Chapter

8_____

Differential Equations

Contents							
8.1	Definition						
	Order of a differential equation						
	Degree of a differential equation						
8.2	Formation of Differential Equation						
	Algorithm for formation of differential equations						
8.3	Variable separable type differential equation						
	Solution of differential equations						
	Differential equations of first order and first degree						
	Geometrical interpretation of the differential equations of first order and first degree						
	Solution of first order & first degree differential equations						
	Equations in variable separable form						
	Equation reducible to variable separable form						
8.4	Homogeneous Differential Equation						
	Homogeneous differential equations						
	Algorithm for solving homogeneous differential						
	equations						
	Equation reducible to homogeneous form						
8.5	Exact Differential Equation						
	Exact differential equation						
	Theorem and Integrating factor						
	Working rule for solving an exact differential equation						
	Solution by inspection						
8.6	Linear Differential Equation						
	Linear and non-linear differential equations						
	Linear differential equation of first order						
	Algorithm for solving a linear differential equation						
	• Linear differential equations of the form $\frac{dx}{dy} + Rx = S$						
	Algorithm for solving linear equations of the form dx						
	$\frac{dx}{dy} + Rx = S$						
	• Equation reducible to linear form (Bernoulli's differential equation)						
	• Differential equation of the form $\frac{dy}{dx} + P\phi(y) = Q\psi(y)$						
8.7	Applications of Differential Equation						
8.8	Miscellaneous Differential Equation						
	Assignment (Basic and Advance Level)						
	Answer Sheet						

One of the principal languages of science is that of differential equations. Interprestingly, the date of birth of differential equations is taken to be November 11, 1675, when Gottfried Wilthelm Freiherr Leibnitz (1646-1716) first

put in black and white the identity $\int y dy = \frac{1}{2}y^2$

thereby introducing both the symbols] and dy. Leibnitz was actually interested in the problem of finding a curve whose tangents were prescribed. This led him to discover the 'method of separation of variables' in 1691. A year later he formulated the 'method of solving the homogeneous differential equations of the first order'. He went further in a very short time to the discovery of the 'method of solving a linear differential equation of the first-order'. How surprising is it that all these methods came from a single man and that too within 25 years of the birth of differential equations.

Many of the practical problems in physics and engineering can be converted into differential equations. The solution of differential equations is, therefore of paramount importance. This chapter deals with some elementary aspects of differential equations. These are addressed through simple application of differential and integral calculus.

There are two important aspects of differential equation, which have just been touched in this chapter. How to formulate a problem as a differential equation is the one, and the other is how to solve it.

8.1 Definition

An equation involving independent variable *x*, dependent variable *y* and the differential coefficients $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots$ is called differential equation.

Examples

: (i)
$$\frac{dy}{dx} = 1 + x + y$$

(ii) $\frac{dy}{dx} + xy = \cot x$
(iii) $\left(\frac{d^4y}{dx^4}\right)^3 - 4\frac{dy}{dx} + 4y = 5\cos 3x$
(iv) $x^2\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 0$

(1) **Order of a differential equation :** The order of a differential equation is the order of the highest derivative occurring in the differential equation. For example, the order of above differential equations are 1,1,4 and 2 respectively.

Wole : The order of a differential equation is a positive integer. To determine the order of a differential equation, it is not needed to make the equation free from radicals.

(2) **Degree of a differential equation :** The degree of a differential equation is the degree of the highest order derivative, when differential coefficients are made free from radicals and fractions. In other words, the degree of a differential equation is the power of the highest order derivative occurring in differential equation when it is written as a polynomial in differential coefficients.

Note : \Box The definition of degree does not require variables *x*, *y*, *t* etc. to be free from radicals and fractions. The degree of above differential equations are 1, 1, 3 and 2 respectively.

Example: 1 The order and degree of the differential equation
$$y = i \frac{dy}{dx} + \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^3}$$
 are
(a) 1, 2 (b) 2, 1 (c) 1, (d) 2, 2
Solution: (a) Clearly, highest order derivative involved is $\frac{dy}{dx}$, having order 1.
Expressing the above differential equation as a polynomial in derivative, we have
 $\left(y - x\frac{dy}{dx}\right)^2 = a^2 \left(\frac{dy}{dx}\right)^2 + b^2$
i.e., $(x^2 - a^3) \left(\frac{dy}{dx}\right)^2 - 2xy\frac{dy}{dx} + y^2 - b^2 = 0$
In this equation, the power of highest order derivative is 2. So its degree is 2.
Example: 2 The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + x^{\frac{1}{2}} = 0$, are respectively
(a) 2, 3 (b) 3, 3 (c) 2, 6 (d) 2, 4
Solution: (a) The highest order derivative involved is $\frac{d^2y}{dx^2}$ which is the 2nd order derivative. Hence order of the
differential equation is 2. Making the above equation free from radical, as far as the derivatives are
concerned, we have
 $\left(\frac{d^2y}{dx^2} + x^{\frac{1}{4}}\right)^1 = -\frac{dy}{dx}$ i.e. $\left(\frac{d^2y}{dx^2} + x^{\frac{1}{4}}\right)^1 + \frac{dy}{dx^2} = 0$.
The exponent of highest order derivative $\frac{d^2y}{dx^2}$ will be 3. Hence degree of the differential equation is 3.
Example: 3 The degree of the differential equation $\frac{d^2y}{dx^2} + \frac{d(\frac{dy}{dx})^2}{dx^2} + x^2 \log\left(\frac{d^2y}{dx^2}\right)$ is
(a) 1 (b) 2 (c) 3 (d) None of these
Solution: (d) The above equation cannot be written as a polynomial in derivative due to the term $x^2 \log\left(\frac{d^2y}{dx^2}\right)$.
Hence degree of the differential equation is the defined.
Example: 4 The order of the differential equation is $x^2 + y^2 + 2gx + 2fy + c = 0$, is
(a) 1 (b) 2 (c) 3 (d) 4
Solution: (c) To eliminate the arbitrary constants g , f and c , we need 3 more equations, that by differentiating the
equation 3 times. Hence highest order derivative will be $\frac{d^3y}{dx^2}$. Hence order of the differential
equation will be 3.
Example: 5 The order of the differential equation of all cruces of radius r , having centre on y-axis and passing
through the origin is
(a) 1 (b) 2 (c) 3 (c) 3 (

Example: 6	The order of the differential equation, whose general solution is $y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} + c_4 e^{x+c_5}$, where							
	c_1, c_2, c_3, c_4, c_5 are arbitr	ary constants is						
	(a) 5	(b) 4	(c) 3	(d) None of these				
Solution: (c)		eneral solution, we have						
	$y = c_1 e^x + c_2 e^{2x} + c_3$	7	2					
	· i · i ·	$c_2 e^{2x} + c_3 e^{3x} = c_1' e^x + c_2 e^{2x} +$	5					
				h different terms. Hence the				
		al equation formed, will be						
Example: 7	The degree of the diff	erential equation satisfying	$\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x)$	(x-y) is				
	(a) 1	(b) 2	(c) 3	(d) None of these				
Solution: (a)	To eliminate a the abo	ve equation is differentiate	d once and exponent	of $\frac{dy}{dx}$ will be1. Hence degree is				
	1	-	-	dx				
			- \3					
Example: 8	The order and degree	of $y = 1 + \frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{3!} \left(\frac{dy}{dx}\right)^2$	$\left(\frac{dy}{dx}\right)$ + is					
	(a) 1, 2		(b) 1, 1					
	(c) Order 1, degree no	t defined	(d)	None of these				
Solution: (b)	The given differential	equation can be re-written	as $y = e^{\frac{dy}{dx}} \Rightarrow \ln y = \frac{dy}{dx}$					
	This is a polynomial in	derivative. Hence order is	1 and degree 1.					
Example: 9	The order and degree	of $\frac{d^2 y}{dx^2} = \sin\left(\frac{dy}{dx}\right) + x$ is						
	(a) 2, 1		(b) Order 2, degr	ree not defined				
	(c) 2, 0		(d) None of these	2				
Solution: (b)	As the highest order de	erivative involved is $\frac{d^2y}{dx^2}$. H	Ience order is 2.					
	The given differential defined.	equation cannot be written	as a polynomial in d	erivatives, the degree is not				

8.2 Formation of Differential Equation

Formulating a differential equation from a given equation representing a family of curves means finding a differential equation whose solution is the given equation. If an equation, representing a family of curves, contains n arbitrary constants, then we differentiate the given equation n times to obtain n more equations. Using all these equations, we eliminate the constants. The equation so obtained is the differential equation of order n for the family of given curves.

Consider a family of curves $f(x, y, a_1, a_2, ..., a_n) = 0$ (i)

where a_1, a_2, \dots, a_n are *n* independent parameters.

Equation (i) is known as an *n* parameter family of curves *e.g.* y = mx is a one-parameter family of straight lines. $x^2 + y^2 + ax + by = 0$ is a two parameters family of circles.

If we differentiate equation (i) *n* times *w.r.t. x*, we will get *n* more relations between $x, y, a_1, a_2, \dots, a_n$ and derivatives of *y w.r.t. x*. By eliminating a_1, a_2, \dots, a_n from these *n* relations and equation (i), we get a differential equation.

Clearly order of this differential equation will be *n* i.e. equal to the number of independent parameters in the family of curves.

Algorithm for formation of differential equations

Step (i) : Write the given equation involving independent variable x (say), dependent variable *y* (say) and the arbitrary constants.

Step (ii) : Obtain the number of arbitrary constants in step (i). Let there be n arbitrary constants.

Step (iii) : Differentiate the relation in step (i) *n* times with respect to *x*.

Step (iv) : Eliminate arbitrary constants with the help of n equations involving differential coefficients obtained in step (iii) and an equation in step (i). The equation so obtained is the desired differential equation.

Example: 10 Differential equation whose general solution is $y = c_1 x + \frac{c_2}{x}$ for all values of c_1 and c_2 is

(a)
$$\frac{d^2y}{dx^2} + \frac{x^2}{y} + \frac{dy}{dx} = 0$$
 (b) $\frac{d^2y}{dx^2} + \frac{y}{x^2} - \frac{dy}{dx} = 0$ (c) $\frac{d^2y}{dx^2} - \frac{1}{2x}\frac{dy}{dx} = 0$ (d) $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 0$
 $y = c_1x + \frac{c_2}{x}$ (i)

Solution: (d)

There are two arbitrary constants. To eliminate these constants, we need to differentiate (i) twice. Differentiating (i) with respect to x,

$$\frac{dy}{dx} = c_1 - \frac{c_2}{x^2}$$
(ii)

Again differentiating with respect to x,

Example: 11

 $y = \frac{x}{x+1}$ is a solution of the differential equation

(a) $y^2 \frac{dy}{dx} = x^2$ (b) $x^2 \frac{dy}{dx} = y^2$ (c) $y \frac{dy}{dx} = x$ (d) $x \frac{dy}{dx} = y$ **Solution:** (b) We have $y = \frac{x}{x+1} \Rightarrow \frac{1}{y} = \frac{x+1}{x} = 1 + \frac{1}{x}$ Differentiating w.r.t. x, $-\frac{1}{y^2}\frac{dy}{dx} = 0 - \frac{1}{x^2}$ $\therefore x^2 \frac{dy}{dx} = y^2$

Example: 12

The differential equation of all parabolas whose axes are parallel to y axis is

(a)
$$\frac{d^3y}{dx^3} = 0$$
 (b) $\frac{d^2x}{dy^2} = c$ (c) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = c$

.....(i)

Solution: (a) The equation of a parabola whose axis is parallel to *y*-axis may be expressed as

 $(x - \alpha)^2 = 4a(y - \beta)$ There are three arbitrary constants α , β and a.

We need to differentiate (i) 3 times

Differentiating (i) w.r.t. x, $2(x - \alpha) = 4a \frac{dy}{dx}$

Again differentiating w.r.t. x,

$$2 = 4a\frac{d^2y}{dx^2} \Rightarrow \frac{d^2y}{dx^2} = \frac{1}{2a}$$

Differentiating *w.r.t. x*,

$$\frac{d^{3}y}{dx^{3}} = 0$$

Example: 13 The differential equation of family of curves whose tangent form an angle of $\pi/4$ with the hyperbola $xy = c^2$ is

(a)
$$\frac{dy}{dx} = \frac{x^2 + c^2}{x^2 - c^2}$$
 (b) $\frac{dy}{dx} = \frac{x^2 - c^2}{x^2 + c^2}$ (c) $\frac{dy}{dx} = -\frac{c^2}{x^2}$ (d) None of these

Solution: (b) The slope of the tangent to the family of curves is $m_1 = \frac{dy}{dx}$

Equation of the hyperbola is $xy = c^2 \Rightarrow y = \frac{c^2}{r}$

$$\therefore \ \frac{dy}{dx} = -\frac{c^2}{x^2}$$

 \therefore Slope of tangent to $xy = c^2$ is $m_2 = -\frac{c^2}{x^2}$


Now
$$\tan \frac{\pi}{4} = \frac{m_1 - m_2}{1 + m_1 m_2} \implies 1 = \frac{\frac{dy}{dx} + \frac{c^2}{x^2}}{1 - \frac{c^2}{x^2}\frac{dy}{dx}} \implies \frac{dy}{dx} \left(1 + \frac{c^2}{x^2}\right) = \left(1 - \frac{c^2}{x^2}\right)$$

$$\therefore \frac{dy}{dx} = \frac{x^2 - c^2}{x^2 + c^2}$$

8.3 Variable Separable type Differential Equation

(1) **Solution of differential equations :** If we have a differential equation of order 'n' then by solving a differential equation we mean to get a family of curves with n parameters whose differential equation is the given differential equation. Solution or integral of a differential equation is a relation between the variables, not involving the differential coefficients such that this relation and the derivatives obtained from it satisfy the given differential equation. The solution of a differential equation is also called its primitive.

For example
$$y = e^x$$
 is a solution of the differential equation $\frac{dy}{dx} = y$.

(i) **General solution :** The solution which contains as many as arbitrary constants as the order of the differential equation is called the general solution of the differential equation. For

example, $y = A \cos x + B \sin x$ is the general solution of the differential equation $\frac{d^2 y}{dx^2} + y = 0$. But $y = A \cos x$ is not the general solution as it contains one arbitrary constant.

(ii) Particular solution : Solution obtained by giving particular values to the arbitrary constants in the general solution of a differential equation is called a particular solution. For

example, $y = 3\cos x + 2\sin x$ is a particular solution of the differential equation $\frac{d^2y}{d^2y} + y = 0$

(2) Differential equations of first order and first degree : A differential equation of first order and first degree involves x, y and $\frac{dy}{dx}$. So it can be put in any one of the following forms: $\frac{dy}{dx} = f(x,y) \text{ or } f\left(x,y,\frac{dy}{dx}\right) = 0 \text{ or } f(x,y)dx + g(x,y)dy = 0 \text{ where } f(x,y) \text{ and } g(x,y) \text{ are obviously the}$

functions of *x* and *y*.

(3) Geometrical interpretation of the differential equations of first order and first **degree :** The general form of a first order and first degree differential equation is $f\left(x, y, \frac{dy}{dx}\right) = 0$

.....(i)

We know that the direction of the tangent of a curve in Cartesian rectangular coordinates at any point is given by $\frac{dy}{dx}$, so the equation in (i) can be known as an equation which establishes the relationship between the coordinates of a point and the slope of the tangent *i.e.*, $\frac{dy}{dx}$ to the integral curve at that point. Solving the differential equation given by (i) means finding those curves for which the direction of tangent at each point coincides with the direction of the field. All the curves represented by the general solution when taken together will give the locus of the differential equation. Since there is one arbitrary constant in the general solution of the equation of first order, the locus of the equation can be said to be made up of single infinity of curves.

(4) Solution of first order and first degree differential equations : A first order and first degree differential equation can be written as

$$f(x, y)dx + g(x, y)dy = 0$$

or $\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)'}$ or $\frac{dy}{dx} = \phi(x, y)$

Where f(x, y) and g(x, y) are obviously the functions of x and y. It is not always possible to solve this type of equations. The solution of this type of differential equations is possible only when it falls under the category of some standard forms.

(5) **Equations in variable separable form :** If the differential equation of the form

$$f_1(x)dx = f_2(y)dy$$
(i)

where f_1 and f_2 being functions of x and y only. Then we say that the variables are separable in the differential equation.

Thus, integrating both sides of (i), we get its solution as $\int f_1(x)dx = \int f_2(y)dy + C$,

where c is an arbitrary constant.

