
Programming	in	C++

Introduction	to	C++

C++	programming	language	developed	by	AT&T	Bell	Laboratories	in	1979	by	Bjarne

Stroustrup.	C++	is	fully	based	on	Object	Oriented	Technology	i.e.	C++	is	ultimate

paradigm	for	the	modeling	of	information.

C++	is	the	successor	of	C	language.

It	is	a	case	sensitive	language.

Character	Set-	Set	of	characters	which	are	recognized	by	c++compiler	i.e

Digits	(0-9),	Alphabets	(A-Z	&	a-z)	and	special	characters	+	-	*	,	.	“	‘	<	>	=	{	(])	space	etc	i.e	256

ASCII	characters.

Tokens-	Smallest	individual	unit.	Following	are	the	tokens

Keyword-	Reserve	word	having	special	meaning	the	language	and	can’t	be	used	as

identifier.

Identifiers-Names	given	to	any	variable,	function,	class,	union	etc.	Naming

convention	(rule)	for	writing	identifier	is	as	under:

i.	 First	letter	of	identifier	is	always	alphabet.

ii.	 Reserve	word	cannot	be	taken	as	identifier	name.

iii.	 No	special	character	in	the	name	of	identifier	except	under	score	sign	‘_’.

Literals-Value	of	specific	data	type	assign	to	a	variable	or	constant.	Four	type	of

Literals:

i.	 Integer	Literal	i.e	int	x	=10

ii.	 Floating	point	Literal	i.e	float	x=123.45

iii.	 Character	Literal	i.e	char	x=	‘a’,	enclosed	in	single	quotes	and	single	character

only.

iv.	 String	Literal	i.e	cout<<	“Welcome”	,	anything	enclosed	in	double	quotes

Operator	–	performs	some	action	on	data

Arithmetic(+,-,*,/,%)

Assignment	operator	(=)

admin
Text Box
Object Oriented Programming in CPP

Increment	/	Decrement	(++,	--)

Relational/comparison	(<,>,<=,>=,==,!=).

Logical(AND(&&),OR(||),NOT(!).

Conditional	(?	:)

Precedence	of	Operators:

++(post	increment),--(post	decrement)

++(pre	increment),--(pre	decrement),sizeof	!(not),-(unary),+unary	plus)

*(multiply),	/	(divide),	%(modulus)

+(add),-(subtract)

<(less	than),<=(less	than	or	equal),>(greater	than),	>=(greater	than	or	equal	to)

==(equal),!=(not	equal)

&&	(logical	AND)

||(logical	OR)

?:(conditional	expression)

=(simple	assignment)	and	other	assignment	operators(arithmetic	assignment	operator)

,	Comma	operator

Punctuation	–	used	as	separators	in	c++	e.g.	[{	()	}]	,	;	#	=	:	etc

Data	type-	A	specifier	to	create	memory	block	of	some	specific	size	and	type.	C++offers	two

types	of	data	types:

1.	 Fundamental	type	:	Which	are	not	composed	any	other	data	type	i.e.	int,	char,	float	and

void

2.	 Derived	data	type	:	Which	are	made	up	of	fundamental	data	type	i.e	array,	function,

class,	union	etc

Data	type	conversion-	Conversion	of	one	data	type	into	another	data	type.	Two	type	of

conversion	i.e

i.	 Implicit	Conversion	–	It	is	automatically	taken	care	by	complier	in	the	case	of	lower	range

to	higher	range	e.g.	int	x,	char	c=’A’	then	x=c	is	valid	i.e	character	value	in	c	is

automatically	converted	to	integer.

ii.	 Explicit	Conversion-	It	is	user-defined	that	forces	an	expression	to	be	of	specific	type.	e.g.

double	x1,x2	and	int	res	then	res=int(x1+x2)

Variable-	Memory	block	of	certain	size	where	value	can	be	stored	and	changed	during

program	execution.	e.g.	int	x,	float	y,	float	amount,	char	c;

Constant-	Memory	block	where	value	can	be	stored	once	but	can’t	changed	later	on	during

program	execution.	e.g.	const	int	pi	=3.14;

cout	–	It	is	an	object	of	ostream_with	assign	class	defined	in	iostream.h	header	file	and	used

to	display	value	on	monitor.

cin	–	It	is	an	object	of	istream_with	assign	class	defined	in	iostream.h	header	file	and	used	to

read	value	from	keyboard	for	specific	variable.

comment-	Used	for	better	understanding	of	program	statements	and	escaped	by	the

compiler	to	compile	.	e.g.	–	single	line	(//)	and	multi-	line(/*….*/)

Cascading–	Repeatedly	use	of	input	or	output	operators(“>>”	or	“<<”)	in	one	statement	with

cin	or	cout.

Control	Structure:

Sequence

control

statement(if

)

conditional

statement

(if	else)

Multiple

Choice

Statement

If	–else-if

Switch	Statement

(Alternate	for	if

else-	if)	works	for

only	exact	match

loop	control	statement

(while	,do…	while,	for)

Syntax Syntax Syntax Syntax Syntax

switch(int	/	char

variable)

{

case	literal1:

[statements

break;]

while(expression)

{

statements;

}

Entry	control	loop

if(expressio

n)

{

statements;

}

If(expressio

n)

{

statements;

}

else

{

statements;

}

If

(expression)

{

statements

}

else

if(expression)

{

statement

}

else

{

statement

}

case	literal2:

[statements,

break;]

default:statements;

}

Break	is

compulsory

	

statement	with

every	case	because

if	it	is	not	included

then	the	controls

executes	next	case

statement	until

next

break	encountered

or	end	of	swtich

reached.

Default	is	optional,

it	gets	executed

when	no	match	is

found

works	for	true

condition.

do

{

statements;

}	while(expression);

Exit	Control	Loop

execute	at	least	once	if

the	condition	is	false	at

beginning.

for	loop

for(expression1;expressio

n2;expression3)

{

statement;}

Entry	control	loop

works	for	true

condition

and	preferred	for	fixed

no.of	times.

Note:	any	non-zero	value	of	an	expression	is	treated	as	true	and	exactly	0	(i.e.	all	bits

contain	0)	is	treated	as	false.

Nested	loop-	loop	within	loop.

exit()-	defined	in	process.h	and	used	to	terminate	the	program	depending	upon	certain

condition.

break-	exit	from	the	current	loop	depending	upon	certain	condition.

continue-	to	skip	the	remaining	statements	of	the	current	loop	and	passes	control	to	the	next

loop	control	statement.

goto-	control	is	unconditionally	transferred	to	the	location	of	local	label	specified	by

<identifier>.

