:D=E,

Q.30 Which of the functions are one-to-one
(a) f,andf, (b) f,andfy
(c) fand (d) fyandf,

Q.31 Which of the following functions are onto
functions
(a) f,andf,
(c) fandf,

(b) fyand f
(d) f4 and f1

Q.32 Which of the following functions are invertible
@ f (b) £
© f (d) £

Q.33 Let R be a binary relation on the set of all positivg
' [ntegers guch that
R = ((a D) |a-bis anodd positive integer)

Thus R I8
(a) anil-symmalrlc relation

(b) reflexive and symmetric relation
(©) equivalence relation
(d) partial ordering relation

Q.34 AV B=AnBifand only if
(@) Als empty set
(b) Bis empty set
(c) AandBare non-empty sets
(d A=B
Q.35 LetAand B be sets with cardinalities m and n.
The number of one-oné mappings from Ato B,
when m< nis
(@ m"
(c) ™Gy
Q.36 Which additional properties are true if a partial
order “<" must become a linear order
() foranyaand bis S, atleast one of a< b(or)
b < ais true.
(i) foralla, band cin S,ifagband bsc,then
asc.
(iii) for any aand b in S, exactly one of a< b,
(or) b< ais true.
(a) Only (i)
(c) Only (iii)

(o) "P,,
(@ "C,

(b) Both (if) and (i)
(d) All of the above

Q.37 Suppose A= (}, B ={1, 2, 3). What does the set
B x A contain?
@ {1}
© {(1).(2).(3)

Q.38 Consider a binary relation R shown in the following
matrix on set

(b) (1,2 3]
(d) None of these

$={1,2 3,4}
10 .20 -0
R=1111
111 1
0000

The relation R is



Equivalence relation
lrreflexive and antisymmetric
rreflexive, symmetric and transitive
(d) Transitive but neither reflexive nor irreflexive

039 Following figure shows relation on set

g=(2 36,8
© (2))
(8 &)
The relation is

(@) Equivalence relation
(b) Poset (partial order relation)
(© symmetric and reflexive relation

(d) None of the above

Common Data Questions (40 and 41):

LetX=1{1,2 3, 4} if

1o (<> |re Xiye Xi lx=yl > 0; lx-yl%2=0)
s={cny>lreXiye X lx-yl >0; lx-y|%3=0)

0.40 Fnd [RUS|and [RNS]
@ |Rusl=6, IRAS|=0
) IRUS|=3, IRAS|=6
© IRuUS|=2, I[RAS|=2
@ |IRuSl=5,|RnS|=3

Q41 IfX= (1,2 3 ...}, whatis RN §?

: <x,y>|xé:X;yeX;(x—-y)>0:}
Bk = (x—y)%2=00r (x-y)%3=0

(b) H={<x.y>|xe X; ye X x-y)>0
(x-y)% 6 = 0}

(© H=[<x,y>|xe X; ye X x-y>0
(x-y)% 5 =0}

(d) None of the above

Q.42 An empty relation f is
(@) symmetric but reflexive
(b) equivalence relation
(c) partial order
(d) None of the above

Q.43 L
et A be the set of non-zero integers and let #

bethe relation o
' NA x Adefined as (a, b) # (c, d
iffad = be, The relation A is e

(@) Equivalence relation
(b) Poset

(€) Antisymmetric
(d) Reflexive and symmetric but not transitive

Q.44 Which of the following statements is true about

B=(D, (A}}

(@) AeB (b) {A}eB

(c) {AJcB (d) {D,A}e pow(B)
Q45 R: A B.

A, is subset of A and A, is also a subset of A.
Which of the following statements is not correct?

(@) A(A; U A) c RA) U RA)
(b) RA, N A)cRA)NRA)
(©) RA,) UR(A) c RIA U A)
(d) A(A) NR(A) S RA NA)

Q.46 Consider the following figure which of the
following is true?

