EXERCISE 5.1 [PAGE 187]

Exercise 5.1 | Q 1.1 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5

SOLUTION

Required area =
$$\int_0^5 y \cdot dx$$
, where $y = 2x$
= $\int_0^5 2x \cdot dx$
= $\left[\frac{2x^2}{2}\right]_0^5$
= 25 - 0

= 25 sq units.

Exercise 5.1 | Q 1.2 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4

SOLUTION

Required area =
$$\int_0^4 x \cdot dy$$
, where $x = 2y$
= $\int_0^4 2y \cdot dy$
= $\left[\frac{2y^2}{2}\right]_0^4$
= 16 - 0
= 16 sq units.

Exercise 5.1 | Q 1.3 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4

SOLUTION

Required area =
$$\int_0^5 y \cdot dx$$
, where $y = 4$
= $\int_0^5 4 \cdot dx$
= $[4x]_0^5$
= 20 - 0
= 20 sq units.
Exercise 5.1 | Q 1.4 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines : $y = \sin x$, x = 0, $x = \pi/2$

SOLUTION

Required area =
$$\int_{0}^{\frac{\pi}{2}} y \cdot dx$$
, where $y = \sin x$
= $\int_{0}^{\frac{\pi}{2}} \sin x \cdot dx$
= $[-\cos x]_{0}^{\frac{\pi}{2}}$
= $-\cos \frac{\pi}{2} + \cos 0$
= $0 + 1$
= 1 sq unit.

Exercise 5.1 | Q 1.5 | Page 187

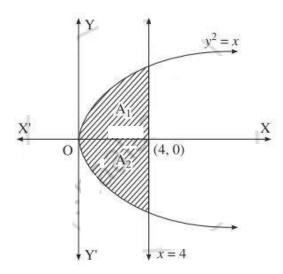
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4

SOLUTION

For xy = 2, $y = \frac{2}{x}$. Required area $= \int_{1}^{4} y \cdot dx$, where $y = \frac{2}{x}$ $= \int_{1}^{4} \frac{2}{x} \cdot dx$ $= [2 \log |x|]_{1}^{4}$ $= 2 \log 4 - 2 \log 1$ $= 2 \log 4 - 0$ $= 2 \log 4$ sq units.

Exercise 5.1 | Q 1.6 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines : $y^2 = x$, x = 0, x = 4

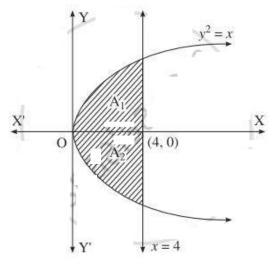


The required area consists of two bounded regions A1 and A2 which are equal in areas.

For
$$y^2 = x$$
, $y = \sqrt{x}$
Required area = $A_1 + A_2 = 2A_1$
= $2\int_0^4 y \cdot dx$, where $y = \sqrt{x}$
= $2\int_0^4 \sqrt{x} \cdot dx$
= $2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^4$
= $2\left[\frac{2}{3}(4)^{\frac{3}{2}} - 0\right]$
= $2\left[\frac{2}{3}(2^2)^{\frac{3}{2}}\right]$
= $\frac{32}{3}$ sq units.

Exercise 5.1 | Q 1.7 | Page 187

Find the area of the region bounded by the following curves, X-axis and the given lines: $y^2 = 16x$, x = 0, x = 4



The required area consists of two bounded regions A1 and A2 which are equal in areas.

For
$$y^2 = x, y = \sqrt{x}$$

Required area = $A_1 + A_2 = 2A_1$
= $2\int_0^4 y \cdot dx$, where $y = \sqrt{x}$
= $2\int_0^4 \sqrt{x} \cdot dx$
= $2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^4$
= $2\left[\frac{2}{3}(4)^{\frac{3}{2}} - 0\right]$
= $2\left[\frac{2}{3}(2^2)^{\frac{3}{2}}\right]$
= $\frac{128}{3}$ sq units.

Exercise 5.1 | Q 2.1 | Page 187

Find the area of the region bounded by the parabola: $y^2 = 16x$ and its latus rectum.

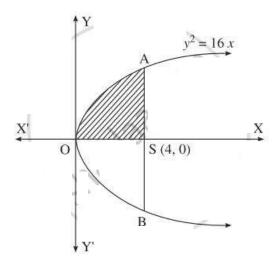
SOLUTION

Comparing $y^2 = 16x$ with $y^2 = 4ax$, we get

4a = 16

∴ a = 4

 $\therefore \text{ focus is } S(a, 0) = (4, 0)$



For $y^2 = 16x$, $y = 4\sqrt{x}$ Required area = area of the region OBSAO = 2[area of the region OSAO]

$$= 2 \int_{0}^{4} y \cdot dx, \text{ where } y = 4\sqrt{x}$$
$$= 2 \int_{0}^{4} 4\sqrt{x} \cdot dx$$
$$= 8 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}$$
$$= 8 \left[\frac{2}{3}(4)^{\frac{3}{2}} - 0\right]$$
$$= 8 \left[\frac{2}{3}(2^{2})^{\frac{3}{2}}\right]$$
$$= \frac{128}{3} \text{ sq units.}$$

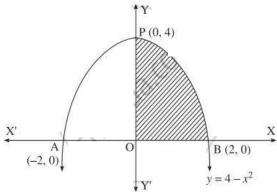
Exercise 5.1 | Q 2.2 | Page 187

Find the area of the region bounded by the parabola: $y = 4 - x^2$ and the X-axis.

SOLUTION

The equation of the parabola is $y = 4 - x^2$ $\therefore x^2 = 4 - y$, i.e. $(x - 0)^2 = -(y - 4)$ It has vertex at P(0, 4)For points of intersection of the parabola with X-axis, we put y = 0 in its equation.