For	example

A1:

cout<<”test”;

goto	A1;

Some	Standard	C++	libraries

Header Nome	Purpose

iostream.h Defines	stream	classes	for	input/output	streams

stdio.h Standard	input	and	output

ctype.h Character	tests

string.h String	operations

math.h Mathematical	functions	such	as	sin()	and	cos()

stdlib.h Utility	functions	such	as	malloc()	and	rand()

Some	functions

isalpha(c)-check	whether	the	argument	is	alphabetic	or	not.

islower(c)-	check	whether	the	argument	is	lowecase	or	not.

isupper(c)	-	check	whether	the	argument	is	upercase	or	not.

isdigit(c)-	check	whether	the	argument	is	digit	or	not.

isalnum(c)-	check	whether	the	argument	is	alphanumeric	or	not.

tolower()-converts	argument	in	lowercase	if	its	argument	is	a	letter.

toupper(c)-	converts	argument	in	uppercase	if	its	argument	is	a	letter.

strcat()-	concatenates	two	string.

strcmp-compare	two	string.

pow(x,y)-return	x	raised	to	power	y.

sqrt(x)-return	square	root	of	x.

random(num)-return	a	random	number	between	0	and	(num-1)

randomize-	initializes	the	random	number	generator	with	a	random	value.

Array-	Collection	of	element	of	same	type	that	are	referred	by	a	common	name.

One	Dimensional	array

An	array	is	a	continuous	memory	location	holding	similar	type	of	data	in	single	row

or	single	column.	Declaration	in	c++	is	as	under:

const	int	size	=20;

int	a[size]	or	int	a[20].	The	elements	of	array	accessed	with	the	help	of	an	index.

For	example	:	for(i=0;i<20;i++)	cout<<a[i];

String	(Array	of	characters)–	Defined	in	c++	as	one	dimensional	array	of	characters

as	char	s[80]=	“Object	oriented	programming”;

Two-dimensional	array

A	two	diamensional	array	is	a	continuous	memory	location	holding	similar	type	of

data	arranged	in	row	and	column	format	(like	a	matrix	structure).

Declaration	–	int	a[3][4],	means	‘a’	is	an	array	of	integers	are	arranged	in	3	rows	&	4

columns.

Function-	Name	given	to	group	of	statements	that	does	some	specific	task	and	may	return	a

value.	Function	can	be	invoked(called)	any	no.	of	time	and	anywhere	in	the	program.

Function	prototypes-	Function	declaration	that	specifies	the	function	name,	return	type	and

parameter	list	of	the	function.

syntax:	return_type	function_name(type	var1,type	var2,….,type	varn);

Actual	Parameters

Variables	associated	with	function	name	during	function	call	statement.

Formal	Parameters

Variables	which	contains	copy	of	actual	parameters	inside	the	function	definition.

Local	variables

Declared	inside	the	function	only	and	its	scope	and	lifetime	is	function	only	and	hence

accessible	only	inside	function.

Global	variables

Declared	outside	the	function	and	its	scope	and	lifetime	is	whole	program	and	hence

accessible	to	all	function	in	the	program	from	point	declaration.

Example:

#include	<iostream.h>

int	a=20;	//	global

void	main()

{

int	b=10;	//	local

cout<<a<<b;

}

Passing	value	to	function-

Passing	by	value-In	this	method	separate	memory	created	for	formal	arguments	and

if	any	changes	done	on	formal	variables,	it	will	not	affect	the	actual	variables.	So

actual	variables	are	preserved	in	this	case

Passing	by	address/reference-In	this	method	no	separate	memory	created	for	formal

variables	i.e	formal	variables	share	the	same	location	of	actual	variables	and	hence

any	change	on	formal	variables	automatically	reflected	back	to	actual	variables.

Example	:

void	sample(int	a,	int	&b)

{

a=a+100;

b=b+200;

cout<<a<<b;

}

void	main()

{

int	a=50,	b=40;

cout<<a<<b;	//	output	50	40

sample(a,b)	//	output	150	240

cout<<a<<b;	//	output	50	240

}

Function	overloading

Processing	of	two	or	more	functions	having	same	name	but	different	list	of

parameters

Function	recursion

Function	that	call	itself	either	directly	or	indirectly.

Structure-Collection	of	logically	related	different	data	types	(Primitive	and	Derived)

referenced	under	one	name.

e.g.	struct	employee

{

int	empno;

char	name[30];

char	design[20];

char	department[20];

}

Declaration:	employee	e;

Input	/Output	:	cin>>e.empno;	//	members	are	accessed	using	dot(.)	operator.

cout<<e.empno;

Nested	structure

A	Structure	definition	within	another	structure.

A	structure	containing	object	of	another	structure.

e.g.	struct	address

{	int	houseno;

char	city[20];

char	area[20];

long	int	pincode;}

struct	employee

{

int	empno;

char	name[30];

char	design[20];

char	department[20];

address	ad;	//	nested	structure

}

Declaration:	employee	e;

Input	/Output	:	cin>>e.ad.houseno;	//	members	are	accessed	using	dot(.)	operator.

cout<<e.ad.houseno;

typedef

Used	to	define	new	data	type	name.

e.g.	typedef	char	Str80[80];	Str80	str;

#define	Directives

Use	to	define	a	constant	number	or	macro	or	to	replace	an	instruction.

Function	overloading	in	C++

A	function	name	having	several	definitions	that	are	differentiable	by	the	number	or

types	of	their	arguments	is	known	as	function	overloading.

Example	:	A	same	function	print()	is	being	used	to	print	different	data	types:

#include	<iostream.h>

class	printData

{

public:

void	print(int	i)	{

cout	<<	"Printing	int:	"	<<	i	<<	endl;

}

void	print(double	f)	{

cout	<<	"Printing	float:	"	<<	f	<<	endl;

}

void	print(char*	c)	{

cout	<<	"Printing	character:	"	<<	c	<<	endl;

}

};

int	main(void)

{

printData	pd;

//	Call	print	to	print	integer

pd.print(5);

//	Call	print	to	print	float

pd.print(500.263);

//	Call	print	to	print	character

pd.print("Hello	C++");

return	0;

}

When	the	above	code	is	compiled	and	executed,	it	produces	following	result:

Printing	int:	5

Printing	float:	500.263

Printing	character:	Hello	C++

Object	Oriented	Programming	Concepts

Object	Oriented	Programming	follows	bottom	up	approach	in	program	design	and

emphasizes	on	safety	and	security	of	data.

