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Rolling Motion and Angular
Momentum

One of the most popular early bicycles
was the penny – farthing, introduced in
1870. The bicycle was so named because
the size relationship of its two wheels
was about the same as the size relation-
ship of the penny and the farthing, two
English coins. When the rider looks down
at the top of the front wheel, he sees it
moving forward faster than he and the
handlebars are moving. Yet the center of
the wheel does not appear to be moving
at all relative to the handlebars. How can
different parts of the rolling wheel move
at different linear speeds? (© Steve

Lovegrove/Tasmanian Photo Library)
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328 C H A P T E R  1 1 Rolling Motion and Angular Momentum

n the preceding chapter we learned how to treat a rigid body rotating about a
fixed axis; in the present chapter, we move on to the more general case in
which the axis of rotation is not fixed in space. We begin by describing such mo-

tion, which is called rolling motion. The central topic of this chapter is, however, an-
gular momentum, a quantity that plays a key role in rotational dynamics. In anal-
ogy to the conservation of linear momentum, we find that the angular momentum
of a rigid object is always conserved if no external torques act on the object. Like
the law of conservation of linear momentum, the law of conservation of angular
momentum is a fundamental law of physics, equally valid for relativistic and quan-
tum systems.

ROLLING MOTION OF A RIGID OBJECT
In this section we treat the motion of a rigid object rotating about a moving axis.
In general, such motion is very complex. However, we can simplify matters by re-
stricting our discussion to a homogeneous rigid object having a high degree of
symmetry, such as a cylinder, sphere, or hoop. Furthermore, we assume that the
object undergoes rolling motion along a flat surface. We shall see that if an object
such as a cylinder rolls without slipping on the surface (we call this pure rolling mo-
tion), a simple relationship exists between its rotational and translational motions.

Suppose a cylinder is rolling on a straight path. As Figure 11.1 shows, the cen-
ter of mass moves in a straight line, but a point on the rim moves in a more com-
plex path called a cycloid. This means that the axis of rotation remains parallel to
its initial orientation in space. Consider a uniform cylinder of radius R rolling
without slipping on a horizontal surface (Fig. 11.2). As the cylinder rotates
through an angle �, its center of mass moves a linear distance (see Eq.
10.1a). Therefore, the linear speed of the center of mass for pure rolling motion is
given by

(11.1)

where � is the angular velocity of the cylinder. Equation 11.1 holds whenever a
cylinder or sphere rolls without slipping and is the condition for pure rolling

vCM �
ds
dt

� R 
d�

dt
� R�

s � R�

11.1

I

Figure 11.1 One light source at the center of a rolling cylinder and another at one point on
the rim illustrate the different paths these two points take. The center moves in a straight line
(green line), whereas the point on the rim moves in the path called a cycloid (red curve). (Henry
Leap and Jim Lehman)
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11.1 Rolling Motion of a Rigid Object 329

motion. The magnitude of the linear acceleration of the center of mass for pure
rolling motion is

(11.2)

where � is the angular acceleration of the cylinder.
The linear velocities of the center of mass and of various points on and within

the cylinder are illustrated in Figure 11.3. A short time after the moment shown in
the drawing, the rim point labeled P will have rotated from the six o’clock position
to, say, the seven o’clock position, the point Q will have rotated from the ten 
o’clock position to the eleven o’clock position, and so on. Note that the linear ve-
locity of any point is in a direction perpendicular to the line from that point to the
contact point P. At any instant, the part of the rim that is at point P is at rest rela-
tive to the surface because slipping does not occur.

All points on the cylinder have the same angular speed. Therefore, because
the distance from P � to P is twice the distance from P to the center of mass, P � has
a speed To see why this is so, let us model the rolling motion of the
cylinder in Figure 11.4 as a combination of translational (linear) motion and rota-
tional motion. For the pure translational motion shown in Figure 11.4a, imagine
that the cylinder does not rotate, so that each point on it moves to the right with
speed vCM . For the pure rotational motion shown in Figure 11.4b, imagine that a
rotation axis through the center of mass is stationary, so that each point on the
cylinder has the same rotational speed �. The combination of these two motions
represents the rolling motion shown in Figure 11.4c. Note in Figure 11.4c that the
top of the cylinder has linear speed vCM � R� � vCM � vCM � 2vCM , which is
greater than the linear speed of any other point on the cylinder. As noted earlier,
the center of mass moves with linear speed vCM while the contact point between
the surface and cylinder has a linear speed of zero.

We can express the total kinetic energy of the rolling cylinder as

(11.3)

where IP is the moment of inertia about a rotation axis through P. Applying the
parallel-axis theorem, we can substitute into Equation 11.3 to 
obtain

K � 1
2ICM�2 � 1

2MR2�2

IP � ICM � MR2

K � 1
2IP�2

2vCM � 2R�.

aCM �
dvCM

dt
� R 

d�

dt
� R�

R s
θ

s = Rθ

Figure 11.2 In pure rolling motion, as the
cylinder rotates through an angle �, its center
of mass moves a linear distance s � R�.

P

CM

Q

P ′
2vCM

vCM

Figure 11.3 All points on a
rolling object move in a direction
perpendicular to an axis through
the instantaneous point of contact
P. In other words, all points rotate
about P. The center of mass of the
object moves with a velocity vCM ,
and the point P �moves with a veloc-
ity 2vCM .
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330 C H A P T E R  1 1 Rolling Motion and Angular Momentum

or, because 

(11.4)

The term represents the rotational kinetic energy of the cylinder about its
center of mass, and the term represents the kinetic energy the cylinder
would have if it were just translating through space without rotating. Thus, we can
say that the total kinetic energy of a rolling object is the sum of the rota-
tional kinetic energy about the center of mass and the translational kinetic
energy of the center of mass.

We can use energy methods to treat a class of problems concerning the rolling
motion of a sphere down a rough incline. (The analysis that follows also applies to
the rolling motion of a cylinder or hoop.) We assume that the sphere in Figure
11.5 rolls without slipping and is released from rest at the top of the incline. Note
that accelerated rolling motion is possible only if a frictional force is present be-
tween the sphere and the incline to produce a net torque about the center of mass.
Despite the presence of friction, no loss of mechanical energy occurs because the
contact point is at rest relative to the surface at any instant. On the other hand, if
the sphere were to slip, mechanical energy would be lost as motion progressed.

Using the fact that vCM � R� for pure rolling motion, we can express Equa-
tion 11.4 as

(11.5)K � 1
2� ICM

R2 � M�vCM 

2

K � 1
2ICM� vCM

R �
2

� 1
2MvCM 

2

1
2MvCM 

2

1
2ICM�2

K � 1
2ICM�2 � 1

2MvCM 

2

vCM � R�,

P ′
vCM

CM vCM

vCM
P

P ′

CM v = 0

P

v = Rω

v = Rω

(a) Pure translation (b) Pure rotation

P ′

CM

P
v = 0

v = vCM

v = vCM + Rω = 2vCM

(c) Combination of translation and rotation

ω

ω

ω

Figure 11.4 The motion of a rolling object can be modeled as a combination of pure transla-
tion and pure rotation.

Total kinetic energy of a rolling
body

h
x

vCM

ω

M

R

θ

Figure 11.5 A sphere rolling
down an incline. Mechanical en-
ergy is conserved if no slipping
occurs.
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By the time the sphere reaches the bottom of the incline, work equal to Mgh has
been done on it by the gravitational field, where h is the height of the incline. Be-
cause the sphere starts from rest at the top, its kinetic energy at the bottom, given
by Equation 11.5, must equal this work done. Therefore, the speed of the center of
mass at the bottom can be obtained by equating these two quantities:

(11.6)

Imagine that you slide your textbook across a gymnasium floor with a certain initial speed.
It quickly stops moving because of friction between it and the floor. Yet, if you were to start
a basketball rolling with the same initial speed, it would probably keep rolling from one end
of the gym to the other. Why does a basketball roll so far? Doesn’t friction affect its motion?

Quick Quiz 11.1

   vCM � � 2gh
1 � ICM/MR2 �

1/2

1
2� ICM

R2 � M�vCM 

2 � Mgh

Sphere Rolling Down an InclineEXAMPLE 11.1
x sin �. Hence, after squaring both sides, we can express the
equation above as

Comparing this with the expression from kinematics,
(see Eq. 2.12), we see that the acceleration of

the center of mass is

These results are quite interesting in that both the speed
and the acceleration of the center of mass are independent of
the mass and the radius of the sphere! That is, all homoge-
neous solid spheres experience the same speed and ac-
celeration on a given incline.

If we repeated the calculations for a hollow sphere, a solid
cylinder, or a hoop, we would obtain similar results in which
only the factor in front of g sin � would differ. The constant
factors that appear in the expressions for vCM and a CM depend
only on the moment of inertia about the center of mass for the
specific body. In all cases, the acceleration of the center of
mass is less than g sin �, the value the acceleration would have if
the incline were frictionless and no rolling occurred.

5
7 g sin �aCM �

vCM 

2 � 2aCMx

vCM 

2 � 10
7  gx sin �

For the solid sphere shown in Figure 11.5, calculate the linear
speed of the center of mass at the bottom of the incline and
the magnitude of the linear acceleration of the center of mass.

Solution The sphere starts from the top of the incline
with potential energy and kinetic energy As
we have seen before, if it fell vertically from that height, it
would have a linear speed of at the moment before it hit
the floor. After rolling down the incline, the linear speed of
the center of mass must be less than this value because some
of the initial potential energy is diverted into rotational ki-
netic energy rather than all being converted into transla-
tional kinetic energy. For a uniform solid sphere, 

(see Table 10.2), and therefore Equation 11.6 gives

which is less than 
To calculate the linear acceleration of the center of mass,

we note that the vertical displacement is related to the dis-
placement x along the incline through the relationship h �

!2gh.

� 10
7

 gh�
1/2

vCM � �
2gh

1 �
2/5MR2

MR2 �
1/2

�

2
5MR2

ICM �

!2gh

K � 0.Ug � Mgh

Another Look at the Rolling SphereEXAMPLE 11.2
(1)

where x is measured along the slanted surface of the incline.
Now let us write an expression for the torque acting on

the sphere. A convenient axis to choose is the one that passes

�Fy � n � Mg cos � � 0 

�Fx � Mg sin � � f � MaCMIn this example, let us use dynamic methods to verify the re-
sults of Example 11.1. The free-body diagram for the sphere
is illustrated in Figure 11.6.

Solution Newton’s second law applied to the center of
mass gives
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Which gets to the bottom first: a ball rolling without sliding down incline A or a box sliding
down a frictionless incline B having the same dimensions as incline A?