- $\begin{array}{l} \therefore \ 0 = 4 x^2 \\ \therefore \ x^2 = 4 \\ \therefore \ x = \pm 2. \end{array}$
- : the parabola intersect the X-axis at A (-2, 0) and B(2, 0)



Required area = area of he region APBOA = 2[area of the region OPBO]

$$= 2 \int y \cdot dx, \text{ where } y = 4 - x^{2}$$

$$= 2 \int_{0}^{2} (4 - x^{2}) \cdot dx$$

$$= 8 \int_{0}^{2} 1 \cdot dx - 2 \int_{0}^{2} x^{2} \cdot dx$$

$$= 8[x]_{0}^{2} - 2\left[\frac{x^{3}}{3}\right]_{0}^{2}$$

$$= 8(2 - 0) - \frac{2}{3}(8 - 0)$$

$$= 16 - \frac{16}{3}$$

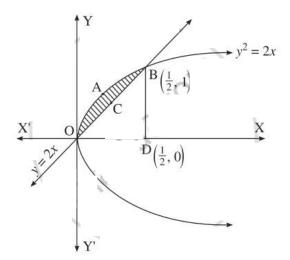
$$= \frac{32}{3} \text{ sq units.}$$

Exercise 5.1 | Q 3.1 | Page 187

Find the area of the region included between: $y^2 = 2x$ and y = 2x

SOLUTION

The vertex of the parabola $y^2 = 2x$ is at the origin O = (0, 0).



To find the points of intersection of the line and the parabola, equaling the values of 2x from both the equations we get,

 $\begin{array}{l} \therefore y^{2} = y \\ \therefore y^{2} - y = 0 \\ \therefore y(y - 1) = 0 \\ \therefore y = 0 \text{ or } y = 1 \end{array}$ When y = 0, $x = \frac{0}{2} = 0$ When y = 1, $x = \frac{1}{2}$ \therefore the points of intersection are O(0, 0) and B $\left(\frac{1}{2}, 1\right)$ Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO Now, area of the region OABDO = area under the parabola $y^{2} = 2x$ between x = 0 and $x = \frac{1}{2}$

$$= \int_{0}^{\frac{1}{2}} y \cdot dx, \text{ where } y = \sqrt{2}x$$
$$= \int_{0}^{\frac{1}{2}} \sqrt{2}x dx$$
$$= \sqrt{2} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{\frac{1}{2}}$$
$$= \sqrt{2} \left[\frac{2}{3} \left(\frac{1}{2} \right)^{\frac{3}{2}} - 0 \right]$$
$$= \sqrt{2} \left[\frac{2}{3} \cdot \frac{1}{2\sqrt{2}} \right]$$
$$= \frac{1}{3}$$
Area of the region OCBDO
$$= \text{ area under the line } y$$

$$= 0 \text{ and } x = \frac{1}{2}$$
$$= \int_0^{\frac{1}{2}} y \cdot dx, \text{ where } y = 2x$$
$$= \int_0^{\frac{1}{2}} 2x \cdot dx$$
$$= \left[\frac{2x^2}{2}\right]_0^{\frac{1}{2}}$$

$$= \frac{1}{4} - 0$$
$$= \frac{1}{4}$$

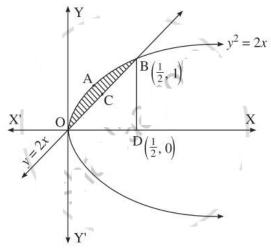
∴ required area

$$= \frac{1}{3} = \frac{1}{4}$$
$$= \frac{1}{12}$$
sq unit.

Exercise 5.1 | Q 3.2 | Page 187 Find the area of the region included between: $y^2 = 4x$, and y = x

SOLUTION

The vertex of the parabola $y^2 = 4x$ is at the origin O = (0, 0).



To find the points of intersection of the line and the parabola, equaling the values of 4x from both the equations we get,

$$y^{2} = y$$

$$y^{2} - y = 0$$

$$y(y - 1) = 0$$

$$y = 0 \text{ or } y = 1$$

When y = 0, x = $\frac{0}{2}$ = 0 When y = 1, x = $\frac{1}{2}$

 \therefore the points of intersection are O(0, 0) and $\mathrm{B}igg(rac{1}{2},1igg)$

Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO Now, area of the region OABDO

= area under the parabola $y^2 = 4x$ between x = 0 and x = $\frac{1}{2}$

$$= \int_{0}^{\frac{1}{2}} y \cdot dx, \text{ where } y = \sqrt{x}x$$
$$= \int_{0}^{\frac{1}{2}} \sqrt{2x} dx$$
$$= \sqrt{2} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{\frac{1}{2}}$$
$$= \sqrt{2} \left[\frac{2}{3} \left(\frac{1}{2} \right)^{\frac{3}{2}} - 0 \right]$$
$$= \sqrt{2} \left[\frac{2}{3} \cdot \frac{1}{2\sqrt{2}} \right]$$
$$= \frac{1}{3}$$

Area of the region OCBDO

- = area under the line y
- = 2x between x

= 0 and x =
$$\frac{1}{2}$$

$$= \int_{0}^{\frac{1}{2}} y \cdot dx, \text{ where } y = x$$
$$= \int_{0}^{\frac{1}{2}} 2x \cdot dx$$
$$= \left[\frac{2x^{2}}{2}\right]_{0}^{\frac{1}{2}}$$
$$= \frac{4}{1} - 0$$
$$= \frac{4}{3}$$
$$\therefore \text{ required area}$$
$$= \frac{4}{1} = \frac{4}{3}$$

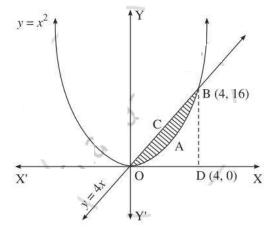
 $=\frac{\circ}{3}$ sq units.

Exercise 5.1 | Q 3.3 | Page 187

Find the area of the region included between: $y = x^2$ and the line y = 4x

SOLUTION

The vertex of the parabola $y = x^2$ is at the origin O(0, 0) To find the points of the intersection of the line and the parabola.