FEATURES	OF	OBJECT	ORIENTED	PROGRAMMING:

Inheritance:

Inheritance	is	the	process	of	forming	a	new	class	from	an	existing	class	or	base	class.

The	base	class	is	also	known	as	parent	class	or	super	class.

Derived	class	is	also	known	as	a	child	class	or	sub	class.	Inheritance	helps	in

reusability	of	code	,	thus	reducing	the	overall	size	of	the	program

Data	Abstraction:

It	refers	to	the	act	of	representing	essential	features	without	including	the

background	details	.Example	:	For	driving	,	only	accelerator,	clutch	and	brake

controls	need	to	be	learnt	rather	than	working	of	engine	and	other	details.

Data	Encapsulation:

It	means	wrapping	up	data	and	associated	functions	into	one	single	unit	called	class..

A	class	groups	its	members	into	three	sections	:public,	private	and	protected,	where

private	and	protected	members	remain	hidden	from	outside	world	and	thereby	helps

in	implementing	data	hiding.

Modularity	:

The	act	of	partitioning	a	complex	program	into	simpler	fragments	called	modules	is

called	as	modularity.

It	reduces	the	complexity	to	some	degree	and

It	creates	a	number	of	well	defined	boundaries	within	the	program.

Polymorphism:

Poly	means	many	and	morphs	mean	form,	so	polymorphism	means	one	name

multiple	forms.

It	is	the	ability	for	a	message	or	data	to	be	processed	in	more	than	one	form.

C++	implements	Polymorhism	through	Function	Overloading,	Operator	overloading

and	Virtual	functions.

Objects	and	Classes:

The	major	components	of	Object	Oriented	Programming	are	.	Classes	&	Objects

A	Class	is	a	group	of	similar	objects	.	Objects	share	two	characteristics:	They	all	have	state

and	behavior.	For	example	:	Dogs	have	state	(name,	color,	breed,	hungry)	and	behavior

(barking,	fetching,	wagging	tail).	Bicycles	also	have	state	(current	gear,	current	pedal

cadence,	current	speed)	and	behavior	(changing	gear,	applying	brakes).	Identifying	the	state

and	behavior	for	real	world	objects	is	a	great	way	to	begin	thinking	in	terms	of	object-

oriented	programming.	These	real-world	observations	all	translate	into	the	world	of	object-

oriented	programming.

Software	objects	are	conceptually	similar	to	real-world	objects:	they	too	consist	of	state	and

related	behavior.	An	object	stores	its	state	in	fields	(variables	in	some	programming

languages)	and	exposes	its	behavior	through	functions

Classes	in	Programming	:

It	is	a	collection	of	variables,	often	of	different	types	and	its	associated	functions.

Class	just	binds	data	and	its	associated	functions	under	one	unit	there	by	enforcing

encapsulation.

Classes	define	types	of	data	structures	and	the	functions	that	operate	on	those	data

structures.

A	class	defines	a	blueprint	for	a	data	type.

Declaration/Definition	:

A	class	definition	starts	with	the	keyword	class	followed	by	the	class	name;	and	the	class

body,	enclosed	by	a	pair	of	curly	braces.	A	class	definition	must	be	followed	either	by	a

semicolon	or	a	list	of	declarations.

class	class_name

{

access_specifier_1:

member1;

access_specifier_2:

member2;

...

}	object_names;

Where	class_name	is	a	valid	identifier	for	the	class,	object_names	is	an	optional	list	of	names

for	objects	of	this	class.	The	body	of	the	declaration	can	contain	members	that	can	either	be

data	or	function	declarations,	and	optionally	access	specifiers.

[Note:	the	default	access	specifier	is	private.

Example	:	class	Box	{	int	a;

public:

double	length;	//	Length	of	a	box

double	breadth;	//	Breadth	of	a	box

double	height;	//	Height	of	a	box

};

Access	specifiers	in	Classes:

Access	specifiers	are	used	to	identify	access	rights	for	the	data	and	member	functions	of	the

class.	There	are	three	main	types	of	access	specifiers	in	C++	programming	language:

private

public

protected

Member-Access	Control

Type	of	Access Meaning

Private
Class	members	declared	as	private	can	be	used	only	by	member

functions	and	friends	(classes	or	functions)	of	the	class.

Protected

Class	members	declared	as	protected	can	be	used	by	member

functions	and	friends	(classes	or	functions)	of	the	class.	Additionally,

they	can	be	used	by	classes	derived	from	the	class.

Public Class	members	declared	as	public	can	be	used	by	any	function.

Importance	of	Access	Specifiers

Access	control	helps	prevent	you	from	using	objects	in	ways	they	were	not	intended	to	be

used.	Thus	it	helps	in	implementing	data	hiding	and	data	abstraction.

OBJECTS	in	C++:

Objects	represent	instances	of	a	class.	Objects	are	basic	run	time	entities	in	an	object

oriented	system.

Creating	object	/	defining	the	object	of	a	class:

The	general	syntax	of	defining	the	object	of	a	class	is:-

Class_name	object_name;

In	C++,	a	class	variable	is	known	as	an	object.	The	declaration	of	an	object	is	similar	to	that	of

a	variable	of	any	data	type.	The	members	of	a	class	are	accessed	or	referenced	using	object

of	a	class.

Box	Box1;	//	Declare	Box1	of	type	Box

Box	Box2;	//	Declare	Box2	of	type	Box

Both	of	the	objects	Box1	and	Box2	will	have	their	own	copy	of	data	members.

Accessing	/	calling	members	of	a	class	All	member	of	a	class	are	private	by	default.

Private	member	can	be	accessed	only	by	the	function	of	the	class	itself.Public	member	of	a

class	can	be	accessed	through	any	object	of	the	class.	They	are	accessed	or	called	using	object

of	that	class	with	the	help	of	dot	operator	(.).

The	general	syntax	for	accessing	data	member	of	a	class	is:-

Object_name.Data_member=value;

The	general	syntax	for	accessing	member	function	of	a	class	is:-

Object_name.	Function_name	(actual	arguments);

The	dot	('.	')	used	above	is	called	the	dot	operator	or	class	member	access	operator.	The

dot	operator	is	used	to	connect	the	object	and	the	member	function.	The	private	data	of	a

class	can	be	accessed	only	through	the	member	function	of	that	class.