A

(a) Thereexistsa Euler path but not Euler circuit
(b) There existsa Euler circuit

(c) Euler path is not possible

(d) None of the above

Q.47 Consider the poset A=(a b cdefahl

The Hasse diagram is given below.
h
f g
d e
Cc
a b

={ab
Find the lower and upper bound for B = {& }

respectively:



(8) (a, b)and (c)

(b) {a,b}and (f}

((;) ” and {cl d,ef, g, h}
(d) {}and(c)

and
Q.48 With respect to previous question, the :ﬁf;ﬁ(! gt
upper bound for By = (c, r;’. (’)l ’rt:jfr‘s‘f){% ;
a) {a, bjand (h) (b) (e r a8
gc; (c,a bland(h) (0 (c.abland{f.g

Q.48 What is the cardinality of a multiset having letters
“MI 881 881 PPI"?
(a) 4 (by 11
(c) 3 () 6

Q.50 LetV={a,b,c, d,s,f, g} be a partially ordered

set as shown in figure and let X = (¢, d, e}. Find
the upper and lower bounds of x.

-

(@) Upperbounds-e,f, and g, lower bound-a
(b) Upper bounds-d, e, and f, lower bound b

(€) Upperbounds-c, d, and €, lower bound-a
(d) None of the above

Q.51 Identify which of the partially ordered sets shown
inthe figure are lattices
g

1
N

N
(@ (A), (B), and © () (B), (C)
(©) (C),(a) (d) (A),(B)
Q.52 Find the join-irre

ducible elements of the|
ghownin figure, ook

(b) bl cr d, f!

|
(:’!) 3; b: C, C (d) b' c' g‘ 5]

(G) 8, r), c! (’

Q.63 Consider the lattice Dy, = (1,2,3,4,6, 12

divisors of 12 ordered by divisibility as srey,
V15
ure. Find
f1f(J Lerrar bound and upper bound of 0.,
2' Tha complements of 4 and ’6
3' ls D,,a complemented lattice?
. 12

/1 z\\e

g

3
T,
(@ 1. lowbound is 2 and upper bound is 12
2. complement of 4 is 3, 8 hag no
complement
3. NO
(b) 1. L.B.is1and U.B. is 12
2. complement of 4 is 3, 6 has ng
complement
3. NO
(€©) 1. L.B.is1and U. B.is 12
2. complement4is 3. complement of gisg3
3. YES
(d) 1. L.B.is 1 and U. B.is 12
2. 4hasnocomplement, co
is3
3. YES

F-N

mplement of §

Q.54 Which of the following statements are true?

() lxis Positive and irration
irrational,

(i) Let{o, 1) denote the setof all binary strings
Y.zdenotes the Concatenation of two strings
Yand 2z,

Every String X ¢ {
X =

al, then /x isalso

0,1) canbe written in the from

allowed).

(a) Only () is true

(b) Only (i) is true
(©) Both

(1) and (;;
(@) Bot (i) are trye

(1) and (if) are trua



f
setAhas 4 elements and Set B has 2 elements,
what is the total number of relations from B

to AT

getShas \g' elements. Suppose you where asked
5 ofindthe number of Irreflexive relations possible
fromset S 10 itself, what would be your answer.

55

getShas ‘6" elements, what is the total number

7 i ;
05 of reflexive relations possible from set S to itself?

58 whatis the total number of asymmetric relations
from Set A to itself which has 'n’ elements?

An;wel’K!Y-‘

Lo 20 3 (@ 4.(b) 5. (b)
o 7.0 &0 9@ 0.0
. @ 120 13.(d) 14.(0 15.()
6.0 17.0@ 18 (d 19.(@) 20.(d)
1. (b) 22, 23.(@ 24 (b) 25. ()
%@ 27.© 28.(d 29.() 30.()
b 32.0) 33.@ 34 350
36. (@ 37.(@ 38.(d) 39. (b) 40. (a)
8. (b) 42.(d) 43.(@ 44 (b) 45.(d)
4. (a) 47.(0 48.(d) 49. (b) 50. (a)
51.(d) 52.( 53.(b) 54. (] 55. 256

56.277 57,230 58. 3%”

PSSR
e -
' Assignments | Explanations

1. (c)
Arelation R on a set A is called an equivalence
relation if itis reflexive, symmetric, and transitive.