Equating the values of y from the two equations, we get

 $x^{2} = 4x$ ∴ $x^{2} - 4x = 0$ ∴ x(x - 4) = 0∴ x = 0, x = 4When x = 0, y = 4(0) = 0When x = 4, y = 4(4) = 16

 \therefore the points of intersection are O(0, 0) and B(4, 16) Required area = area of the region OABCO

= (area of the region ODBCO) – (area of the region ODBAO) Now, area of the region ODBCO

= area under the line y = 4x between x = 0 and x = 4

$$= \int_{0}^{4} y \cdot dx, \text{ where } y = 4x$$
$$= \int_{0}^{4} 4x \cdot dx$$
$$= 4 \int_{0}^{4} x \cdot dx$$
$$= 4 \left[\frac{x^{2}}{2} \right]_{0}^{4}$$
$$= 2(16 - 0)$$
$$= 32$$
Area of the region ODBAO

= area under the parabola $y = x^2$ between x = 0 and x = 4

$$= \int_0^4 y \cdot dx, ext{ where } y = x^2$$
 $= \int_0^4 x^2 \cdot dx$

$$= \left[\frac{x^3}{3}\right]_0^4$$
$$= \frac{1}{3}(64 - 0)$$
$$= \frac{64}{3}$$

∴ required area

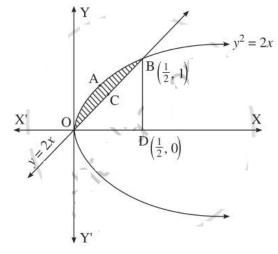
$$= 32 - \frac{64}{3}$$
$$= \frac{32}{3}$$
 sq units.

Exercise 5.1 | Q 3.4 | Page 187

Find the area of the region included between: $y^2 = 4ax$ and the line y = x

SOLUTION

The vertex of the parabola $y^2 = 4ax$ is at the origin O = (0, 0).



To find the points of intersection of the line and the parabola, equaling the values of 4ax from both the equations we get,

 When y = 0, x = $\frac{0}{2} = 0$ When y = 1, x = $\frac{1}{2}$

 \therefore the points of intersection are O(0, 0) and $\mathrm{B}iggl(rac{1}{2},1iggr)$

Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO Now, area of the region OABDO

= area under the parabola y^2 = 4ax between x = 0 and x = $\frac{1}{2}$

$$= \int_{0}^{\frac{1}{2}} y \cdot dx, \text{ where } y = \sqrt{2}x$$
$$= \int_{0}^{\frac{1}{2}} \sqrt{2}x dx$$
$$= \sqrt{2} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{\frac{1}{2}}$$
$$= \sqrt{2} \left[\frac{2}{3} \left(\frac{1}{2} \right)^{\frac{3}{2}} - 0 \right]$$
$$= \sqrt{2} \left[\frac{2}{3} \cdot \frac{1}{2\sqrt{2}} \right]$$
$$= \frac{1}{3}$$

Area of the region OCBDO = area under the line y = 4ax between x

$$= 0 \text{ and } x = \frac{1}{4ax}$$

$$= \int_{0}^{\frac{1}{2}} y \cdot dx, \text{ where } y = x$$

$$= \int_{0}^{\frac{1}{2}} 2x \cdot dx$$

$$= \left[\frac{2x^{2}}{2}\right]_{0}^{\frac{1}{2}}$$

$$= \frac{4}{3} - 0$$

$$= \frac{2a^{2}}{1}$$

∴ required area

$$= \frac{4}{3} = \frac{2a^2}{1}$$
$$= \frac{8a^2}{3}$$
sq units.

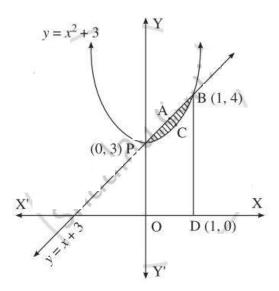
Exercise 5.1 | Q 3.5 | Page 187

Find the area of the region included between: $y = x^2 + 3$ and the line y = x + 3

SOLUTION

The given parabola is $y = x^2 + 3$, i.e. $(x - 0)^2 = y - 3$

 \therefore its vertex is P(0, 3).



To find the points of intersection of the line and the parabola. Equating the values of y from both the equations, we get

 $x^{3} + 3 = x + 3$ $\therefore x^{2} - x = 0$ $\therefore x(x - 1) = 0$ $\therefore x = 0 \text{ or } x = 1$

When x = 0, y = 0 + 3 = 3When x = 1, y = 1 + 3 = 4

: the points of intersection are P(0, 3) and B(1, 4) Required area = area of the region PABCP

= area of the region OPABDO – area of the region OPCBDO Now, area of the region OPABDO

= area under the line y = x + 3 between x = 0 and x = 1

$$= \int_0^1 y \cdot dx, \text{ where } y = x+3$$
$$= \int_0^1 (x+3) \cdot dx$$
$$= \int_0^1 x \cdot dx + 3 \int_0^1 1 \cdot dx$$

$$= \left[\frac{x^2}{2}\right]_0^1 + 3[x]_0^1$$
$$= \left(\frac{1}{2} - 0\right) + 3(1 - 0)$$
$$= \frac{7}{2}$$

Area of the region OPCBDO

= area under the parabola $y = x^2 + 3$ between x = 0 and x = 1

$$= \int_{0}^{1} y \cdot dx, \text{ where } y = x^{2} + 3$$

$$= \int_{0}^{1} (x^{2} + 3) \cdot dx$$

$$= \int_{0}^{1} x^{2} \cdot dx + 3 \int_{0}^{1} 1 \cdot dx$$

$$= \left[\frac{x^{3}}{3}\right]_{0}^{1} + 3[x]_{0}^{1}$$

$$= \left(\frac{1}{3} - 0\right) + 3(1 - 0)$$

$$= \frac{10}{3}$$

$$\therefore \text{ required area} = \frac{7}{2} - \frac{10}{3}$$

$$= \frac{21 - 20}{6}$$

$$= \frac{1}{6} \text{ sq unit.}$$

MISCELLANEOUS EXERCISE 5 [PAGES 188 - 190]

Miscellaneous Exercise 5 | Q 1.01 | Page 188 Choose the correct option from the given alternatives : The area bounded by the regional $\leq x \leq 5$ and $2 \leq y \leq 5$ is given by

- 1. 12 sq units
- 2. 8 sq units
- 3. 25 sq units
- 4. 32 sq units

SOLUTION

12 sq units.