Class	methods	definitions	(Defining	the	member	functions)

Member	functions	can	be	defined	in	two	places:-

Outside	the	class	definition

The	member	functions	of	a	class	can	be	defined	outside	the	class	definitions.	It	is	only

declared	inside	the	class	but	defined	outside	the	class.	The	general	form	of	member	function

definition	outside	the	class	definition	is:

Return_type	Class_name::	function_name	(argument	list)

{

Function	body

}

Where	symbol	::	is	a	scope	resolution	operator.

The	scope	resolution	operator	(::)	specifies	the	class	to	which	the	member	being

declared	belongs,	granting	exactly	the	same	scope	properties	as	if	this	function

definition	was	directly	included	within	the	class	definition

class	sum

{

int	A,	B,	Total;

public:

void	getdata	();

void	display	();

};

void	sum::	getdata	()	//	Function	definition	outside	class	definition	Use	of	::	operator

{

cout<<”	\n	enter	the	value	of	A	and	B”;

cin>>A>>B;

}

void	sum::	display	()	//	Function	definition	outside	class	definition	Use	of	::	operator

{

Total	=A+B;

cout<<”\n	the	sum	of	A	and	B=”<<Total;

}

Inside	the	class	definition

The	member	function	of	a	class	can	be	declared	and	defined	inside	the	class	definition.

class	sum

{

int	A,	B,	Total;

public:

void	getdata	()

{

cout<	”\n	enter	the	value	of	A	and	B”;

cin>>A>>B;

}

void	display	()

{

total	=	A+B;

cout<<”\n	the	sum	of	A	and	B=”<<total;

}

};

Differences	between	struct	and	classes	in	C++

In	C++,	a	structure	is	a	class	defined	with	the	struct	keyword.Its	members	and	base	classes

are	public	by	default.	A	class	defined	with	the	class	keyword	has	private	members	and	base

classes	by	default.	This	is	the	only	difference	between	structs	and	classes	in	C++.

INLINE	FUNCTIONS

Inline	functions	definition	starts	with	keyword	inline

The	compiler	replaces	the	function	call	statement	with	the	function	code

itself(expansion)	and	then	compiles	the	entire	code.

They	run	little	faster	than	normal	functions	as	function	calling	overheads	are	saved.

A	function	can	be	declared	inline	by	placing	the	keyword	inline	before	it.

Example

inline	void	Square	(int	a)

{	cout<<a*a;}

void	main()

Pass	Object	As	An	Argument

/*C++	PROGRAM	TO	PASS	OBJECT	AS	AN	ARGUMENT.	The	program	Adds	the	two	heights

given	in	feet	and	inches.	*/

#include<	iostream.h>

#include<	conio.h>

class	height

{

int	feet,inches;

public:

void	getht(int	f,int	i)

{

feet=f;

inches=i;

}

void	putheight()

{

cout<	<	"\nHeight	is:"<	<	feet<	<	"feet\t"<	<	inches<	<	"inches"<	<	endl;

}

void	sum(height	a,height	b)

{

height	n;

n.feet	=	a.feet	+	b.feet;

n.inches	=	a.inches	+	b.inches;

if(n.inches	==12)

{

n.feet++;

n.inches	=	n.inches	-12;

}

cout<	<	endl<	<	"Height	is	"<	<	n.feet<	<	"	feet	and	"<	<	n.inches<	<	endl;

}};

void	main()

{height	h,d,a;

clrscr();

h.getht(6,5);

a.getht(2,7);

h.putheight();

a.putheight();

d.sum(h,a);

getch();

}

/**********OUTPUT***********

Height	is:	6	feet	5	inches

Height	is:	2	feet	7	inches

Height	is		9	feet	and	0

CONSTRUCTORS	AND	DESTRUCTORS

CONSTRUCTORS	:

A	member	function	with	the	same	as	its	class	is	called	Constructor	and	it	is	used	to	initialize

the	object	of	that	class	with	a	legal	initial	value.

Example:

class	Student

{

int	rollno;

float	marks;

public:

student()	//Constructor

{

rollno=0;

marks=0.0;

}

//other	public	members

};

TYPES	OF	CONSTRUCTORS:

1.	 Default	Constructor:

A	constructor	that	accepts	no	parameter	is	called	the	Default	Constructor.	If	you	don't

declare	a	constructor	or	a	destructor,	the	compiler	makes	one	for	you.	The	default

constructor	and	destructor	take	no	arguments	and	do	nothing.

2.	 Parameterized	Constructors:

A	constructor	that	accepts	parameters	for	its	invocation	is	known	as	parameterized

Constructors,	also	called	as	Regular	Constructors.

DESTRUCTORS:

A	destructor	is	also	a	member	function	whose	name	is	the	same	as	the	class	name	but

is	preceded	by	tilde(“~”).It	is	automatically	by	the	compiler	when	an	object	is

destroyed.	Destructors	are	usually	used	to	deallocate	memory	and	do	other	cleanup

for	a	class	object	and	its	class	members	when	the	object	is	destroyed.

A	destructor	is	called	for	a	class	object	when	that	object	passes	out	of	scope	or	is

explicitly	deleted.

Example	:

class	TEST

{	int	Regno,Max,Min,Score;

Public:

TEST()	//	Default	Constructor

{	}

TEST	(int	Pregno,int	Pscore)	//	Parameterized	Constructor

{

Regno	=	Pregno	;Max=100;Max=100;Min=40;Score=Pscore;

}

~	TEST	()	//	Destructor

{	Cout<<”TEST	Over”<<endl;}

};

The	following	points	apply	to	constructors	and	destructors:

Constructors	and	destructors	do	not	have	return	type,	not	even	void	nor	can	they

return	values.

References	and	pointers	cannot	be	used	on	constructors	and	destructors	because	their

addresses	cannot	be	taken.

Constructors	cannot	be	declared	with	the	keyword	virtual.

Constructors	and	destructors	cannot	be	declared	static,	const,	or	volatile.

Unions	cannot	contain	class	objects	that	have	constructors	or	destructors.

The	compiler	automatically	calls	constructors	when	defining	class	objects	and	calls

destructors	when	class	objects	go	out	of	scope.

Derived	classes	do	not	inherit	constructors	or	destructors	from	their	base	classes,	but

they	do	call	the	constructor	and	destructor	of	base	classes.

The	default	destructor	calls	the	destructors	of	the	base	class	and	members	of	the

derived	class.

The	destructors	of	base	classes	and	members	are	called	in	the	reverse	order	of	the

completion	of	their	constructor:

The	destructor	for	a	class	object	is	called	before	destructors	for	members	and	bases

are	called.