THE VECTOR PRODUCT AND TORQUE
Consider a force F acting on a rigid body at the vector position r (Fig. 11.7). The
origin O is assumed to be in an inertial frame, so Newton’s first law is valid
in this case. As we saw in Section 10.6, the magnitude of the torque due to this
force relative to the origin is, by definition, rF sin 	, where 	 is the angle between
r and F. The axis about which F tends to produce rotation is perpendicular to the
plane formed by r and F. If the force lies in the xy plane, as it does in Figure 11.7,
the torque � is represented by a vector parallel to the z axis. The force in Figure
11.7 creates a torque that tends to rotate the body counterclockwise about the z
axis; thus the direction of � is toward increasing z, and � is therefore in the positive
z direction. If we reversed the direction of F in Figure 11.7, then � would be in the
negative z direction.

The torque � involves the two vectors r and F, and its direction is perpendicu-
lar to the plane of r and F. We can establish a mathematical relationship between
�, r, and F, using a new mathematical operation called the vector product, or
cross product:

� � r � F (11.7)

11.2

Quick Quiz 11.2

Torque

QuickLab
Hold a basketball and a tennis ball
side by side at the top of a ramp and
release them at the same time. Which
reaches the bottom first? Does the
outcome depend on the angle of the
ramp? What if the angle were 90°
(that is, if the balls were in free fall)?

1 Although a coordinate system whose origin is at the center of mass of a rolling object is not an iner-
tial frame, the expression 
CM � I� still applies in the center-of-mass frame.

through the center of the sphere and is perpendicular to the
plane of the figure.1 Because n and Mg go through the cen-
ter of mass, they have zero moment arm about this axis and
thus do not contribute to the torque. However, the force of
static friction produces a torque about this axis equal to fR in
the clockwise direction; therefore, because 
 is also in the

clockwise direction,

Because and we obtain

(2)

Substituting Equation (2) into Equation (1) gives

which agrees with the result of Example 11.1.
Note that �F � ma applies only if �F is the net external

force exerted on the sphere and a is the acceleration of its
center of mass. In the case of our sphere rolling down an in-
cline, even though the frictional force does not change the
total kinetic energy of the sphere, it does contribute to �F
and thus decreases the acceleration of the center of mass. As
a result, the final translational kinetic energy is less than it
would be in the absence of friction. As mentioned in Exam-
ple 11.1, some of the initial potential energy is converted to
rotational kinetic energy. 

5
7g sin �aCM �

f �
ICM�

R
� �

2
5MR2

R � 
aCM

R
� 2

5MaCM

� � aCM/R,ICM � 2
5MR2


CM � f R � ICM �

x

y

n

CM

f

Mg  cos

Mg

θ

vCM

θ

Mg  sin θ

Figure 11.6 Free-body diagram for a solid sphere rolling down an
incline.
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11.2 The Vector Product and Torque 333

We now give a formal definition of the vector product. Given any two vectors A
and B, the vector product A � B is defined as a third vector C, the magnitude of
which is AB sin �, where � is the angle between A and B. That is, if C is given by

C � A � B (11.8)

then its magnitude is

(11.9)

The quantity AB sin � is equal to the area of the parallelogram formed by A and B,
as shown in Figure 11.8. The direction of C is perpendicular to the plane formed by
A and B, and the best way to determine this direction is to use the right-hand rule
illustrated in Figure 11.8. The four fingers of the right hand are pointed along A
and then “wrapped” into B through the angle �. The direction of the erect right
thumb is the direction of A � B � C. Because of the notation, A � B is often read
“A cross B”; hence, the term cross product.

Some properties of the vector product that follow from its definition are as 
follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, the
order in which the two vectors are multiplied in a cross product is important:

A � B � � B � A (11.10)

Therefore, if you change the order of the vectors in a cross product, you must
change the sign. You could easily verify this relationship with the right-hand
rule.

2. If A is parallel to B (� � 0° or 180°), then A � B � 0; therefore, it follows that
A � A � 0.

3. If A is perpendicular to B, then 
4. The vector product obeys the distributive law:

A � (B � C) � A � B � A � C (11.11)

5. The derivative of the cross product with respect to some variable such as t is

(11.12)

where it is important to preserve the multiplicative order of A and B, in view of
Equation 11.10.

It is left as an exercise to show from Equations 11.9 and 11.10 and from the
definition of unit vectors that the cross products of the rectangular unit vectors i,

d
dt

 (A � B) � A �
dB
dt

�
dA
dt

� B

� A � B � � AB.

C � AB sin �
O

r

P

φx
F

y

τ  =  r  ×  F

z

τ

Figure 11.7 The torque vector �
lies in a direction perpendicular to
the plane formed by the position
vector r and the applied force vec-
tor F.

Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

B

θ

Figure 11.8 The vector product 
A � B is a third vector C having a
magnitude AB sin � equal to the area
of the parallelogram shown. The di-
rection of C is perpendicular to the
plane formed by A and B, and this
direction is determined by the right-
hand rule.

Properties of the vector product



ANGULAR MOMENTUM OF A PARTICLE
Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.9). A
skater glides rapidly toward the pole, aiming a little to the side so that she does not
hit it. As she approaches a point beside the pole, she reaches out and grabs the
pole, an action that whips her rapidly into a circular path around the pole. Just as
the idea of linear momentum helps us analyze translational motion, a rotational
analog—angular momentum—helps us describe this skater and other objects un-
dergoing rotational motion.

To analyze the motion of the skater, we need to know her mass and her veloc-
ity, as well as her position relative to the pole. In more general terms, consider a

11.3
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j, and k obey the following rules:

(11.13a)

(11.13b)

(11.13c)

(11.13d)

Signs are interchangeable in cross products. For example, A � (� B) � � A � B
and i � (� j) � � i � j.

The cross product of any two vectors A and B can be expressed in the follow-
ing determinant form:

Expanding these determinants gives the result

(11.14)A � B � (AyBz � AzBy)i � (AxBz � AzBx)j � (AxBy � AyBx)k

A � B � � i
Ax

Bx

j
Ay

By

k
Az

Bz
� � i �Ay

By

Az

Bz
� � j �Ax

Bx

Az

Bz
� � k �Ax

Bx

Ay

By
�

k � i � � i � k � j 

j � k � � k � j � i 

i � j � � j � i � k 

i � i � j � j � k � k � 0

The Cross ProductEXAMPLE 11.3

Therefore, A � B � � B � A.
As an alternative method for finding A � B, we could use

Equation 11.14, with and 

Exercise Use the results to this example and Equation 11.9
to find the angle between A and B.

Answer 60.3°

A � B � (0)i � (0)j � [(2)(2) � (3)(�1)]k � 7k

Bz � 0:By � 2,
Bx � � 1,Az � 0Ay � 3,Ax � 2,

�7k � � i � 3j � 2j � 2i � �3k � 4k �

B � A � (�i � 2j) � (2i � 3j) Two vectors lying in the xy plane are given by the equations 
A � 2i � 3 j and B � � i � 2j. Find A � B and verify that 
A � B � � B � A.

Solution Using Equations 11.13a through 11.13d, we
obtain

(We have omitted the terms containing i � i and j � j be-
cause, as Equation 11.13a shows, they are equal to zero.)

We can show that A � B � � B � A, since

7k � 2i � 2j � 3j � (�i) � 4k � 3k �

A � B � (2i � 3j) � (� i � 2j) 

Cross products of unit vectors

7.8



11.3 Angular Momentum of a Particle 335

The instantaneous angular momentum L of the particle relative to the origin O
is defined as the cross product of the particle’s instantaneous position vector r
and its instantaneous linear momentum p:

(11.15)L � r � p

particle of mass m located at the vector position r and moving with linear velocity v
(Fig. 11.10).

The SI unit of angular momentum is kg� m2/s. It is important to note that both
the magnitude and the direction of L depend on the choice of origin. Following
the right-hand rule, note that the direction of L is perpendicular to the plane
formed by r and p. In Figure 11.10, r and p are in the xy plane, and so L points in
the z direction. Because p � mv, the magnitude of L is

(11.16)

where 	 is the angle between r and p. It follows that L is zero when r is parallel to
p (	 � 0 or 180°). In other words, when the linear velocity of the particle is along
a line that passes through the origin, the particle has zero angular momentum
with respect to the origin. On the other hand, if r is perpendicular to p (	 � 90°),
then L � mvr. At that instant, the particle moves exactly as if it were on the rim of
a wheel rotating about the origin in a plane defined by r and p.

Recall the skater described at the beginning of this section. What would be her angular mo-
mentum relative to the pole if she were skating directly toward it?

In describing linear motion, we found that the net force on a particle equals the
time rate of change of its linear momentum, �F � dp/dt (see Eq. 9.3). We now
show that the net torque acting on a particle equals the time rate of change of its an-
gular momentum. Let us start by writing the net torque on the particle in the form

(11.17)

Now let us differentiate Equation 11.15 with respect to time, using the rule given
by Equation 11.12:

Remember, it is important to adhere to the order of terms because A � B �
� B � A. The last term on the right in the above equation is zero because 
v � dr/dt is parallel to p � mv (property 2 of the vector product). Therefore,

(11.18)

Comparing Equations 11.17 and 11.18, we see that

(11.19)�� �
dL
dt

dL
dt

� r �
dp
dt

dL
dt

�
d
dt

 (r � p) � r �
dp
dt

�
dr
dt

� p

�� � r � �F � r �
dp
dt

Quick Quiz 11.3

L � mvr sin 	

Angular momentum of a particle

Figure 11.9 As the skater passes
the pole, she grabs hold of it. This
causes her to swing around the
pole rapidly in a circular path.

O

z

L  =  r  ×  p

r m p

φ

y

x

Figure 11.10 The angular mo-
mentum L of a particle of mass m
and linear momentum p located at
the vector position r is a vector
given by L � r � p. The value of L
depends on the origin about which
it is measured and is a vector per-
pendicular to both r and p.

The net torque equals time rate of
change of angular momentum
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which is the rotational analog of Newton’s second law, �F � dp/dt. Note that
torque causes the angular momentum L to change just as force causes linear mo-
mentum p to change. This rotational result, Equation 11.19, states that

the net torque acting on a particle is equal to the time rate of change of the
particle’s angular momentum.

It is important to note that Equation 11.19 is valid only if �� and L are measured
about the same origin. (Of course, the same origin must be used in calculating all
of the torques.) Furthermore, the expression is valid for any origin fixed in an
inertial frame.

