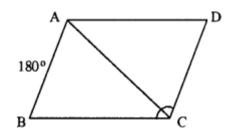
17. Special Types of Quadrilaterals

EXERCISE 17

Question 1.

In parallelogram ABCD, $\angle A = 3$ times $\angle B$. Find all the angles of the parallelogram. In the same parallelogram, if AB = 5x - 7 and CD = 3x + 1; find the length of CD. **Solution:**



Let
$$\angle B = x$$

$$\angle A = 3 \angle B = 3x$$

$$\angle A + \angle B = 180^{\circ}$$

$$3x + x = 180^{\circ}$$

$$\Rightarrow$$
 4x = 180°

$$\Rightarrow$$
 x = 45°

$$\angle B = 45^{\circ}$$

$$\angle A = 3x = 3 \times 45 = 135^{\circ}$$

and
$$\angle B = \angle D = 45^{\circ}$$

opposite angles of || gm are equal.

$$\angle A = \angle C = 135^{\circ}$$

opposite sides of //gm are equal.

$$AB = CD$$

$$5x - 7 = 3x + 1$$

$$\Rightarrow$$
 5x - 3x = 1+7

$$\Rightarrow$$
 2x = 8

$$\Rightarrow$$
 x = 4

$$CD = 3 \times 4 + 1 = 13$$

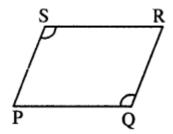
Hence 135°, 45°, 135° and 45°; 13

Question 2.

In parallelogram PQRS, $\angle Q = (4x - 5)^\circ$ and $\angle S = (3x + 10)^\circ$. Calculate : $\angle Q$ and $\angle R$. **Solution:**

In parallelogram PQRS,

$$\angle Q = (4x - 5)^{\circ} \text{ and } \angle S = (3x + 10)^{\circ}$$



opposite ∠s of //gm are equal.

$$\angle Q = \angle S$$

$$4x - 5 = 3x + 10$$

$$4x - 3x = 10+5$$

$$x = 15$$

$$\angle Q = 4x - 5 = 4 \times 15 - 5 = 55^{\circ}$$

Also
$$\angle Q + \angle R = 180^{\circ}$$

$$55^{\circ} + \angle R = 180^{\circ}$$

$$\angle R = 180^{\circ}-55^{\circ} = 125^{\circ}$$

$$\angle Q = 55^{\circ}$$
; $\angle R = 125^{\circ}$

Question 3.

In rhombus ABCD;

(i) if
$$\angle A = 74^{\circ}$$
; find $\angle B$ and $\angle C$.

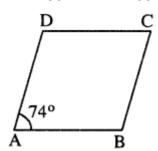
(ii) if
$$AD = 7.5$$
 cm; find BC and CD.

Solution:

$$\angle A + \angle B = 180^{\circ}$$

$$74^{\circ} + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - 74^{\circ} = 106^{\circ}$$



opposite angles of Rhombus are equal.

$$\angle A = \angle C = 74^{\circ}$$

Sides of Rhombus are equal.

$$BC = CD = AD = 7.5 \text{ cm}$$

(i)
$$\angle B = 106^{\circ}$$
; $\angle C = 74^{\circ}$

(ii)
$$BC = 7.5$$
 cm and $CD = 7.5$ cm Ans.

Question 4.

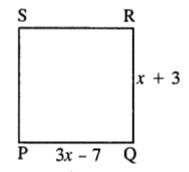
In square PQRS:

(i) if PQ = 3x - 7 and QR = x + 3; find PS

(ii) if PR = 5x and QR = 9x - 8. Find QS

Solution:

(i) sides of square are equal.



$$PQ = QR$$

$$=> 3x - 7 = x + 3$$

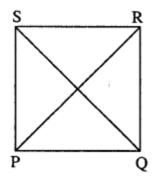
$$=> 3x - x = 3 + 7$$

$$=> 2x = 10$$

$$x = 5$$

$$PS=PQ = 3x - 7 = 3 \times 5 - 7 = 8$$

(ii) PR =
$$5x$$
 and QS = $9x - 8$



As diagonals of square are equal.

$$PR = QS$$

$$5x = 9x - 8$$

$$=> 5x - 9x = -8$$

$$=> -4x = -8$$

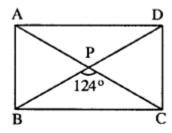
$$=> x = 2$$

$$QS = 9x - 8 = 9 \times 2 - 8 = 10$$

Question 5.