Copy	Constructor

A	copy	constructor	is	a	special	constructor	in	the	C++	programming	language	used	to

create	a	new	object	as	a	copy	of	an	existing	object.

A	copy	constructor	is	a	constructor	of	the	form	classname(classname	&).The	compiler

will	use	the	copy	constructors	whenever	you	initialize	an	instance	using	values	of

another	instance	of	the	same	type.

Copying	of	objects	is	achieved	by	the	use	of	a	copy	constructor	and	a	assignment

operator.

Example	:

class	Sample{	int	i,	j;}

public:

Sample(int	a,	int	b)	//	constructor

{	i=a;j=b;}

Sample	(Sample	&	s)	//copy	constructor

{	j=s.j	;	i=s.j;

Cout	<<”\n	Copy	constructor	working	\n”;

}

void	print	(void)

{cout	<<i<<	j<<	”\n”;}

:

};

Note:	The	argument	to	a	copy	constructor	is	passed	by	reference,	the	reason	being	that	when

an	argument	is	passed	by	value,	a	copy	of	it	is	constructed.	But	the	copy	constructor	is

creating	a	copy	of	the	object	for	itself,	thus	,it	calls	itself.	Again	the	called	copy	constructor

requires	another	copy	so	again	it	is	called.in	fact	it	calls	itself	again	and	again	until	the

compiler	runs	out	of	the	memory	.so,	in	the	copy	constructor,	the	argument	must	be	passed

by	reference.

The	following	cases	may	result	in	a	call	to	a	copy	constructor:

When	an	object	is	passed	by	value	to	a	function:

The	pass	by	value	method	requires	a	copy	of	the	passed	argument	to	be	created	for	the

function	to	operate	upon.	Thus	to	create	the	copy	of	the	passed	object,	copy	constructor	is

invoked

If	a	function	with	the	following	prototype	:

void	cpyfunc(Sample);	//	Sample	is	a	class

then	for	the	following	function	call

cpyfunc(obj1);	//	obj1	is	an	object	of	Sample	type

the	copy	constructor	would	be	invoked	to	create	a	copy	of	the	obj1	object	for	use	by

cpyfunc().

When	a	function	returns	an	object	:

When	an	object	is	returned	by	a	function	the	copy	constructor	is	invoked

Sample	cpyfunc();	//	Sample	is	a	class	and	it	is	return	type	of	cpyfunc()

If	func	cpyfunc()	is	called	by	the	following	statement

obj2	=	cpyfunc();

Then	the	copy	constructor	would	be	invoked	to	create	a	copy	of	the	value	returned	by

cpyfunc()	and	its	value	would	be	assigned	to	obj2.	The	copy	constructor	creates	a	temporary

object	to	hold	the	return	value	of	a	function	returning	an	object.

INHERITANCE

Inheritance	is	the	process	by	which	new	classes	called	derived	classes	are	created

from	existing	classes	called	base	classes.

The	derived	classes	have	all	the	features	of	the	base	class	and	the	programmer	can

choose	to	add	new	features	specific	to	the	newly	created	derived	class.

The	idea	of	inheritance	implements	the	is	a	relationship.	For	example,	mammal	IS-A

animal,	dog	IS-A	mammal	hence	dog	IS-A	animal	as	well	and	so	on.

Features	or	Advantages	of	Inheritance:

Reusability	of	Code

Saves	Time	and	Effort

Faster	development,	easier	maintenance	and	easy	to	extend

Capable	of	expressing	the	inheritance	relationship	and	its	transitive	nature	which

ensures	closeness	with	real	world	problems.

Base	&	Derived	Classes:

A	class	can	be	derived	from	more	than	one	classes,	which	means	it	can	inherit	data	and

functions	from	multiple	base	classes.	A	class	derivation	list	names	one	or	more	base	classes

and	has	the	form:

class	derived-class:	access-specifier	base-class

Where	access	is	one	of	public,	protected,	or	private.

For	example,	if	the	base	class	is	MyClass	and	the	derived	class	is	sample	it	is	specified	as:

class	sample:	public	MyClass

The	above	makes	sample	have	access	to	both	public	and	protected	variables	of	base	class

MyClass.

EXAMPLE	OF	SINGLE	INHERITANCE

Consider	a	base	class	Shape	and	its	derived	class	Rectangle	as	follows:

//	Base	class

class	Shape

{

public:

void	setWidth(int	w)

{

width	=	w;

}

void	setHeight(int	h)

{

height	=	h;

}

protected:

int	width;

int	height;

};

//	Derived	class

class	Rectangle:	public	Shape

{

public:

int	getArea()

{

return	(width	*	height);

}

};

int	main(void)

{

Rectangle	Rect;

Rect.setWidth(5);

Rect.setHeight(7);

//	Print	the	area	of	the	object.

cout	<<	"Total	area:	"	<<	Rect.getArea()	<<	endl;

return	0;

}

When	the	above	code	is	compiled	and	executed,	it	produces	following	result:

Total	area:	35

Access	Control	and	Inheritance:

A	derived	class	can	access	all	the	non-private	members	of	its	base	class.	Thus	base-class

members	that	should	not	be	accessible	to	the	member	functions	of	derived	classes	should	be

declared	private	in	the	base	class.	We	can	summarize	the	different	access	types	according	to

who	can	access	them	in	the	following	way:

Access public protected private

Same	class yes yes yes

Derived	classes yes yes no

Outside	classes yes no no

A	derived	class	inherits	all	base	class	methods	with	the	following	exceptions:

Constructors,	destructors	and	copy	constructors	of	the	base	class.

Overloaded	operators	of	the	base	class.

The	friend	functions	of	the	base	class.

When	deriving	a	class	from	a	base	class,	the	base	class	may	be	inherited	through	public,

protected	or	private	inheritance.	We	hardly	use	protected	or	private	inheritance	but	public

inheritance	is	commonly	used.	While	using	different	type	of	inheritance,	following	rules	are

applied:

1.	 Public	Inheritance:	When	deriving	a	class	from	a	public	base	class,	public	members	of

the	base	class	become	public	members	of	the	derived	class	and	protected	members	of	the

base	class	become	protected	members	of	the	derived	class.	A	base	class's	private

members	are	never	accessible	directly	from	a	derived	class,	but	can	be	accessed	through

calls	to	the	public	and	protected	members	of	the	base	class.

2.	 Protected	Inheritance:	When	deriving	from	a	protected	base	class,	public	and	protected

members	of	the	base	class	become	protected	members	of	the	derived	class.