2. (b)

fin) = 2n+3
Now, flx,) = fixy)
= 2x, +3 = 2x,+3
2 I1 = 12

* f(n) is one-to-one, i.e. injective.
To check for onto, write the function as

y=2x+3
y-3

X = —
2

Here,y=4e Nbutx= 223
% 2 EEN

* fis not onto, i.e. not surjective

. (a)

The _composilion table (Cayley table) of S w.rt.
multiplication module 12 is

. (e)

Xp | 1|57 |11
- N
5 ) 1111
71711111165
MMM 7156171
PUQ may not be transitive.

+ (c)

Let us take some samples which satisfy the given
binary relation. They are {(0,1). (1, 2), (2,3), ...}
The symmetric closure of this is

{(0,1), (1,0),(1,2),(2,1). (23), (3,2), ...}

The above samples satisfy the equation
(ry)|y=x+1andx ye{0, 1,2, -1
completely

. (a)

Itis not a function, since (a, b)and (a, ¢)arein
the relation.

. ()

Consider A. Since, =1 mod (p) always,

+ 3xe Nsuchthatx®=1 mod (p), A is true.
Consider B. Since m= 1 (mod 2), this means m
is a odd number. ‘

This means 2048 and m are relatively prime.
The equation, ax = b (mod m) has & solution
wheneveraadmare relatively prime.

+. The equation 2048x= 1(mod m)is guaranted

to have a solution for x, since 2048 and mare

relatively prime.
go B is also true.



13.

14. (c)

16. (

18.

P

(d)

The number of binary relations betweenAand B

is the number of subsets of A X B: )
Similarly, the number of 3-ary relations betwee f
A and B and C is the number of subsets ©

AxBxC.
The answer:

kxmxn
s are therefore okxmand 2

= (xr(y*0)*Y)

= (xrx* V)Y

(since (G, *)is abelian) : g; : :;)2; (y*y)
= xZ * y2

c
(xeyP=(x* y)x(x*Y)

c)
R: {(a, b)| bis divisible by Ajon A x A

S:{({(a b) (¢, @) |a<cor b donAxAwhere
A=zt

R is reflexive, antisymmet

hence is a partial order.
Ris not a total order, as can be seen by a counter

examplesuchas3€ A, 5¢€ A. Here, 3 does not
divide 5 ad 5 does not divide 3.

i.e. 3R 5and 5/3.

<. 3and 5 are not comparable.

R is therefore not a total order.

Consider the relation S.

S is neither a partial order nor total order since S
is not antisymmetric and it is not transitive.

S is not antisymmetric since (1, 2) S(4, 1) and
(4,1)S(1,2)but (1,2) # (4, 1)

S is not transitive since (4, 8) S (8, 4) and (8, 4)
S(3,6)but (4, 8) S (3, 6).

(d)
Ris neither partial order nor a total order, because
R is not transitive. This can be seen from the
following counter example
(1,2) e R
(2,3) e R
but (1,3) ¢ R
S is neither partial order nor a total order, because
s is not antisymmetric, this can be seen from
the two distinct english words fox and cat. Both
(fox, cat) e Sand (cat, fox) e S, since both words
have the same length, but fox # cat.

ric and transitive and

19. (d)

20.

21,

22.

23.

d
Consider statement (i)

Since we cannot set up a one-to-gng
dence from Z* to Z,*, we canngy

correspon
‘| = IZ,"l. Therefore, (i) is falsq

show that 1Z

Consider (ii).
since (i) = ol ig a one-to-one correspondence

from the set N to the set S, and since N ig

countable so is S
. Statement (ii) is also false.

(I\tljczne of these are reflexive, since (1, 1) does not
belong R, S or T.

(b)

R is not symmetric since x > y >y > x

S is symmetric sincex+y=10=2y+x=10
Tis not symmetric since x + 4y=102 y+4x=10

(a)
SinceAgBanngA:A:B

- R is antisymmetric.

Since 7
A is disjoint from B and B is disjoint from A
= A=B

=~ S is not antisymmetric
Since AuB=XandBUA=X> A=B
- Tis not antisymmetric.

(a)

SinceAcBandBcC=>AcC

~ R is transitive.

Consider the velation S : A is disjoint from B let
A={1,2,3}B={a, b}C={2 3,5}

Here AnB=¢,BNC=¢butAnC#¢

. Ais disjoint from B and B disjoint from C
> A disjoint from C

S is therefore, not transitive.