ABCD is a rectangle, if ∠BPC = 124°

Calculate : (i) ∠BAP (ii) ∠ADP



Solution:

Diagonals of rectangle are equal and bisect each other.

$$\angle PBC = \angle PCB = x (say)$$

But
$$\angle BPC + \angle PBC + \angle PCB = 180^{\circ}$$

$$124^{\circ} + x + x = 180^{\circ}$$

$$2x = 180^{\circ} - 124^{\circ}$$

$$2x = 56^{\circ}$$

$$=> x = 28^{\circ}$$

$$\angle PBC = 28^{\circ}$$

But
$$\angle PBC = \angle ADP$$
 [Alternate $\angle s$]

$$\angle ADP = 28^{\circ}$$

Again
$$\angle APB = 180^{\circ} - 124^{\circ} = 56^{\circ}$$

$$\angle BAP = \frac{1}{2} (180^{\circ} - \angle APB)$$

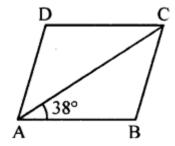
$$=\frac{1}{2}$$
 x (180° - 56°) $=\frac{1}{2}$ x 124° $=62$ °

Hence (i)
$$\angle BAP = 62^{\circ}$$
 (ii) $\angle ADP = 28^{\circ}$

Question 6.

ABCD is a rhombus. If \angle BAC = 38°, find :

- (i) ∠ACB
- (ii) ∠DAC
- (iii) ∠ADC.



Solution:

ABCD is Rhombus (Given)

$$AB = BC$$

 \angle BAC = \angle ACB (\angle s opp. to equal sides)

But $\angle BAC = 38^{\circ}$ (Given)

$$\angle ACB = 38^{\circ}$$

In ∆ABC,

 $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$

 $\angle ABC + 38^{\circ} + 38^{\circ} = 180^{\circ}$

 $\angle ABC = 180^{\circ} - 76^{\circ} = 104^{\circ}$

But $\angle ABC = \angle ADC$ (opp. $\angle s$ of rhombus)

 $\angle ADC = 104^{\circ}$

 $\angle DAC = \angle DCA (AD = CD)$

 $\angle DAC = \frac{1}{2} [180^{\circ} - 104^{\circ}]$

 $\angle DAC = \frac{1}{2} \times 76^{\circ} = 38^{\circ}$

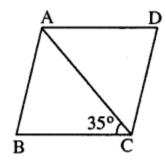
Hence (i) $\angle ACB = 38^{\circ}$ (ii) $\angle DAC = 38^{\circ}$ (iii) $\angle ADC = 104^{\circ}$ Ans.

Question 7.

ABCD is a rhombus. If \angle BCA = 35°. find \angle ADC.

Solution:

Given : Rhombus ABCD in which ∠BCA = 35°



To find : ∠ADC

Proof : AD || BC

 $\angle DAC = \angle BCA$ (Alternate $\angle s$)

But ∠BCA = 35° (Given)

 $\angle DAC = 35^{\circ}$

But $\angle DAC = \angle ACD$ (AD = CD) & $\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$

 $35^{\circ} + 35^{\circ} + \angle ADC = 180^{\circ}$

 $\angle ADC = 180^{\circ} - 70^{\circ} = 110^{\circ}$

Hence ∠ADC = 110°

Question 8.

PQRS is a parallelogram whose diagonals intersect at M.