3.	 Private	Inheritance:	When	deriving	from	a	private	base	class,	public	and	protected

members	of	the	base	class	become	private	members	of	the	derived	Class.

TYPES	OF	INHERITANCE

1.	 Single	class	Inheritance:

Single	inheritance	is	the	one	where	you	have	a	single	base	class	and	a	single	derived

class.

2.	 Multilevel	Inheritance:

In	Multi	level	inheritance,	a	subclass	inherits	from	a	class	that	itself	inherits	from

another	class.

3.	 Multiple	Inheritance:

In	Multiple	inheritances,	a	derived	class	inherits	from	multiple	base	classes.	It	has

properties	of	both	the	base	classes.

4.	 Hierarchical	Inheritance:

In	hierarchial	Inheritance,	it's	like	an	inverted	tree.	So	multiple	classes	inherit	from	a

single	base	class.

5.	 Hybrid	Inheritance:

It	combines	two	or	more	forms	of	inheritance	.In	this	type	of	inheritance,	we	can	have

mixture	of	number	of	inheritances	but	this	can	generate	an	error	of	using	same	name

function	from	no	of	classes,	which	will	bother	the	compiler	to	how	to	use	the

functions.

Therefore,	it	will	generate	errors	in	the	program.	This	has	known	as	ambiguity	or

duplicity.

Ambiguity	problem	can	be	solved	by	using	virtual	base	classes

Pointers

Pointer	is	a	variable	that	holds	a	memory	address	of	another	variable	of	same	type.

It	supports	dynamic	allocation	routines.

It	can	improve	the	efficiency	of	certain	routines.

C++	Memory	Map	:

Program	Code	:	It	holds	the	compiled	code	of	the	program.

Global	Variables	:	They	remain	in	the	memory	as	long	as	program	continues.

Stack	:	It	is	used	for	holding	return	addresses	at	function	calls,	arguments	passed	to

the	functions,	local	variables	for	functions.	It	also	stores	the	current	state	of	the	CPU.

Heap	:	It	is	a	region	of	free	memory	from	which	chunks	of	memory	are	allocated	via

DMA	functions.

Static	Memory	Allocation	:	The	amount	of	memory	to	be	allocated	is	known	in	advance	and

it	allocated	during	compilation,	it	is	referred	to	as	Static	Memory	Allocation.

e.g.	int	a;	//	This	will	allocate	2	bytes	for	a	during	compilation.

Dynamic	Memory	Allocation	:	The	amount	of	memory	to	be	allocated	is	not	known

beforehand	rather	it	is	required	to	allocated	as	and	when	required	during	runtime,	it	is

referred	to	as	dynamic	memory	allocation.

C++	offers	two	operator	for	DMA	–	new	and	delete.

e.g	int	x	=new	int;	float	y=	new	float;	//	dynamic	allocation

delete	x;	delete	y;	//dynamic	deallocation

Free	Store	:	It	is	a	pool	of	unallocated	heap	memory	given	to	a	program	that	is	used	by	the

program	for	dynamic	memory	allocation	during	execution.

Declaration	and	Initialization	of	Pointers	:

Datatype	*variable_name;

Syntax	:	Datatype	*variable_name;

Int	*p;	float	*p1;	char	*c;

Eg.	Int	*p;	float	*p1;	char	*c;

Two	special	unary	operator	*	and	&	are	used	with	pointers.	The	&	is	a	unary	operator	that

returns	the	memory	address	of	its	operand.

Eg.	Int	a	=	10;	int	*p;	p	=	&a;

Pointer	arithmetic:

Two	arithmetic	operations,	addition	and	subtraction,	may	be	performed	on	pointers.	When

you	add	1	to	a	pointer,	you	are	actually	adding	the	size	of	whatever	the	pointer	is	pointing	at.

That	is,	each	time	a	pointer	is	incremented	by	1,	it	points	to	the	memory	location	of	the	next

element	of	its	base	type.

e.g.	int	*p;	P++;

If	current	address	of	p	is	1000,	then	p++	statement	will	increase	p	to	1002,	not	1001.

If	*c	is	char	pointer	and	*p	is	integer	pointer	then

Char	pointer C c+1 c+2 c+3 c+4 c+5 c+6 c+7

Address 100 101 102 103 104 105 106 107

Int	Pointer p P+1 P+2 P+3

Adding	1	to	a	pointer	actually	adds	the	size	of	pointer’s	base	type.

Base	address	:	A	pointer	holds	the	address	of	the	very	first	byte	of	the	memory	location

where	it	is	pointing	to.	The	address	of	the	first	byte	is	known	as	BASE	ADDRESS.

Dynamic	Allocation	Operators	:

C++	dynamic	allocation	allocate	memory	from	the	free	store/heap/pool,	the	pool	of

unallocated	heap	memory	provided	to	the	program.	C++	defines	two	unary	operators	new

and	delete	that	perform	the	task	of	allocating	and	freeing	memory	during	runtime.

Creating	Dynamic	Array	:

Syntax	:	pointer-variable	=	new	data-type	[size];

e.g.	int	*	array	=	new	int[10];

Not	array[0]	will	refer	to	the	first	element	of	array,	array[1]	will	refer	to	the	second	element.

No	initializes	can	be	specified	for	arrays.

All	array	sizes	must	be	supplied	when	new	is	used	for	array	creation.

Two	dimensional	array	:

int	*arr,	r,	c;

r	=	5;	c	=	5;

arr	=	new	int	[r	*	c];

Now	to	read	the	element	of	array,	you	can	use	the	following	loops	:

For	(int	i	=	0;	i	<	r;	i++)

{

cout	<<	“\n	Enter	element	in	row	“	<<	i	+	1	<<	“	:	“;

For	(int	j=0;	j	<	c;	j++)

cin	>>	arr	[i	*	c	+	j];

}

Memory	released	with	delete	as	below:

Syntax	for	simple	variable	:

delete	pointer-variable;

eg.	delete	p;

For	array	:

delete	[size]	pointer	variable;

Eg.	delete	[]	arr;

Pointers	and	Arrays	:

C++	treats	the	name	of	an	array	as	constant	pointer	which	contains	base	address	i.e	address

of	first	location	of	array.	Therefore	Pointer	variables	are	efficiently	used	with	arrays	for

declaration	as	well	as	accessing	elements	of	arrays,	because	array	is	continuous	block	of

same	memory	locations	and	therefore	pointer	arithmetic	help	to	traverse	in	the	array	easily.

void	main()

{

int	*m;

int	marks[10]	={	50,60,70,80,90,80,80,85,75,95};

m	=	marks;	//	address	of	first	location	of	array	or	we	can	write	it	as	m=&marks[0]

for(int	i=0;i<10;i++)

cout<<	*m++;

//	or

m	=	marks;	//	address	of	first	location	of	array	or	we	can	write	it	as	m=&marks[0]

for(int	i=0;i<10;i++)

cout<<	*(m+i);

}

Array	of	Pointers	:

To	declare	an	array	holding	10	int	pointers	–

int	*	ip[10];

That	would	be	allocated	for	10	pointers	that	can	point	to	integers.