There is no need of introducing arbitrary constants to both sides as they can be combined together to give just one.

(i) Differential equations of the type $\frac{dy}{dr} = f(x)$

To solve this type of differential equations we integrate both sides to obtain the general solution as discussed following : $\frac{dy}{dx} = f(x) \Leftrightarrow dy = f(x)dx$

Integrating both sides, we obtain, $\int dy = \int f(x)dx + C$ or $y = \int f(x)dx + C$.

(ii) Differential equations of the type $\frac{dy}{dx} = f(y)$

To solve this type of differential equations we integrate both sides to obtain the general solution as discussed following :

$$\frac{dy}{dx} = f(y) \Longrightarrow \frac{dx}{dy} = \frac{1}{f(y)} \Longrightarrow dx = \frac{1}{f(y)}dy$$

Integrating both sides, we obtain, $\int dx = \int \frac{1}{f(y)} dy + C$ or $x = \int \frac{1}{f(y)} dy + C$.

(6) Equations reducible to variable separable form

(i) Differential equations of the form $\frac{dy}{dx} = f(ax + by + c)$ can be reduced to variable separable form by the substitution ax + by + c = Z

$$\therefore \quad a+b\frac{dy}{dx} = \frac{dZ}{dx}$$
$$\therefore \quad \left(\frac{dZ}{dx} - a\right)\frac{1}{b} = f(Z) \implies \frac{dZ}{dx} = a+bf(Z).$$

This is variable separable form.

(ii) Differential equation of the form

$$\frac{dy}{dx} = \frac{ax + by + c}{Ax + By + C}, \text{ where } \frac{a}{A} = \frac{b}{B} = K \text{ (say)}$$
$$\therefore \quad \frac{dy}{dx} = \frac{K(Ax + By) + C}{Ax + By + C}$$

Put Ax + By = Z

$$\therefore \quad A + B\frac{dy}{dx} = \frac{dZ}{dx}, \quad \therefore \quad \left[\frac{dZ}{dx} - A\right]\frac{1}{B} = \frac{KZ + C}{Z + C} \implies \frac{dZ}{dx} = A + B\frac{KZ + C}{Z + C}$$

This is variable separable form and can be solved.
Example: 14 The solution of the differential equation
$$(1 + x^2) \frac{dy}{dx} - x(1 + y^2)$$
 is [AISSE 1983]
(a) $2\tan^{-1} y = \log(1 + x^2) + c$ (b) $\tan^{-1} y = \log(1 + x^2) + c$
(c) $2\tan^{-1} y + \log(1 + x^2) + c = 0$ (d) None of these
Solution: (a) Separating the variables, we can re-write the given differential equation as $\frac{xdx}{1 + x^2} - \frac{dy}{1 + y^2} = \int \frac{2x dx}{1 + x^2} - \frac{dy}{1 + y^2} = \int \frac{2x}{1 + x^2} - \frac{dy}{1 + y^2} = 2 \tan^{-1} y - \log_2(1 + x^2) + c$
Example: 15 The solution of the differential equation $\frac{dy}{dx} - x^2 + \sin 3x$ is [DSSE 1981]
(a) $y = \frac{x^2}{3} + \frac{\cos 3x}{3} + c$ (b) $y = \frac{x^3}{3} - \frac{\cos 3x}{3} + c$ (c) $y = \frac{x^3}{3} - \frac{\cos 3x}{3} + c$
Example: 16 The solution of $\frac{dy}{dx} = \frac{1}{x^2 + \sin y}$ is
(a) $x = \frac{x^3}{3} - \cos y + c$ (b) $y + \cos y = x + c$ (c) $x = \frac{y^3}{3} + \cos y + c$ (d) None of these
Solution: (a) Given equation may be re-written as $dx = (y^2 + \sin y)dy$
Integrating, $\int dx = \int (y^2 + \sin y)dy$
 $\therefore x = \frac{y^3}{3} - \cos y + c$
Example: 17 The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is
(a) $4x - y + 1 = 2\tan(2x - 2c)$ (b) $4x - y - 1 = 2\tan(2x - 2c)$
(c) $4x + y + 1 = 2\tan(2x - 2c)$ (d) None of these
Solution: (c) Let $4x + y + 1 = 2 = \delta + \frac{dy}{dx} = \frac{dx}{dx} = \frac{dy}{dx} = \frac{dx}{dx} - 4$
 $\therefore \frac{dy}{dx} = (4x + y + 1)^2$
 $= \frac{dx}{dx} - 4 = z^2 - \frac{dx}{dx} = z^2 + 4 = \frac{dx}{z^2 + 4} = dx = \frac{1}{2} \tan^{-1} \frac{z}{2} - x + c \Rightarrow \tan^{-1} (\frac{4x + y + 1}{2}) = 2x + 2c$
 $\therefore 4x + y + 1 = 2\tan(2x + 2c)$
Example: 18 Solution of the differential equation $\frac{dy}{dx} = \frac{x + y + 7}{2x^2 + 2y^2 + 3}$ is
(a) $\delta(x + y) + 11 \log(3x + 3y + 10) = 9x + c$ (b) $\delta(x + y) - 11 \log(3x + 3y + 10) = 9x + c$
(c) $\delta(x + y) + 11 \log(3x + 3y + 10) = 9x + c$ (c) $\delta(x + y) - 11 \log(3x + 3y + 10) = 9x + c$
(c) $\delta(x + y) - 11 \log(2x + 3y + 10) = 9x + c$ (d) None of these
Solution: (b, c)Given equation may be re-written as $\frac{dy}{dx} = \frac{x + y + 7}{2x + 2y + 3}$ is
Let $x + y = z$

$$\Rightarrow 1 + \frac{dy}{dx} = \frac{dz}{dx} \Rightarrow \frac{dy}{dx} = \frac{dz}{dx} - 1$$

$$\therefore \frac{dz}{dx} - 1 = \frac{z+7}{2z+3}$$

$$\Rightarrow \frac{dz}{dx} = 1 + \frac{z+7}{2z+3} = \frac{3z+10}{2z+3} \Rightarrow \frac{2z+3}{3z+10} dz = dx \Rightarrow \frac{\frac{2}{3}(3z+10) - \frac{11}{3}}{3z+10} dz = dx \Rightarrow \int \frac{2}{3} dz - \frac{11}{9} \int \frac{3dz}{3z+10} = \int dx$$

$$\Rightarrow \frac{2}{3} z - \frac{11}{9} \log(3z+10) = x + c_1 \Rightarrow 6z - 11 \log(3z+10) = 9x + 9c_1$$

$$\therefore 6(x+y) - 11 \log(3x+3y+10) = 9x + c \qquad [9c_1 = c]$$

$$\Rightarrow 6(x+y) - 11 \log 3\left(x+y+\frac{10}{3}\right) = 9x + c \Rightarrow 6(x+y) - 11 \log\left(x+y+\frac{10}{3}\right) = 9x + (c+11 \log 3)$$

$$\therefore 6(x+y) - 11 \log\left(x+y+\frac{10}{3}\right) = 9x + k \qquad (k = c+11 \log 3)$$

8.4 Homogeneous Differential Equation

(1) **Homogeneous differential equation :** A function f(x, y) is called a homogeneous function of degree *n* if $f(\lambda x, \lambda y) = \lambda^n f(x, y)$.

For example, $f(x,y) = x^2 - y^2 + 3xy$ is a homogeneous function of degree 2, because $f(\lambda x, \lambda y) = \lambda^2 x^2 - \lambda^2 y^2 + 3\lambda x$. $\lambda y = \lambda^2 f(x,y)$. A homogeneous function f(x, y) of degree *n* can always be written as $f(x,y) = x^n f\left(\frac{y}{x}\right)$ or $f(x,y) = y^n f\left(\frac{x}{y}\right)$. If a first-order first degree differential equation is expressible in the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ where f(x, y) and g(x, y) are homogeneous functions of the same degree, then it is called a homogeneous differential equation. Such type of equations can be reduced to variable separable form by the substitution y = vx. The given differential equation can be written as $\frac{dy}{dx} = \frac{x^n f(y/x)}{x^n g(y/x)} = \frac{f(y/x)}{g(y/x)} = F\left(\frac{y}{x}\right)$. If y = vx, then $\frac{dy}{dx} = v + x \frac{dv}{dx}$. Substituting the value of $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$, we get $v + x \frac{dv}{dx} = F(v) \Rightarrow \frac{dv}{F(v) - v} = \frac{dx}{x}$. On integration, $\int \frac{1}{F(v) - v} dv = \int \frac{dx}{x} + C$ where *C* is an arbitrary constant of integration. After integration, *v* will be replaced by $\frac{y}{x}$ in

complete solution.

(2) Algorithm for solving homogeneous differential equation

Step (i) : Put the differential equation in the form $\frac{dy}{dx} = \frac{\phi(x, y)}{\psi(x, y)}$

Step (ii) : Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ in the equation in step (i) and cancel out *x* from the right hand side. The equation reduces to the form $v + x \frac{dv}{dx} = F(v)$.

Step (iii) : Shift *v* on RHS and separate the variables *v* and *x*

Step (iv) : Integrate both sides to obtain the solution in terms of *v* and *x*.

Step (v) : Replace v by $\frac{y}{x}$ in the solution obtained in step (iv) to obtain the solution in terms of x and y.

(3) Equation reducible to homogeneous form

A first order, first degree differential equation of the form

$$\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}, \text{ where } \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \qquad \dots \dots (i)$$

This is non-homogeneous.

It can be reduced to homogeneous form by certain substitutions. Put x = X + h, y = Y + kWhere *h* and *k* are constants, which are to be determined.

$$\therefore \frac{dy}{dx} = \frac{dy}{dY} \cdot \frac{dY}{dX} \cdot \frac{dX}{dx} = \frac{dY}{dX}$$

Substituting these values in (i), we have $\frac{dY}{dX} = \frac{(a_1X + b_1Y) + a_1h + b_1k + c_1}{(a_2X + b_2Y) + a_2h + b_2k + c_2}$ (ii)

Now *h*, *k* will be chosen such that $\begin{bmatrix} a_1h + b_1k + c_1 = 0 \\ a_2h + b_2k + c_2 = 0 \end{bmatrix}$

.....(iii)
i.e.
$$\frac{h}{b_1c_2 - b_2c_1} = \frac{k}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$
(iv)

For these values of *h* and *k* the equation (ii) reduces to $\frac{dY}{dX} = \frac{a_1X + b_1Y}{a_2X + b_2Y}$ which is a

homogeneous differential equation and can be solved by the substitution Y = vX. Replacing X and Y in the solution so obtained by x - h and y - k respectively, we can obtain the required solution in terms of x and y.

Example: 19 The solution of the differential equation
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$
 is [IIT 1986]
(a) $y = xe^{cx}$ (b) $y + xe^{cx} = 0$ (c) $y + e^x = 0$ (d) None of these
Solution: (a) Given equation may be expressed as $\frac{dy}{dx} = \frac{y}{x} \left[\log \left(\frac{y}{x} \right) + 1 \right]$ (i)
Let $\frac{y}{x} = v \Rightarrow y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$
 \therefore From (i), $v + x \frac{dv}{dx} = v(\log v + 1) \Rightarrow x \frac{dv}{dx} = v \log v \Rightarrow \frac{dv}{v \log v} = \frac{dx}{x} \Rightarrow \int \frac{1}{\log v} d(\log v) = \int \frac{dx}{x}$
 $\therefore \log (\log v) = \log x + \log c \Rightarrow \log (\log v) = \log (cx) \Rightarrow \log v = cx \Rightarrow v = e^{cx} \Rightarrow \frac{y}{x} = e^{cx}, \therefore y = xe^{cx}$

Example: 20 The solution of differential equation $yy' = x \left(\frac{y^2}{x^2} + \frac{\phi(y^2 / x^2)}{\phi'(y^2 / x^2)} \right)$ is

(a)
$$\phi(y^2 / x^2) = cx^2$$
 (b) $x^2 \phi(y^2 / x^2) = c^2 y^2$ (c) $x^2 \phi(y^2 / x^2) = c$ (d) $\phi(y^2 / x^2) = \frac{cy}{x}$

Solution: (a) Given equation may be re-written as
$$\frac{y}{x} \frac{dy}{dx} = \left(\frac{x}{x}\right)^{1} \frac{\phi(y/x)^{2}}{\phi(y',x)^{2}}$$
(1)
Let $y = vx \Rightarrow \frac{dy}{dx} = v+x \frac{dy}{dx}$ and $\frac{y}{x} = v$
 \therefore From (1), $v\left(v + x\frac{dv}{dx}\right) - v^{2} + \frac{dv^{2}}{\phi(v^{2})} \Rightarrow vx\frac{dv}{dx} - \frac{\phi(v^{2})}{\phi(v^{2})} \Rightarrow \frac{\phi(v^{2})(2v,dv)}{\phi(v^{2})} = 2\frac{dx}{x}$
Integrating, $\ln(\phi v^{2}) - 2hx + hc \Rightarrow \phi(v^{2}) - cx^{2}$
 $\therefore \phi(v^{2}/x^{2}) - cx^{2}$
Example: 21 The solution of $\frac{dy}{dx} = \frac{y^{2} + 2x^{2}}{x^{2} + 2x^{2}}$ is
(a) $(x^{2} - y^{2})^{2} = Bx^{2}y^{2}$ (b) $(x^{2} + y^{2})^{2} = Bx^{2}y^{2}$ (c) $(x^{2} - y^{2})^{2} = x^{2}y^{2}$ (d) None of these
Solution: (a) Given equation is homogeneous. Let $y = vx$ $\therefore \frac{dy}{dx} - v + x\frac{dv}{dx}$ $\Rightarrow \frac{v^{2} + 2x^{2}}{1 + 2v^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(x)x}{1 + 2(x/x)^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(y/x)}{1 + 2(y/x)^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{dv}{dx} - v\left(\frac{x^{2} + 2}{1 + 2v^{2}} - 1\right) - v\left(\frac{1 - v^{2}}{1 + 2v^{2}}\right)^{2}$
 $\Rightarrow \frac{x^{3} + 2x^{2}}{v^{3} - 2v^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(y/x)}{1 + 2(y/x)^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{dv}{dx} - v\left(\frac{x^{2} + 2}{1 + 2v^{2}} - 1\right) - v\left(\frac{1 - v^{2}}{1 + 2v^{2}}\right)^{2}$
 $\Rightarrow \frac{1 + 2v^{2}}{v^{3} - 2v^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(y/x)}{1 + 2(y/x)^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{dv}{dx} - v\left(\frac{x^{2} + 2}{1 + 2v^{2}} - 1\right) - v\left(\frac{1 - v^{2}}{1 + 2v^{2}}\right)^{2}$
 $\Rightarrow \frac{1 + 2v^{2}}{v^{3} - 2v^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(x)}{1 + 2v^{2} + 2v} = v + x\frac{dv}{dx} \Rightarrow \frac{dv}{dx} - v\left(\frac{x^{2} + 2}{1 + 2v^{2}} - 1\right) - v\left(\frac{1 - v^{2}}{1 + 2v^{2}}\right)^{2}$
 $\Rightarrow \frac{1 + 2v^{2}}{v^{3} - 2v^{2}} = v + x\frac{dv}{dx} \Rightarrow \frac{(y/x)^{2} + 2(x)}{1 + 2v^{2} + (v)^{2}} = \frac{dv}{dx} \Rightarrow \frac{dv}{dx} = v\left(\frac{1 - v^{2}}{1 + 2v^{2}}\right)^{2} = \frac{1 - v^{2}}{1 + 2v^{2}}}$
 $v(1 - v)^{1} + v) + bx = \frac{dv}{dx}$
 $v(1 - v)^{1} + v) + bx$
Integrating both side, we get $\ln v + \frac{3}{2} \ln(1 - v) - \frac{3}{2}\ln(1 + v) = \ln x + \ln c \Rightarrow \ln v - \frac{3}{2}\ln(1 + v) = \ln c$
 $\Rightarrow v/((1 - v)^{1} + v)^{1/2} = cx (\frac{v}{x})^{2} = (1 - v^{2})^{2} \Rightarrow (\frac{v}{x})^{2} = (1 - \frac{v^{2}}{x})^{2} \Rightarrow (\frac{v}{x})^{2} =$

$$\Rightarrow \frac{dY}{dX} = v + X \frac{dv}{dX} \Rightarrow \frac{X - 3Y}{3X - Y} = v + X \frac{dv}{dX} \Rightarrow \frac{1 - 3(Y/X)}{3 - (Y/X)} = v + X \frac{dv}{dX} \Rightarrow \frac{1 - 3v}{3 - v} = v + X \frac{dv}{dX}$$
$$\Rightarrow X \frac{dv}{dX} = \frac{1 - 3v}{3 - v} - v = \frac{v^2 - 6v + 1}{3 - v} \Rightarrow \frac{(3 - v)dv}{v^2 - 6v + 1} = \frac{dX}{X} \Rightarrow \frac{2v - 6}{v^2 - 6v + 1} dv = -2 \frac{dX}{X}$$
Integrating, $\ln(v^2 - 6v + 1) = -2 \ln X + \ln c \Rightarrow \ln(v^2 - 6v + 1) + \ln X^2 = \ln c \Rightarrow X^2(v^2 - 6v + 1) = c \Rightarrow$
$$Y^2 - 6XY + X^2 = c$$
$$\therefore y^2 - 6(x + 2)y + (x + 2)^2 = c$$

8.5 Exact Differential Equation

(1) **Exact differential equation :** If *M* and *N* are functions of *x* and *y*, the equation Mdx + Ndy = 0 is called exact when there exists a function f(x, y) of *x* and *y* such that

$$d[f(x, y)] = Mdx + Ndy \qquad i.e., \quad \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = Mdx + Ndy$$

where $\frac{\partial f}{\partial x}$ = Partial derivative of f(x, y) with respect to x (keeping y constant) $\frac{\partial f}{\partial y}$ = Partial derivative of f(x, y) with respect to y (treating x as constant)

Wole : • An exact differential equation can always be derived from its general solution directly by differentiation without any subsequent multiplication, elimination etc.