Angular Momentum of a System of Particles

The total angular momentum of a system of particles about some point is defined
as the vector sum of the angular momenta of the individual particles:

where the vector sum is over all n particles in the system.
Because individual angular momenta can change with time, so can the total

angular momentum. In fact, from Equations 11.18 and 11.19, we find that the
time rate of change of the total angular momentum equals the vector sum of 
all torques acting on the system, both those associated with internal forces 
between particles and those associated with external forces. However, the net
torque associated with all internal forces is zero. To understand this, recall 
that Newton’s third law tells us that internal forces between particles of the sys-
tem are equal in magnitude and opposite in direction. If we assume that these
forces lie along the line of separation of each pair of particles, then the torque
due to each action – reaction force pair is zero. That is, the moment arm d from
O to the line of action of the forces is equal for both particles. In the summa-
tion, therefore, we see that the net internal torque vanishes. We conclude that
the total angular momentum of a system can vary with time only if a net exter-
nal torque is acting on the system, so that we have

(11.20)

That is,

��ext � �
i

dLi

dt
�

d
dt

 �
i

Li �
dL
dt

L � L1 � L2 � ��� � Ln � �
i

Li

the time rate of change of the total angular momentum of a system about some
origin in an inertial frame equals the net external torque acting on the system
about that origin.

Note that Equation 11.20 is the rotational analog of Equation 9.38, ,
for a system of particles.

�Fext � dp/dt
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ANGULAR MOMENTUM OF A
ROTATING RIGID OBJECT

Consider a rigid object rotating about a fixed axis that coincides with the z axis of
a coordinate system, as shown in Figure 11.12. Let us determine the angular mo-
mentum of this object. Each particle of the object rotates in the xy plane about the
z axis with an angular speed �. The magnitude of the angular momentum of a par-
ticle of mass mi about the origin O is miviri . Because vi � ri�, we can express the
magnitude of the angular momentum of this particle as

The vector Li is directed along the z axis, as is the vector �.

Li � miri 

2�

11.4

Circular MotionEXAMPLE 11.4
though the direction of p � mv keeps changing. You can vi-
sualize this by sliding the vector v in Figure 11.11 parallel to
itself until its tail meets the tail of r and by then applying the
right-hand rule. (You can use v to determine the direction of
L � r � p because the direction of p is the same as the direc-
tion of v.) Line up your fingers so that they point along r and
wrap your fingers into the vector v. Your thumb points up-
ward and away from the page; this is the direction of L.
Hence, we can write the vector expression L � (mvr)k. If
the particle were to move clockwise, L would point down-
ward and into the page.

(b) Find the magnitude and direction of L in terms of the
particle’s angular speed �.

Solution Because v � r� for a particle rotating in a circle,
we can express L as

where I is the moment of inertia of the particle about the z
axis through O. Because the rotation is counterclockwise, the
direction of � is along the z axis (see Section 10.1). The di-
rection of L is the same as that of �, and so we can write the
angular momentum as L � I� � I�k.

Exercise A car of mass 1 500 kg moves with a linear speed
of 40 m/s on a circular race track of radius 50 m. What is the
magnitude of its angular momentum relative to the center of
the track?

Answer 3.0 � 106 kg� m2/s

I�L � mvr � mr 2� �

A particle moves in the xy plane in a circular path of radius r,
as shown in Figure 11.11. (a) Find the magnitude and direc-
tion of its angular momentum relative to O when its linear ve-
locity is v.

Solution You might guess that because the linear momen-
tum of the particle is always changing (in direction, not mag-
nitude), the direction of the angular momentum must also
change. In this example, however, this is not the case. The
magnitude of L is given by

(for r perpendicular to v)

This value of L is constant because all three factors on the
right are constant. The direction of L also is constant, even

mvrL � mvr sin 90° �

x

y

m

v

O

r

Figure 11.11 A particle moving in a circle of radius r has an angu-
lar momentum about O that has magnitude mvr. The vector L � r � p
points out of the diagram.
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Equation 11.23 also is valid for a rigid object rotating about a moving axis pro-
vided the moving axis (1) passes through the center of mass and (2) is a symmetry
axis.

You should note that if a symmetrical object rotates about a fixed axis passing
through its center of mass, you can write Equation 11.21 in vector form as L � I�,
where L is the total angular momentum of the object measured with respect to the
axis of rotation. Furthermore, the expression is valid for any object, regardless of
its symmetry, if L stands for the component of angular momentum along the axis
of rotation.2

That is, the net external torque acting on a rigid object rotating about a fixed
axis equals the moment of inertia about the rotation axis multiplied by the ob-
ject’s angular acceleration relative to that axis.

Bowling BallEXAMPLE 11.5
solid sphere. A typical bowling ball might have a mass of 6 kg
and a radius of 12 cm. The moment of inertia of a solid
sphere about an axis through its center is, from Table 10.2,

Therefore, the magnitude of the angular momentum is

I � 2
5MR2 � 2

5(6 kg)(0.12 m)2 � 0.035 kg�m2

Estimate the magnitude of the angular momentum of a bowl-
ing ball spinning at 10 rev/s, as shown in Figure 11.13.

Solution We start by making some estimates of the rele-
vant physical parameters and model the ball as a uniform

2 In general, the expression L � I� is not always valid. If a rigid object rotates about an arbitrary axis,
L and � may point in different directions. In this case, the moment of inertia cannot be treated as a
scalar. Strictly speaking, L � I� applies only to rigid objects of any shape that rotate about one of three
mutually perpendicular axes (called principal axes) through the center of mass. This is discussed in
more advanced texts on mechanics.

Figure 11.12 When a rigid body
rotates about an axis, the angular
momentum L is in the same direc-
tion as the angular velocity �, ac-
cording to the expression L � I�.

y

z

L

ω

r

x

vi
mi

We can now find the angular momentum (which in this situation has only a z
component) of the whole object by taking the sum of Li over all particles:

(11.21)

where I is the moment of inertia of the object about the z axis.
Now let us differentiate Equation 11.21 with respect to time, noting that I is

constant for a rigid body:

(11.22)

where � is the angular acceleration relative to the axis of rotation. Because dLz/dt
is equal to the net external torque (see Eq. 11.20), we can express Equation 11.22
as

(11.23)�  
ext �
dLz

dt
� I�

dLz

dt
� I 

d�

dt
� I�

Lz � I� 

Lz � �
i

miri 

2� � ��
i

miri 

2��
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z

y

L

x

Figure 11.13 A bowling ball that rotates about the z axis in the di-
rection shown has an angular momentum L in the positive z direc-
tion. If the direction of rotation is reversed, L points in the negative
z direction.

Because of the roughness of our estimates, we probably want 

to keep only one significant figure, and so L � 2 kg�m2/s.

� 2.2 kg�m2/s

L � I� � (0.035 kg�m2)(10 rev/s)(2
 rad/rev)

Rotating RodEXAMPLE 11.6

The torque due to the force m 2g about the pivot is

(�2 into page)

Hence, the net torque exerted on the system about O is

The direction of ��ext is out of the page if m1 � m2 and is
into the page if m2 � m1 .

To find �, we use �
ext � I�, where I was obtained in part (a):

Note that � is zero when � is 
/2 or � 
/2 (vertical position)
and is a maximum when � is 0 or 
 (horizontal position).

Exercise If m2 � m 1, at what value of � is � a maximum? 

Answer � � �
/2.

2(m1 � m2)g cos �

�(M/3 � m1 � m2)
� �

�
ext

I
�

�
ext � 
1 � 
2 � 1
2(m1 � m2)g � cos �


2 � �m2g 
�

2
 cos �

A rigid rod of mass M and length � is pivoted without friction
at its center (Fig. 11.14). Two particles of masses m1 and m 2
are connected to its ends. The combination rotates in a verti-
cal plane with an angular speed �. (a) Find an expression for
the magnitude of the angular momentum of the system.

Solution This is different from the last example in that we
now must account for the motion of more than one object.
The moment of inertia of the system equals the sum of the
moments of inertia of the three components: the rod and the
two particles. Referring to Table 10.2 to obtain the expression
for the moment of inertia of the rod, and using the expres-
sion I � mr 2 for each particle, we find that the total moment
of inertia about the z axis through O is

Therefore, the magnitude of the angular momentum is

(b) Find an expression for the magnitude of the angular
acceleration of the system when the rod makes an angle �
with the horizontal.

Solution If the masses of the two particles are equal, then
the system has no angular acceleration because the net
torque on the system is zero when m1 � m 2 . If the initial an-
gle � is exactly 
/2 or � 
/2 (vertical position), then the rod
will be in equilibrium. To find the angular acceleration of the
system at any angle �, we first calculate the net torque on the
system and then use �
ext � I� to obtain an expression for �.

The torque due to the force m1g about the pivot is

(�1 out of page)
1 � m1g 
�

2
 cos �

�2

4 � M
3

� m1 � m2��L � I� �

 �
�2

4 � M
3

� m1 � m2� 

I �
1
12

M�2 � m1� �

2 �
2

� m2� �

2 �
2

�

y

θ

m2g

m1g

x
O

m2

m1

Figure 11.14 Because gravitational forces act on the rotating rod,
there is in general a net nonzero torque about O when m1 � m 2 . This
net torque produces an angular acceleration given by � � �
ext �I.



This follows directly from Equation 11.20, which indicates that if

(11.24)

then
(11.25)

For a system of particles, we write this conservation law as � Ln � constant, where
the index n denotes the nth particle in the system.

L � constant

��ext �
dL
dt

� 0
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Two Connected MassesEXAMPLE 11.7
Now let us evaluate the total external torque acting on the

system about the pulley axle. Because it has a moment arm of
zero, the force exerted by the axle on the pulley does not
contribute to the torque. Furthermore, the normal force act-
ing on the block is balanced by the force of gravity m 2g, and
so these forces do not contribute to the torque. The force of
gravity m1g acting on the sphere produces a torque about the
axle equal in magnitude to m1gR, where R is the moment
arm of the force about the axle. (Note that in this situation,
the tension is not equal to m1g.) This is the total external
torque about the pulley axle; that is, �
ext � m1gR. Using this
result, together with Equation (1) and Equation 11.23, we
find

(2)

Because dv/dt � a, we can solve this for a to obtain

a �

You may wonder why we did not include the forces that the
cord exerts on the objects in evaluating the net torque about
the axle. The reason is that these forces are internal to the
system under consideration, and we analyzed the system as a
whole. Only external torques contribute to the change in the
system’s angular momentum.

m1g
(m1 � m2) � I/R2

m1gR � (m1 � m2)R 
dv
dt

�
I
R

 
dv
dt

 

 m1gR �
d
dt �(m1 � m2)Rv � I 

v
R �

�
ext �
dL
dt

 

A sphere of mass m1 and a block of mass m 2 are connected by
a light cord that passes over a pulley, as shown in Figure
11.15. The radius of the pulley is R, and the moment of iner-
tia about its axle is I. The block slides on a frictionless, hori-
zontal surface. Find an expression for the linear acceleration
of the two objects, using the concepts of angular momentum
and torque.