Now	each	of	the	pointers,	the	elements	of	pointer	array,	may	be	initialized.	To	assign	the

address	of	an	integer	variable	phy	to	the	forth	element	of	the	pointer	array,	we	have	to	write

ip[3]	=	&	phy;

Now	with	*ip[3],	we	can	find	the	value	of	phy.	int	*ip[5];

Index 0 1 2 3 4

address 1000 1002 1004 1006 1008

int	a	=	12,	b	=	23,	c	=	34,	d	=	45,	e	=	56;

Variable a b c d e

Value 12 23 34 45 56

address 1050 1065 2001 2450 2725

ip[0]	=	&a;	ip[1]	=	&b;	ip[2]	=	&c;	ip[3]	=	&d;	ip[4]	=	&e;

Index ip[0] ip[1] ip[2] ip[3] ip[4]

Array	ip

value
1050 1065 2001 2450 2725

address 1000 1002 1004 1006 1008

ip	is	now	a	pointer	pointing	to	its	first	element	of	ip.	Thus	ip	is

equal	to	address	of	ip[0],	i.e.	1000

*ip	(the	value	of	ip[0])	=	1050

*	(*	ip)	=	the	value	of	*ip	=	12

*	*	(ip+3)	=	*	*	(1006)	=	*	(2450)	=	45

Pointers	and	Strings	:

Pointer	is	very	useful	to	handle	the	character	array	also.	E.g	:

void	main()

{	char	str[]	=	“computer”;

char	*cp;

cp=str;

cout<<str	;	//display	string

cout<<cp;	//	display	string

for	(cp	=str;	*cp	!=	‘\0’;	cp++)	//	display	character	by	character	by	character

cout	<<	”--“<<*cp;

//	arithmetic

str++;	//	not	allowed	because	str	is	an	array	and	array	name	is	constant	pointer

cp++;	//	allowed	because	pointer	is	a	variable

cout<<cp;}

Output	:

Computer

Computer

--c--o--m--p--u--t--e—r

computer

An	array	of	char	pointers	is	very	useful	for	storing	strings	in	memory.	Char

*subject[]	=	{	“Chemistry”,	“Physics”,	“Maths”,	“CS”,	“English”	};

In	the	above	given	declaration	subject[]	is	an	array	of	char	pointers	whose	element	pointers

contain	base	addresses	of	respective	names.	That	is,	the	element	pointer	subject[0]	stores	the

base	address	of	string	“Chemistry”,	the	element	pointer	subject[1]	stores	the	above	address	of

string	“Physics”	and	so	forth.

An	array	of	pointers	makes	more	efficient	use	of	available	memory	by	consuming	lesser

number	of	bytes	to	store	the	string.

An	array	of	pointers	makes	the	manipulation	of	the	strings	much	easier.	One	can	easily

exchange	the	positions	of	strings	in	the	array	using	pointers	without	actually	touching	their

memory	locations.

Pointers	and	CONST	:

A	constant	pointer	means	that	the	pointer	in	consideration	will	always	point	to	the	same

address.	Its	address	can	not	be	modified.

A	pointer	to	a	constant	refers	to	a	pointer	which	is	pointing	to	a	symbolic	constant.	Look	the

following	example	:

int	m	=	20;	//	integer	m	declaration

int	*p	=	&m;	//	pointer	p	to	an	integer	m

++	(*p);	//	ok	:	increments	int	pointer	p

int	*	const	c	=	&n;	//	a	const	pointer	c	to	an	intger	n

++	(*	c);	//	ok	:	increments	int	pointer	c	i.e.	its	contents

++	c;	//	wrong	:	pointer	c	is	const	–	address	can’t	be	modified

const	int	cn	=	10;	//	a	const	integer	cn

const	int	*pc	=	&cn;	//	a	pointer	to	a	const	int

++	(*	pc);	//	wrong	:	int	*	pc	is	const	–	contents	can’t	be	modified

++	pc;	//	ok	:	increments	pointer	pc

const	int	*	const	cc	=	*k;	//	a	const	pointer	to	a	const	integer

++	(*	cc);	//	wrong	:	int	*cc	is	const

++	cc;	//	wrong	:	pointer	cc	is	const

Pointers	and	Functions	:

A	function	may	be	invoked	in	one	of	two	ways	:

1.	 call	by	value

2.	 call	by	reference

The	second	method	call	by	reference	can	be	used	in	two	ways	:

1.	 by	passing	the	references

2.	 by	passing	the	pointers

Reference	is	an	alias	name	for	a	variable.	For	ex	:	int	m	=	23;

int	&n	=	m;

int	*p;

p	=	&m;

Then	the	value	of	m	i.e.	23	is	printed	in	the	following	ways	:	cout	<<

m;	//	using	variable	name

cout	<<	n;	//	using	reference	name

cout	<<	*p;	//	using	the	pointer

Invoking	Function	by	Passing	the	References	:

When	parameters	are	passed	to	the	functions	by	reference,	then	the	formal	parameters

become	references	(or	aliases)	to	the	actual	parameters	to	the	calling	function.

That	means	the	called	function	does	not	create	its	own	copy	of	original	values,	rather,	it

refers	to	the	original	values	by	different	names	i.e.	their	references.

For	example	the	program	of	swapping	two	variables	with	reference	method	:

#include<iostream.h>

void	main()

{

void	swap(int	&,	int	&);

int	a	=	5,	b	=	6;

cout	<<	“\n	Value	of	a	:”	<<	a	<<	“	and	b	:”	<<	b;

swap(a,	b);

cout	<<	“\n	After	swapping	value	of	a	:”	<<	a	<<	“and	b	:”	<<	b;

}

Void	swap(int	&m,	int	&n)

{

int	temp;	temp	=	m;

m	=	n;

n	=	temp;

}

output	:

Value	of	a	:	5	and	b	:	6

After	swapping	value	of	a	:	6	and	b	:	5

Invoking	Function	by	Passing	the	Pointers:

When	the	pointers	are	passed	to	the	function,	the	addresses	of	actual	arguments	in	the

calling	function	are	copied	into	formal	arguments	of	the	called	function.