(2) **Theorem :** The necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ *i.e.*, partial derivative of M(x, y) w.r.t. y = Partial derivative of N(x, y) w.r.t. x

(3) **Integrating factor :** If an equation of the form Mdx + Ndy = 0 is not exact, it can always be made exact by multiplying by some function of x and y. Such a multiplier is called an integrating factor.

(4) Working rule for solving an exact differential equation :

Step (i) : Compare the given equation with Mdx + Ndy = 0 and find out M and N. Then find out $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$. If $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the given equation is exact.

Step (ii) : Integrate *M* with respect to *x* treating *y* as a constant.

Step (iii) : Integrate N with respect to y treating x as constant and omit those terms which have been already obtained by integrating M.

Step (iv) : On adding the terms obtained in steps (ii) and (iii) and equating to an arbitrary constant, we get the required solution.

In other words, solution of an exact differential equation is $\int Mdx + \int Ndy = c$ Regarding y as constant of containing x

(5) **Solution by inspection :** If we can write the differential equation in the form $f(f_1(x,y))d(f_1(x,y)) + \phi(f_2(x,y))d(f_2(x,y)) + \dots = 0$, then each term can be easily integrated separately. For this the following results must be memorized.

(i) d(x + y) = dx + dy (ii) d(xy) = xdy + ydx

(iii)
$$d\left(\frac{x}{y}\right) = \frac{ydx - xdy}{y^2}$$
 (iv) $d\left(\frac{y}{x}\right) = \frac{xdy - ydx}{x^2}$
(v) $d\left(\frac{x^2}{y}\right) = \frac{2xydx - x^2dy}{y^2}$ (vi) $d\left(\frac{y^2}{x}\right) = \frac{2xydy - y^2dx}{x^2}$
(vii) $d\left(\frac{x^2}{y^2}\right) = \frac{2xy^2dx - 2x^2ydy}{y^4}$ (viii) $d\left(\frac{y^2}{x^2}\right) = \frac{2x^2ydy - 2xy^2dx}{x^4}$
(ix) $d\left(\tan^{-1}\frac{y}{x}\right) = \frac{ydx - xdy}{x^2 + y^2}$ (x) $d\left(\tan^{-1}\frac{y}{x}\right) = \frac{xdy - ydx}{x^2 + y^2}$
(xi) $d\left(\ln(xy)\right) = \frac{xdy + ydx}{xy}$ (xii) $d\left(\ln\left(\frac{x}{y}\right)\right) = \frac{ydx - xdy}{x}$
(xiii) $d\left[\frac{1}{2}\ln(x^2 + y^2)\right] = \frac{xdx + ydy}{x^2 + y^2}$ (xiv) $d\left[\ln\left(\frac{y}{x}\right)\right] = \frac{xdy - ydx}{xy}$
(xiii) $d\left[\frac{1}{2}\ln(x^2 + y^2)\right] = \frac{xdx + ydy}{x^2 + y^2}$ (xiv) $d\left[\ln\left(\frac{y}{x}\right)\right] = \frac{ye^xdx - e^xdy}{x^2}$
(xv) $d\left(-\frac{1}{xy}\right) = \frac{xdy + ydx}{x^2 + y^2}$ (xv) $d\left[\ln\left(\frac{y}{x}\right)\right] = \frac{xdy - ydx}{xy}$
(xvi) $d\left(\frac{x^2}{x}\right) = \frac{xdy + ydx}{x^2 + y^2}$ (xvi) $d\left[\frac{e^x}{y}\right] = \frac{ye^xdx - e^xdy}{y^2}$
(xvi) $d\left(\sqrt{x^2 + y^2}\right) = \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$ (xvi) $d\left(\frac{1}{2}\log\frac{x + y}{x^2 - y^2}\right) = \frac{xdy - ydx}{x^2 - y^2}$
(xxi) $d\left(\sqrt{x^2 + y^2}\right) = \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$ (xx) $d\left(\frac{1}{2}\log\frac{x + y}{x^2 - y^2}\right) = \frac{xdy - ydx}{x^2 - y^2}$
(xxi) $d\left(\frac{1}{x}(x,y)\right)^{1-x} = \frac{f(x,y)}{\sqrt{x^2 + y^2}}$ (xx) $d\left(\frac{1}{2}\log\frac{x + y}{x^2 - y^2}\right) = \frac{xdy - ydx}{x^2 - y^2}$
(xxi) $d\left(\frac{1}{x^2 + y^2 - e^x}\right) = \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$ (xx) $d\left(\frac{1}{2}\log\frac{x + y}{x^2 - y^2}\right) = \frac{xdy - ydx}{x^2 - y^2}$
(xxi) $d\left(\frac{1}{x}(x,y)\right)^{1-x} = \frac{f(x,y)}{\sqrt{x^2 + y^2}}$ (xx) $d\left(\frac{1}{2}\log\frac{x + y}{x^2 - y^2}\right) = \frac{xdy - ydx}{\sqrt{x^2 - y^2}}$
(xxi) $d\left(\frac{1}{y^2 + y^2 - e^x}\right)$ (b) $2x^2 - y^2 - e^x$ (c) $x^2 + 2xy = e^x$ (d) $y^2 + 2xy = e^x$
Solution: (c) We have $xdx + (ydx + xdy) = 0 \rightarrow xdx + d(xy) = 0$
Integrating, $\frac{x^2}{2} + xy = \frac{e^x}{2}$
 $\therefore x^2 + 2xy = e^x$
Example: 24 Solution of $y(2 + y - 2)^2 + x + \frac{e^x dx - e^2 dy}{y^2} = 0 \rightarrow d(x^2 + x^2 + e^x) = (d)$ None of these
Solution: (a) Re-writing the given equation,
 $2y^2 dx + yx^2 dx = e^x dy \Rightarrow 2x dx + \frac{e^x dx - e^2 dy}{y^2} = 0 \rightarrow d(x^2 + y^2 + 6xy(x - y) = e^x$
Example: 25 Solution of $(x^2 - 4xy - 2x^2)$

Solution: (a) Comparing given equation with Mdx + Ndy = 0,

We get,
$$M = x^2 - 4xy - 2y^2$$
, $N = y^2 - 4xy - 2x^2$
 $\frac{\partial M}{\partial y} = -4x - 4y$
 $\frac{\partial N}{\partial x} = -4y - 4x$
 $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

So the given differential equation is exact.

Integrating *m w*.*r*.*t*. *x*, treating *y* as constant,

$$\int Mdx = \int (x^2 - 4xy - 2y^2)dx = \frac{x^3}{3} - 2x^2y - 2y^2x$$

Integrating *N w.r.t. y*, treating *x* as constant,

$$\int Ndy = \int (y^2 - 4xy - 2x^2)dy = \frac{y^3}{3} - 2xy^2 - 2x^2y = \frac{y^3}{3}; \text{ (omitting} - 2xy^2 - 2x^2y \text{ which already occur in } \int Mdx \text{)}$$

$$\therefore \text{ Solution of the given equation is } \frac{x^3}{3} - 2x^2y - 2xy^2 + \frac{y^3}{3} = \lambda \implies x^3 + y^3 - 6xy(x+y) = 3\lambda$$

$$\therefore x^3 + y^3 - 6xy(x+y) = c \quad (3\lambda = c)$$

8.6 Linear Differential Equation

(1) **Linear and non-linear differential equations** : A differential equation is a linear differential equation if it is expressible in the form $P_{o} \frac{d^{n}y}{dx^{n}} + P_{1} \frac{d^{n-1}y}{dx^{n-1}} + P_{2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n-1} \frac{dy}{dx} + P_{n}y = Q \quad \text{where} \quad P_{0}, P_{1}, P_{2}, \dots, P_{n-1}, P_{n} \quad \text{and} \quad Q \quad \text{are either constants or functions of independent variable } x.$

Thus, if a differential equation when expressed in the form of a polynomial involves the derivatives and dependent variable in the first power and there are no product of these, and also the coefficient of the various terms are either constants or functions of the independent variable, then it is said to be linear differential equation. Otherwise, it is a non linear differential equation.

It follows from the above definition that a differential equation will be non-linear differential equation if (i) its degree is more than one (ii) any of the differential coefficient has exponent more than one. (iii) exponent of the dependent variable is more than one. (iv) products containing dependent variable and its differential coefficients are present.

(2) **Linear differential equation of first order :** The general form of *a* linear differential equation of first order is

$$\frac{dy}{dx} + Py = Q \qquad \qquad \dots \dots (i)$$

Where *P* and *Q* are functions of *x* (or constants)

For example, $\frac{dy}{dx} + xy = x^3$, $x\frac{dy}{dx} + 2y = x^3$, $\frac{dy}{dx} + 2y = \sin x$ etc. are linear differential equations. This type of differential equations are solved when they are multiplied by a factor, which is

called integrating factor, because by multiplication of this factor the left hand side of the differential equation (i) becomes exact differential of some function.

Multiplying both sides of (i) by $e^{\int Pdx}$, we get $e^{\int Pdx} \left(\frac{dy}{dx} + Py\right) = Q e^{\int Pdx} \Rightarrow \frac{d}{dx} \left\{ y e^{\int Pdx} \right\} = Q e^{\int Pdx}$ On integrating both sides w. r. t. x, we get ; $y e^{\int Pdx} = \int Q e^{\int Pdx} dx + C$(ii)

which is the required solution, where *C* is the constant of integration. $e^{\int Pdx}$ is called the integrating factor. The solution (ii) in short may also be written as $y.(I.F.) = \int Q.(I.F.)dx + C$

(3) Algorithm for solving a linear differential equation :

Step (i) : Write the differential equation in the form $\frac{dy}{dx} + Py = Q$ and obtain *P* and *Q*.

Step (ii) : Find integrating factor (I.F.) given by $I.F. = e^{\int Pdx}$.

Step (iii) : Multiply both sides of equation in step (i) by I.F.

Step (iv) : Integrate both sides of the equation obtained in step (iii) *w*. *r*. *t*. *x* to obtain $y(I.F.) = \int Q(I.F.)dx + C$

This gives the required solution.

(4) **Linear differential equations of the form** $\frac{dx}{dy} + Rx = S$. Sometimes a linear differential equation can be put in the form $\frac{dx}{dy} + Rx = S$ where *R* and *S* are functions of *y* or constants. Note that *y* is independent variable and *x* is a dependent variable.

(5) Algorithm for solving linear differential equations of the form $\frac{dx}{dy} + Rx = S$

Step (i) : Write the differential equation in the form $\frac{dx}{dy} + Rx = S$ and obtain *R* and *S*.

Step (ii) : Find I.F. by using $I.F. = e^{\int R dy}$

Step (iii) : Multiply both sides of the differential equation in step (i) by *I.F.*

Step (iv) : Integrate both sides of the equation obtained in step (iii) *w*. *r*. *t*. *y* to obtain the solution given by

 $x(I.F.) = \int S(I.F.) dy + C$ where C is the constant of integration.

(6) Equations reducible to linear form (Bernoulli's differential equation) : The differential equation of type $\frac{dy}{dx} + Py = Qy^n$

.....(i)

Where *P* and *Q* are constants or functions of *x* alone and *n* is a constant other than zero or unity, can be reduced to the linear form by dividing by y^n and then putting $y^{-n+1} = v$, as explained below.

Dividing both sides of (i) by y^n , we get $y^{-n} \frac{dy}{dx} + Py^{-n+1} = Q$

Putting $y^{-n+1} = v$ so that $(-n+1)y^{-n}\frac{dy}{dx} = \frac{dv}{dx}$, we get $\frac{1}{-n+1}\frac{dv}{dx} + Pv = Q \Rightarrow \frac{dv}{dx} + (1-n)Pv = (1-n)Q$ which is a linear differential equation.

Remark : If n = 1, then we find that the variables in equation (i) are separable and it can be easily integrated by the method discussed in variable separable from.

(7) Differential equation of the form :
$$\frac{dy}{dx} + P\phi(y) = Q\psi(y)$$

where *P* and *Q* are functions of *x* alone or constants.

Dividing by
$$\psi(y)$$
, we get $\frac{1}{\psi(y)} \frac{dy}{dx} + \frac{\phi(y)}{\psi(y)}P = Q$
Now put $\frac{\phi(y)}{\psi(y)} = v$, so that $\frac{d}{dx} \left\{ \frac{\phi(y)}{\psi(y)} \right\} = \frac{dv}{dx}$ or $\frac{dv}{dx} = k \cdot \frac{1}{\psi(y)} \frac{dy}{dx}$, where k is constant
We get $\frac{dv}{dx} + kPv = kQ$
Which is linear differential equation.
Example: 26 Which of the following is a linear differential equation
(a) $\left(\frac{d^2y}{dx^2}\right)^2 + x^2 \left(\frac{dy}{dx}\right)^2 = 0$ (b) $y = \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ (c) $\frac{dy}{dx} + \frac{y}{x} = \log x$ (d) $y \frac{dy}{dx} - 4 = x$
Solution: (c) (a), (b), (d) do not fulfill the criteria of a linear differential equation but (c) do.
 $\frac{dy}{dx} + \frac{y}{x} = \log x$ is a linear differential equation.
Example: 27 Find the integral factor of equation $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2 - 1$ [UPSEAT 2002]
(a) $x^2 + 1$ (b) $\frac{2x}{x^2 + 1}$ (c) $\frac{x^2 - 1}{x^2 + 1}$ (d) None of these
Solution: (a) Given equation may be written as $\frac{dy}{dx} + \frac{2x}{x^2 + 1}y = \frac{x^2 - 1}{x^2 + 1}$
Comparing with $\frac{dy}{dx} + Py = Q$,
 $P = \frac{2x}{x^2 + 1}$
I.F. $= e^{\int \frac{Ptt}{t}} = e^{\int \frac{2tt}{t}} = e^{b(t+x^2)} = 1 + x^2$
Example: 28 The solution of $\frac{dy}{dx} + 2y \tan x = \sin x$ is
(a) $y \sec^2 x = \sec^2 x + c$ (b) $y \sec^2 x = \sec x + c$ (c) $y \sin x = \tan x + c$ (d) None of these