Consider the velation T: AuB =X

LetA = (1,2 3}, B = (4], C = {1, 2 3t a
X={1,2 3,4}

clearly, AnB=XandBnC=XbutAn c#X
< Tis not transitive,



24. (b)

25.

R=((1.3)(1.4).(3.3),(3,2), (3, 4))

(1'3)2 Rand(3,2)e R=(1, 2) € R
«Re=10112).(1.3)(1,4),3,2), 3,3), 3,4y,
All the elements are now transitive in R,

g)is not partition S.ince 1e Selong to two cellg,
pyis not partition since 4 € S does not belong to
any ce".

P, is a partition of S

p,is not partition sice {2, 4, 6, 7} is not 3 Subset
of S.

c

£ E’a)rt (c) because each element of X belongs to
exactly one cell. In other words the cells are
disjoint and their union is X.

21. (c)
(ab)~(c aiffa+td=b+c
Reflexive Property
Sincea+b=b+ a, (a, b) ~ (a, b)
» ~is reflexive.
Symmetry Property
Let(a, b) ~ (c, d)
=sa+d=b+c=>c+b=d+a
=(c, d)~ (a, b)
~ (& b)~ (¢, d)=(c, d) ~ (a, b)
~ is symmetric.
Transitive property
Let(a, b) ~ (c, d) and (c, d) ~ (e, f)
=a+d=b+candc+f=d+e
Adding then two equation we get
a+d+c+f=b+c+d+e
=a+f=b+e=(a b)~ (e f
“(a b)~(c,d)&(c,d) ~ (e )=(a b)~ (e f)
~ Is transitive.

28. (d)
Under the relation R [11={1.2.[2]={1,2}and
3] = (3). Noting that [1] = [2]. We have SIR =
{11, 13p

2. (b)

@) No, since the two cells are not disjoint €.9.
4.5 belongs to both cells.

—

30,

31.

32.

33.

34.

and their union is R, y disjoint
(€) No, since /13
Cell,

| ' i
o N R does not belong to either

(a)

f4is one-to-ong since f,(r) =
&(W) =2z

(b)

T.he functions f, and f, are both onto function
since every element of ¢ istheima

Some element of B ang every elem

image under fy of some element of C. ie.
fy(B) = C and K(C) =D. On the other hand, f, is
notonto, since 3 € S is not the image under f, of
any element of A, and f, is not onto since x € Sis
notthe image under f, of any element of D.

(b)

The function f, is one-to-one but not onto, f;is
onto but not one-to-one and f, is neither one-to-
one nor onto. However f, is both one-to-one and

onto, i.e., f; is bijective function between A and

B.Hence f, is invertible anf £, is a function from
CtoB.

a

f?)is equivalence relation if it is reflexive
symmetric and transitive.

R is partial ordering relation if it is reflexive,
antisymmetric and transitive.

as a-b odd positive integer, b-a is not odd
positive hence antisymmetric a-bis odd pos.iqve,
b-c is odd positive but (a-c) Is even positive,
hence not transitive.

=~ R is antisymmetric.

d
Ei))lf A is empty set then AU B = B and
AnB=¢.
~ AuBz2ANnB
(ii) Same for if B is empty set.

h{U)= vand £,(v) =

ge under f2 of
entof Disthe



(i} Consider A= (1) B = ({2} AuB =11, and
AnB=¢
~ AuB#ANnB
UﬂmcmwmﬁmeﬁA=&
AuB=AUA=A
wdAnB:AnA=A
~ AuB=AnB
mdwwawWﬁAuB:AnB
A=AnMum=AnMnm=AnB
B=BnMum=BnMnM=AnB
~A=8B
AuB=AnBiﬁA=B

35. (b)

The first element of A can be mapped inn
different ways. The second element of Acanbe
mapped only in (n-1) ways since function is
one-to-one. and so on.

- Total number of one-to-oné mappings fromA
toBis n(n—-1)(n-2) ... (n=-m+1)= NPy

37. (a)
Suppose A = {a, b} and B={1,2), thesetB x A
will contain {(1, @), (1, b), (2, 1), (2, b)}.
However if either of set in relation, for instance,
AorBinBxAis [}, therelationis alsoan empty
setie. (). Thus,BxA={}=¢

38. (d)

39.