That	means	using	the	formal	arguments	(the	addresses	of	original	values)	in	the	called

function,	we	can	make	changing	the	actual	arguments	of	the	calling	function.

For	example	the	program	of	swapping	two	variables	with	Pointers	:

#include<iostream.h>

void	main()

{

void	swap(int	*m,	int	*n);

int	a	=	5,	b	=	6;

cout	<<	“\n	Value	of	a	:”	<<	a	<<	“	and	b	:”	<<	b;

swap(&a,	&b);

cout	<<	“\n	After	swapping	value	of	a	:”	<<	a	<<	“and	b	:”	<<	b;

}

void	swap(int	*m,	int	*n)

{

int	temp;

temp	=	*m;

*m	=	*n;

*n	=	temp;

}

Input	:

Value	of	a	:	5	and	b	:	6

After	swapping	value	of	a	:	6	and	b	:	5

Function	returning	Pointers	:

The	way	a	function	can	returns	an	int,	an	float,	it	also	returns	a	pointer.	The	general	form	of

prototype	of	a	function	returning	a	pointer	would	be

Type	*	function-name	(argument	list);

#include	<iostream.h>	int

*min(int	&,	int	&);	void	main()

{

int	a,	b,	*c;

cout	<<	“\nEnter	a	:”;	cin	>>	a;

cout	<<	“\nEnter	b	:”;	cint	>>	b;

c	=	min(a,	b);

cout	<<	“\n	The	minimum	no	is	:”	<<	*c;

}

int*min(int	&x,	int	&y)

{

if	(x	<	y)

return	(&x);

else

return	(&y)

}

Dynamic	structures	:

The	new	operator	can	be	used	to	create	dynamic	structures	also	i.e.	the	structures	for	which

the	memory	is	dynamically	allocated.

struct-pointer	=	new	struct-type;

student	*stu;

stu	=	new	Student;

A	dynamic	structure	can	be	released	using	the	deallocation	operator	delete	as	shown	below:

delete	stu;

Objects	as	Function	arguments:

Objects	are	passed	to	functions	in	the	same	way	as	any	other	type	of	variable	is	passed.

When	it	is	said	that	objects	are	passed	through	the	call-by-value,	it	means	that	the	called

function	creates	a	copy	of	the	passed	object.

A	called	function	receiving	an	object	as	a	parameter	creates	the	copy	of	the	object	without

invoking	the	constructor.	However,	when	the	function	terminates,	it	destroys	this	copy	of	the

object	by	invoking	its	destructor	function.

If	you	want	the	called	function	to	work	with	the	original	object	so	that	there	is	no	need	to

create	and	destroy	the	copy	of	it,	you	may	pass	the	reference	of	the	object.	Then	the	called

function	refers	to	the	original	object	using	its	reference	or	alias.

Also	the	object	pointers	are	declared	by	placing	in	front	of	a	object	pointer’s	name.

Classname	*	object-pointer;

Eg.	Student	*stu;

The	member	of	a	class	is	accessed	by	the	arrow	operator	(->)	in	object	pointer	method.

Eg	:

#include<iostream.h>

class	Point

{

int	x,	y;

public	:

Point()

{x	=	y	=	0;}

void	getPoint(int	x1,	int	y1)

{x	=	x1;	y	=	y1;	}

void	putPoint()

{

cout	<<	“\n	Point	:	(“	<<	x	<<	“,	“	<<	y	<<	“)”;

}};

void	main()

{

Point	p1,	*p2;

cout	<<	“\n	Set	point	at	3,	5	with	object”;

p1.getPoint(3,5);

cout	<<	“\n	The	point	is	:”;

p1.putPoint();

p2	=	&p1;

cout	<<	“\n	Print	point	using	object	pointer	:”;

p2->putPoint();

cout	<<	“\n	Set	point	at	6,7	with	object	pointer”;

p2->getPoint(6,7);

cout<<	“\n	The	point	is	:”;

p2->putPoint();

cout	<<	“\n	Print	point	using	object	:”;

p1.getPoint();}

If	you	make	an	object	pointer	point	to	the	first	object	in	an	array	of	objects,	incrementing	the

pointer	would	make	it	point	to	the	next	object	in	sequence.

student	stud[5],	*sp;

sp	=	stud;	//	sp	points	to	the	first	element	(stud[0])of	stud

sp++;	//	sp	points	to	the	second	element	(stud[1])	of	stud	sp	+	=	2;

//	sp	points	to	the	fourth	element	(stud[3])	of	stud	sp--;	//	sp

points	to	the	third	element	(stud[2])	of	stud

You	can	even	make	a	pointer	point	to	a	data	member	of	an	object.	Two	points	should	be

considered	:

1.	 A	Pointer	can	point	to	only	public	members	of	a	class.

2.	 The	data	type	of	the	pointer	must	be	the	same	as	that	of	the	data	member	it	points	to.

This	Pointer	:

In	class,	the	member	functions	are	created	and	placed	in	the	memory	space	only	once.	That

is	only	one	copy	of	functions	is	used	by	all	objects	of	the	class.

Therefore	if	only	one	instance	of	a	member	function	exists,	how	does	it	come	to	know	which

object’s	data	member	is	to	be	manipulated?

For	the	above	figure,	if	Member	Function2	is	capable	of	changing	the	value	of	Data	Member3

and	we	want	to	change	the	value	of	Data	Member3	of	Object3.	How	would	the	Member

Function2	come	to	know	which	Object’s	Data	Member3	is	to	be	changed?

To	overcome	this	problem	this	pointer	is	used.

When	a	member	function	is	called,	it	is	automatically	passed	an	implicit	argument	that	is	a

pointer	to	the	object	that	invoked	the	function.	This	pointer	is	called	This.

That	is	if	ojbect3	is	invoking	member	function2,	then	an	implicit	argument	is	passed	to

member	function2	that	points	to	object3	i.e.	this	pointer	now	points	to	object3.

The	friend	functions	are	not	members	of	a	class	and,	therefore,	are	not	passed	a	this	pointer.

The	static	member	functions	do	not	have	a	this	pointer.

	1. CPP-Programming in C++.pdf (p.1-10)
	2. CPP-Object Oriented Programming Concepts.pdf (p.11-27)
	3. CPP-Pointers.pdf (p.28-39)