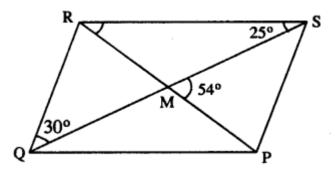
If $\angle PMS = 54^{\circ}$, $\angle QSR = 25^{\circ}$ and $\angle SQR = 30^{\circ}$; find :

- (i) ∠RPS
- (ii) ∠PRS
- (iii) ∠PSR.

Solution:

Given : ||gm PQRS in which diagonals PR & QS intersect at M.

 \angle PMS = 54°; \angle QSR = 25° and \angle SQR=30°



To find: (i) ∠RPS (ii) ∠PRS (iii) ∠PSR

Proof: QR || PS

 $\Rightarrow \angle PSQ = \angle SQR \text{ (Alternate } \angle s)$

But ∠SQR = 30° (Given)

 $\angle PSQ = 30^{\circ}$

In ∆SMP,

 \angle PMS + \angle PSM + \angle MPS = 180° or 54° + 30° + \angle RPS = 180°

 $\angle RPS = 180^{\circ} - 84^{\circ} = 96^{\circ}$

Now $\angle PRS + \angle RSQ = \angle PMS$

∠PRS + 25° =54°

 $\angle PRS = 54^{\circ} - 25^{\circ} = 29^{\circ}$

 \angle PSR = \angle PSQ + \angle RSQ = 30°+25° = 55°

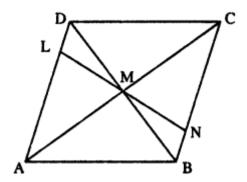
Hence (i) \angle RPS = 96° (ii) \angle PRS = 29° (iii) \angle PSR = 55°

Question 9.

Given: Parallelogram ABCD in which diagonals AC and BD intersect at M.

Prove : M is mid-point of LN.

Solution:



Proof: Diagonals of //gm bisect each other.

MD = MB

Also $\angle ADB = \angle DBN$ (Alternate $\angle s$)

& $\angle DML = \angle BMN$ (Vert. opp. $\angle s$)

 Δ DML = Δ BMN

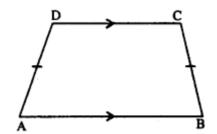
LM = MN

M is mid-point of LN.

Hence proved.

Question 10.

In an Isosceles-trapezium, show that the opposite angles are supplementary. Solution:



Given: ABCD is isosceles trapezium in which AD = BC

To Prove : (i) $\angle A + \angle C = 180^{\circ}$

(ii) $\angle B + \angle D = 180^{\circ}$ Proof: AB || CD. => ∠A + ∠D = 180°

But $\angle A = \angle B$ [Trapezium is isosceles)]

 $\angle B + \angle D = 180^{\circ}$

Similarly $\angle A + \angle C = 180^{\circ}$

Hence the result.

Question 11.

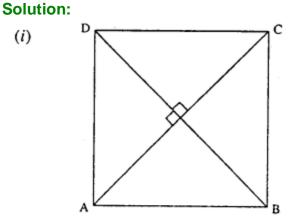
ABCD is a parallelogram. What kind of quadrilateral is it if:

(i) AC = BD and AC is perpendicular to BD?

(ii) AC is perpendicular to BD but is not equal to it?

(iii) AC = BD but AC is not perpendicular to BD?

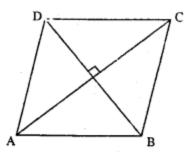
(i)



i.e. Diagonals of quadrilateral are equal and they are $\perp r$ to each other.

: ABCD is square

(ii)

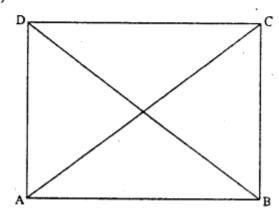


AC ⊥ BD (Given)

But AC & BD are not equal

: ABCD is a Rhombus.

(iii)



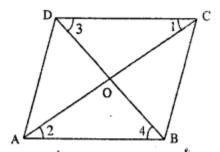
AC = BD but AC & BD are not $\perp r$ to each other.

: ABCD is a Rectangle.

Question 12.

Prove that the diagonals of a parallelogram bisect each other.