Solution We need to determine the angular momentum
of the system, which consists of the two objects and the pul-
ley. Let us calculate the angular momentum about an axis
that coincides with the axle of the pulley.

At the instant the sphere and block have a common speed
v, the angular momentum of the sphere is m1vR , and that of
the block is m 2vR . At the same instant, the angular momen-
tum of the pulley is I� � Iv/R. Hence, the total angular mo-
mentum of the system is

(1) L � m1vR � m2vR � I 
v
R

The total angular momentum of a system is constant in both magnitude and di-
rection if the resultant external torque acting on the system is zero.

Conservation of angular
momentum

CONSERVATION OF ANGULAR MOMENTUM
In Chapter 9 we found that the total linear momentum of a system of particles re-
mains constant when the resultant external force acting on the system is zero. We
have an analogous conservation law in rotational motion:

11.5

m2

v

v m1

R

Figure 11.15

7.9
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If the mass of an object undergoes redistribution in some way, then the ob-
ject’s moment of inertia changes; hence, its angular speed must change because 
L � I�. In this case we express the conservation of angular momentum in the form

(11.26)

If the system is an object rotating about a fixed axis, such as the z axis, we can
write Lz � I�, where Lz is the component of L along the axis of rotation and I is
the moment of inertia about this axis. In this case, we can express the conservation
of angular momentum as

(11.27)

This expression is valid both for rotation about a fixed axis and for rotation about
an axis through the center of mass of a moving system as long as that axis remains
parallel to itself. We require only that the net external torque be zero.

Although we do not prove it here, there is an important theorem concerning
the angular momentum of an object relative to the object’s center of mass:

I i�i � I f �f � constant

Li � Lf � constant

The resultant torque acting on an object about an axis through the center of
mass equals the time rate of change of angular momentum regardless of the
motion of the center of mass.

This theorem applies even if the center of mass is accelerating, provided � and L
are evaluated relative to the center of mass.

In Equation 11.26 we have a third conservation law to add to our list. We can
now state that the energy, linear momentum, and angular momentum of an iso-
lated system all remain constant:

For an isolated system

There are many examples that demonstrate conservation of angular momen-
tum. You may have observed a figure skater spinning in the finale of a program.
The angular speed of the skater increases when the skater pulls his hands and feet
close to his body, thereby decreasing I. Neglecting friction between skates and ice,
no external torques act on the skater. The change in angular speed is due to the
fact that, because angular momentum is conserved, the product I� remains con-
stant, and a decrease in the moment of inertia of the skater causes an increase in
the angular speed. Similarly, when divers or acrobats wish to make several somer-
saults, they pull their hands and feet close to their bodies to rotate at a higher rate.
In these cases, the external force due to gravity acts through the center of mass
and hence exerts no torque about this point. Therefore, the angular momentum
about the center of mass must be conserved—that is, For example,
when divers wish to double their angular speed, they must reduce their moment of
inertia to one-half its initial value.

A particle moves in a straight line, and you are told that the net torque acting on it is zero
about some unspecified point. Decide whether the following statements are true or false:
(a) The net force on the particle must be zero. (b) The particle’s velocity must be constant.

Quick Quiz 11.4

I i�i � I f �f .

K i � Ui � K f � Uf

pi � pf

 Li � L f

 �

Angular momentum is conserved
as figure skater Todd Eldredge
pulls his arms toward his body. 
(© 1998 David Madison)
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Formation of a Neutron StarEXAMPLE 11.8
of time a point on the star’s equator takes to make one com-
plete circle around the axis of rotation. The angular speed of
a star is given by � � 2
/T. Therefore, because I is propor-
tional to r 2, Equation 11.27 gives

Thus, the neutron star rotates about four times each second;
this result is approximately the same as that for a spinning
figure skater.

0.23 s� 2.7 � 10�6 days �

Tf � Ti� rf

ri
�

2
� (30 days)� 3.0 km

1.0 � 104 km �
2

A star rotates with a period of 30 days about an axis through
its center. After the star undergoes a supernova explosion,
the stellar core, which had a radius of 1.0 � 104 km, collapses
into a neutron star of radius 3.0 km. Determine the period of
rotation of the neutron star.

Solution The same physics that makes a skater spin faster
with his arms pulled in describes the motion of the neutron
star. Let us assume that during the collapse of the stellar core,
(1) no torque acts on it, (2) it remains spherical, and (3) its
mass remains constant. Also, let us use the symbol T for the
period, with Ti being the initial period of the star and Tf be-
ing the period of the neutron star. The period is the length

The Merry-Go-RoundEXAMPLE 11.9
Solution The speed change here is similar to the increase
in angular speed of the spinning skater when he pulls his
arms inward. Let us denote the moment of inertia of the plat-
form as Ip and that of the student as Is . Treating the student
as a point mass, we can write the initial moment of inertia Ii
of the system (student plus platform) about the axis of rota-
tion:

I i � Ipi � I si � 1
2MR 2 � mR 2

A horizontal platform in the shape of a circular disk rotates
in a horizontal plane about a frictionless vertical axle (Fig.
11.16). The platform has a mass M � 100 kg and a radius 
R � 2.0 m. A student whose mass is m � 60 kg walks slowly
from the rim of the disk toward its center. If the angular
speed of the system is 2.0 rad/s when the student is at the
rim, what is the angular speed when he has reached a point 
r � 0.50 m from the center?

A color-enhanced, infrared image of Hurricane Mitch, which devastated large areas of Honduras
and Nicaragua in October 1998. The spiral, nonrigid mass of air undergoes rotation and has an-
gular momentum. (Courtesy of NOAA)



11.5 Conservation of Angular Momentum 343

When the student has walked to the position r � R, the mo-
ment of inertia of the system reduces to

Note that we still use the greater radius R when calculating Ipf
because the radius of the platform has not changed. Because
no external torques act on the system about the axis of rotation,
we can apply the law of conservation of angular momentum:

As expected, the angular speed has increased.

Exercise Calculate the initial and final rotational energies
of the system.

Answer K i � 880 J; K f � 1.8 � 103 J.

4.1 rad/s �f � � 200 � 240
200 � 15 �(2.0 rad/s) �

  �f � �
1
2MR2 � mR2

1
2MR2 � mr 2 ��i

�1
2MR2 � mR2��i � (1

2MR2 � mr 2)�f

  I i �i � I f �f  

I f � Ipf � I sf � 1
2MR 2 � mr 2

M

m

R

Figure 11.16 As the student walks toward the center of the rotat-
ing platform, the angular speed of the system increases because the
angular momentum must remain constant.

The Spinning Bicycle WheelEXAMPLE 11.10
stool start rotating. In terms of Li , what are the magnitude
and the direction of L for the student plus stool?

Solution The system consists of the student, the wheel,
and the stool. Initially, the total angular momentum of the
system Li comes entirely from the spinning wheel. As the
wheel is inverted, the student applies a torque to the wheel,
but this torque is internal to the system. No external torque is
acting on the system about the vertical axis. Therefore, the
angular momentum of the system is conserved. Initially, we
have

(upward)

After the wheel is inverted, we have Linverted wheel � � L i . For
angular momentum to be conserved, some other part of the
system has to start rotating so that the total angular momen-
tum remains the initial angular momentum L i . That other
part of the system is the student plus the stool she is sitting
on. So, we can now state that

2LiLstudent�stool �

Lf � Li � Lstudent�stool � Li

Lsystem � Li � Lwheel

In a favorite classroom demonstration, a student holds the
axle of a spinning bicycle wheel while seated on a stool that is
free to rotate (Fig. 11.17). The student and stool are initially
at rest while the wheel is spinning in a horizontal plane with
an initial angular momentum Li that points upward. When
the wheel is inverted about its center by 180°, the student and

L i

Figure 11.17 The wheel is initially spinning when the student is
at rest. What happens when the wheel is inverted?

Note that the rotational energy of the system described in Example 11.9 increases. What ac-
counts for this increase in energy?

Quick Quiz 11.5
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Disk and StickEXAMPLE 11.11
We used the fact that radians are dimensionless to ensure
consistent units for each term.

Finally, the elastic nature of the collision reminds us that
kinetic energy is conserved; in this case, the kinetic energy
consists of translational and rotational forms:

(3)

In solving Equations (1), (2), and (3) simultaneously, we find
that vd f � 2.3 m/s, vs � 1.3 m/s, and � � � 2.0 rad/s. These
values seem reasonable. The disk is moving more slowly than it
was before the collision, and the stick has a small translational
speed. Table 11.1 summarizes the initial and final values of vari-
ables for the disk and the stick and verifies the conservation of
linear momentum, angular momentum, and kinetic energy.

Exercise Verify the values in Table 11.1.

54 m2/s2 � 6.0vd f 

2 � 3.0v s 

2 � (4.0 m2)�2

   � 1
2(1.33 kg�m2/s)�2

  12(2.0 kg)(3.0 m/s)2 � 1
2(2.0 kg)vd f 

2 � 1
2(1.0 kg)v s 

2

  12mdvdi 

2 � 1
2mdvd f 

2 � 1
2msv s 

2 � 1
2I�2  

  K i � K f  

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick that is
lying flat on nearly frictionless ice, as shown in Figure 11.18.
Assume that the collision is elastic. Find the translational
speed of the disk, the translational speed of the stick, and the
rotational speed of the stick after the collision. The moment
of inertia of the stick about its center of mass is 1.33 kg� m2.

Solution Because the disk and stick form an isolated sys-
tem, we can assume that total energy, linear momentum, and
angular momentum are all conserved. We have three un-
knowns, and so we need three equations to solve simultane-
ously. The first comes from the law of the conservation of lin-
ear momentum:

(1)

Now we apply the law of conservation of angular momen-
tum, using the initial position of the center of the stick as our
reference point. We know that the component of angular mo-
mentum of the disk along the axis perpendicular to the plane
of the ice is negative (the right-hand rule shows that Ld points
into the ice).

(2) �9.0 rad/s � (3.0 rad/m)vd f � � 

  � (1.33 kg�m2)�  

  �12 kg�m2/s � �(4.0 kg�m)vd f

  � (1.33 kg�m2)� 

 �(2.0 m)(2.0 kg)(3.0 m/s) � �(2.0 m)(2.0 kg)vd f

 �rmdvdi � �rmdvd f � I� 

 Li � Lf 

6.0 kg�m/s � (2.0 kg)vd f � (1.0 kg)v s 

 (2.0 kg)(3.0 m/s) � (2.0 kg)vd f � (1.0 kg)v s

 mdvdi � mdvd f � msv s 

 pi � pf 

TABLE 11.1 Comparison of Values in Example 11.11 Before and 
After the Collisiona

Ktrans Krot
v (m/s) � (rad/s) p (kg�m/s) L (kg�m2/s) ( J) ( J)

Before
Disk 3.0 — 6.0 � 12 9.0 —
Stick 0 0 0 0 0 0
Total — — 6.0 � 12 9.0 0

After
Disk 2.3 — 4.7 � 9.3 5.4 —
Stick 1.3 � 2.0 1.3 � 2.7 0.9 2.7
Total — — 6.0 � 12 6.3 2.7

a Notice that linear momentum, angular momentum, and total kinetic energy are conserved.