Miscellaneous Exercise 5 | Q 1.02 | Page 188

Choose the correct option from the given alternatives :

The area of the region enclosed by the curve $y = \frac{1}{x}$, and the lines x = e, $x = e^2$ is given by

```
\frac{1}{2} \underset{=}{\operatorname{sq unit}} \operatorname{sq unit} \\ \frac{1}{2} \underset{=}{\operatorname{sq units}} \operatorname{sq units} \\ \frac{5}{2} \underset{=}{\operatorname{sq units}}
```

SOLUTION

1 sq unit.

Miscellaneous Exercise 5 | Q 1.03 | Page 188

Choose the correct option from the given alternatives :

The area bounded by the curve $y = x^3$, the X-axis and the lines x = -2 and x = 1 is

- 9 sq units

$$-\frac{15}{4}$$
 sq units
 $\frac{15}{4}$ sq units
 $\frac{17}{4}$ sq units
SOLUTION

 $\frac{15}{4}$ sq units.

Miscellaneous Exercise 5 | Q 1.04 | Page 188

Choose the correct option from the given alternatives :

The area enclosed between the parabola $y^2 = 4x$ and line y = 2x is

```
\frac{\frac{2}{3}}{\frac{3}{3}} \text{sq units}\frac{\frac{1}{3}}{\frac{3}{4}} \text{sq unit}\frac{\frac{1}{4}}{\frac{3}{4}} \text{sq unit}
```

SOLUTION

 $\frac{1}{3}$ sq unit.

Miscellaneous Exercise 5 | Q 1.05 | Page 188

Choose the correct option from the given alternatives :

The area of the region bounded between the line x = 4 and the parabola $y^2 = 16x$ is

$$\frac{\frac{128}{3}}{\frac{3}{3}}$$
sq units
$$\frac{\frac{108}{3}}{\frac{3}{3}}$$
sq units
$$\frac{\frac{118}{3}}{\frac{218}{3}}$$
sq units

SOLUTION

 $\frac{128}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.06 | Page 189

Choose the correct option from the given alternatives :

The area of the region bounded by $y = \cos x$, Y-axis and the lines x = 0, $x = 2\pi$ is

- 1 sq unit
- 2 sq units
- 3 sq units
- 4 sq units

SOLUTION

4 sq units.

Miscellaneous Exercise 5 | Q 1.07 | Page 189

Choose the correct option from the given alternatives :

The area bounded by the parabola $y^2 = 8x$, the X-axis and the latus rectum is

$$\frac{\frac{31}{3}}{\frac{32}{3}} \text{ sq units}$$
$$\frac{\frac{32}{3}\sqrt{2}}{\frac{32}{\sqrt{2}}} \text{ sq units}$$
$$\frac{\frac{16}{3}}{\frac{32}{3}} \text{ sq units}$$

SOLUTION

 $\frac{32}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.08 | Page 189

Choose the correct option from the given alternatives :

The area under the curve $y = 2\sqrt{x}$, enclosed between the lines x = 0 and x = 1 is

```
4 sq units

\frac{3}{4} sq unit

\frac{2}{3} sq unit

\frac{4}{3} sq units
```

SOLUTION

 $\frac{4}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.09 | Page 189

Choose the correct option from the given alternatives :

The area of the circle $x^2 + y^2 = 25$ in first quadrant is $\frac{25\pi}{4}$ sq units 5π sq units 5 sq units 3 sq units *SOLUTION*

$\frac{25\pi}{4}$ sq units.

Miscellaneous Exercise 5 | Q 1.1 | Page 189

Choose the correct option from the given alternatives :

The area of the region bounded by the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}$ = 1 is

ab sq units

πab sq units

```
\frac{\pi}{ab} sq units
\pi a^2 sq units
```

SOLUTION

πab sq units.

```
Miscellaneous Exercise 5 | Q 1.11 | Page 189
```

Choose the correct option from the given alternatives :

The area bounded by the parabola $y^2 = x$ and the line 2y = x is

```
\frac{4}{3} sq unit

1 sq unit

\frac{2}{3} sq unit

\frac{1}{3} sq unit

SOLUTION
```

 $\frac{4}{3}$ sq unit.

```
Miscellaneous Exercise 5 | Q 1.12 | Page 189
```

Choose the correct option from the given alternatives :

The area enclosed between the curve y = cos 3x, $0 \le x \le \frac{\pi}{6}$ and the X-axis is

```
\frac{1}{2} sq unit

1 sq unit

\frac{2}{3} sq unit

\frac{1}{3} sq unit

SOLUTION

\frac{1}{3} sq unit.
```

Miscellaneous Exercise 5 | Q 1.13 | Page 189

Choose the correct option from the given alternatives :

The area bounded by $y = \sqrt{x}$ and the x = 2y + 3, X-axis in first quadrant is $2\sqrt{3}$ sq units

9 sq units $\frac{34}{3}$ sq units 18 sq units

SOLUTION

9 sq units.

Miscellaneous Exercise 5 | Q 1.14 | Page 189

Choose the correct option from the given alternatives :

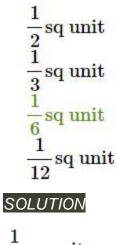
The area bounded by the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$ is ($\pi ab - 2ab$) sq units ($\frac{\pi ab}{4} - \frac{ab}{2}$) sq units ($\pi ab - ab$) sq units πab sq units SOLUTION

$$\left(\frac{\pi ab}{4}-\frac{\mathrm{ab}}{2}\right)$$
 sq units

Miscellaneous Exercise 5 | Q 1.15 | Page 189

Choose the correct option from the given alternatives :

The area bounded by the parabola $y = x^2$ and the line y = x is



 $\frac{1}{6}$ sq unit.

Miscellaneous Exercise 5 | Q 1.16 | Page 189

Choose the correct option from the given alternatives :

The area enclosed between the two parabolas $y^2 = 4x$ and y = x is

$$\frac{\frac{16}{3}}{\frac{32}{3}}$$
sq units
$$\frac{\frac{8}{3}}{\frac{8}{3}}$$
sq units
$$\frac{\frac{4}{3}}{\frac{4}{3}}$$
sq units

SOLUTION

 $\frac{8}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.17 | Page 190

Choose the correct option from the given alternatives :

The area bounded by the curve y = tan x, X-axis and the line x = $\frac{\pi}{4}$ is

 $\frac{1}{2}\log 2$ sq units $\log 2$ sq units

2 log 2 sq units 3·log 2 sq units

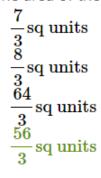
SOLUTION

 $\frac{1}{2}\log 2$ sq units.