Solution:



Given: ||gm ABCD in which diagonals AC and BD bisect each other.

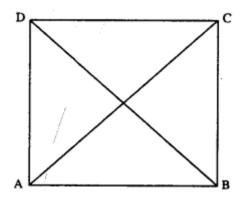
To Prove: OA = OC and OB = OD

Proof: AB || CD (Given) $\angle 1 = \angle 2$ (alternate $\angle s$) $\angle 3 = \angle 4 =$ (alternate $\angle s$) and AB = CD (opposite sides of //gm) \triangle COD = \triangle AOB (A.S.A. rule) OA = OC and OB = OD Hence the result.

Question 13.

If the diagonals of a parallelogram are of equal lengths, the parallelogram is a rectangle. Prove it.

Solution:



Given: //gm ABCD in which AC = BD

To Prove : ABCD is rectangle. **Proof :** In \triangle ABC and \triangle ABD

AB = AB (Common) AC = BD (Given)

BC = AD (opposite sides of ||gm)

 $\triangle ABC = \triangle ABD$ (S.S.S. Rule)

 $\angle A = \angle B$

But AD // BC (opp. sides of ||gm are ||)

 $\angle A + \angle B = 180^{\circ}$ $\angle A = \angle B = 90^{\circ}$

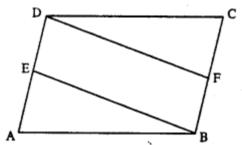
Similarly $\angle D = \angle C = 90^{\circ}$

Hence ABCD is a rectangle.

Question 14.

In parallelogram ABCD, E is the mid-point of AD and F is the mid-point of BC. Prove that BFDE is a parallelogram.

Solution:



Given: //gm ABCD in which E and F are mid-points of AD and BC respectively.

To Prove: BFDE is a ||gm.

Proof : E is mid-point of AD. (Given)

 $DE = \frac{1}{2}AD$

Also F is mid-point of BC (Given)

 $BF = \frac{1}{2}BC$

But AD = BC (opp. sides of ||gm)

BF = DE

Again AD || BC

=> DE || BF

Now DE || BF and DE = BF

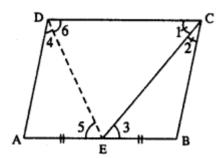
Hence BFDE is a ||gm.

Question 15.

In parallelogram ABCD, E is the mid-point of side AB and CE bisects angle BCD. Prove that :

- (i) AE = AD,
- (ii) DE bisects and ∠ADC and
- (iii) Angle DEC is a right angle.

Solution:



Given: ||gm ABCD in which E is mid-point of AB and CE bisects ZBCD.

To Prove: (i) AE = AD

(ii) DE bisects ∠ADC

(iii) ∠DEC = 90°

Const. Join DE

Proof: (i) AB || CD (Given)

and CE bisects it.

 $\angle 1 = \angle 3$ (alternate $\angle s$) (i)

But $\angle 1 = \angle 2$ (Given) (ii)

From (i) & (ii)

 $\angle 2 = \angle 3$

BC = BE (sides opp. to equal angles)

But BC = AD (opp. sides of ||gm)

and BE = AE (Given)

AD = AE

 $\angle 4 = \angle 5$ (\angle s opp. to equal sides)

But $\angle 5 = \angle 6$ (alternate $\angle s$)

DE bisects ∠ADC.

Now AD // BC

$$2\angle 6+2\angle 1 = 180^{\circ}$$

DE and CE are bisectors.

$$\angle 6 + \angle 1 = \frac{180^0}{2}$$

$$\angle 6 + \angle 1 = 90^{\circ}$$

But $\angle DEC + \angle 6 + \angle 1 = 180^{\circ}$

$$\angle DEC + 90^{\circ} = 180^{\circ}$$

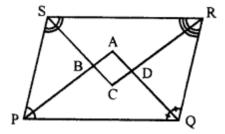
$$\angle DEC = 180^{\circ} - 90^{\circ}$$

$$\angle DEC = 90^{\circ}$$

Hence the result.

Question 16.