Solution: (b) Comparing with $\frac{dy}{dx} + Py = Q$, $P = 2 \tan x$, $Q = \sin x$ I.F. = $e^{\int 2 \tan x dx} = e^{2 \ln \sec x} = e^{\ln \sec^2 x} = \sec^2 x$ Multiplying given equation by I.F. and integrating, $y \sec^2 x = \int \sin x \cdot \sec^2 x dx = \int \sec x \tan x dx$ $\therefore y \sec^2 x = \sec x + c$ The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$ is Example: 29 [AIEEE 2003] (a) $(x-2) = ke^{\tan^{-1}y}$ (b) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (c) $xe^{\tan^{-1}y} = \tan^{-1}y + k$ (d) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ **Solution:** (b) We have $(x - e^{\tan^{-1} y}) \frac{dy}{dx} = -(1 + y^2) \Rightarrow \frac{dx}{dy} = -\left(\frac{x - e^{\tan^{-1} y}}{1 + y^2}\right) \Rightarrow \frac{dx}{dy} + \frac{1}{1 + y^2} x = \frac{e^{\tan^{-1} y}}{1 + y^2}$(i) This is a linear differential equation of the form $\frac{dx}{dy} + R(y) \cdot x = S(y)$ $R = \frac{1}{1+v^2}$, $S = \frac{e^{\tan^{-1} y}}{1+v^2}$ Integrating factor = $e^{\int Rdy} = e^{\int \frac{dy}{1+y^2}} = e^{\tan^{-1}y}$ Multiplying (i) by I.F. and integrating, $xe^{\tan^{-1}y} = \int \frac{e^{\tan^{-1}y}}{1+v^2} \cdot e^{\tan^{-1}y} dy = \int \frac{(e^{\tan^{-1}y})^2 dy}{1+v^2} = \frac{(e^{\tan^{-1}y})^2}{2} + \frac{k}{2}$ $\therefore 2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ Solution of $\frac{dy}{dx} - y \tan x = -y^2 \sec x$ is Example: 30 (a) $y \sec x = \tan x + c$ (b) $\frac{\sec x}{v} = \tan x + c$ (c) $y \cos x = \tan x + c$ (d) None of these **Solution:** (b) Re-writing the given equation, $y^{-2} \frac{dy}{dx} - y^{-1} \tan x = -\sec x$ Let $y^{-1} = v \implies -y^{-2} \frac{dy}{dx} = \frac{dv}{dx}$ $\therefore \frac{dv}{dx} + \tan x \cdot v = \sec x$(i) $I.F. = e^{\int \tan x} = e^{\ln \sec x} = \sec x$ Multiplying (i) by sec x and integrating, $v \sec x = \int \sec^2 x dx = \tan x + c$ $\therefore \frac{\sec x}{v} = \tan x + c$ The solution of $\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$ is Example: 31 (a) $\left(\frac{1}{\log z}\right)x = 2 - x^2 c$ (b) $\left(\frac{1}{\log z}\right)x = 2 + x^2 c$ (c) $\left(\frac{1}{\log z}\right)x = x^2 c$ (d) $\left(\frac{1}{\log z}\right)x = \frac{1}{2} + cx^2$

Solution: (d) Dividing the given equation by $z(\log z)^2$, $\frac{1}{z(\log z)^2} \frac{dz}{dx} + \frac{1}{x} \frac{1}{\log z} = \frac{1}{x^2}$

Let
$$\frac{1}{\log z} = t \implies -\frac{1}{(\log z)^2} \cdot \frac{1}{z} \frac{dz}{dx} = \frac{dt}{dx}$$

 $\therefore -\frac{dt}{dx} + \frac{t}{x} = \frac{1}{x^2}$
 $\Rightarrow \frac{dt}{dx} - \frac{t}{x} = -\frac{1}{x^2}$ (i)
I.F. $= e^{\int -\frac{dx}{x}} = e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$
Multiplying (i) by $\frac{1}{x}$ and integrating, $\frac{t}{x} = \int -\frac{1}{x^3} dx = \frac{1}{2x^2} + c \implies \frac{1}{x\log z} = \frac{1}{2x^2} + c$
 $\therefore \left(\frac{1}{\ln z}\right)x = \left(\frac{1}{2}\right) + cx^2$

8.7 Application of Differential Equation

Differential equation is applied in various practical fields of life. It is used to define various physical laws and quantities. It is widely used in physics, chemistry, engineering etc.

Some important fields of application are ;

(i) Rate of change (ii) Geometrical problems etc.

Differential equation is used for finding the family of curves for which some conditions involving the derivatives are given.

Equation of the tangent at a point (x, y) to the curve y = f(x) is given by $Y - y = \frac{dy}{dx}(X - x)$

.....(i)

and equation of normal at (x, y) is $Y - y = -\frac{1}{\left(\frac{dy}{dx}\right)}(X - x)$

.....(ii)

The tangent meets X-axis at
$$\left(x - \frac{y}{\left(\frac{dy}{dx}\right)}, 0\right)$$
 and Y-axis at $\left(0, y - x\frac{dy}{dx}\right)$

The normal meets *X*-axis at $\left(x + y\frac{dy}{dx}, 0\right)$ and *Y*-axis at $\left(0, y + \frac{x}{\left(\frac{dy}{dx}\right)}\right)$

Example: 32 A particle moves in a straight line with a velocity given by $\frac{dx}{dt} = (x+1)$ (x is the distance described). The time taken by a particle to transverse a distance of 99 *metres*

(a)
$$\log_{10} e$$
 (b) $2\log_e 10$ (c) $\log_{10} e$ (d) $\frac{1}{2}\log_{10} e$

Solution: (b) We have $\frac{dx}{x+1} = dt$

Integrating,
$$\int_{0}^{99} \frac{dx}{x+1} = \int_{0}^{t} dt \implies [\ln(x+1)]_{0}^{99} = t$$

 $\therefore t = \ln 100 = \log_{e}(10)^{2} = 2 \log_{e} 10$

Example: 33 The slope of the tangent at (x, y) to a curve passing through $\left(1, \frac{\pi}{4}\right)$ as given by $\frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$, then the equation of the curve is [Kurukshetra CEE 2002] (a) $y = \tan^{-1}\left[\log\left(\frac{e}{x}\right)\right]$ (b) $y = x \tan^{-1}\left[\log\left(\frac{x}{e}\right)\right]$ (c) $y = x \tan^{-1}\left[\log\left(\frac{e}{x}\right)\right]$ (d) None of these Solution: (c) We have $\frac{dy}{dx} = \frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$ Let $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \Rightarrow v + x \frac{dv}{dx} = v - \cos^2 v \Rightarrow x \frac{dv}{dx} = -\cos^2 v \Rightarrow \sec^2 v dv = -\frac{dx}{x} \Rightarrow \tan v = -\ln x + c$ $\Rightarrow \tan(y/x) = -\ln x + c$ For $x = 1, y = \pi/4$ $\Rightarrow \tan \pi/4 = -\ln 1 + c \Rightarrow 1 = 0 + c$ $\therefore c = 1$ $\therefore \tan(y/x) = 1 - \ln x$ $\Rightarrow y/x = \tan^{-1}(1 - \ln x) = \tan^{-1}(\ln e - \ln x) = \tan^{-1}\left[\ln\left(\frac{e}{x}\right)\right]$

Example: 34 The equation of the curve which is such that the portion of the axis of *x* cut off between the origin and tangent at any point is proportional to the ordinate of that point (*b* is constant of proportionality)

(a)
$$y = \frac{x}{(a-b\log x)}$$
 (b) $\log x = by^2 + a$ (c) $x^2 = y(a-b\log y)$ (d) None of these

P(x,

Solution: (d) Tangent at P(x, y) to the curve y = f(x) may be expressed as $Y - y = \frac{dy}{dx}$

$$\therefore Q = \left(x - y \frac{dx}{dy}, 0\right)$$

As per question, $OQ \propto y$

$$\Rightarrow x - y \frac{dx}{dy} \propto y \Rightarrow x - y \frac{dx}{dy} = by \Rightarrow \frac{x}{y} - \frac{dx}{dy} = b$$

$$\therefore \frac{dx}{dy} = \frac{x}{y} - b$$

Let $\frac{x}{y} = v \Rightarrow x = vy \Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy} \Rightarrow \frac{x}{y} - b = v + y \frac{dv}{dy} \Rightarrow v - b = v + y \frac{dv}{dy} \Rightarrow -b = y \frac{dv}{dy} \Rightarrow -b \frac{dy}{y} = dv$
Integrating, $\int dv = -b \int \frac{dy}{y} \Rightarrow v = -b \ln y + a \Rightarrow \frac{x}{y} = a - b \ln y$ (a, an arbitrary constant)

$$\therefore x = y(a - b \ln y)$$

8.8 Miscellaneous Differential Equation

(1) A special type of second order differential equation : $\frac{d^2y}{dx^2} = f(x)$ (i)

Equation (i) may be re-written as $\frac{d}{dx}\left(\frac{dy}{dx}\right) = f(x) \Rightarrow d\left(\frac{dy}{dx}\right) = f(x)dx$

.....(ii)

Integrating, $\frac{dy}{dx} = \int f(x)dx + c_1 \quad i.e. \quad \frac{dy}{dx} = F(x) + c_1$ Where $F(x) = \int f(x)dx + c_1dx$ From (ii), $dy = f(x)dx + c_1dx$ Integrating, $y = \int F(x)dx + c_1x + c_2$ $\therefore y = H(x) + c_1x + c_2$ where $H(x) = \int F(x)dx$ c_1 and c_2 are arbitrary constants.

(2) **Particular solution type problems :** To solve such a problem, we proceed according to the type of the problem (*i.e.* variable-separable, linear, exact, homogeneous etc.) and then we apply the given conditions to find the particular values of the arbitrary constants.

Example: 35 The solution of the equation
$$x^2 \frac{d^2y}{dx^2} = \ln x$$
 when $x = 1$, $y = 0$ and $\frac{dy}{dx} = -1$ is [Orissa JEE 2003]
(a) $\frac{1}{2}(\ln x)^2 + \ln x$ (b) $\frac{1}{2}(\ln x)^2 - \ln x$ (c) $-\frac{1}{2}(\ln x)^2 + \ln x$ (d) $-\frac{1}{2}(\ln x)^2 - \ln x$
Solution: (d) We have $\frac{d^2y}{dx^2} = \frac{\ln x}{x^2} \Rightarrow d\left(\frac{dy}{dx}\right) = \frac{\ln x}{x^2} dx$
Integrating, $\frac{dy}{dx} = \int \ln x d\left(-\frac{1}{x}\right) = -\frac{\ln x}{x} + \int \frac{1}{x^2} dx = -\frac{\ln x}{x} - \frac{1}{x} + c \Rightarrow \frac{dy}{dx} = -\frac{1 + \ln x}{x} + c$
When $x = 1$, $\frac{dy}{dx} = -1$
 $\therefore -1 = -1 + c \Rightarrow c = 0$
 $\therefore \frac{dy}{dx} = -\frac{1 + \ln x}{x} \Rightarrow dy = -\frac{1 + \ln x}{x} dx \Rightarrow -\int dy = +\int \frac{dx}{x} + \int \ln x \cdot \frac{1}{x} dx \Rightarrow -y = \ln x + \frac{1}{2}(\ln x)^2 + \lambda$
 $y = 0$ when $x = 1$
 $\therefore 0 = 0 + 0^2 + \lambda \Rightarrow \lambda = 0 \Rightarrow -y = \ln x + \frac{1}{2}(\ln x)^2$
 $\therefore y = -\frac{1}{2}(\ln x)^2 - \ln x$
Example: 36 A continuously differentiable function $\phi(x)$ in (0, π) satisfying $y' = 1 + y^2$, $y(0) = 0 = y(\pi)$ is
(a) $\tan x$ (b) $x(x - \pi)$ (c) $(x - \pi)(1 - e^x)$ (d) Not possible
Solution: (d) For $\phi(x) = y$, $y' = 1 + y^2 \Rightarrow \frac{dy}{dx} = 1 + y^2 \Rightarrow \int \frac{dy}{1 + y^2} = \int dx \Rightarrow \tan^{-1} y = x + c$
 $\therefore y = \tan (x + c)$
 $Le, \phi(x) = \tan x$.
But $\tan x$ is not continuous in (0, π)

Since $\tan \frac{\pi}{2}$ is not defined.

Hence there exists not a function satisfying the given condition.

Order and Degree of Differential Equation

Basic Level

1.	(a) 2	quation of a family of curves represer (b) 4	(c) 6	-	constants, will be None of these
2.	The order and degree of the d	ifferential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$	² is		[DCE 2002]
	(a) 4, 2	(b) 1, 2	(c) 2, 2	(d)	$2, \frac{1}{2}$
3.	The order and degree of the d	ifferential equation $\left(\frac{d^2s}{dt^2}\right)^2 + 3\left(\frac{ds}{dt}\right)^2$	$3^{3} + 4 = 0$ are		
	(a) 2, 2	(b) 2, 3	(c) 3, 2	(d)	None of these
4.	The order and degree of different	rential equation $\frac{d^4y}{dx^4} - 4 \frac{d^3y}{dx^3} + 8 \frac{d^2y}{dx^4}$	$\frac{y}{2} - 8 \frac{dy}{dx} + 4y = 0$ are respectively		
	(a) 4, 1	(b) 1, 4	(c) 1, 1	(d)	None of these
5.	The order and the degree of the	the differential equation $\sqrt{\frac{dy}{dx}} - 4 \frac{dy}{dx}$	-7x = 0 are		[MP PET 1993
	(a) 1 and $1/2$	(b) 2 and 1	(c) 1 and 1	(d)	1 and 2
6.	The order and the degree of the	the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^3$	$\left(\frac{y}{x}\right)^4 - xy = 0$ are respectively		[MP PET 2003
	(a) 2 and 4	(b) 3 and 2	(c) 4 and 5	(d)	2 and 3
7.	$\frac{d^3y}{dx^3} + 2\left[1 + \frac{d^2y}{dx^2}\right] = 1$ has defined	egree and order as			[UPSEAT 2003
	(a) 1, 3	(b) 2, 3	(c) 3, 2	(d)	3, 1
8.	The order and the degree of the	the differential equation $x \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2$	$\int^{2} + y^{2} = 0$ are respectively		[Karnataka CET 2001
	(a) 2 and 2	(b) 1 and 1	(c) 2 and 1	(d)	1 and 2
9.	The order of the differential e	quation whose general solution is give	en by $y = c_1 e^{2x+c_2} + c_3 e^x + c_4 \sin(x + c_4)$	-c ₅) i	s [AMU 2000]
	(a) 5	(b) 4	(c) 3	(d)	
10.	The order and the degree of the respectively	he differential equation representing t	he family of curves $y^2 = 2k(x + \sqrt{k})$	(whe	re k is a positive parameter) are [MP PET 2002]
	(a) 1 and 2	(b) 2 and 4	(c) 1 and 4	(d)	1 and 3
11.	The degree of differential equ	hation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + 6y = 0$ is			[Kerala (Engg.) 2002
12.	(a) 1 The differential equation of fi	(b) 3 rst order and first degree is	(c) 2	(d)	5
	(a) $x\left(\frac{dy}{dx}\right)^2 - x + a = 0$	(b) $\frac{d^2y}{dx^2} + xy = 0$	(c) $dy + dx = 0$	(d)	None of these
		Advand	ce Level		

13.	Order and degree of differenti	al equation $\frac{d^2 y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{1/4}$	are			[MP PET 1996]
	(a) 4 and 2	(b) 1 and 2	. ,	1 and 4	(d)	2 and 4
14.	The degree of the differential	equation $(\sqrt{1 + x^2} + \sqrt{1 + y^2}) = A(x\sqrt{1 + y^2})$	$1 + y^2$	$-y\sqrt{1+x^2}$) is		
	(a) 2	(b) 3	(c)	4	(d)	None of these
15.	The differential equation $\left(\frac{d^2}{dx}\right)$	$\left(\frac{y}{2}\right)^2 - \left(\frac{dy}{dx}\right)^{1/2} = y^3$ has the degree				[Roorkee 1999]
	(a) 1/2	(b) 2	(c)		(d)	
16.		fferential equation of the family of all	-			
	(a) 2, 1	(b) 1, 2		3, 2	(d)	2, 3
17.	Degree of the given differentia	al equation $\left(\frac{d^2y}{dx^2}\right)^3 = \left(1 + \frac{dy}{dx}\right)^{1/2}$, is	5			[MP PET 1997]
	(a) 2	(b) 3	(c)	$\frac{1}{2}$	(d)	6
18.	The differential equation $x\left(\frac{d}{d}\right)$	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 + y = x^2 \text{ is of}$				
	(a) Degree 3 and order 2	(b) Degree 1 and order 1	(c)	Degree 4 and order 3	(d)	Degree 4 and order 4
19.	The second order differential	equation is				[MP PET 2000]
	(a) $y'^2 + x = y^2$	(b) $y'y'' + y = \sin x$	(c)	$y^{\prime\prime\prime} + y^{\prime\prime} + y = 0$	(d)	y' = y
20.	The order and degree of the di	ifferential equation $\left(1+3\frac{dy}{dx}\right)^{\frac{2}{3}} = 4\frac{dy}{dx}$	$\frac{d^3y}{dx^3}$ a	ure		[AIEEE 2002]
	(a) $1, \frac{2}{3}$	(b) 3, 1	(c)	3, 3	(d)	1, 2
21.	The order of the differential ed	quation whose solution is $y = a \cos x$	+ <i>b</i> si	$n x + ce^{-x}$ is		
	(a) 3	(b) 2	(c)	1	(d)	None of these
22.	The differential equation of al	l circles of radius a is of order				
	(a) 2		(c)		(d)	None of these
23.	-	l circles in the first quadrant which tou				
	(a) 1	(b) 2	(c)	2		None of these
24.	If m and n are the order and de	egree of the differential equation $\left(\frac{d^2}{dx}\right)$	$\left(\frac{y}{2}\right)^5 +$	$4 \frac{\left(\frac{d^2 y}{dx^2}\right)^3}{\left(\frac{d^3 y}{dx^3}\right)} + \frac{d^3 y}{dx^3} = x^2 - 1$, then	1	[Karnataka CET 1999]
	(a) $m = 3$ and $n = 5$	(b) $m = 3$ and $n = 1$		m = 3 and $n = 3$	(d)	m = 3 and $n = 2$
25.	The order and degree of the di	ifferential equation $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2}{d^2y / dx^2}$	3/2 a1	e respectively		[MP PET 2001; UPSEAT 2002]
•	(a) $2, 2$	(b) 2, 3	(c)	2, 1	(d)	None of these
26.	Order of the differential equat (a) 1	ion of the family of all concentric circ(b) 2	les ce (c)		(d)	[EAMCET 2002] 4