Miscellaneous Exercise 5 | Q 1.18 | Page 190

Choose the correct option from the given alternatives :

The area of the region bounded by $x^2 = 16y$, y = 1, y = 4 and x = 0 in the first quadrant, is



SOLUTION

 $\frac{56}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.19 | Page 190

Choose the correct option from the given alternatives :

The area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, (a > 0) is given by

$$\frac{\frac{16a^2}{3}}{\frac{8a^2}{3}}$$
sq units
$$\frac{\frac{64}{3}}{\frac{56}{3}}$$
sq units
$$\frac{56}{3}$$
sq units

SOLUTION

 $\frac{16a^2}{3}$ sq units.

Miscellaneous Exercise 5 | Q 1.2 | Page 190

Choose the correct option from the given alternatives :

The area of the region included between the line x + y = 1 and the circle $x^2 + y^2 = 1$ is

$$\left(\frac{\pi}{2} - 1\right) \text{sq units}$$
$$(\pi - 2) \text{ sq units}$$
$$\left(\frac{\pi}{4} - \frac{1}{2}\right) \text{sq units}$$
$$\left(\pi - \frac{1}{2}\right) \text{sq units}$$

SOLUTION

$$\left(rac{\pi}{4}-rac{1}{2}
ight)$$
sq units

Miscellaneous Exercise 5 | Q 2.01 | Page 190

Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : $0 \le x \le 5$, $0 \le y \le 2$

SOLUTION

Required area = $\int_0^5 y \cdot dx$, where y = 2= $\int_0^5 2 \cdot dx = [2x]_0^5$ = $2 \times 5 - 0$

= 10 sq units.

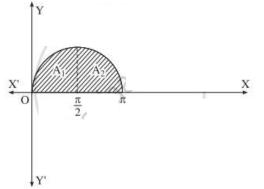
Miscellaneous Exercise 5 | Q 2.01 | Page 190

Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : $y = \sin x$, x = 0, $x = \pi$

SOLUTION

The curve $y = \sin x$ intersects the X-axis at x = 0 and $x = \pi$ between x = 0 and $x = \pi$.



Two bounded regions A₁ and A₂ are obtained. Both the regions have equal areas. \therefore required area = A₁ + A₂ = 2A₁

 \boldsymbol{x}

$$= 2 \int_{0}^{\frac{\pi}{2}} y \cdot dx, \text{ where } y = \sin x$$
$$= 2 \int_{0}^{\frac{\pi}{2}} \sin x \cdot dx$$
$$= 2[-\cos x]_{0}^{\frac{\pi}{2}}$$
$$= 2[-\cos \frac{\pi}{2} \cos 0]$$
$$= 2(-0+1)$$
$$= 2 \text{ sq units.}$$

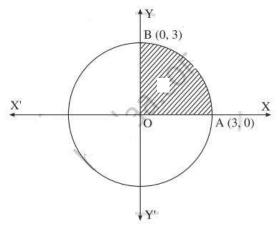
Miscellaneous Exercise 5 | Q 2.02 | Page 190

Solve the following :

Find the area of the circle $x^2 + y^2 = 9$, using integration.

SOLUTION

By the symmetry of the circle, its area is equal to 4 times the area of the region OABO. Clearly for this region, the limits of integration are 0 and 3.



From the equation of the circle, $y^2 = 9 - x^2$.

In the first quadrant, y > 0 \therefore y = $\sqrt{9 - x^2}$

 \therefore area of the circle = 4 (area of the region OABO)

$$= 4 \int_{0}^{3} y \cdot dx = 4 \int_{0}^{3} \sqrt{9 - x^{2}} \cdot dx$$

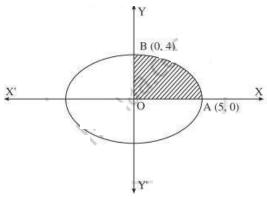
= $4 \left[\frac{x}{2} \sqrt{9 - x^{2}} + \frac{9}{2} \sin^{-1} \left(\frac{x}{3} \right) \right]_{0}^{3}$
= $4 \left[\frac{3}{2} \sqrt{9 - 9} + \frac{9}{2} \sin^{-1} \left(\frac{3}{3} \right) \right] - 4 \left[\frac{0}{2} \sqrt{9 - 0} + \frac{9}{2} \sin^{1}(0) \right]$
= $4 \cdot \frac{9}{2} \cdot \frac{\pi}{2}$
= 9π sq units.

Miscellaneous Exercise 5 | Q 2.03 | Page 190

Solve the following :

Find the area of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ using integration

SOLUTION



By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO. Clearly for this region, the limits of integration are 0 and 5.

From the equation of the ellipse

$$\frac{y^2}{16} = 1 - \frac{x^2}{25} = \frac{25 - x^2}{25}$$
$$\therefore y^2 = \frac{16}{25} (25 - x^2)$$

In the first quadrant y > 0

$$\therefore \mathsf{y} = \frac{4}{5}\sqrt{25 - x^2}$$

 \therefore area of the ellipse = 4 (area of the region OABO)

$$= 4 \int_{0}^{5} y \cdot dx$$

= $\int_{0}^{5} \frac{4}{5} \sqrt{25 - x^{2}} \cdot dx$
= $\frac{16}{5} \int_{0}^{5} \sqrt{25 - x^{2}} \cdot dx$
= $\frac{16}{5} \left[\frac{x}{2} \sqrt{25 - x^{2}} + \frac{25}{2} \sin^{-1} \left(\frac{x}{5} \right) \right]_{0}^{5}$
= $\frac{16}{5} \left(\frac{5}{2} \sqrt{25 - 25} + \frac{25}{2} \sin^{-1}(1) \right) - \frac{16}{5} \left[\frac{5}{2} \sqrt{25 - 0} + \frac{25}{2} \sin^{-1}(0) \right]$

$$=\frac{16}{5}\times\frac{25}{2}\times\frac{\pi}{2}$$

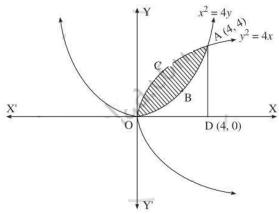
= 20π sq units.

