

- 1. Position of centre of mass depends upon shaped, size and distribution of mass of body
- 2. Position of centre of mass of an object changes in translation motion.
- 3. For bodies of normal dimensions centre of mass & center of gravity coincide.
- 4. Centre of mass of rigid bodies is independent of the State i.e rest or motion of the body.

System of particles and rotational motion

Linear Impulse:- $\vec{I} = \int \vec{F} dt$, $\vec{I}_{net} = \vec{P}_f - \vec{P}_i$, Unit \rightarrow N.S

Linear motion Velocity $V = \frac{ds}{ds}$

 $a = \frac{ds}{ds}$

dt

W = F.S

 $\frac{1}{2}$ mv²

Linear momentum

P = F.V.

P = mv

 $F\Delta t = mv - mu$

acceleration

F = ma = -

work done

livear K.E

Power

Impulse

Force

Angular velocity

 $W = \frac{dQ}{dt}$

Rotational Motion

angular acceleration

 $\alpha = \frac{1}{dt}$ dw

torque

 $\tau = I \propto = \frac{d}{dt}(Iw)$

work - done

 $W = \tau Q$

rotational K.E

$$\frac{1}{2}$$
lw²

Power $P = \tau W$

angular momentum L = Iwangular Impulse

 $\tau pt = Iw_f - Iw_i$

Z	Body	Axis	Figure	1
(1)	Thin circular ring, radius <i>R</i>	Perpendicular to plane, at centre		M R ²
(2)	Thin circular ring, radius <i>R</i>	Diameter		<i>M R</i> ² / 2
(3)	Thin rod, lenght <i>L</i>	Perpendicular to rod, at mid point		<i>M L</i> ² / 12
(4)	Circular disc, radius <i>R</i>	Perpendicular to disc at centre	Ĵ []	<i>M R² /</i> 2
(5)	Circular disc, radius <i>R</i>	Diameter	¢	<i>M R</i> ² / 4
(6)	Hollow cylinder, radius <i>R</i>	Axis of cylinder		MR ₂
(7)	Solid cylinder, radius <i>R</i>	Axis of cylinder		<i>M R</i> ² / 2
(8)	Solid cylinder, radius <i>R</i>	Diameter		2 <i>M R</i> ² / 5
(9)	Hollow sphere, radius R	Diameter		$\frac{2}{3}mR^2$

(4) Time taken to reach the bottom of the inclined plane is.

 $t = \frac{1}{\sin \theta}$

MOTION OF SYSTEM OF PARTICLES & RIGID BODY

Pure Rotational Motion :-

- (1) Since distance between two particles of a rigid body remains constant. So the relative motion of one particle w.r.t other Particle is circular motion.
- (2) ANGULAR VELOCITY OF ALL THE PARTICLES about a given point of a Rigid body is same

S = RQ, |V| = Rw; (3) If α = Constant (angular acceleration).

),
$$W_{f} = w_{i} + \alpha t$$
,
 $Q_{f} = w_{i}t + \frac{1}{2} \alpha t^{2} w_{f}^{2} =$
 $w_{i}^{2} + 2\alpha\theta$, $\theta = \left(\frac{w_{i} + w_{f}}{2}\right)t$
 $\theta = w_{f}t - \frac{1}{2} \alpha t^{2} \rightarrow K.E_{rolling} = \frac{1}{2}mv^{2} + \frac{1}{2}Iw^{2}$,
 $\frac{1}{2}mv^{2} + \frac{1}{2}mk^{2}\left(\frac{V^{2}}{r^{2}}\right)$
 $\frac{1}{2}mv^{2}\left(1 + \frac{K^{2}}{R^{2}}\right)$

Com	dined	Rotation	+	translation Motion					
(CRTM):-									
	$\overrightarrow{\mathbf{v}}$	$\overrightarrow{\mathbf{v}}$							

$$\overrightarrow{v} \subset \operatorname{RTM} - \overrightarrow{v}$$
 pure rotation $+ \overrightarrow{v}$ translational

 $\mathbf{a}_{CRTM} = \mathbf{a}_{pure rotation} + \mathbf{a}_{translational}$ DYNAMICS OF CRTM

for analysing its motion we apply two equation

$$\begin{split} & \sum \vec{\tau}_{\text{ext}} = \vec{\text{Ma}}_{\text{cm}} \\ & \sum \vec{\tau}_{\text{ext}} = \vec{\text{I}\alpha} = \vec{\text{r}} \times \vec{\text{F}}_{\text{ext}} \end{split}$$

Newton's laws of motion is valid in inertial frame.

To apply second equation of Newton about Non – inertial Point. PSeudo – force is applied at Com of body Σ of pseudo force is also taken into account.

 \rightarrow K.E_{CRTM} = K.E_{rotation} + K.E_{translation};

K.E =
$$\frac{1}{2}I_{cmw^2} + \frac{1}{2}MV_{cm}^2$$
;
K.E = $\frac{1}{2}MK^2w^2 + \frac{1}{2}MV_{cm}^2$

 \rightarrow angular momentum of Rigid body per forming CRTM: Pure Rotational as a Rigid body about C.O.M: Translation as a particle

(1) ROLLING ON INCLINED PLANE

 $(E_K)_r$ = rotational K.E $(E_K)_t$ = translation K.E

(a) for solid sphere, $(E_k)_r = 40\%$ of $(E_k)_t$,

(b) For snell $(E_k)_r = 66\%$ of $(E_k)_t$,

(c) For disc, $(E_k)_r = 50\%$ of $(E_k)_t$ of $(E_k)_t$, (d) For ring, $(E_k)_r = (E_k)_t$

(2) VELOCITY AT LOWEST POINT

$$l' = \sqrt{\frac{2gh}{1 + \frac{K^2}{R^2}}}$$

(3) ACCELERATION ALONG INCLINED PLANE $a = \sqrt{\frac{g\sin\theta}{1 + \frac{K^2}{R^2}}}$

$$\frac{2n\left(1+\frac{K^2}{R^2}\right)}{g}$$