27.	Let <i>a</i> and <i>b</i> be respectivity in the first and second c		ferential equation of the family of ci	rcles touching the lines $y^2 - x^2 = 0$ and lying
	(a) $a = 1, b = 2$	(b) $a = 1, b = 1$	(c) $a = 2, b = 1$	(d) $a = 2, b = 2$
28.	The order and degree of	f differential equation of all tangent	lines to the parabola $x^2 = 4y$ is	
	(a) 1, 2	(b) 2, 2	(c) 3, 1	(d) 4, 1
29.	The order and degree of	f differential equation $xy \frac{dy}{dx} = \left(\frac{1+1}{1+1}\right)$	$\left(\frac{y^2}{x^2}\right)(1+x+x^2)$ are	
	(a) 1, 1	(b) , 2	(c) 2, 1	(d) 2, 2
30.	The differential equation	on $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \sin y + x^2 = 0$ is c	of the following type	
	(a) Linear	(b) Homogeneous	(c) Order two	(d) Degree one
31.	The order and degree of	f differential equation $(xy^2 + x)dx$ -	$+(y-x^2y)dy = 0$ are	
	(a) 1, 2	(b) 2, 1	(c) 1, 1	(d) 2, 2
32.	Family $y = Ax + A^3$ or	f curve represented by the differenti	al equation of degree	[MP PET 1999
	(a) Three	(b) Two	(c) One	(d) None of these
33.	Which of the following	differential equations has the same	order and degree	[Kurukshetra CEE 1998
	(a) $\frac{d^2y}{dx^4} + 8\left(\frac{dy}{dx}\right)^6 + 3$	$5y = e^x$	(b) $5\left(\frac{d^3y}{dx^3}\right)^4 + 8\left(1 + \frac{dy}{dx}\right)^4$	$\left(\frac{y}{x}\right)^2 + 5y = x^8$
	(c) $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^{2/3} =$	$4 \frac{d^3 y}{dx^3}$	(d) $y = x^2 \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx$	$\left(\frac{dy}{dx}\right)^2$
34.	The order of the different	ential equation whose general solut	ion is given by $y = (C_1 + C_2)\cos(x)$	$+C_3)-C_4e^{x+C_5}$ where $C_{1,}C_2,C_3,C_4,C_5$ are
	arbitrary constants, is			[IIT 1998
	(a) 5	(b) 4	(c) 3	(d) 2
35.	The degree of the differ	rential equation $3 \frac{d^2 y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx}\right) \right\}$	$\left.\right\}^{3/2}$ is	[MP PET 1994, 95
	(a) 1	(b) 2	(c) 3	(d) 6
36.	The order of the differe	ntial equation $y\left(\frac{dy}{dx}\right) = x \left \frac{dy}{dx} + \frac{dy}{dx} \right $	$\left[\frac{dy}{dx}\right]^3$ is	[MP PET 1994
	(a) 1	(b) 2	(c) 3	(d) 4
37.	The order and degree of	f the differential equation $\left[4 + \left(\frac{dy}{dx}\right)\right]$	$\left. \frac{1}{2} \right ^{2/3} = \frac{d^2 y}{dx^2} \text{ are}$	
				(d) 3, 2
38.	The degree of the differ	(b) 3, 3 rential equation $\left(\frac{d^3y}{dx^3}\right)^{2/3} + 4 - 3\frac{d}{dx^3}$	$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} = 0$ is	
	(a) 1	(b) 2	(c) 3	(d) None of these

Basic Level

39. $y = 4 \sin 3x$ is a solution of the differential equation

(a)
$$\frac{dy}{dx} + 8y = 0$$
 (b) $\frac{dy}{dx} - 8y = 0$ (c) $\frac{d^2y}{dx^2} + 9y = 0$

40. The differential equation of all straight lines passing through the origin is

[AI CBSE 1986]

(d) $\frac{d^2y}{dx^2} - 9y = 0$

[DCE 2002; Kerala (Engg.)2002]

(a)
$$y = \sqrt{x} \frac{dy}{dx}$$
 (b) $\frac{dy}{dx} = y + x$ (c) $\frac{dy}{dx} = \frac{y}{x}$ (d) None of these
11. The differential equation obtained one eliminating A and B from the equation $y = A \cos a x + B \sin a x$ [Karnataka CET 2000]
(a) $y'' = -a^3 y$ (b) $y'' + y = 0$ (c) $y'' + y' = 0$ (d) $y'' - a^3 y = 0$
12. The elimination of the arbitrary constants A, B and C from $y = A + Bx + Ce^{-x}$ leads to the differential equation
(a) $y'' = y' = 0$ (b) $y'' + y'' = 0$ (c) $y'' + y'' = 0$ (d) $y'' - y'' = 0$
13. A differential equation associated to the primitive $y = a + be^{5x} + ce^{-2x}$ is
(a) $y_1 + 2y_2 + y_1 = 0$ (b) $4y_1 + 5y_1 - 20y_1 = 0$ (c) $y_1 + 2y_1 - 35y_1 = 0$ (d) None of these
14. The differential equation of the family of curves represented by the equation $(x - a^2 + y^2 = a^2)$ is
(a) $2xy \frac{dy}{dx} + x^2 = y^2$ (b) $2xy \frac{dy}{dx} + x^2 + y^2 = 0$ (c) $xy \frac{dy}{dx} + x^2 = y^2$ (d) None of these
15. The differential equation of the family of curves $y = a\cos(x + b)$ is
(j) $\frac{d^3y}{dx^2} - y = 0$ (j) $\frac{d^3y}{dx^2} + y = 0$ (c) $\frac{d^3y}{dx^2} + 2y = 0$ (d) None of these
16. The differential equation of the family of curves $y = a\cos(x + b)$ is
(j) $\frac{d^3y}{dx^2} - y = 0$ (j) $\frac{d^3y}{dx^2} + y = 0$ (c) $\frac{d^3y}{dx^2} + 2y = 0$ (d) None of these
17. The differential equation of the family of curves $y = a\cos(x + b)$ is
(j) $\frac{d^3y}{dx^2} - y = 0$ (j) $\frac{d^3y}{dx^2} + y = 0$ (j) $\frac{d^3y}{dx^2} + 2y = 0$ (j) $y' + y = 2x$
17. The differential equation of the family of curves represented by the equation $x^2 + y^2 = a^2$ is
(a) $x + y \frac{dy}{dx} = 0$ (b) $y \frac{dy}{dx} = x$ (c) $y \frac{d^3y}{dx^2} + 1 \left(\frac{dy}{dx}\right)^2 = 0$ (d) None of these
18. The differential equation of the family of curves represented by the equation $x^2 + y^2 = a^2$ is
(a) $\frac{d^3y}{dx^2} + y = 0$ (b) $\frac{d^3y}{dx^2} = y = 0$ (c) $\frac{d^3y}{dx} - \frac{d^3y}{dx} = \frac{d^3y}{y} = 0$ (d) None of these
19. The differential equation of the family of curves represented by the equation $x^2 + y = a^2$, is
(a) $\frac{d^3y}{dx^2}$

54. Differential equation whose solution is $y = cx + c - c^3$, is

[MP PET 1997]

(a)
$$\frac{dy}{dx} = c$$
 (b) $y = x \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (c) $\frac{dy}{dx} = c - 3c^2$

Differential equation of $y = \sec(\tan^{-1} x)$ is 55.

(a)
$$(1 + x^2)\frac{dy}{dx} = y + x$$
 (b) $(1 + x^2)\frac{dy}{dx} = y - x$ (c) $(1 + x^2)\frac{dy}{dx} = xy$

The differential equation of the family of curves $v = \frac{A}{r} + B$, where A and B are arbitrary constants, is 56.

(a)
$$\frac{d^2v}{dr^2} + \frac{1}{r}\frac{dv}{dr} = 0$$
 (b) $\frac{d^2v}{dr^2} - \frac{2}{r}\frac{dv}{dr} = 0$ (c) $\frac{d^2v}{dr^2} + \frac{2}{r}\frac{dv}{dr} = 0$ (d) None of the

57. The differential equation of the family of parabolas with focus at the origin and the x-axis as axis is

(a)
$$y\left(\frac{dy}{dx}\right)^2 + 4x\frac{dy}{dx} = 4y$$
 (b) $-y\left(\frac{dy}{dx}\right)^2 = 2x\frac{dy}{dx} - y$ (c) $y\left(\frac{dy}{dx}\right)^2 + y = 2xy\frac{dy}{dx}$ (d)

58. The differential equation of all the lines in the xy-plane is

(a)
$$\frac{dy}{dx} - x = 0$$
 (b) $\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$ (c) $\frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2y}{dx^2} + x = 0$

 $y = ae^{mx} + be^{-mx}$ satisfies which of the following differential equations 59.

(a)
$$\frac{dy}{dx} - my = 0$$
 (b) $\frac{dy}{dx} + my = 0$ (c) $\frac{d^2y}{dx^2} + m^2y = 0$ (d) $\frac{d^2y}{dx^2} - m^2y = 0$

The differential equation whose solution is $y = c_1 \cos ax + c_2 \sin ax$ is (where c_1 , c_2 are arbitrary constants) 60.

(a)
$$\frac{d^2y}{dx^2} + y^2 = 0$$
 (b) $\frac{d^2y}{dx^2} + a^2y = 0$ (c) $\frac{d^2y}{dx^2} + ay^2 = 0$ (d) $\frac{d^2y}{dx^2} - y^2 = 0$

If $y = ce^{\sin^{-1} x}$, then corresponding to this the differential equation is 61.

(a)
$$\frac{dy}{dx} = \frac{y}{\sqrt{1 - x^2}}$$
 (b) $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$ (c) $\frac{dy}{dx} = \frac{x}{\sqrt{1 - x^2}}$ (d) None of these

62. The differential equation of the family of circles with fixed radius r and with centre on y-axis is

(a)
$$y^2(1+y_1^2) = r^2 y_1^2$$
 (b) $y^2 = r^2 y_1 + y_1^2$ (c) $x^2(1+y_1^2) = r^2 y_1^2$

63. The differential equation of all parabolas having their axis of symmetry coinciding with the axis of X is

(a)
$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$
 (b) $x \frac{d^2 x}{dy^2} + \left(\frac{dx}{dy}\right)^2 = 0$ (c) $y \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$ (d) None of these

The function $f(\theta) = \frac{d}{d\theta} \int_0^{\theta} \frac{dx}{1 - \cos \theta \cos x}$ satisfies the differential equation 64.

- (a) $\frac{df}{d\theta} + 2f(\theta)\cot\theta = 0$ (b) $\frac{df}{d\theta} 2f(\theta)\cot\theta = 0$ (c) $\frac{df}{d\theta} + 2f(\theta) = 0$ (d) $\frac{df}{d\theta} - 2f(\theta) = 0$
- 65. The differential equation of all ellipses centred at the origin is

(a)
$$y_2 + xy_1^2 - yy_1 = 0$$
 (b) $xyy_2 + xy_1^2 - yy_1 = 0$ (c) $yy_2 + xy_1^2 - xy_1 = 0$

The differential equation for which $\sin^{-1} x + \sin^{-1} y = c$ is given by 66.

(a)
$$\sqrt{1-x^2}dx + \sqrt{1-y^2}dy = 0$$
 (b) $\sqrt{1-x^2}dy + \sqrt{1-y^2}dx = 0$ (c) $\sqrt{1-x^2}dy - \sqrt{1-y^2}dx = 0$ (d) $\sqrt{1-x^2}dy - \sqrt{1-y^2}dx = 0$ (e) $\sqrt{1-x^2}dy - \sqrt{1-y^2}dx = 0$ (f) $\sqrt{1-x^2}dy - \sqrt{1-y^2}dx = 0$ (g) $\sqrt{1-x^2}dy - \sqrt{1-x^2}dy = 0$ (g) $\sqrt{1-x^2}dy - \sqrt{1-x^2}dy = 0$ (g) $\sqrt{1-x^2}dy - \sqrt{1-x^2}dy = 0$ (g) $\sqrt{1-x^2}dy = 0$ (

The differential equation satisfied by the family of curves $y = ax \cos\left(\frac{1}{x} + b\right)$, where *a*, *b* are parameters, is 67.

 $\overline{\sqrt{x^2}} dx - \sqrt{1 - v^2} dv = 0$

[Karnataka CET 2003]

[MP PET 2003]

(d) $x^2 = r^2 y_1 + y_1^2$

(d) None of these

nese

(d) $(1+x^2)\frac{dy}{dx} = \frac{x}{y}$

(d) None of these

[EAMCET 2003]

[UPSEAT 2002]

1)
$$y\left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} + y = 0$$

[Karnataka CET 2002]

[MP PET 1996]

418 Differential Equations
(a)
$$x^{2}y_{2} + y = 0$$
 (b) $x^{4}y_{2} + y = 0$ (c) $xy_{2} - y = 0$ (d) $x^{2}y_{2} - y = 0$
68. Differential equation of central conics are
(a) $yy_{1} = x(y_{1}^{2} + yy_{2})$ (b) $yy_{1} = (y_{1}^{2} + yy_{2})$ (c) $y^{2} = xy_{1}(y_{1}^{2} - yy_{2})$ (d) None of these
(e) $yy_{1} = x(y_{1}^{2} + y_{2})$ (b) $(y + x(\frac{dy}{dx})^{2} = 1 + (\frac{dy}{dx})^{2}$ (c) $(y - x(\frac{dy}{dx})^{2} = 1 - (\frac{dy}{dx})^{2} = 1 - (\frac{dy}{dx})^{2}$
(f) $\left[x - x(\frac{dy}{dx})^{2} = 1 - (\frac{dy}{dx})^{2}$ (f) $\left[y + x(\frac{dy}{dx})^{2} = 1 - (\frac{dy}{dx})^{2} = (y - (\frac{dy}{dx})^{2} = 1 - (\frac{dy}{dx})^{2} = \frac{dy}{dx} - 2y$ (c) $\frac{d^{2}y}{dx^{2}} = \frac{dy}{dx} - 2y$ (d) $\frac{d^{2}y}{dx^{2}} = \frac{dy}{dx} + y$
70. Family of curves $y = e^{x}(A\cos x - B \sin x)$, represents the differential equation
(JP PT 1991)
(a) $\frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dx} - y$ (b) $\frac{d^{2}y}{dx^{2}} = \frac{dy}{dx} - 2y$ (c) $\frac{d^{2}y}{dx^{2}} = \frac{dy}{dx} - 2y$ (d) $\frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dx} + y$
71. The differential equation of the family of curves $x^{2} + y^{2} - 2ay - 0$, where a is an arbitrary constant is
(AIEEE 2041)
(a) $(x^{2} - y^{2})\frac{dx}{dx} = 2y = 0$ (b) $(x^{2} - y^{2})\frac{dy}{dx} + 2y = 0$ (c) $(x^{2} - y^{2})\frac{dy}{dx} = xy = 0$ (d) $(x^{2} - y^{2})\frac{dy}{dx^{2}} = 2\frac{dy}{dx} + y$
72. The differential equation of the family of curves $y = A^{4} + Be^{5}$, where A and B are arbitrary constant. is
(AINE 1980 DCE 2000)
(a) $(x^{2} - y^{2})\frac{dx}{dx} = xy = 0$ (b) $(x^{2} - y^{2})\frac{dy}{dx} + 2y = 0$ (c) $(x^{2} - y^{2})\frac{dy}{dx} = xy = 0$ (d) None of these
73. The differential equation of the family of curves $y = A^{4} + Be^{5}$, where A and B are arbitrary constant. is
(a) $\frac{dy}{dx} = -\frac{dy}{b}e^{x}$ (b) $\frac{d^{2}y}{dx^{2}} + \frac{d}{dx} - \frac{dy}{dx} + \frac{dy}{dx} = 0$ (c) $\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} + y = 0$ (d) None of these
74. The differential equation (he has given by $ax^{*} + b \log y = 0$ is
(a) $\frac{dy}{dx} = -\frac{d^{2}}{b}e^{x}$ (b) $\frac{d^{2}y}{dx} + \frac{d^{2}}{x} = \frac{d}{dx} - \frac{d}{dx} + \frac{d}{x} + \frac{d}{x$