Miscellaneous Exercise 5 | Q 2.04 | Page 190

Solve the following :

Find the area of the region lying between the parabolas : $y^2 = 4x$ and $x^2 = 4y$

SOLUTION



For finding the points of intersection of the two parabolas, we equate the values of y^2 from their equations.

From the equation $x^2 = 4y$, $y = \frac{x^2}{4}$

$$\therefore y = \frac{x^4}{16}$$

$$\therefore \frac{x^4}{16} = 4x$$

$$\therefore x^4 - 64x = 0$$

$$\therefore x(x^3 - 64) = 0$$

$$\therefore x = 0 \text{ or } x^3 = 64$$
i.e. $x = 0 \text{ or } x = 4$
When $x = 0, y = 0$

When x = 4, y = $\frac{4^2}{4}$ = 4

∴ the points of intersection are O(0, 0) and A(4, 4).
 Required area = area of the region OBACO
 = [area of the region ODACO] - [area of the region ODABO]
 Now, area of the region ODACO

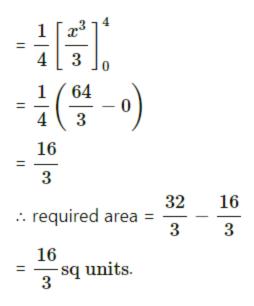
= area under the parabola $y^2 = 4x$,

i.e.
$$y = 2\sqrt{x}$$
 between $x = 0$ and $x = 4$

$$= \int_{0}^{4} 2\sqrt{x} \cdot dx$$
$$= \left[2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}$$
$$= 2 \times \frac{2}{3} \times 4^{\frac{3}{2}} - 0$$
$$= \frac{4}{3} \times (2^{3})$$
$$= \frac{32}{3}$$

Area of the region ODABO

= area under the rabola
$$x^2 = 4y$$
,
i.e. $y = \frac{x^2}{4}$ between $x = 0$ and $x = 4$
 $= \int_0^4 \frac{1}{4} x^2 \cdot dx$

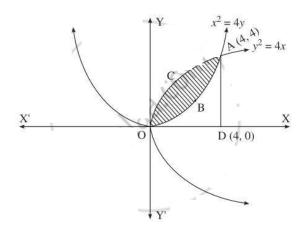


Miscellaneous Exercise 5 | Q 2.04 | Page 190

Solve the following :

Find the area of the region lying between the parabolas : $y^2 = x$ and $x^2 = y$.

SOLUTION



For finding the points of intersection of the two parabolas, we equate the values of y^2 from their equations.

From the equation $x^2 = y$, $y = \frac{x^2}{y}$

$$\therefore y = \frac{x^2}{y}$$

$$\therefore \frac{x^2}{y} = x$$

$$\therefore x^2 - y = 0$$

$$\therefore x(x^3 - y) = 0$$

$$\therefore x = 0 \text{ or } x^3 = y$$
i.e. $x = 0 \text{ or } x = 4$
When $x = 0, y = 0$

When x = 4, y = $\frac{4^2}{4}$ = 4

∴ the points of intersection are O(0, 0) and A(4, 4).
 Required area = area of the region OBACO
 = [area of the region ODACO] - [area of the region ODABO]
 Now, area of the region ODACO

= 4

= area under the parabola
$$y^2 = 4x$$
,
i.e. $y = 2\sqrt{x}$ between $x = 0$ and $x =$
$$= \int_0^4 2\sqrt{x} \cdot dx$$
$$= \left[2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^4$$
$$= 2 \times \frac{2}{3} \times 4^{\frac{3}{2}} - 0$$
$$= \frac{4}{3} \times (2^3)$$

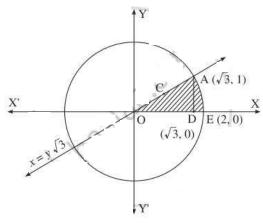
 $= \frac{32}{3}$ Area of the region ODABO = area under the rabola $x^2 = 4y$, i.e. $y = \frac{x^2}{3}$ between x = 0 and x = 4 $= \int_0^4 \frac{1}{3} x^2 \cdot dx$ $= \frac{1}{3} \left[\frac{x}{3}\right]_0^4$ $= \frac{1}{3} \left(\frac{y}{3} - 0\right)$ $= \frac{y}{3}$ ∴ required area $= \frac{1}{3} - \frac{y}{3}$ $= \frac{1}{3}$ sq units.

Miscellaneous Exercise 5 | Q 2.05 | Page 190

Solve the following :

Find the area of the region in first quadrant bounded by the circle $x^2 + y^2 = 4$ and the X-axis and the line $x = y \sqrt{3}$.

SOLUTION



For finding the point of intersection of the circle and the line, we solve

 $x^2 + y^2 = 4$...(1) and x = $y\sqrt{3}$...(2) From (2), $x^2 = 3y$ From (1), $x^2 = 4 - y^2$ $\therefore 3y^2 = 4 - y^2$ $\therefore 4y^2 = 4$ $\therefore y^2 = 1$ \therefore y = 1 in the first quadrant. When y = , x = 1 x $\sqrt{3} = \sqrt{3}$ \therefore the circle and the line intersect at $\mathrm{A}ig(\sqrt{3},1ig)$ in the first quadrant Required area = area of the region OCAEDO = area of the region OCADO + area of the region DAED Now, area of the region OCADO = area under the line x $y\sqrt{3}$ m

i.e.
$$y = \frac{x}{\sqrt{y}}$$
 between $x = 0$ and $x = \sqrt{3}$

$$= \int_0^{\sqrt{3}} \frac{x}{\sqrt{3}} \cdot dx$$
$$= \left[\frac{x^2}{2\sqrt{3}}\right]_0^{\sqrt{3}}$$
$$= \frac{3}{2\sqrt{3}} - 0$$
$$= \frac{\sqrt{3}}{2}$$