Before After

2.0 m

vdi = 3.0 m/s

ω

vs

vdf

Figure 11.18 Overhead view of a disk striking a stick in an elastic
collision, which causes the stick to rotate.
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Optional Section

THE MOTION OF GYROSCOPES AND TOPS
A very unusual and fascinating type of motion you probably have observed is that
of a top spinning about its axis of symmetry, as shown in Figure 11.19a. If the top
spins very rapidly, the axis rotates about the z axis, sweeping out a cone (see Fig.
11.19b). The motion of the axis about the vertical—known as precessional mo-
tion—is usually slow relative to the spin motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center
of mass is not directly above the pivot point O, a net torque is clearly acting on the
top about O—a torque resulting from the force of gravity Mg. The top would cer-
tainly fall over if it were not spinning. Because it is spinning, however, it has an an-
gular momentum L directed along its symmetry axis. As we shall show, the motion
of this symmetry axis about the z axis (the precessional motion) occurs because
the torque produces a change in the direction of the symmetry axis. This is an 
excellent example of the importance of the directional nature of angular 
momentum.

The two forces acting on the top are the downward force of gravity Mg and
the normal force n acting upward at the pivot point O. The normal force produces
no torque about the pivot because its moment arm through that point is zero.
However, the force of gravity produces a torque � � r � Mg about O, where the
direction of � is perpendicular to the plane formed by r and Mg. By necessity, the
vector � lies in a horizontal xy plane perpendicular to the angular momentum vec-
tor. The net torque and angular momentum of the top are related through Equa-
tion 11.19:

From this expression, we see that the nonzero torque produces a change in angu-
lar momentum dL—a change that is in the same direction as �. Therefore, like
the torque vector, dL must also be at right angles to L. Figure 11.19b illustrates the
resulting precessional motion of the symmetry axis of the top. In a time �t, the
change in angular momentum is Because �L is perpendicu-
lar to L, the magnitude of L does not change Rather, what is chang-
ing is the direction of L. Because the change in angular momentum �L is in the di-
rection of �, which lies in the xy plane, the top undergoes precessional motion.

The essential features of precessional motion can be illustrated by considering
the simple gyroscope shown in Figure 11.20a. This device consists of a wheel free
to spin about an axle that is pivoted at a distance h from the center of mass of the
wheel. When given an angular velocity � about the axle, the wheel has an angular
momentum L � I� directed along the axle as shown. Let us consider the torque
acting on the wheel about the pivot O. Again, the force n exerted by the support
on the axle produces no torque about O, and the force of gravity Mg produces a
torque of magnitude Mgh about O, where the axle is perpendicular to the support.
The direction of this torque is perpendicular to the axle (and perpendicular to L),
as shown in Figure 11.20a. This torque causes the angular momentum to change
in the direction perpendicular to the axle. Hence, the axle moves in the direction
of the torque—that is, in the horizontal plane.

To simplify the description of the system, we must make an assumption: The
total angular momentum of the precessing wheel is the sum of the angular mo-
mentum I� due to the spinning and the angular momentum due to the motion of

(� Li � � � Lf �).
�L � Lf � Li � � �t.

� �
dL
dt

11.6

Precessional motion

L i Lf

L

CM

O
y

z

∆L

τ

Mg

x

n

r

(a)

(b)

Figure 11.19 Precessional mo-
tion of a top spinning about its
symmetry axis. (a) The only exter-
nal forces acting on the top are the
normal force n and the force of
gravity Mg. The direction of the
angular momentum L is along the
axis of symmetry. The right-hand
rule indicates that � � r � F �
r � Mg is in the xy plane. (b). The
direction of �L is parallel to that of 
� in part (a). The fact that Lf �
�L � Li indicates that the top pre-
cesses about the z axis.
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the center of mass about the pivot. In our treatment, we shall neglect the contribu-
tion from the center-of-mass motion and take the total angular momentum to be
just I�. In practice, this is a good approximation if � is made very large.

In a time dt, the torque due to the gravitational force changes the angular mo-
mentum of the system by dL � � dt. When added vectorially to the original total

Li

Lf

ττ

n
h

O

Mg

(a) (b)

Li

LfdL

dφφ

Figure 11.20 (a) The motion of a simple gyroscope pivoted a distance h from its center of
mass. The force of gravity Mg produces a torque about the pivot, and this torque is perpendicu-
lar to the axle. (b) This torque results in a change in angular momentum dL in a direction per-
pendicular to the axle. The axle sweeps out an angle d	 in a time dt.

L

r

n

Mg

τ

This toy gyroscope undergoes precessional motion about the vertical axis as it spins about its axis
of symmetry. The only forces acting on it are the force of gravity Mg and the upward force of the
pivot n. The direction of its angular momentum L is along the axis of symmetry. The torque and
�L are directed into the page. (Courtesy of Central Scientific Company)
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angular momentum I�, this additional angular momentum causes a shift in the di-
rection of the total angular momentum.

The vector diagram in Figure 11.20b shows that in the time dt, the angular
momentum vector rotates through an angle d	, which is also the angle through
which the axle rotates. From the vector triangle formed by the vectors Li , Lf , and
dL, we see that

where we have used the fact that, for small values of any angle �, sin � � �. Divid-
ing through by dt and using the relationship L � I�, we find that the rate at which
the axle rotates about the vertical axis is

(11.28)

The angular speed �p is called the precessional frequency. This result is valid
only when �p V �. Otherwise, a much more complicated motion is involved. As
you can see from Equation 11.28, the condition �p V � is met when I� is great
compared with Mgh. Furthermore, note that the precessional frequency decreases
as � increases—that is, as the wheel spins faster about its axis of symmetry.

How much work is done by the force of gravity when a top precesses through one complete
circle?

Optional Section

ANGULAR MOMENTUM AS A
FUNDAMENTAL QUANTITY

We have seen that the concept of angular momentum is very useful for describing the
motion of macroscopic systems. However, the concept also is valid on a submicro-
scopic scale and has been used extensively in the development of modern theories of
atomic, molecular, and nuclear physics. In these developments, it was found that the
angular momentum of a system is a fundamental quantity. The word fundamental in
this context implies that angular momentum is an intrinsic property of atoms, mole-
cules, and their constituents, a property that is a part of their very nature.

To explain the results of a variety of experiments on atomic and molecular sys-
tems, we rely on the fact that the angular momentum has discrete values. These
discrete values are multiples of the fundamental unit of angular momentum

where h is called Planck’s constant:

Fundamental unit of angular momentum

Let us accept this postulate without proof for the time being and show how it
can be used to estimate the angular speed of a diatomic molecule. Consider the
O2 molecule as a rigid rotor, that is, two atoms separated by a fixed distance d and
rotating about the center of mass (Fig. 11.21). Equating the angular momentum
to the fundamental unit we can estimate the lowest angular speed:

ICM� � �  or  � �
�

ICM

�,

� � � 1.054 � 10�34  kg�m2/s

� � h/2
,

11.7

Quick Quiz 11.6

�p �
d	

dt
�

Mgh

I�

sin (d	) � d	 �
dL
L

�
(Mgh)dt

L

Precessional frequency

Figure 11.21 The rigid-rotor
model of a diatomic molecule. The
rotation occurs about the center of
mass in the plane of the page.

d

m m

ω

CM
⊕



348 C H A P T E R  1 1 Rolling Motion and Angular Momentum

In Example 10.3, we found that the moment of inertia of the O2 molecule
about this axis of rotation is 1.95 � 10�46 kg� m2. Therefore,

Actual angular speeds are multiples of this smallest possible value.
This simple example shows that certain classical concepts and models, when

properly modified, might be useful in describing some features of atomic and mo-
lecular systems. A wide variety of phenomena on the submicroscopic scale can be
explained only if we assume discrete values of the angular momentum associated
with a particular type of motion.

The Danish physicist Niels Bohr (1885–1962) accepted and adopted this radi-
cal idea of discrete angular momentum values in developing his theory of the hy-
drogen atom. Strictly classical models were unsuccessful in describing many prop-
erties of the hydrogen atom. Bohr postulated that the electron could occupy only
those circular orbits about the proton for which the orbital angular momentum
was equal to where n is an integer. That is, he made the bold assumption that
orbital angular momentum is quantized. From this simple model, the rotational
frequencies of the electron in the various orbits can be estimated (see Problem 43).

SUMMARY

The total kinetic energy of a rigid object rolling on a rough surface without slip-
ping equals the rotational kinetic energy about its center of mass, plus the
translational kinetic energy of the center of mass, 

(11.4)

The torque � due to a force F about an origin in an inertial frame is defined
to be

(11.7)

Given two vectors A and B, the cross product A � B is a vector C having a
magnitude

(11.9)

where � is the angle between A and B. The direction of the vector C � A � B is
perpendicular to the plane formed by A and B, and this direction is determined
by the right-hand rule.

The angular momentum L of a particle having linear momentum p � mv is

(11.15)

where r is the vector position of the particle relative to an origin in an inertial
frame.

The net external torque acting on a particle or rigid object is equal to the
time rate of change of its angular momentum:

(11.20)

The z component of angular momentum of a rigid object rotating about a
fixed z axis is

(11.21)Lz � I�

��ext �
dL
dt

L � r � p

C � AB sin �

� � r � F

K � 1
2 ICM�2 � 1

2MvCM 

2

1
2MvCM 

2:

1
2 ICM�2,

n�,

� �
�

ICM
�

1.054 � 10�34 kg�m2/s
1.95 � 10�46 kg�m2 � 5.41 � 1011 rad/s
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QUESTIONS

moved away from him for some unknown reason. At this
point, the alarmed bellhop dropped the suitcase and ran
off. What do you suppose might have been in the suit-
case?

11. When a cylinder rolls on a horizontal surface as in Figure
11.3, do any points on the cylinder have only a vertical
component of velocity at some instant? If so, where are
they?

12. Three objects of uniform density—a solid sphere, a solid
cylinder, and a hollow cylinder—are placed at the top of
an incline (Fig. Q11.12). If they all are released from rest
at the same elevation and roll without slipping, which ob-
ject reaches the bottom first? Which reaches it last? You
should try this at home and note that the result is inde-
pendent of the masses and the radii of the objects.

1. Is it possible to calculate the torque acting on a rigid body
without specifying a center of rotation? Is the torque in-
dependent of the location of the center of rotation?