988]

The solution of differential equation $x \frac{dy}{dx} + y = y^2$ is 81. (a) y = 1 + cxy(b) $y = \log\{cxy\}$ (d) y = c + xy(c) y + 1 = cxyThe solution of differential equation $\frac{dy}{dx} + \sin^2 y = 0$ 82. [MP PET 1994] (b) $y - 2\sin y = c$ (a) $y + 2\cos y = c$ (c) $x = \cot y + c$ (d) $y = \cot x + c$ The solution of the equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is 83. (a) $e^y = e^x + \frac{x^3}{2} + c$ (b) $e^y = e^x + 2x + c$ (c) $e^{y} = e^{x} + x^{3} + c$ (d) $v = e^x + c$ 84. The solution of the differential equation $x \cos y \, dy = (xe^x \log x + e^x)dx$ is [DSSE 1988] (a) $\sin y = \frac{1}{x}e^x + c$ (b) $\sin y + e^x \log x + c = 0$ (c) $\sin y = e^x \log x + c$ (d) None of these The solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is 85. [SCRA 1986] (a) 1 + xy + c(y - x) = 0 (b) x + y = c(1 - xy)(c) y - x = c(1 + xy)(d) 1 + xy = c(x + y)Solution of $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$ is 86. [EAMCET 2003] (b) $y \sin y = x^2 + c$ (c) $y \sin y = x^2 + \log x + c$ (a) $y \sin y = x^2 \log x + c$ (d) $y \sin y = x \log x + c$ The solution of the differential equation $3e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$ is 87. [MP PET 1993; AISSE 1985] (b) $(1-e^x)^3 \tan y = c$ (c) $\tan y = c(1 - e^x)$ (a) $\tan y = c(1 - e^x)^3$ (d) $(1 - e^x) \tan y = c$ The solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$ is 88. [AISSE 1985; AI CBSE 1990; MP PET 2003] (a) $\log(1+y) = x + \frac{x^2}{2} + c$ (b) $(1+y)^2 = x + \frac{x^2}{2} + c$ (c) $\log(1+y) = \log(1+x) + c$ (d) None of these If $\frac{dy}{dx} = \frac{xy + y}{xy + x}$, then the solution of the differential equation is 89. [SCRA 1980] (c) $y = Axe^{x-y}$ (a) $y = xe^x + c$ (b) $y = e^{x} + c$ (d) y = x + AThe solution of the differential equation $(1 + \cos x)dy = (1 - \cos x)dx$ is 90. [AISSE 1984] (a) $y = 2 \tan \frac{x}{2} - x + c$ (b) $y = 2 \tan x + x + c$ (c) $y = 2 \tan \frac{x}{2} + x + c$ (d) $y = x - 2 \tan \frac{x}{2} + c$ The solution of the differential equation $x(e^{2y}-1)dy + (x^2-1)e^y dx = 0$ is 91. [AISSE 1990] (a) $e^{y} + e^{-y} = \log x - \frac{x^{2}}{2} + c$ (b) $e^{y} - e^{-y} = \log x - \frac{x^{2}}{2} + c$ (c) $e^{y} + e^{-y} = \log x + \frac{x^{2}}{2} + c$ (d) None of these Solution of the equation $(1 - x^2)dy + xy dx = xy^2dx$ 92. [DSSE 1989] (c) $(y-1)^2(1+x^2) = c^2y^2$ (a) $(y-1)^2(1-x^2) = 0$ (b) $(y-1)^2(1-x^2) = c^2y^2$ (d) None of these The equation of the curve that passes through the point (1, 2) and satisfies the differential equation $\frac{dy}{dx} = \frac{-2xy}{(x^2+1)}$ is 93. (a) $y(x^2 + 1) = 4$ (b) $y(x^2+1)+4=0$ (c) $y(x^2 - 1) = 4$ (d) None of these The solution of (cosec $x \log y$) $dy + (x^2y)dx = 0$ is 94. [AISSE 1986] (b) $\frac{(\log y)^2}{2} + (2 - x^2)\cos x + 2x\sin x = c$ (a) $\frac{\log y}{2} + (2 - x^2)\cos x + 2\sin x = c$ (c) $\frac{(\log y)^2}{2} + (2 - x^2)\cos x + 2x\sin x = c$ (d) None of these The general solution of the differential equation $\frac{dy}{dr} = \frac{x^2}{v^2}$ is 95.

	Differential Equations					
	(a) $x^3 - y^3 = C$	(b) $x^3 + y^3 = C$	(c)	$x^2 + y^2 = C$	(d)	$x^2 - y^2 = C$
96.	The general solution of the diff	ferential equation $\frac{dy}{dx} = \cot x \cot y$ is	8			[AISSE 1983; MP PET 1994]
	(a) $\cos x = c \operatorname{cosec} y$	(b) $\sin x = c \sec y$	(c)	$\sin x = c \cos y$	(d)	$\cos x = \cosh y$
97.	The solution of $\frac{dy}{dx} = \frac{1}{x}$ is					
	(a) $y + \log x + c = 0$	(b) $y = \log x + c$	(c)	$y^{\log x} + c = 0$	(d)	None of these
98.	Solution of the differential equ	ation $\frac{dx}{x} + \frac{dy}{y} = 0$ is				[Karnataka CET 2002]
	(a) $xy = c$	(b) $x + y = c$	(c)	$\log x \log y = c$	(d)	$x^2 + y^2 = c$
99.	The differential equation cot y	dx = x dy has a solution of the form	ı			[Orissa JEE 2002]
	(a) $y = \cos x$	(b) $x = c \sec y$	(c)	$x = \sin y$	(d)	$y = \sin x$
100.	The solution of differential equ	ution $dy - \sin x \sin y dx = 0$ is				[MP PET 1996]
	(a) $e^{\cos x} \tan \frac{y}{2} = C$	(b) $e^{\cos x} \tan y = C$	(c)	$\cos x \tan y = C$	(d)	$\cos x \sin y = C$
101.	The solution of the equation (2	dy - 1) dx - (2x + 3) dy = 0				[Kerala (Engg.) 2002]
	(a) $\frac{2x-1}{2y+3} = c$	(b) $\frac{2x+1}{2y-3} = c$	(c)	$\frac{2x+3}{2y-1} = c$	(d)	$\frac{2x-1}{2y-1} = c$
102.	The solution of the differential	equation $(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 =$	0 is			
	(a) $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$	(b) $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$	(c)	$\log(xy) = \frac{1}{x} + \frac{1}{y} + c$	(d)	$\log(xy) + \frac{1}{x} + \frac{1}{y} = c$
103.	The solution of the differential	equation $\frac{dy}{dx} = (ae^{bx} + c\cos mx)$ is				
	(a) $y = \frac{ae^x}{b} + \frac{c}{m}\sin mx + k$	(b) $y = ae^x + c\sin mx + k$	(c)	$y = \frac{ae^{bx}}{b} + \frac{c}{m}\sin mx + k$	(d)	None of these
104.	The solution of $\frac{dy}{dx} = x \log x$	is				[MP PET 2003]
	(a) $y = x^2 \log x - \frac{x^2}{2} + c$	(b) $y = \frac{x^2}{2} \log x - x^2 + c$	(c)	$y = \frac{1}{2}x^2 + \frac{1}{2}x^2\log x + c$	(d)	None of these
105.	The solution of the differential	equation $\sec^2 x \tan y dx + \sec^2 y \tan^2 y$	n <i>x d</i> y	v = 0 is [AISSE 1983	; Karı	nataka CET 1999; MP PET 2003]
	(a) $\tan x = c \tan y$	(b) $\tan x = c \tan(x+y)$	(c)	$\tan x = c \cot y$	(d)	$\tan x \sec y = c$
106.	The solution of the differential	equation $x^2 dy = -2xy dx$ is				[SCRA 1990]
	(a) $xy^2 = c$	(b) $x^2y^2 = c$	(c)	$x^2y = c$	(d)	xy = c
107.	The solution of the differential	equation $x \sec y \frac{dy}{dx} = 1$ is				
	(a) $x \sec y \tan y = c$	(b) $cx = \sec y + \tan y$	(c)	$cy = \sec x \tan x$	(d)	$cy = \sec x + \tan x$
108.	If $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$, then					[MNR 1983]
	(a) $y + \sin^{-1} x = c$	(b) $y^2 + 2\sin^{-1} x = 0$	(c)	$x + \sin^{-1} y = 0$	(d)	$x^2 + 2\sin^{-1} y = 1$
109.	The solution of the differential	equation $\sin x \sin y dx + \cos x \cos y$	dy =	0 is		
	(a) $\sin y = c \cos x$	(b) $\sin x = c \cos y$	(c)	$\sin x \cos y = c$	(d)	$\sin y \cos x = c$
110.		ferential equation $y dx + (1 + x^2) \tan^{-1}$	$^{1} x dy$	v = 0, is		[MP PET 1995]
	(a) $y \tan^{-1} x = c$	(b) $x \tan^{-1} y = c$		$y + \tan^{-1} x = c$	(d)	$x + \tan^{-1} y = c$
			(.)		(-)	

111.	The solution of the differential equation $\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2x} = 0$				[AISSE 1982]
	(a) $\tan y + \cot x = c$ (b) $\tan y \cdot \cot x = c$	(c)	$\tan y - \cot x = c$	(d)	None of these
112.	Solution of the equation $\cos x \cos y \frac{dy}{dx} = -\sin x \sin y$ is				[DSSE 1987]
	(a) $\sin y + \cos x = c$ (b) $\sin y - \cos x = c$	(c)	$\sin y.\cos x = c$	(d)	$\sin y = c \cos x$
113.	The solution of the equation $\frac{dy}{dx} = y(e^x + 1)$ is				[AISSE 1986; AI CBSE 1984]
	(a) $y + e^{(e^x + x + c)} = 0$ (b) $\log y = e^x + x + c$	(c)	$\log y + e^x = x + c$	(d)	None of these
114.	The general solution of $x^2 \frac{dy}{dx} = 2$ is				[AISSE 1984]
	(a) $y = c + \frac{2}{r}$ (b) $y = c - \frac{2}{r}$	(c)	y = 2cx	(d)	$y = c - \frac{3}{r^3}$
115	λ λ	(0)	y = 2cx	(u)	$y = c$ x^3
115.	The solution of the differential equation $dy = \sec^2 x dx$ is		1		
	(a) $y = \sec x \tan x + c$ (b) $y = 2 \sec x + c$	(c)	$y = \frac{1}{2}\tan x + c$	(d)	None of these
116.	The solution of the equation $(1 + x^2)\frac{dy}{dx} = 1$ is				
	(a) $y = \log(1 + x^2) + c$ (b) $y + \log(1 + x^2) + c = 0$	(c)	$y - \log(1 + x) = c$	(d)	$y = \tan^{-1} x + c$
117.	The solution of the differential equation $\frac{dy}{dx} = e^x + \cos x + x + \tan x$	is is			
	(a) $y = e^x + \sin x + \frac{x^2}{2} + \log \cos x + c$	(b)	$y = e^x + \sin x + \frac{x^2}{2} + \log \sec x$	x + c	
	(c) $y = e^x - \sin x + \frac{x^2}{2} + \log \cos x + c$	(d)	$y = e^x - \sin x + \frac{x^2}{2} + \log \sec x$	c + c	
118.	The general solution of the differential equation $e^{y} \frac{dy}{dx} + (e^{y} + 1) \cot y$	<i>x</i> = () is		
	(a) $(e^{y} + 1)\cos x = K$ (b) $(e^{y} + 1)\csc x = K$	(c)	$(e^y + 1)\sin x = K$	(d)	None of these
119.	Solution of differential equation $\frac{dy}{dx} = \sin x + 2x$, is				[MP PET 1997]
	(a) $y = x^2 - \cos x + c$ (b) $y = \cos x + x^2 + c$	(c)	$y = \cos x + 2$	(d)	$y = \cos x + 2 + c$
120.	Solution of differential equation $\frac{dy}{dx} = 2xy$, is				[MP PET 1997]
	(a) $y = ce^{x^2}$ (b) $y^2 = 2x^2 + c$	(c)	$y = e^{-x^2} + c$	(d)	$y = x^2 + c$
121.	The general solution of differential equation $(4 + 5 \sin x) \frac{dy}{dx} = \cos x$	is is			
	(a) $y = \frac{1}{5}\log 4+5\sin x + C$	(b)	$y = \frac{1}{5}\log 4 + 5\cos x + C$		
	(c) $y = -\frac{1}{5}\log 4 - 5\sec x + C$	(d)	None of these		
122.	The general solution of differential $\frac{dy}{dx} = \log x$ is				
	(a) $y = x(\log x + 1) + C$ (b) $y + x(\log x + 1) = C$	(c)	$y = x(\log x - 1) + C$	(d)	None of these
123.	For solving $\frac{dy}{dx} = (4x + y + 1)$, suitable substitution is				[MP PET 1999]
123.					
123,	(a) $y = vx$ (b) $y = 4x + v$	(c)	y = 4x	(d)	y + 4x + 1 = v

124. The solution of
$$\frac{dy}{dx} + \sqrt{\left(\frac{1-x^2}{1-x^2}\right)} = 0$$
 is [DEE.1999]
(a) $\tan^{-1}x + \cot^2 x = C$ (b) $\sin^{-1}x + \sin^{-1}y = C$ (c) $\sec^{-1}x + \csc^{-1}x = C$ (d) None of these
125. The solution of the differential equation $\sqrt{a + x} \frac{dy}{dx} + xy = 0$ is [MP PET 1998]
(a) $y = Ae^{\frac{2}{3}(2a - x)\sqrt{x + y}}$ (b) $y = Ae^{-\frac{2}{3}\left(\frac{1}{2}a - x\sqrt{x + y}\right)}$ (c) $y = Ae^{\frac{2}{3}(2a - x)\sqrt{x + y}}$ (d) $y = Ae^{-\frac{2}{3}(2a - x)\sqrt{x + y}}$
Where A is an arbitrary constant
126. The solution of the differential equation $\frac{dy}{dx} + 2xy = y$ is [Reorise 1995]
(a) $y = ce^{-t^{-2}}$ (b) $y = ce^{-t^{-2}}$ (c) $y = ae^{t}$ (d) $y = ce^{-t^{-2}}$
(e) $y = Ae^{\frac{2}{3}(2a - x)\sqrt{x + y}}$ [DSSE 1994; MP PET 1994; 95]
(a) $y = ce^{-t^{-2}}$ (b) $y = ce^{-t^{-2}}$ (c) $y = ce^{t}$ (d) $y = ce^{-t^{-2}}$
127. The general solution of the differential equation $\log\left(\frac{dy}{dx}\right) = x + y$ is [DSSE 1994; MP PET 1994; 95]
(a) $e^{t} + e^{t} = c$ (b) $e^{t} + e^{-2} = c$ (c) $e^{-t} + e^{t} = c$ (d) None of these
128. The solution of the differential equation cy logics $x + \tan x dx = \cos x \log \log x + \tan y dy$ is [AI CISSE 1990]
(a) $ye^{x^2} = cx^2$ (b) $ye^{-x^2} = cx^2$ (c) $y^2e^{x^2} = cx^2$ (d) $y^2e^{-t^2} = cx^2$
(e) $y^2e^{-t^2} = cx^2$ (f) $ye^{-t^2} = cx^2$ (f) $y^2e^{-t^2} = cx^2$
(g) $y^2e^{-t^2} = cx^2$ (h) $ye^{-t^2} = cx^2$ (c) $y^2e^{t^2} = cx^2$ (d) $y^2e^{-t^2} = cx^2$
(e) $y^2e^{-t^2} = cx^2$ (f) $y^2e^{-t^2} = cx^2$ (g) $y^2e^{-t^2} = cx^2$ (g) $y^2e^{-t^2} = cx^2$
(g) $y^2e^{-t^2} = cx^2$ (h) $ye^{-t^2} = cx^2$ (c) $y^2e^{t^2} = cx^2$ (d) $x^2e^{-t^2} = cx^2$
139. If $\frac{dy}{dt} = 1 + x + xy$ and $y(-1) = 0$, then function y is most with separated variables, can be transformed into one which is with separated variables, the transformed into one which is with separated variables, the subtrimined into one which is with $x + yx + \frac{dy}{dt} = \frac{d(y^3 + \frac{dy}{dt})$ is [AISSE 1999; 90; MP PET 2002]
(a) $y = c(x + a)(1 + a)(-b) = c(x + a)(-a)(-a)(-c) = e^{1 - x/2}$ (d) None of these
130. The solution of the diff