Area of the region DAED

= area under the circle $x^2 + y^2 = 4$ i.e. $y = +\sqrt{4 - x^2}$ (in the first quadrant) between $x = \sqrt{3}$ and x = 2= $\int_{-\pi}^{2} \sqrt{4 - x^2} \cdot dx$

$$= \left[\frac{x}{2}\sqrt{4-x^{2}} + \frac{4}{2}\sin^{-1}\left(\frac{x}{2}\right)\right]_{\sqrt{3}}^{2}$$

$$= \left[\frac{2}{2}\sqrt{4-4} + 2\sin^{-1}(1)\right] - \left[\frac{\sqrt{3}}{2}\sqrt{4-3} + 2\sin^{-1}\frac{\sqrt{3}}{2}\right]$$

$$= 0 + 2\left(\frac{\pi}{2}\right) - \frac{\sqrt{3}}{2} - 2\left(\frac{\pi}{3}\right)$$

$$= \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3}$$

$$= \frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

$$\therefore \text{ required area} = \frac{\sqrt{3}}{2} + \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)$$

$$= \frac{\pi}{3} \text{ sq units.}$$

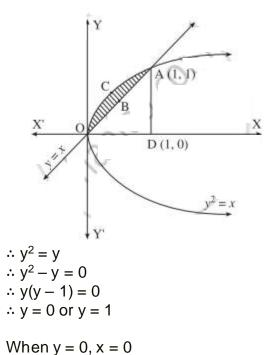
Miscellaneous Exercise 5 | Q 2.06 | Page 190

Solve the following :

Find the area of the region bounded by the parabola $y^2 = x$ and the line y = x in the first quadrant.

SOLUTION

To obtain the points of intersection of the line and the parabola, we equate the values of x from both the equations.



When y = 1, x = 1

 \therefore the points of intersection are O(0, 0) and A(1, 1). Required area of the region OCABO = area of the region OCADO – area of the region OBADO

Now, area of the region OCADO

= area under the parabola $y^2 = x$ i.e. $y = \pm \sqrt{x}$ (in the first quadrant) between x = 0 and x = 1

$$= \int_0^1 \sqrt{x} \cdot dx$$
$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^1$$
$$= \frac{2}{3} \times (1-0)$$
$$= \frac{2}{3}$$

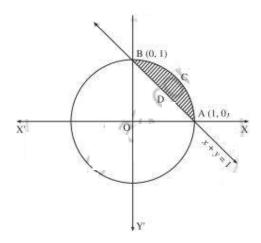
Area of the region OBADO = area under the line y = x between x 0 and x = 1 $= \int_0^1 x \cdot dx$ $= \left[\frac{x^2}{2}\right]_0^1$ $= \frac{1}{2} - 0$ $= \frac{2}{3}$ $\therefore \text{ required area} = \frac{2}{3} - \frac{1}{2}$ $= \frac{1}{6} \text{ sq unit.}$

Miscellaneous Exercise 5 | Q 2.07 | Page 190

Solve the following :

Find the area enclosed between the circle $x^2 + y^2 = 1$ and the line x + y = 1, lying in the first quadrant.

SOLUTION



Required area = area of the region ACBDA = (area of the region OACBO) – (area of the region OADBO) Now, area of the region OACBO = area under the circle $x^2 + y^2 = 1$ between x = 0 and x = 1

$$= \int_{0}^{1} dx, \text{ where } y^{2} = 1 - x^{2},$$

i.e. $y = \sqrt{1 - x^{2}}, \text{ as } y > 0$
$$= \int_{0}^{1} \sqrt{1 - x^{2}} dx$$

$$= \left[\frac{x}{2}\sqrt{1 - x^{2}} + \frac{1}{2}\sin^{-1}(x)\right]_{0}^{1}$$

$$= \frac{1}{2}\sqrt{1 - 1} + \frac{1}{2}\sin^{1}1 - 0$$

$$= \frac{1}{2} \times \frac{\pi}{2}$$

$$= \frac{\pi}{4}$$

Area of the region OADBO

= area under the line x + y = 1 between x = 0 and x = 1

$$= \int_{0}^{1} y \cdot dx, \text{ where } y = 1 - x$$
$$= \int_{0}^{1} (1 - x) \cdot dx$$
$$= \left[x - \frac{x^{2}}{2} \right]_{0}^{1}$$
$$= 1 - \frac{1}{2} - 0$$
$$= \frac{1}{2}$$
$$\therefore \text{ required area} = \left(\frac{\pi}{4} - \frac{1}{2} \right) \text{ sq units.}$$

Miscellaneous Exercise 5 | Q 2.08 | Page 190

Solve the following :

Find the area of the region bounded by the curve $(y - 1)^2 = 4(x + 1)$ and the line y = (x - 1).

SOLUTION

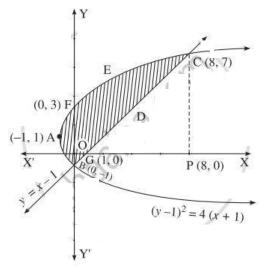
The equation of the curve is $(y - 1)^2 = 4(x + 1)$ This is a parabola with vertex at A(-1, 1).

To find the points of intersection of the line y = x - 1 and the parabola. Put y = x - 1 in the equation of the parabola, we get $(x - 1 - 1)^2 = 4(x + 1)$

```
\therefore x^2 - 4x + 4 = 4x + 4
\therefore x^2 - 8x = 0
\therefore x(x - 8) = 0
```

 $\therefore x = 0, x = 8$ When x = 0, y = 0 - 1 = - 1 When x = 8, y = 8 - 1 = 7

: the points of intersection are B(0, -1) and C(8, 7)



To find the points where the parabola (y - 1)2 = 4(x + 1) cuts the Y-axis. Put x = 0 in the equation of the parabola, we get

(y - 1)2 = 4(0 + 1) = 4∴ $y - 1 = \pm 2$ ∴ y - 1 = 2 or y - 1 = -2∴ y = 3 or y = -1∴ the parabola cuts the Y-axis at the points B (0, -1) and F(0, 3). To find the point where the line y = x - 1 cuts the X-axis. Put y = 0 in the equation of the line, we get

x - 1 = 0

∴ x = 1

 \therefore the line cuts the X-axis at the point G (1, 0).