2. Is the triple product defined by a scalar or a
vector quantity? Explain why the operation 
has no meaning.

3. In some motorcycle races, the riders drive over small hills,
and the motorcycles become airborne for a short time. If
a motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why does this happen?

4. If the torque acting on a particle about a certain origin is
zero, what can you say about its angular momentum
about that origin?

5. Suppose that the velocity vector of a particle is completely
specified. What can you conclude about the direction of
its angular momentum vector with respect to the direc-
tion of motion?

6. If a single force acts on an object, and the torque caused
by that force is nonzero about some point, is there any
other point about which the torque is zero?

7. If a system of particles is in motion, is it possible for the
total angular momentum to be zero about some origin?
Explain.

8. A ball is thrown in such a way that it does not spin about
its own axis. Does this mean that the angular momentum
is zero about an arbitrary origin? Explain.

9. In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled—as the
tape is pulled off it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel
change with time? If the tape mechanism is suddenly
turned on so that the tape is quickly pulled with a great
force, is the tape more likely to break when pulled from a
nearly full reel or a nearly empty reel?

10. A scientist at a hotel sought assistance from a bellhop to
carry a mysterious suitcase. When the unaware bellhop
rounded a corner carrying the suitcase, it suddenly

(A � B) � C
A � (B � C)

where I is the moment of inertia of the object about the axis of rotation and � is
its angular speed.

The net external torque acting on a rigid object equals the product of its mo-
ment of inertia about the axis of rotation and its angular acceleration:

(11.23)

If the net external torque acting on a system is zero, then the total angular
momentum of the system is constant. Applying this law of conservation of angu-
lar momentum to a system whose moment of inertia changes gives

(11.27)I i�i � I f �f � constant

�
ext � I�

13. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse be-
gins to walk around the perimeter, what happens to the
turntable? Explain.

14. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravity, these regions of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

15. Often, when a high diver wants to execute a flip in
midair, she draws her legs up against her chest. Why does
this make her rotate faster? What should she do when she
wants to come out of her flip?

16. As a tether ball winds around a thin pole, what happens
to its angular speed? Explain.

Figure Q11.12 Which object wins the race?
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17. Two solid spheres—a large, massive sphere and a small
sphere with low mass—are rolled down a hill. Which
sphere reaches the bottom of the hill first? Next, a large,
low-density sphere and a small, high-density sphere hav-
ing the same mass are rolled down the hill. Which one
reaches the bottom first in this case?

18. Suppose you are designing a car for a coasting race—the
cars in this race have no engines; they simply coast down
a hill. Do you want to use large wheels or small wheels?
Do you want to use solid, disk-like wheels or hoop-like
wheels? Should the wheels be heavy or light?

19. Why do tightrope walkers carry a long pole to help them-
selves keep their balance?

20. Two balls have the same size and mass. One is hollow,
whereas the other is solid. How would you determine
which is which without breaking them apart?

21. A particle is moving in a circle with constant speed. Lo-
cate one point about which the particle’s angular mo-
mentum is constant and another about which it changes
with time.

22. If global warming occurs over the next century, it is likely
that some polar ice will melt and the water will be distrib-
uted closer to the equator. How would this change the
moment of inertia of the Earth? Would the length of the
day (one revolution) increase or decrease?

PROBLEMS

7. A metal can containing condensed mushroom soup has
a mass of 215 g, a height of 10.8 cm, and a diameter of
6.38 cm. It is placed at rest on its side at the top of a
3.00-m-long incline that is at an angle of 25.0° to the
horizontal and is then released to roll straight down. As-
suming energy conservation, calculate the moment of
inertia of the can if it takes 1.50 s to reach the bottom
of the incline. Which pieces of data, if any, are unneces-
sary for calculating the solution?

8. A tennis ball is a hollow sphere with a thin wall. It is
set rolling without slipping at 4.03 m/s on the hori-
zontal section of a track, as shown in Figure P11.8. 
It rolls around the inside of a vertical circular loop
90.0 cm in diameter and finally leaves the track at a
point 20.0 cm below the horizontal section. (a) Find
the speed of the ball at the top of the loop. Demon-
strate that it will not fall from the track. (b) Find its
speed as it leaves the track. (c) Suppose that static
friction between the ball and the track was negligible,
so that the ball slid instead of rolling. Would its speed

Section 11.1 Rolling Motion of a Rigid Object
1. A cylinder of mass 10.0 kg rolls without slipping on a

horizontal surface. At the instant its center of mass has
a speed of 10.0 m/s, determine (a) the translational ki-
netic energy of its center of mass, (b) the rotational en-
ergy about its center of mass, and (c) its total energy.

2. A bowling ball has a mass of 4.00 kg, a moment of iner-
tia of 1.60 � 10�2 kg� m2, and a radius of 0.100 m. If it
rolls down the lane without slipping at a linear speed of
4.00 m/s, what is its total energy?

3. A bowling ball has a mass M, a radius R, and a moment
of inertia If it starts from rest, how much work
must be done on it to set it rolling without slipping at a
linear speed v? Express the work in terms of M and v.

4. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height h. If they
are released from rest and roll without slipping, deter-
mine their speeds when they reach the bottom. Which
object reaches the bottom first?

5. (a) Determine the acceleration of the center of mass of
a uniform solid disk rolling down an incline making an
angle � with the horizontal. Compare this acceleration
with that of a uniform hoop. (b) What is the minimum
coefficient of friction required to maintain pure rolling
motion for the disk?

6. A ring of mass 2.40 kg, inner radius 6.00 cm, and outer
radius 8.00 cm rolls (without slipping) up an inclined
plane that makes an angle of � � 36.9° (Fig. P11.6). At
the moment the ring is at position x � 2.00 m up the
plane, its speed is 2.80 m/s. The ring continues up the
plane for some additional distance and then rolls back
down. It does not roll off the top end. How far up the
plane does it go?

2
5MR2.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Figure P11.6
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then be higher, lower, or the same at the top of the
loop? Explain.

Section 11.2 The Vector Product and Torque
9. Given M � 6i � 2j � k and N � 2i � j � 3k, calculate

the vector product M � N.
10. The vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both

start from the origin. Both angles are measured coun-
terclockwise from the x axis. The vectors form two sides
of a parallelogram. (a) Find the area of the parallelo-
gram. (b) Find the length of its longer diagonal.

11. Two vectors are given by A � � 3i � 4j and B � 2i �
3j. Find (a) A � B and (b) the angle between A and B.

12. For the vectors A � � 3i � 7j � 4k and B � 6i � 10j �
9k, evaluate the expressions (a) cos�1 and
(b) sin�1 (c) Which give(s) the angle
between the vectors?

13. A force of F � 2.00i � 3.00j N is applied to an object
that is pivoted about a fixed axis aligned along the z co-
ordinate axis. If the force is applied at the point r �
(4.00i � 5.00j � 0k) m, find (a) the magnitude of the
net torque about the z axis and (b) the direction of the
torque vector �.

14. A student claims that she has found a vector A such that
(2i � 3j � 4k) � A � (4i � 3j � k). Do you believe
this claim? Explain.

15. Vector A is in the negative y direction, and vector B is in
the negative x direction. What are the directions of 
(a) A � B and (b) B � A?

16. A particle is located at the vector position r � (i � 3j) m,
and the force acting on it is F � (3i � 2j) N. What is 
the torque about (a) the origin and (b) the point hav-
ing coordinates (0, 6) m?

17. If what is the angle between A and B?
18. Two forces F1 and F2 act along the two sides of an equi-

lateral triangle, as shown in Figure P11.18. Point O is
the intersection of the altitudes of the triangle. Find a
third force F3 to be applied at B and along BC that will
make the total torque about the point O be zero. Will
the total torque change if F3 is applied not at B, but
rather at any other point along BC?

� A � B � � A � B,

(� A � B �/AB).
(A � B/AB )

Section 11.3 Angular Momentum of a Particle
19. A light, rigid rod 1.00 m in length joins two particles—

with masses 4.00 kg and 3.00 kg—at its ends. The com-
bination rotates in the xy plane about a pivot through
the center of the rod (Fig. P11.19). Determine the an-
gular momentum of the system about the origin when
the speed of each particle is 5.00 m/s.

WEB

Figure P11.18Figure P11.8
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20. A 1.50-kg particle moves in the xy plane with a velocity
of v � (4.20i � 3.60j) m/s. Determine the particle’s 
angular momentum when its position vector is r �
(1.50i � 2.20j) m.

21. The position vector of a particle of mass 2.00 kg is given
as a function of time by r � (6.00i � 5.00t j) m. Deter-
mine the angular momentum of the particle about the
origin as a function of time.

22. A conical pendulum consists of a bob of mass m in mo-
tion in a circular path in a horizontal plane, as shown in
Figure P11.22. During the motion, the supporting wire
of length � maintains the constant angle � with the ver-
tical. Show that the magnitude of the angular momen-

WEB
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tum of the mass about the center of the circle is

L � (m2g �3 sin4 �/cos �)1/2

cle about the origin when the particle is (a) at the ori-
gin, (b) at the highest point of its trajectory, and (c) just
about to hit the ground. (d) What torque causes its an-
gular momentum to change?

26. Heading straight toward the summit of Pike’s Peak, an
airplane of mass 12 000 kg flies over the plains of
Kansas at a nearly constant altitude of 4.30 km and with
a constant velocity of 175 m/s westward. (a) What is the
airplane’s vector angular momentum relative to a wheat
farmer on the ground directly below the airplane? 
(b) Does this value change as the airplane continues its
motion along a straight line? (c) What is its angular mo-
mentum relative to the summit of Pike’s Peak?

27. A ball of mass m is fastened at the end of a flagpole con-
nected to the side of a tall building at point P, as shown
in Figure P11.27. The length of the flagpole is �, and �
is the angle the flagpole makes with the horizontal. Sup-
pose that the ball becomes loose and starts to fall. De-
termine the angular momentum (as a function of time)
of the ball about point P. Neglect air resistance.

Figure P11.23

Figure P11.22

28. A fireman clings to a vertical ladder and directs the noz-
zle of a hose horizontally toward a burning building.
The rate of water flow is 6.31 kg/s, and the nozzle speed
is 12.5 m/s. The hose passes between the fireman’s feet,
which are 1.30 m vertically below the nozzle. Choose
the origin to be inside the hose between the fireman’s

24. A 4.00-kg mass is attached to a light cord that is wound
around a pulley (see Fig. 10.20). The pulley is a uni-
form solid cylinder with a radius of 8.00 cm and a mass
of 2.00 kg. (a) What is the net torque on the system
about the point O? (b) When the mass has a speed v,
the pulley has an angular speed � � v/R. Determine
the total angular momentum of the system about O. 
(c) Using the fact that � � dL/dt and your result from
part (b), calculate the acceleration of the mass.