In the following diagram, the bisectors of interior angles of the parallelogram PQRS enclose a quadrilateral ABCD.



Show that:

(i)
$$\angle$$
PSB + \angle SPB = 90°

(iv)
$$\angle ADC = 90^{\circ}$$

(v)
$$\angle A = 90^{\circ}$$

(vi) ABCD is a rectangle

Thus, the bisectors of the angles of a parallelogram enclose a rectangle.

Solution:

Given : In parallelogram ABCD bisector of angles P and Q, meet at A, bisectors of $\angle R$ and $\angle S$ meet at C. Forming a quadrilateral ABCD as shown in the figure.

To prove:

(i)
$$\angle PSB + \angle SPB = 90^{\circ}$$

(iv)
$$\angle ADC = 90^{\circ}$$

$$(v) \angle A = 9^{\circ}$$

(vi) ABCD is a rectangle

Proof: In parallelogram PQRS,

PS || QR (opposite sides)

$$\angle P + \angle Q = 180^{\circ}$$

and AP and AQ are the bisectors of consecutive angles ∠P and ∠Q of the parallelogram

$$\angle APQ + \angle AQP = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

But in $\triangle APQ$,

 $\angle A + \angle APQ + \angle AQP = 180^{\circ}$ (Angles of a triangle)

 $\angle A + 90^{\circ} = 180^{\circ}$

 $\angle A = 180^{\circ} - 90^{\circ}$

(v) $\angle A = 90^{\circ}$

Similarly PQ || SR

 \angle PSB + SPB = 90°

(ii) and $\angle PBS = 90^{\circ}$

But, $\angle ABC = \angle PBS$ (Vertically opposite angles)

(iii) ∠ABC = 90°

Similarly we can prove that

(iv) $\angle ADC = 90^{\circ}$ and $\angle C = 90^{\circ}$

(vi) ABCD is a rectangle (Each angle of a quadrilateral is 90°)

Hence proved.

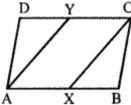
Question 17.

In parallelogram ABCD, X and Y are midpoints of opposite sides AB and DC respectively. Prove that:

- (i) AX = YC
- (ii) AX is parallel to YC
- (iii) AXCY is a parallelogram.

Solution:

Given : In parallelogram ABCD, X and Y are the mid-points of sides AB and DC respectively AY and CX are joined



To prove:

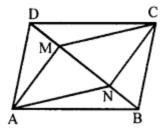
- (i) AX = YC
- (ii) AX is parallel to YC
- (iii) AXCY is a parallelogram

Proof: AB || DC and X and Y are the mid-points of the sides AB and DC respectively

- (i) AX = YC ($\frac{1}{2}$ of opposite sides of a parallelogram)
- (ii) and AX || YC
- (iii) AXCY is a parallelogram (A pair of opposite sides are equal and parallel) Hence proved.

Question 18.

The given figure shows parallelogram ABCD. Points M and N lie in diagonal BD such that DM = BN.



Prove that:

(i) $\triangle DMC = \triangle BNA$ and so CM = AN

(ii) $\triangle AMD = \triangle CNB$ and so AM CN

(iii) ANCM is a parallelogram.

Solution:

Given : In parallelogram ABCD, points M and N lie on the diagonal BD such that DM = BN

AN, NC, CM and MA are joined

To prove:

(i) Δ DMC = Δ BNA and so CM = AN

(ii) $\triangle AMD = \triangle CNB$ and so AM = CN

(iii) ANCM is a parallelogram

Proof:

(i) In \triangle DMC and \triangle BNA.

CD = AB (opposite sides of ||gm ABCD)

DM = BN (given)

 \angle CDM = \angle ABN (alternate angles)

 Δ DMC = Δ BNA (SAS axiom)

CM = AN (c.p.c.t.)

Similarly, in \triangle AMD and \triangle CNB

AD = BC (opposite sides of ||gm)

DM = BN (given)

 $\angle ADM = \angle CBN - (alternate angles)$

 $\triangle AMD = \triangle CNB (SAS axiom)$

AM = CN (c.p.c.t.)