				D	ifferential Equations 423
	(c) $\tan^{-1} x + \frac{1}{2} \log(1 + x^2) + \tan^{-1} y + \frac{1}{2} \log(1 + y^2) = c$	(d)	None of these		
137.	The solution of $\frac{dy}{dx} = \frac{e^x(\sin^2 x + \sin 2x)}{y(2\log y + 1)}$ is				[AISSE 1990]
	(a) $y^2(\log y) - e^x \sin^2 x + c = 0$ (b) $y^2(\log y) - e^x \cos^2 x + c = 0$	(c)	$y^2(\log y) + e^x \cos^2 x + c = 0$	(d)	None of these
38.	The solution of the differential equation $(x - y^2 x)dx = (y - x^2 y)dy$	is			[DSSE 1984
			$(1+y^2) = c^2(1+x^2)$	(d)	None of these
39.	The solution of the equation $\frac{dy}{dx} = \frac{y^2 - y - 2}{x^2 + 2x - 3}$ is				
	(a) $\frac{1}{3}\log\left \frac{y-2}{y+1}\right = \frac{1}{4}\log\left \frac{x+3}{x-1}\right + c$	(b)	$\frac{1}{3}\log\left \frac{y+1}{y-2}\right = \frac{1}{4}\log\left \frac{x-1}{x+3}\right + c$		
	(c) $4 \log \left \frac{y-2}{y+1} \right = 3 \log \left \frac{x-1}{x+3} \right + c$	(d)	None of these		
40.	The general solution of the differential equation $(\tan^2 x + 2 \tan x + 2 \tan x)$	$5)\frac{dy}{dx}$	$= 2(1 + \tan x) \sec^2 x$ is		
	(a) $y = \log \tan^2 x + 2 \tan x + 5 + c$	(b)	$y = \log \tan^2 x - 2\tan x + 5 $	+c	
	(c) $y = \log \sec^2 x - 2 \tan x + 5 - c$	(d)	None of these		
41.	The solution of the equation $\sqrt{a+x} \frac{dy}{dx} + x = 0$ is				[DSSE 1988
	(a) $3y + 2\sqrt{a + x} \cdot (x - 2a) = 3c$	(b)	$3y + 2\sqrt{x+a}.(x+2a) = 3c$		
	(c) $3y + 2\sqrt{x - a} \cdot (x + 2a) = 3c$	(d)	None of these		
42.	The solution of $e^{2x-3y}dx + e^{2y-3x}dy = 0$ is				
	(a) $e^{5x} + e^{5y} = c$ (b) $e^{5x} - e^{5y} = c$	(c)	$e^{5x+5y} = c$	(d)	None of these
43.	The solution of $(x\sqrt{1+y^2}dx + (y\sqrt{1+x^2})dy = 0$ is				
	(a) $\sqrt{1+x^2} + \sqrt{1+y^2} = c$ (b) $\sqrt{1+x^2} - \sqrt{1+y^2} = c$	(c)	$(1+x^2)^{3/2} + (1+y)^{3/2} = c$	(d)	None of these
44.	Solution of the equation $(e^x + 1)y dy = (y + 1)e^x dx$ is				[AISSE 1988
	(a) $c(y+1)(e^x+1) + e^y = 0$ (b) $c(y+1)(e^x-1) + e^y = 0$	(c)	$c(y+1)(e^x-1)-e^y=0$	(d)	$c(y+1)(e^x+1) = e^y$
45.	The solution of the differential equation $(1 - x^2)(1 - y)dx = xy(1 + y)dx$)dy is	3		
	(a) $\log[x(1-y^2)] = \frac{x^2}{2} + \frac{y^2}{2} - 2y + c$		$\log[x(1-y^2)] = \frac{x^2}{2} - \frac{y^2}{2} + 2y$	⊦c	
	(c) $\log[x(1+y^2)] = \frac{x^2}{2} + \frac{y^2}{2} - 2y + c$	(d)	$\log[x(1-y)^{2}] = \frac{x^{2}}{2} - \frac{y^{2}}{2} - 2y - \frac{y^{2}}{2} - 2y - \frac{y^{2}}{2} - 2y - \frac{y^{2}}{2} - 2y - \frac{y^{2}}{2} - y^{2$	- c	
46.	The solution of $\frac{dy}{dx} = 2^{y-x}$ is				[Karnataka CET 2000
	(a) $2^x + 2^y = C$ (b) $2^x - 2^y = C$	(c)	$\frac{1}{2^x} - \frac{1}{2^y} = C$	(d)	$\frac{1}{2^x} + \frac{1}{2^y} = C$
47.	The solution of differential equation $y \frac{dy}{dx} = x - 1$ satisfying $y(1) =$	1 is			
	(a) $y^2 = x^2 - 2x + 2$ (b) $y^2 = 2x^2 - x - 1$	(c)	$y = x^2 - 2x + 2$	(d)	None of these
48.	The differential equation $y \frac{dy}{dx} + x = a$ (<i>a</i> is any constant) represent	s			
	(a) A set of circles having centre on the <i>y</i>-axis(c) A set of ellipses		A set of circles, centre on the <i>x</i> -None of these	axis	

149. The general solution of differential equation
$$\frac{dy}{dx} = \sin^{1} x \cos^{2} x + xe^{+}$$
 is
(a) $y = \frac{1}{5} \cos^{2} x + \frac{1}{3} \csc^{3} x + (x + 1)x^{+} + c$ (b) $y = \frac{1}{5} \cos^{2} x - \frac{1}{3} \cos^{3} x + (x - 1)x^{+} + c$
(c) $y = -\frac{1}{5} \cos^{2} x - \frac{1}{3} \csc^{3} x - (x - 1)x^{-} - c$ (d) None of these
150. The solution of the differential equation $\frac{dy}{dx} = \frac{x - y + 3}{2(x - y) + 55}$ is
(a) $2(x - y) + \log (x - y - 2) = x + c$ (b) $2(x - y) - \log (x - y - 2) = x + c$
(c) $2(x - y) + \log (x - y - 2) = x + c$ (d) None of these
151. Solution of $(x + y - 1)dx + (2x + 2y - 3yb) = 0$ is (MP PPT 1999]
(a) $y + x + \log (x + y - 2) = c$ (b) $y + 2x + \log (x + y - 2) = c$ (c) $2y + x + \log (x + y - 2) = c$ (d) $2y + 2x + \log (x + y - 2) = c$
(p) CK 1999
(a) $y = \tan\left(\frac{x + y}{2}\right) + c$ (b) $y + 2x + \log (x + y - 2) = c$ (c) $y = x \sec\left(\frac{y}{x}\right) + c$ (d) None of these
153. The solution of $\log\left(\frac{dy}{dx}\right) = ax + by$ is
(a) $\frac{e^{b}}{b} = \frac{e^{a}}{a} + c$ (b) $\frac{e^{-b}}{-b} = \frac{e^{a}}{a} + c$ (c) $\frac{e^{-b}}{a} = \frac{e^{a}}{b} + c$ (d) None of these
154. The solution of the equation $\sin^{-3}\left(\frac{dy}{dx}\right) - x + y$ is
(a) $1\pi(x + y) + \sec(x + y) = x + c = 0$ (d) None of these
155. The solution of the differential equation $\log\left(\frac{dx}{dx}\right) - 4x - 2y - 2, y = 1$ when $x = 1$ is
(a) $2e^{5yz} = e^{5z} + e^{2}$ (b) $2x \cos^{2yz} = e^{5z} + e^{4}$ (c) $2e^{5yz} = e^{5z} + e^{4}$ (d) $3e^{5yz} = e^{5z} + e^{4}$
(e) $(x - y)^{2} + c = \log(3x - 4y + 1)$ (b) $x - y + c = \log(3x - 4y + 4)$
(c) $(x - y)^{2} + c = \log(3x - 4y + 1)$ (b) $x - y + c = \log(3x - 4y + 4)$
(c) $(x - y)^{2} + c = \log(3x - 4y + 1)$ (c) $(x - y)^{2} + c = 0$ (d) $x - y + \tan(x + c) = 0$ (d) None of these
155. The solution of the equation $\frac{dy}{dx} = \frac{3x - 4y - 2}{3x - 4y - 3}$ is
(a) $\log\left[1 + \tan\left(\frac{x + y}{2}\right\right] + c = 0$ (b) $x - y + \tan(x + c) = 0$ (c) $x + y - \tan(x + c) = 0$ (d) None of these
156. The solution of the equation $\frac{dy}{dx} = \frac{3x - 4y - 2}{3x - 4y - 3}$ is
(a) $x + y + \tan(x + c) = 0$ (b) $x - y + \tan(x + c) = 0$ (c) $x + y - \tan(x + c) = 0$ (d) None of these
157. The s

Homogeneous Equation **Basic Level** Solution of differential equation $2xy \frac{dy}{dx} = x^2 + 3y^2$ is (where *p* is constant) 161. [MP PET 1993] (a) $x^3 + y^2 = px^2$ (b) $\frac{x^2}{2} + \frac{y^3}{x} = y^2 + p$ (c) $x^2 + y^3 = px^2$ (d) $x^2 + y^2 = px^3$ **162.** The solution of the equation $\frac{dy}{dx} = \frac{x+y}{x-y}$ is [AI CBSE 1990] (b) $c(x^2 + y^2)^{1/2} = e^{\tan^{-1}(y/x)}$ (a) $c(x^2 + y^2)^{1/2} + e^{\tan^{-1}(y/x)} = 0$ (c) $c(x^2 + y^2) = e^{\tan^{-1}(y/x)}$ (d) None of these The solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ is 163. (a) $ay^2 = e^{x^2/y^2}$ (c) $y = e^{x^2} + e^{y^2} + c$ (d) $y = e^{x^2} + v^2 + c$ (b) $ay = e^{x/y}$ The solution of the equation $\frac{dy}{dx} = \frac{x}{2v - x}$ is 164. (d) $y = \frac{x}{2y - x} + c$ (a) $(x-y)(x+2y)^2 = c$ (b) y = x + c(c) y = (2y - x) + cThe solution of the differential equation $x + y \frac{dy}{dx} = 2y$ is 165. (c) $y-x = c + \log \frac{x}{y-x}$ (d) $y-x = c + \frac{x}{y-x}$ (a) $\log(y-x) = c + \frac{y-x}{x}$ (b) $\log(y-x) = c + \frac{x}{y-x}$ The solution of $\frac{dy}{dx} = \left(\frac{y}{x}\right)^{1/3}$ is 166. [EAMCET 2002] (a) $x^{2/3} + y^{2/3} = C$ (b) $x^{1/3} + y^{1/3} = C$ (c) $y^{2/3} - x^{2/3} = C$ (d) $y^{1/3} - x^{1/3} = C$ 167. If $y' = \frac{x - y}{x + y}$, then its solution is [MP PET 2000] (a) $y^2 + 2xy - x^2 = C$ (b) $y^2 + 2xy + x^2 = C$ (c) $y^2 - 2xy - x^2 = C$ (d) $y^2 - 2xy + x^2 = C$ The solution of the equation $x \frac{dy}{dx} + 3y = x$ is 168. (a) $x^{3}y + \frac{x^{4}}{4} + c = 0$ (b) $x^{3}y + \frac{x^{4}}{4} + c$ (c) $x^{3}y + \frac{x^{4}}{4} = 0$ (d) None of these Advance Level The solution of the differential equation $x^2 \frac{dy}{dx} = x^2 + xy + y^2$ is 169.

- (a) $\tan^{-1}\left(\frac{y}{x}\right) = \log x + c$ (b) $\tan^{-1}\left(\frac{y}{x}\right) = -\log x + c$ (c) $\sin^{-1}\left(\frac{y}{x}\right)$
- **170.** The general solution of $y^2 dx + (x^2 xy + y^2) dy = 0$

(a)
$$\tan^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$$
 (b) $2\tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$

171. The solution of the differential equation $(x^2 + y^2)dx = 2xy dy$ is

$$\left(\frac{y}{x}\right) = \log x + c$$
 (d) $\tan^{-1}\left(\frac{x}{y}\right) = \log x + c$
[EAMCET 2003]

(c)
$$\log(y + \sqrt{x^2 + y^2}) + \log y + c = 0$$
 (d) $\sinh^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$

(b) $x = c(x^2 - y^2)$ (a) $x = c(x^2 + y^2)$ (c) $x + c(x^2 + y^2) = 0$ (d) None of these The solution of the equation $x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$ is 172. [Roorkee 1982] (a) $x \sin\left(\frac{x}{y}\right) + c = 0$ (c) $x \sin\left(\frac{y}{x}\right) = c$ (b) $x \sin y + c = 0$ (d) None of these The solution of the differential equation $x \, dy - y \, dx = (\sqrt{x^2 + y^2}) dx$ is 173. (a) $y - \sqrt{x^2 + y^2} = cx^2$ (b) $y + \sqrt{x^2 + y^2} = cx^2$ (c) $y + \sqrt{x^2 + y^2} + cx^2 = 0$ (d) None of these The solution of the differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$ is 174. [AISSE 1990] (a) $x^{2}(2xy + y^{2}) = c^{2}$ (b) $x^{2}(2xy - y^{2}) = c^{2}$ (c) $x^2(y^2 - 2xy) = c^2$ (d) None of these The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi'\left(\frac{y}{x}\right)}$ is 175. [DCE 2002] (a) $\phi\left(\frac{y}{x}\right) = kx$ (b) $x\phi\left(\frac{y}{r}\right) = k$ (c) $\phi\left(\frac{y}{r}\right) = ky$ (d) $y\phi\left(\frac{y}{r}\right) = k$ The solution of $(x^3 - 3xy^2)dx = (y^3 - 3x^2y)dy$ is 176. (c) $x^2 + y^2(x - 2y)^2 = c^2$ (a) $x^2 - y^2 = (x^2 + y^2)c^2$ (b) $x^2 + y^3(x - 2y)^2 = c^2$ (d) None of these 177. The solution $(x^3 + y^3)dx - 3xy^2dy = 0$ is (a) $x^3 - 2y^3 = cx$ $(b) \quad x^3 - 2v^2 = cx$ (c) $x^3 + 2y^3 = cx$ (d) None of these Solution of differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ is 178. [MP PET 1997] (b) $\frac{y^2}{2} + xy = xy - \frac{x^2}{2} + c$ (a) $\log_e (x^2 + y^2) + 2 \tan^{-1} \frac{y}{x} + c = 0$ (c) $\left(1+\frac{x}{y}\right)y = \left(1-\frac{x}{y}\right)x + c$ (d) $y = x - 2\log_e y + c$ 179. Solution of (x - y - 1)dx + (4y + x - 1)dy = 0 is (a) $\log\{4y^2 + (x-1)^2\} + \tan^{-1}\{2y/(x-1)\} = c$ (b) $\log\{4x^2 + (y-1)^2\} + \tan^{-1}\{2y/(x+1)\} = c$ (c) $\log\{4y^2 + (x+1)^2\} + \tan^{-1}\{2y/(x+1)\} = c$ (d) None of these Solution of (3y - 7x + 7)dx + (7y - 3x + 3)dy = 0 is 180. (b) $(y - x + 1)^2 (y + x - 1)^3 = c$ (a) $(y - x + 1)^2 (y + x - 1)^5 = c$ (c) $(y + x - 1)^2 (y - x + 1)^4 = c$ (d) None of these **181.** Solution of $\frac{dy}{dx} = \frac{6x - 2y - 7}{2x + 3y - 6}$ is (a) $3x^2 - 7xy = c$ (b) 2x - 3y + xy = c(c) $3x^2 - 2xy - 7x - \frac{3}{2}y^2 + 6y = c$ (d) None of these **Exact Differentials Basic Level**