25. A particle of mass m is shot with an initial velocity vi and
makes an angle � with the horizontal, as shown in Fig-
ure P11.25. The particle moves in the gravitational field
of the Earth. Find the angular momentum of the parti-

23. A particle of mass m moves in a circle of radius R at a
constant speed v, as shown in Figure P11.23. If the mo-
tion begins at point Q, determine the angular momen-
tum of the particle about point P as a function of time.
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the ratio of the final rotational energy to the initial rota-
tional energy.

34. A playground merry-go-round of radius R � 2.00 m has
a moment of inertia of I � 250 kg� m2 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing
the axle, a 25.0-kg child hops onto the merry-go-round
and manages to sit down on its edge. What is the new
angular speed of the merry-go-round?

35. A student sits on a freely rotating stool holding two
weights, each of which has a mass of 3.00 kg. When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 kg� m2 and is assumed to be con-
stant. The student pulls the weights inward horizontally
to a position 0.300 m from the rotation axis. (a) Find
the new angular speed of the student. (b) Find the ki-
netic energy of the rotating system before and after he
pulls the weights inward.

36. A uniform rod with a mass of 100 g and a length of 
50.0 cm rotates in a horizontal plane about a fixed, 
vertical, frictionless pin passing through its center. 
Two small beads, each having a mass 30.0 g, are
mounted on the rod so that they are able to slide with-
out friction along its length. Initially, the beads are held
by catches at positions 10.0 cm on each side of center; 
at this time, the system rotates at an angular speed of
20.0 rad/s. Suddenly, the catches are released, and the
small beads slide outward along the rod. Find (a) the 
angular speed of the system at the instant the beads
reach the ends of the rod and (b) the angular speed of
the rod after the beads fly off the rod’s ends.

37. A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg� m2 and
a radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through
its center. The woman then starts walking around the
rim clockwise (as viewed from above the system) at a
constant speed of 1.50 m/s relative to the Earth. (a) In
what direction and with what angular speed does the
turntable rotate? (b) How much work does the woman
do to set herself and the turntable into motion?

38. A puck with a mass of 80.0 g and a radius of 4.00 cm
slides along an air table at a speed of 1.50 m/s, as
shown in Figure P11.38a. It makes a glancing collision

feet. What torque must the fireman exert on the hose?
That is, what is the rate of change of angular momen-
tum of the water?

Section 11.4 Angular Momentum of a 
Rotating Rigid Object

29. A uniform solid sphere with a radius of 0.500 m and a
mass of 15.0 kg turns counterclockwise about a vertical
axis through its center. Find its vector angular momen-
tum when its angular speed is 3.00 rad/s.

30. A uniform solid disk with a mass of 3.00 kg and a radius
of 0.200 m rotates about a fixed axis perpendicular 
to its face. If the angular speed is 6.00 rad/s, calculate
the angular momentum of the disk when the axis of ro-
tation (a) passes through its center of mass and 
(b) passes through a point midway between the center
and the rim.

31. A particle with a mass of 0.400 kg is attached to the 
100-cm mark of a meter stick with a mass of 0.100 kg. The
meter stick rotates on a horizontal, frictionless table 
with an angular speed of 4.00 rad/s. Calculate the angu-
lar momentum of the system when the stick is pivoted
about an axis (a) perpendicular to the table through 
the 50.0-cm mark and (b) perpendicular to the table
through the 0-cm mark.

32. The hour and minute hands of Big Ben, the famous
Parliament Building tower clock in London, are 2.70 m
and 4.50 m long and have masses of 60.0 kg and 100 kg,
respectively. Calculate the total angular momentum of
these hands about the center point. Treat the hands as
long thin rods.

Section 11.5 Conservation of Angular Momentum
33. A cylinder with a moment of inertia of I1 rotates about a

vertical, frictionless axle with angular velocity �i . A sec-
ond cylinder that has a moment of inertia of I2 and ini-
tially is not rotating drops onto the first cylinder (Fig.
P11.33). Because of friction between the surfaces, the
two eventually reach the same angular speed �f . 
(a) Calculate �f . (b) Show that the kinetic energy of 
the system decreases in this interaction and calculate

Figure P11.38Figure P11.33

(b)(a)
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with a second puck having a radius of 6.00 cm and a
mass of 120 g (initially at rest) such that their rims just
touch. Because their rims are coated with instant-acting
glue, the pucks stick together and spin after the colli-
sion (Fig. P11.38b). (a) What is the angular momentum
of the system relative to the center of mass? (b) What is
the angular speed about the center of mass?

39. A wooden block of mass M resting on a frictionless hori-
zontal surface is attached to a rigid rod of length � and
of negligible mass (Fig. P11.39). The rod is pivoted at
the other end. A bullet of mass m traveling parallel to
the horizontal surface and normal to the rod with speed
v hits the block and becomes embedded in it. (a) What
is the angular momentum of the bullet–block system?
(b) What fraction of the original kinetic energy is lost
in the collision?

maximum possible decrease in the angular speed of the
Earth due to this collision? Explain your answer.

(Optional)
Section 11.7 Angular Momentum as a 
Fundamental Quantity

43. In the Bohr model of the hydrogen atom, the electron
moves in a circular orbit of radius 0.529 � 10�10 m
around the proton. Assuming that the orbital angular
momentum of the electron is equal to h/2
, calculate
(a) the orbital speed of the electron, (b) the kinetic en-
ergy of the electron, and (c) the angular speed of the
electron’s motion.

ADDITIONAL PROBLEMS

44. Review Problem. A rigid, massless rod has three equal
masses attached to it, as shown in Figure P11.44. The
rod is free to rotate in a vertical plane about a friction-
less axle perpendicular to the rod through the point P,
and it is released from rest in the horizontal position at
t � 0. Assuming m and d are known, find (a) the mo-
ment of inertia of the system about the pivot, (b) the
torque acting on the system at t � 0, (c) the angular ac-
celeration of the system at t � 0, (d) the linear accelera-
tion of the mass labeled “3” at t � 0, (e) the maximum

40. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 kg� m2. A
crew of 150 are living on the rim, and the station’s rota-
tion causes the crew to experience an acceleration of 1g
(Fig. P11.40). When 100 people move to the center of
the station for a union meeting, the angular speed
changes. What acceleration is experienced by the man-
agers remaining at the rim? Assume that the average
mass of each inhabitant is 65.0 kg.

41. A wad of sticky clay of mass m and velocity vi is fired at a
solid cylinder of mass M and radius R (Fig. P11.41).
The cylinder is initially at rest and is mounted on a
fixed horizontal axle that runs through the center of
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d, less than R, from the
center. (a) Find the angular speed of the system just af-
ter the clay strikes and sticks to the surface of the cylin-
der. (b) Is mechanical energy conserved in this process?
Explain your answer.

42. Suppose a meteor with a mass of 3.00 � 1013 kg is mov-
ing at 30.0 km/s relative to the center of the Earth and
strikes the Earth. What is the order of magnitude of the

Figure P11.39
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kinetic energy of the system, (f) the maximum angular
speed attained by the rod, (g) the maximum angular
momentum of the system, and (h) the maximum speed
attained by the mass labeled “2.”

time. (f) Find the work done by the drive motor during
the 440-s motion. (g) Find the work done by the string
brake on the sliding mass. (h) Find the total work done
on the system consisting of the disk and the sliding
mass.

48. Comet Halley moves about the Sun in an elliptical orbit,
with its closest approach to the Sun being about 
0.590 AU and its greatest distance from the Sun being
35.0 AU (1 AU � the average Earth–Sun distance). If
the comet’s speed at its closest approach is 54.0 km/s,

47. A string is wound around a uniform disk of radius R
and mass M. The disk is released from rest when the
string is vertical and its top end is tied to a fixed bar
(Fig. P11.47). Show that (a) the tension in the string is
one-third the weight of the disk, (b) the magnitude of
the acceleration of the center of mass is 2g/3, and 
(c) the speed of the center of mass is (4gh/3)1/2 as the
disk descends. Verify your answer to part (c) using the
energy approach.

46. A 100-kg uniform horizontal disk of radius 5.50 m turns
without friction at 2.50 rev/s on a vertical axis through
its center, as shown in Figure P11.46. A feedback mech-
anism senses the angular speed of the disk, and a drive
motor at A ensures that the angular speed remains con-
stant. While the disk turns, a 1.20-kg mass on top of the
disk slides outward in a radial slot. The 1.20-kg mass
starts at the center of the disk at time t � 0 and moves
outward with a constant speed of 1.25 cm/s relative to
the disk until it reaches the edge at t � 440 s. The slid-
ing mass experiences no friction. Its motion is con-
strained by a brake at B so that its radial speed remains
constant. The constraint produces tension in a light
string tied to the mass. (a) Find the torque as a function
of time that the drive motor must provide while the
mass is sliding. (b) Find the value of this torque at 
t � 440 s, just before the sliding mass finishes its mo-
tion. (c) Find the power that the drive motor must de-
liver as a function of time. (d) Find the value of the
power when the sliding mass is just reaching the end of
the slot. (e) Find the string tension as a function of

45. A uniform solid sphere of radius r is placed on the in-
side surface of a hemispherical bowl having a much
greater radius R. The sphere is released from rest at an
angle � to the vertical and rolls without slipping (Fig.
P11.45). Determine the angular speed of the sphere
when it reaches the bottom of the bowl.
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Figure P11.44

Figure P11.47

Figure P11.46

Figure P11.45
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what is its speed when it is farthest from the Sun? The
angular momentum of the comet about the Sun is con-
served because no torque acts on the comet. The gravi-
tational force exerted by the Sun on the comet has a
moment arm of zero.

49. A constant horizontal force F is applied to a lawn roller
having the form of a uniform solid cylinder of radius R
and mass M (Fig. P11.49). If the roller rolls without slip-
ping on the horizontal surface, show that (a) the accel-
eration of the center of mass is 2F/3M and that (b) the
minimum coefficient of friction necessary to prevent
slipping is F/3Mg. (Hint: Consider the torque with re-
spect to the center of mass.)

The monkey climbs the rope in an attempt to reach the
bananas. (a) Treating the system as consisting of the
monkey, bananas, rope, and pulley, evaluate the net
torque about the pulley axis. (b) Using the results to
part (a), determine the total angular momentum about
the pulley axis and describe the motion of the system.
Will the monkey reach the bananas?

51. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P11.51. The
sphere starts from rest with its lowest point at height h
above the bottom of a loop of radius R, which is much
larger than r. (a) What is the minimum value that h can
have (in terms of R) if the sphere is to complete the
loop? (b) What are the force components on the
sphere at point P if h � 3R?