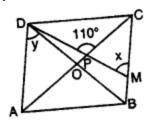
(iii) CM = AN and AM = CN (proved)

ANCM is a parallelogram (opposite sides are equal)

Hence proved.

Question 19.

The given figure shows a rhombus ABCD in which angle BCD = 80° . Find angles x and y.

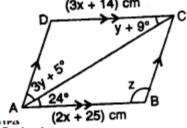


Solution:

In rhombus ABCD, diagonals AC and BD bisect each other at 90° \angle BCD = 80° Diagonals bisect the opposite angles also \angle BCD = \angle BAD (Opposite angles of rhombus) \angle BAD = 80° and \angle ABC = \angle ADC = 180° – 80° = 100° Diagonals bisect opposite angles \angle OCB or \angle PCB = $\frac{80^{\circ}}{2}$ = 40° In \triangle PCM, Ext. CPD = \angle OCB + \angle PMC 110° = 40° + x => x = 110° – 40° = 70° and \angle ADO = $\frac{1}{2}$ \angle ADC = $\frac{1}{2}$ x 100° = 50° Hence x = 70° and y = 50°

Question 20.

Use the information given in the alongside diagram to find the value of x, y and z.



Solution:

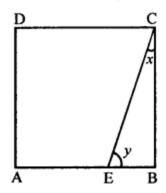
ABCD is a parallelogram and AC is its diagonal which bisects the opposite angle Opposite sides of a parallelogram are equal

$$3x + 14 = 2x + 25$$

=> $3x - 2x = 25 - 14$
=> $x = 11$
 $\therefore x = 11$ cm
 $\angle DCA = \angle CAB$ (Alternate angles)
 $y + 9^{\circ} = 24$
 $y = 24^{\circ} - 9^{\circ} = 15^{\circ}$
 $\angle DAB = 3y^{\circ} + 5^{\circ} + 24^{\circ} = 3 \times 15 + 5 + 24^{\circ} = 50^{\circ} + 24^{\circ} = 74^{\circ}$
 $\angle ABC = 180^{\circ} - \angle DAB = 180^{\circ} - 74^{\circ} = 106^{\circ}$
 $z = 106^{\circ}$
Hence $x = 11$ cm, $y = 15^{\circ}$, $z = 106^{\circ}$

Question 21.

The following figure is a rectangle in which x : y = 3 : 7; find the values of x and y.



Solution:

ABCD is a rectangle,

$$x: y = 3:1$$

In
$$\triangle BCE$$
, $\angle B = 90^{\circ}$

$$x + y = 90^{\circ}$$

But
$$x : y = 3 : 7$$

Sum of ratios = 3 + 7 = 10

$$\therefore x = \frac{90^{\circ} \times 3}{10} = 27^{\circ}$$

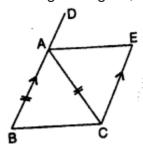
and
$$y = \frac{90^{\circ} \times 7}{10} = 63^{\circ}$$

Hence
$$x = 27^{\circ}$$
, $y = 63^{\circ}$

Hence $x = 27^{\circ}$, $y = 63^{\circ}$

Question 22.

In the given figure, AB // EC, AB = AC and AE bisects ∠DAC. Prove that:



- (i) $\angle EAC = \angle ACB$
- (ii) ABCE is a parallelogram.

Solution:

ABCE is a quadrilateral in which AC is its diagonal and AB || EC, AB = AC

BA is produced to D

AE bisects ∠DAC

To prove:

(i) $\angle EAC = \angle ACB$

(ii) ABCE is a parallelogram

Proof:

(i) In \triangle ABC and \triangle ZAEC

AC=AC (common)

AB = CE (given)

 $\angle BAC = \angle ACE$ (Alternate angle)

 $\triangle ABC = \triangle AEC$ (SAS Axiom)

(ii) \angle BCA = \angle CAE (c.p.c.t.)

But these are alternate angles

AE || BC

But AB || EC (given)

∴ ABCD is a parallelogram