One could see from the matrix for R that
¢ All entires in the diagonal are not 1, hence
the matrix is not reflexive.
« All entires in the diagonal are not 0, hence
the relation is also not irreflexive.
* Therelation A is transitive since
(2,3, (3, N=(2,1)
(3,2),(2,3)=(3,3)
(2,3),(3,2)=(2,2)
(3,2),(2,4)=(3,4)
-~ The answer is that the relation is transitive but
neither reflexive nor irreflexive.

(b)
The relation s {<2, 2>, <3, 3>, <6, 6>, <8, 8>
<2, 8>, <2, 6>, <3, 6>} o

40.

42.

43.

45,

We could se€ that
. The relation is reflexive as <2, 2>, <3, N
<6, 6>, and <8, 8> are present.
The relation is not symmetric, since <2, g
e R but <6, 2>¢ R
The relation i antisymmetric, That means
the pair (x, y), (¥, %) is present if and only jf
x=y. (i.e.allarows are unidirectional excepy
self loops)-
« Therelationis transitive.
The relation is reflexive, antisymmetric ang
yransitive that means, its is a partially ordereg
set or poset.

(a)
R = {<1, 3> <3, 1>, <2, 4>, <4, 2>}

S = (<1, 4>, <4, 1>}

RUS [<1,3>, <3, 1>, <2, 4>, <4, 2>, <1, 45,
<4, 1>}

AnS={ |[RUSI=6, [RUS[=0

(d)
fis not reflexive
f is symmetric, antisymmetric and transitive

(a)
Given (a, b) # (c, d) iff ad = bc
1. Sinceab =ba, (a, b) # (a,b)
- Relation # is reflexive
2. Let(a, b)#(c,d)=>ad=bc=cb=da
=(c, d)#(a, b)
. Relation # is symmetric
3. Let(a, b)#(c,d)&(c,d)#(ef)
=>ad =bcandcf=de
= adcf = bede =» af = be (cancelling ¢d
from both sides)
Now since af = be = (a, b) # (e, f)
*» We have how shown that
(a, b) # (c, d) and (c, d) # (e, f) = (a ) #
(e, )
< The relation # is transitive.
-~ #is an equivalence relation.

(d)
1. Since R(A, UA,) = R(A,) UR(A,), statemer!
(a) and (c) are correct

N



46.

49.

50.

51.

2. R(Ay N A7) S R(A) N R(A) s true, So,
statement (b) is correct.
Only statement (d) is false.

a)
(Since there are exactly 2 vertices (E ang D) in
ihis graph with odd degree, this graph has an
euler path but not an euler circuit.

O
Themum-set
S={M=*1,1%4,8Sx4 Px2)
|s] =11
(a)

The elements e, fand g succeed every element
of x; hence e, f and g are the upper bounds of x.
The element a precedes every elements of x;
hence it is the lower bound of x. Note that b is
nota lower bound since b does not precede c; b
and ¢ are not comparable.

fn) ordered set S is a lattice if and only if sup
(x, y) and inf (x, ) exist for each pair (x, y) .in S.
Posets (A) and (B) of given figures are lattices.
Poset (C) is not a lattice since (b, ¢) has three
upper bounds d, e and f and nc_J one of them
precedes the other two (d, e being incomparable)
hence sup (b, c) does not exist.

52. (c)

The join-irreducible elements of the
those with a unique predecessor, The
irreducible elements are a, b,cand
(b)
1.
2.

lattice are
refore join-
g.

530

Lower bound is 1 and upper bound is 12,
The complement of 4 is 3 since

g.c.d (4, 3) = 1 (which is the least element)

and l.cm, (4,3)= 12 (which is the greatest
element).

6 has no complement since there is no

element x satisfying both gcd (6, x)=1and
lem(6, x) = 12,

- Dy 1s not a complemented lattice, since 6
has no complement.

(In a complementes lattice, every element
must have at least one complement).

56. Solution:
272 rreflexive relations [Hint: Diagonal elements
are fixed as 0].

57. Solution:
2%0 reflexive relations [Hint: Diagonal elements
are fixed as 1].

sHelele