52. A thin rod with a mass of 0.630 kg and a length of 
1.24 m is at rest, hanging vertically from a strong fixed
hinge at its top end. Suddenly, a horizontal impulsive
force (14.7i) N is applied to it. (a) Suppose that the
force acts at the bottom end of the rod. Find the accel-
eration of the rod’s center of mass and the horizontal
force that the hinge exerts. (b) Suppose that the force
acts at the midpoint of the rod. Find the acceleration of
this point and the horizontal hinge reaction. (c) Where
can the impulse be applied so that the hinge exerts no
horizontal force? (This point is called the center of per-
cussion.)

53. At one moment, a bowling ball is both sliding and spin-
ning on a horizontal surface such that its rotational ki-
netic energy equals its translational kinetic energy. Let
vCM represent the ball’s center-of-mass speed relative to
the surface. Let vr represent the speed of the topmost
point on the ball’s surface relative to the center of mass.
Find the ratio vCM/vr .

54. A projectile of mass m moves to the right with speed vi
(Fig. P11.54a). The projectile strikes and sticks to the
end of a stationary rod of mass M and length d that is
pivoted about a frictionless axle through its center (Fig.
P11.54b). (a) Find the angular speed of the system right
after the collision. (b) Determine the fractional loss in
mechanical energy due to the collision.

50. A light rope passes over a light, frictionless pulley. A
bunch of bananas of mass M is fastened at one end, and
a monkey of mass M clings to the other (Fig. P11.50).

Figure P11.50

Figure P11.49
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55. A mass m is attached to a cord passing through a small
hole in a frictionless, horizontal surface (Fig. P11.55).
The mass is initially orbiting with speed vi in a circle of
radius ri . The cord is then slowly pulled from below,
and the radius of the circle decreases to r. (a) What is
the speed of the mass when the radius is r? (b) Find the
tension in the cord as a function of r. (c) How much
work W is done in moving m from ri to r ? (Note: The
tension depends on r.) (d) Obtain numerical values 
for v, T, and W when r � 0.100 m, m � 50.0 g, ri �
0.300 m, and vi � 1.50 m/s.

cal grape at the top of his bald head, which itself has the
shape of a sphere. After all of the children have had
time to giggle, the grape starts from rest and rolls down
your uncle’s head without slipping. It loses contact with
your uncle’s scalp when the radial line joining it to the
center of curvature makes an angle � with the vertical.
What is the measure of angle �?

58. A thin rod of length h and mass M is held vertically with
its lower end resting on a frictionless horizontal surface.
The rod is then released to fall freely. (a) Determine
the speed of its center of mass just before it hits the hor-
izontal surface. (b) Now suppose that the rod has a
fixed pivot at its lower end. Determine the speed of the
rod’s center of mass just before it hits the surface.

59. Two astronauts (Fig. P11.59), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible
mass. They are isolated in space, orbiting their center of
mass at speeds of 5.00 m/s. (a) Treating the astronauts
as particles, calculate the magnitude of the angular mo-
mentum and (b) the rotational energy of the system. By
pulling on the rope, one of the astronauts shortens the
distance between them to 5.00 m. (c) What is the new
angular momentum of the system? (d) What are the as-
tronauts’ new speeds? (e) What is the new rotational en-
ergy of the system? (f) How much work is done by the
astronaut in shortening the rope?

60. Two astronauts (see Fig. P11.59), each having a mass M,
are connected by a rope of length d having negligible
mass. They are isolated in space, orbiting their center of
mass at speeds v. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momentum
and (b) the rotational energy of the system. By pulling
on the rope, one of the astronauts shortens the distance
between them to d/2. (c) What is the new angular mo-
mentum of the system? (d) What are the astronauts’
new speeds? (e) What is the new rotational energy of
the system? (f) How much work is done by the astro-
naut in shortening the rope?

WEB

56. A bowler releases a bowling ball with no spin, sending it
sliding straight down the alley toward the pins. The ball
continues to slide for some distance before its motion
becomes rolling without slipping; of what order of mag-
nitude is this distance? State the quantities you take as
data, the values you measure or estimate for them, and
your reasoning.

57. Following Thanksgiving dinner, your uncle falls into a
deep sleep while sitting straight up and facing the televi-
sion set. A naughty grandchild balances a small spheri-
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Figure P11.59 Problems 59 and 60.

Figure P11.55

Figure P11.54

61. A solid cube of wood of side 2a and mass M is resting
on a horizontal surface. The cube is constrained to ro-
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tate about an axis AB (Fig. P11.61). A bullet of mass m
and speed v is shot at the face opposite ABCD at a
height of 4a/3. The bullet becomes embedded in the
cube. Find the minimum value of v required to tip the
cube so that it falls on face ABCD. Assume m V M.

a horizontal surface and released, as shown in Figure
P11.64. (a) What is the angular speed of the disk once
pure rolling takes place? (b) Find the fractional loss in
kinetic energy from the time the disk is released until
the time pure rolling occurs. (Hint: Consider torques
about the center of mass.)

65. Suppose a solid disk of radius R is given an angular
speed �i about an axis through its center and is then
lowered to a horizontal surface and released, as shown
in Problem 64 (see Fig. P11.64). Furthermore, assume
that the coefficient of friction between the disk and the
surface is �. (a) Show that the time it takes for pure
rolling motion to occur is R�i/3�g. (b) Show that the
distance the disk travels before pure rolling occurs is

66. A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity v, as shown in Fig-
ure P11.66a. It hits a small obstacle at the end of the
table; this causes the cube to tilt, as shown in Figure

R2�i 

2/18�g.
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64. A uniform solid disk is set into rotation with an angular
speed �i about an axis through its center. While still ro-
tating at this speed, the disk is placed into contact with

62. A large, cylindrical roll of paper of initial radius R lies
on a long, horizontal surface with the open end of the
paper nailed to the surface. The roll is given a slight
shove (vi � 0) and begins to unroll. (a) Determine the
speed of the center of mass of the roll when its radius
has diminished to r. (b) Calculate a numerical value 
for this speed at r � 1.00 mm, assuming R � 6.00 m. 
(c) What happens to the energy of the system when the
paper is completely unrolled? (Hint: Assume that the
roll has a uniform density and apply energy methods.)

63. A spool of wire of mass M and radius R is unwound un-
der a constant force F (Fig. P11.63). Assuming that the
spool is a uniform solid cylinder that does not slip, show
that (a) the acceleration of the center of mass is 
4F/3M and that (b) the force of friction is to the right
and is equal in magnitude to F/3. (c) If the cylinder
starts from rest and rolls without slipping, what is the
speed of its center of mass after it has rolled through a
distance d?

Figure P11.66

Figure P11.64 Problems 64 and 65.

Figure P11.63

Figure P11.61
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69. The spool of wire shown in Figure P11.68 has an inner
radius r and an outer radius R. The angle � between the
applied force and the horizontal can be varied. Show

68. A spool of wire rests on a horizontal surface as in Figure
P11.68. As the wire is pulled, the spool does not slip at
the contact point P. On separate trials, each one of the
forces F1 , F2 , F3 , and F4 is applied to the spool. For
each one of these forces, determine the direction in
which the spool will roll. Note that the line of action of
F2 passes through P.

that the critical angle for which the spool does not slip
and remains stationary is

(Hint: At the critical angle, the line of action of the ap-
plied force passes through the contact point.)

70. In a demonstration that employs a ballistics cart, a ball
is projected vertically upward from a cart moving with
constant velocity along the horizontal direction. The
ball lands in the catching cup of the cart because both
the cart and the ball have the same horizontal compo-
nent of velocity. Now consider a ballistics cart on an in-
cline making an angle � with the horizontal, as shown in
Figure P11.70. The cart (including its wheels) has a
mass M, and the moment of inertia of each of the two
wheels is mR 2/2. (a) Using conservation of energy con-
siderations (assuming that there is no friction between
the cart and the axles) and assuming pure rolling mo-
tion (that is, no slipping), show that the acceleration of
the cart along the incline is

(b) Note that the x component of acceleration of the
ball released by the cart is g sin �. Thus, the x compo-
nent of the cart’s acceleration is smaller than that of the
ball by the factor M/(M � 2m). Use this fact and kine-
matic equations to show that the ball overshoots the
cart by an amount �x, where

and vyi is the initial speed of the ball imparted to it by
the spring in the cart. (c) Show that the distance d that
the ball travels measured along the incline is

d �
2v 2

 yi

g
 

sin �

cos2 �

�x � � 4m
M � 2m �� sin �

cos2 � � 
vyi

2

g

ax � � M
M � 2m �g sin �

cos �c �
r
R

P11.66b. Find the minimum value of v such that the
cube falls off the table. Note that the moment of inertia
of the cube about an axis along one of its edges is
8Ma2/3. (Hint: The cube undergoes an inelastic colli-
sion at the edge.)

67. A plank with a mass M � 6.00 kg rides on top of two
identical solid cylindrical rollers that have R � 5.00 cm
and m � 2.00 kg (Fig. P11.67). The plank is pulled by a
constant horizontal force of magnitude F � 6.00 N ap-
plied to the end of the plank and perpendicular to the
axes of the cylinders (which are parallel). The cylinders
roll without slipping on a flat surface. Also, no slipping
occurs between the cylinders and the plank. (a) Find
the acceleration of the plank and that of the rollers. 
(b) What frictional forces are acting?

Figure P11.70

Figure P11.68 Problems 68 and 69.

Figure P11.67
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ANSWERS TO QUICK QUIZZES

11.4 Both (a) and (b) are false. The net force is not necessar-
ily zero. If the line of action of the net force passes
through the point, then the net torque about an axis
passing through that point is zero even though the net
force is not zero. Because the net force is not necessarily
zero, you cannot conclude that the particle’s velocity is
constant.

11.5 The student does work as he walks from the rim of the
platform toward its center.

11.6 Because it is perpendicular to the precessional motion
of the top, the force of gravity does no work. This is a sit-
uation in which a force causes motion but does no work.

11.1 There is very little resistance to motion that can reduce
the kinetic energy of the rolling ball. Even though there
is friction between the ball and the floor (if there were
not, then no rotation would occur, and the ball would
slide), there is no relative motion of the two surfaces (by
the definition of “rolling”), and so kinetic friction can-
not reduce K. (Air drag and friction associated with de-
formation of the ball eventually stop the ball.)

11.2 The box. Because none of the box’s initial potential en-
ergy is converted to rotational kinetic energy, at any time
t � 0 its translational kinetic energy is greater than that
of the rolling ball.

11.3 Zero. If she were moving directly toward the pole, r and
p would be antiparallel to each other, and the sine of
the angle between them is zero; therefore, L � 0.