Required area = area of the region BFAB + area of the region OGDCEFO + area of the region OBGO

Now, area of the region BFAB = area under the parabola $(y - 1)^2 = 4(x + 1)$, Y-axis from y = -1 to y = 3

$$= \int_{-1}^{3} x \cdot dy, \text{ where } x + 1 = \frac{(y-1)^{2}}{4}, \text{ i.e. } x = \frac{(y-1)^{2}}{4} - 1$$

$$= \int_{-1}^{3} \left[\frac{(y-1)^{2}}{4} - 1 \right] \cdot dy$$

$$= \left[\frac{1}{4} \cdot \frac{(y-1)^{3}}{3} - y \right]_{-1}^{3}$$

$$= \left[\left\{ \frac{1}{12} (3-1)^{3} - 3 \right\} - \left\{ \frac{1}{12} (-1-1)^{3} - (-1) \right\} \right]$$

$$= \frac{8}{12} - 3 + \frac{8}{12} - 1$$

$$= \frac{16}{12} - 4$$

$$= \frac{4}{3} - 4$$

$$= -\frac{8}{3}$$

Since, area cannot be negative, area of the region BFAB

$$\begin{aligned} &= \left| -\frac{8}{3} \right| \\ &= \frac{8}{3} \text{ sq units.} \\ \text{Area of the region OGDCEFO} \\ &= \text{ area of the region OPCEFO - area of the region GPCDG} \\ &= \int_{0}^{8} y \cdot dx, \text{ where } (y-1)^{2} \\ &= 4(x+1), \text{ i.e. } y = 2\sqrt{x+1} + 1 - \int_{1}^{8} y \cdot dx, \text{ where } y = x-1 \\ &= \int_{0}^{8} \left[2\sqrt{x+1} + 1 \right] \cdot dx - \int_{1}^{8} (x-1) \cdot dx \\ &= \left[\frac{2 \cdot (x+1)^{\frac{3}{2}}}{\frac{3}{2}} + x \right]_{0}^{8} - \left[\frac{x^{2}}{2} - x \right]_{1}^{8} \\ &= \left[\frac{4}{3} (9)^{\frac{3}{2}} + 8 - \frac{4}{3} (1)^{\frac{3}{2}} - 0 \right] - \left[\left(\frac{64}{2} - 8 \right) - \left(\frac{1}{2} - 1 \right) \right] \\ &= \left(36 + 8 - \frac{4}{3} \right) - \left(24 + \frac{1}{2} \right) \\ &= 44 - \frac{4}{3} - 24 - \frac{1}{2} \\ &= 20 - \left(\frac{4}{3} + \frac{1}{2} \right) \\ &= 20 - \frac{11}{6} \\ &= \frac{109}{6} \text{ sq units.} \end{aligned}$$
Area of region OBGO = $\int^{1} y \cdot dx$, where $y = x - 1$

 $\int_0^{\infty} g^{-1} dx$, where $\int_0^{\infty} g^{-1} dx$

$$= \int_0^1 (x-1) \cdot dx$$
$$= \left[\frac{x^2}{2} - x\right]_0^1$$
$$= \frac{1}{2} - 1 - 0$$
$$= -\frac{1}{2}$$

Since, area cannot be negative,

area of the region = $\left|-\frac{1}{2}\right| = \frac{1}{2}$ sq unit. \therefore required area = $\frac{8}{3} + \frac{109}{6} + \frac{1}{2}$ $= \frac{16 + 109 + 3}{6}$ $= \frac{128}{6}$ $= \frac{64}{3}$ sq units.

Miscellaneous Exercise 5 | Q 2.09 | Page 190

Solve the following :

Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.

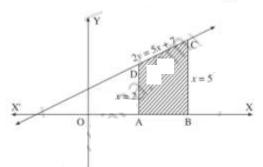
SOLUTION

The equation of the line is 2y = 5x + 7,

i.e.,
$$y = \frac{5}{2}x + \frac{7}{2}$$

Required area = area of the region ABCDA

= area under the line y =
$$5\frac{1}{2}x + \frac{7}{2}$$
 between x = 2 and x = 5



Y

$$= \int_{2}^{5} \left(\frac{5}{2}x + \frac{7}{2}\right) \cdot dx$$

$$= \frac{5}{2} \cdot \int_{2}^{5} x \cdot dx + \frac{7}{2} \int_{2}^{5} 1 \cdot dx$$

$$= \frac{5}{2} \left[\frac{x^{2}}{2}\right]_{2}^{5} + \frac{7}{2} [x]_{2}^{5}$$

$$= \frac{5}{2} \left[\frac{25}{2} - \frac{4}{2}\right] + \frac{7}{2} [5 - 2]$$

$$= \frac{5}{2} \times \frac{21}{2} + \frac{21}{2}$$

$$= \frac{105}{4} + \frac{42}{4}$$

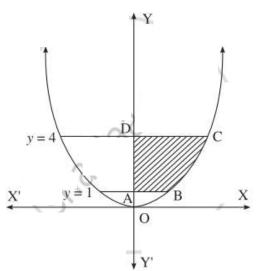
$$= \frac{147}{4} \text{ sq units.}$$

Miscellaneous Exercise 5 | Q 2.10 | Page 190

Solve the following :

Find the area of the region bounded by the curve $y = 4x^2$, Y-axis and the lines y = 1, y = 4.

SOLUTION



By symmetry of the parabola, the required area is 2 times the area of the region ABCD.

From the equation of the parabola, $x^2 = \frac{y}{4}$

 $\cdot dy$

the first quadrant, x > 0

$$\therefore x = \frac{1}{2}\sqrt{y}$$

$$\therefore \text{ required area} = \int_{1}^{4} x$$

$$= \frac{1}{2} \int_{1}^{4} \sqrt{y} \cdot dy$$

$$= \frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$$

$$= \frac{1}{2} \times \frac{2}{3} \left[4^{\frac{3}{2}} - 1^{\frac{3}{2}} \right]$$

$$= \frac{1}{3} \left[\left(2^2 \right)^{\frac{3}{2}} - 1 \right]$$
$$= \frac{1}{3} [8 - 1]$$
$$= \frac{7}{3} \text{ sq units.}$$