^{182.} The solution of $y dx - xdy + 3x^2y^2e^{x^3}dx = 0$ is

(a)
$$\frac{x}{y} + e^{x^2} - C$$
 (b) $\frac{x}{y} - e^{x^2} - 0$ (c) $\frac{-x}{y} + e^{x^2} - 0$ (d) None of these
183. The solution of $(x + 2y^2) \frac{dy}{dx} = y$ is
(a) $\frac{x}{y} - y^3 + c$ (b) $xy = y + c$ (c) $\frac{y}{x} - x + c$ (d) None of these
184. The solution of $(1 + xy)y dx + (1 - xy)x dy = 0$ is
(a) $\frac{x}{y} + \frac{1}{xy} = k$ (b) $\log[\frac{x}{y}] = \frac{1}{xy} + k$ (c) $\frac{x}{y} = e^{xy} + k$ (d) $\log[\frac{x}{y}] = xy + k$
185. The solution of the differential equation $y dx + (x + x^2)ydy = 0$ is
(a) $\log y - Cx$ (b) $-\frac{1}{xy} + \log y = C$ (c) $\frac{1}{xy} + \log y = C$ (d) $-\frac{1}{xy} = C$
186. The solution of the differential equation (sin $x + \cos xy) + (\cos x - \sin x)dx - 0$ is
(a) $e^{-x}(\sin x + \cos x) + c = 0$ (b) $e^{-x}(\sin x + \cos x) = c$ (c) $e^{-x}(\cos x - \sin x) = c$ (d) $e^{-x}(\sin x + \cos x) = c$
187. Solution of the differential equation (sin $x + \cos x) = c$ (c) $xy + \log y - x = c$ (d) None of these
188. Solution of the quadity $x^2 + x^2 + \log x = 0$ is
(a) $y = cx - (1 + \log x)$ (b) $y = cx + (1 + \log x)$ (c) $y + cx + (1 + \log x) = 0$ (d) None of these
189. Solution of the quadity $x^2 + x^2 + \cos x dy = 0$ is
(a) $x + y \log y = c$ (b) $x^2 + x^2 + \cos x dy = 0$ is
(a) $x \sin(xy) - k$ (b) $x \sin(xy) - k$ (c) $\frac{x}{2} + e^{-xy} - k$ (d) $\log xy - y^3 = k$
190. The solution of $(x - y^3)x^2 + x^2 + 0 = 1$ is
(a) $\frac{y^2}{2} + e^{-xy} - k$ (b) $\frac{x^2}{2} + e^{-xy} - k$ (c) $\log x - \frac{x}{y^2} - k$ (d) $\log xy - y^3 = k$
191. The solution of $(x - y^3)x^4 + x^2 + x^3 + y^3 + x^3 + x^3$

(a)
$$(w^{1} + 1)\cos x = c$$
 (b) $(w^{1} - 1)\sin x = c$ (c) $(w^{1} + 1)\sin x = c$ (d) None of these
Linear Equation
Basic Level
196. The solution of differential equation $\frac{dy}{dx} + y = e^{x}$ is
(a) $y = e^{x} + ce^{-x}$ (b) $y = e^{-x} + ce^{x}$ (c) $y = \frac{1}{2}e^{x} + ce^{-x}$ (d) $y = \frac{1}{2}e^{-x} + ce^{x}$
(e) $y = \frac{1}{2}e^{-x} + ce^{-x}$ (f) $y = \frac{1}{2}e^{-x} + ce^{-x}$ (g) $y = \frac{1}{2}e^{-x} + ce^{-x}$
197. Which of the following equation is non-linear
(a) $\frac{dy}{dx} + \frac{y}{x} - \log x$ (b) $y \frac{dy}{dx} + 4x = 0$ (c) $dx + dy = 0$ (d) $\frac{dy}{dx} - \cos x$
198. The solution of the differential equation $\frac{dy}{dx} + \frac{3x^{2}}{1 + x^{2}} y = \frac{5n^{2}x}{1 + x^{2}}$ is
(a) $y(1 + x^{3}) = x + \frac{1}{2} \sin 2x + c$ (b) $y(1 + x^{3}) = cx + \frac{1}{2} \sin 2x$
(c) $y(1 + x^{3}) = x + \frac{1}{2} \sin 2x + c$ (c) $y \sec x = 0$ is
(d) $y(1 + x^{3}) = x + \frac{1}{2} \sin 2x + c$ (c) $y \sec x = - \cot x + c$ (d) None of these
199. The solution of the differential equation $\frac{dy}{dx} + y = e^{x}$ (c) $\frac{dy}{dx} + 3y = xy^{2}$ (d) $x\frac{dy}{dx} + y^{2} = \sin x$
200. Which of the following equation is incar
(c) $\frac{dy}{dx} + xy^{2} = 1$ (b) $x^{3}\frac{dy}{dx} + y = e^{x}$ (c) $\frac{dy}{dx} + 3y = xy^{2}$ (d) $x\frac{dy}{dx} + y^{2} = \sin x$
201. The solution of the differential equation $\frac{dy}{dx} + y = e^{x}$ (c) $\frac{1}{4}xy = x^{4} + c$ (d) $xy = 4x^{4} + c$
202. Which of the following equation is non-linear
(e) $\frac{dy}{dx} = -\cos x$ (b) $y = \frac{1}{2}(\cos x - \sin x) + ce^{-x}$
(j) $\frac{dy}{dx} = +y = 0$ (k) $\frac{dy}{dx} = y = 0$ (k) $dx + dy = 0$ (k) $x\frac{dy}{dx} + \frac{2}{dy} = y^{2}$
203. The integrating factor of the differential equation $\frac{dy}{dx} = y = x$ (c) $-\sec x$, is [MP PET 1985]
(f) $\sin x$ (b) $\sec x$ (c) $-\sec x$ (d) $-\sec x$ (d) $\cot x$
204. $\frac{dx}{dx} + y = \cos x$ is [AISSE 1990]
(g) $y = \frac{1}{2}(\cos x + \sin x) + ce^{-x}$ (d) None of these
205. The solution of the equation $x\frac{dy}{dx} + 3y = x$ is
(g) $x^{3}y + \frac{x^{4}}{4} + c = 0$ (h) $x^{3}y = \frac{x^{4}}{4} + c$ (c) $x^{3}y + \frac{x^{4}}{4} = 0$ (d) None of these
205. The solution of the equation $\frac{dy}{dx} + y =$

	(a) $e^{\sin x}$	(b) $\frac{1}{\sin x}$	(c)	$\frac{1}{\cos x}$	(d)	$e^{\cos x}$
207.	The solution of the differential	l equation $x \log x \frac{dy}{dx} + y = 2 \log x$	is			
	(a) $y = \log x + c$	(b) $y = \log x^2 + c$	(c)	$y \log x = (\log x)^2 + c$	(d)	$y = x \log x + c$
208.	The solution of the differential	l equation $\frac{dy}{dx} + 2y \cot x = 3x^2 \csc x$	$c^2 x$ is			
	(a) $y\sin^2 x = x^3 + c$	(b) $y \sin x = c$	(c)	$y\cos x^2 = c$	(d)	$y\sin x^2 = c$
209.	The solution of $\frac{dy}{dx} + \frac{y}{3} = 1$ is	5				[EAMCET 2002]
	(a) $y = 3 + Ce^{x/3}$	(b) $y = 3 + Ce^{-x/3}$	(c)	$y = C + e^{x/3}$	(d)	$y = C + e^{-x/3}$
210.	$y + x^2 = \frac{dy}{dx}$ has the solution					[EAMCET 2002]
	(a) $y + x^2 + 2x + 2 = Ce^x$	(b) $y + x + x^2 + 2 = Ce^{2x}$	(c)	$y + x + 2x^2 + 2 = Ce^x$	(d)	$y^2 + x + x^2 + 2 = Ce^x$
211.	Solution of differential equation	on $x \frac{dy}{dx} = y + x^2$ is				[MP PET 1997]
	(a) $y = \log_e x + \frac{x^2}{2} + a$	(b) $y = \frac{x^3}{2} + \frac{a}{x}$	(c)	$y = x^2 + ax$	(d)	None of these
212.	Which of the following equation	on is linear				
	(a) $\sqrt{1-x^2}dx + \sqrt{1-y^2}dy =$	= 0	(b)	$\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$		
	(c) $\frac{1}{x}\frac{d^2y}{dx^2} = e^x$		(d)	$(xy^{2} + x)dx + (y - x^{2}y)dy = 0$		
213.	The solution of the differential	l equation $x \frac{dy}{dx} + y = x^2 + 3x + 2$ is	s			
	(a) $xy = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x + c$	(b) $xy = \frac{x^4}{4} + x^3 + x^2 + c$	(c)	$xy = \frac{x^4}{4} + \frac{x^3}{3} + x^2 + c$	(d)	$xy = \frac{x^4}{4} + x^3 + x^2 + cx$
214.	The integrating factor of the di	ifferential equation $x dy - y dx = xy$	$\int dx$ is			
	(a) $\frac{1}{x^2}$	(b) $\frac{1}{y^2}$	(c)	$\frac{1}{xy}$	(d)	$\frac{1}{x^2y^2}$
		Advant	ce Lei	vel		
215.	The solution of the equation $\frac{d}{d}$	$\frac{dy}{dx} + y \tan x = x^m \cos x$ is				
	(a) $(m+1)y = x^{m+1}\cos x + c$	$c(m+1)\cos x$	(b)	$my = (x^m + c)\cos x$		
	(c) $y = (x^{m+1} + c)\cos x$			None of these		
216.	An integrating factor for the di	ifferential equation $(1 + y^2)dx$ – (tan	$^{-1}y - y$	dy = 0, is		[MP PET 1993]
	(a) $\tan^{-1} y$	(b) $e^{\tan^{-1}y}$	(c)	$\frac{1}{1+y^2}$	(d)	$\frac{1}{x(1+y^2)}$
217.	The equation of the curve pass	sing through the origin and satisfying	g the eq	uation $(1 + x^2)\frac{dy}{dx} + 2xy = 4x^2$	is	
	(a) $3(1+x^2)y = 4x^3$	(b) $3(1-x^2)y = 4x^3$	(c)	$3(1+x^2) = x^3$	(d)	None of these

430	Differential Equations					
218.	The solution of the equation $\frac{d}{dt}$	$\frac{dy}{dx} = \frac{1}{x+y+1}$ is				
	(a) $x = ce^y - y - 2$	(b) $y = x + ce^y - 2$	(c)	$x + ce^y - y - 2 = 0$	(d)	None of these
219.	The solution of the differential	l equation $\frac{dy}{dx} + y \cot x = 2 \cos x$ is				
	(a) $y \sin x + \cos 2x = 2c$	(b) $2y\sin x + \cos x = c$	(c)	$y\sin x + \cos x = c$	(d)	$2y\sin x + \cos 2x = c$
220.	The solution of the equation (.	$x + 2y^3 \frac{dy}{dx} - y = 0$ is (where A is any	y arbit	arary constant)		[MP PET 1998, 2002]
	(a) $y(1-xy) = Ax$	(b) $y^3 - x = Ay$	(c)	x(1-xy) = Ay	(d)	x(1+xy) = Ay
221.	Solution of the differential equ	ution $y' = y \tan x - 2 \sin x$, is				[AMU 1999]
	(a) $y = \tan x + 2C \cos x$	(b) $y = \tan x + C \cos x$	(c)	$y = \tan x - 2C \cos x$	(d)	None of these
222.	The solution of $\frac{dv}{dt} + \frac{k}{m}v = -\frac{1}{2}$	g is				
	(a) $v = ce^{-\frac{k}{m}t} - \frac{mg}{k}$	(b) $v = c - \frac{mg}{k} e^{-\frac{k}{m}}$	(c)	$ve^{-\frac{k}{m}} = c - \frac{mg}{k}$	(d)	$ve^{\frac{k}{m}t} = c - \frac{mg}{k}$
223.	Integrating factor of differentia	al equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is				[MP PET 1996]
	(a) $\cos x$	dx (b) $\tan x$	(c)	sec x	(d)	sin x
	. ,		(0)		(u)	
224.	Solution of differential equation	$\sin \frac{dy}{dx} + ay = e^{mx}$ is				[MP PET 1996]
	(a) $(a+m)y = e^{mx} + C$		(b)	$ye^{ax} = me^{mx} + C$		
	(c) $y = e^{mx} + Ce^{-ax}$		(d)	$(a+m)y = e^{mx} + Ce^{-ax}(a+m)$		
225.	The solution of $\frac{dy}{dx} + P(x)y =$	= 0 is				[Kerala (Engg.) 2002]
	(a) $y = ce^{\int Pdx}$	(b) $y = ce^{-\int Pdy}$	(c)	$y = ce^{-\int Pdx}$	(d)	$y = ce^{\int Pdy}$
226.	The solution of $\frac{dy}{dx} + y = e^{-x}$,	y(0) = 0				[Kerala (Enggg.) 2002]
	(a) $y = e^{-x}(x-1)$	(b) $y = xe^x$	(c)	$y = xe^{-x} + 1$	(d)	$y = xe^{-x}$
227.	Solution of the differential equ	nation $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ i	is			[DCE 2001]
	(a) $y = \tan x - 1 + ce^{-\tan x}$	(b) $y^2 = \tan x - 1 + ce^{-\tan x}$	(c)	$ye^{\tan x} = \tan x - 1 + c$	(d)	$ye^{-\tan x} = \tan x - 1 + c$
228.	An integrating factor of the dif	fferential equation $\frac{dy}{dx} + \frac{2xy}{1-x^2} = \frac{1}{\sqrt{1-x^2}}$	$\frac{x}{-x^2}$	is		[AMU 1999]
	(a) $(1+x^2)^{-1}$	(b) $(1-x^2)^{-1}$	(c)	$x/(1-x^2)$	(d)	$x/\sqrt{1-x^2}$
229.	The solution of $\left(\frac{dy}{dx}\right) \cdot (x^2y^3 +$	+xy) = 1				
	(a) $\frac{1}{x} = -y^2 + 2 - ce^{y^2/2}$	(b) $\frac{1}{x} = y^3 + 2 - ce^{-y^2/2}$	(c)	$\frac{1}{x} = -y^2 + 2 + ce^{y^2/2}$	(d)	None of these
230.	An integrating factor of the dif	fferential equation $(1 - x^2)\frac{dy}{dx} - xy =$	1 , is			[MP PET 2001]
	(a) $-x$	(b) $-\frac{x}{(1-x^2)}$	(c)	$\sqrt{(1-x^2)}$	(d)	$\frac{1}{2}\log(1-x^2)$

231. If y(t) is a solution of $(1 + t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then y(1) is equal to

[IIT Screening 2003]

						interential Equations
	(a) $-\frac{1}{2}$	(b) $e + \frac{1}{2}$	(c)	$e-\frac{1}{2}$	(d)	$\frac{1}{2}$
32.	Integrating factor of $\frac{dy}{dx} + \frac{y}{x}$	$=x^{3}-3$ is				[MP PET
	(a) <i>x</i>	(b) $\log x$	(c)	- <i>x</i>	(d)	<i>e</i> ^{<i>x</i>}
33.	Solution of $\cos x \frac{dy}{dx} + y \sin x$	x = 1 is				[MP PET
	(a) $y \sec x \tan x = C$	(b) $y \sec x = \tan x + C$	(c)	$y \tan x = \sec x + C$	(d)	$y \tan x = \sec x \tan x + e^{-1}$
34 .	If integrating factor of $x(1 - $	$x^{2})dy + (2x^{2}y - y - ax^{3})dx = 0$ is $e^{\int \frac{1}{2}}$	P dx, t	hen <i>P</i> is equal to		[MP PET
	(a) $\frac{2x^2 - ax^3}{x(1 - x^2)}$	(b) $(2x^2-1)$	(c)	$\frac{2x^2-1}{ax^3}$	(d)	$\frac{(2x^2 - 1)}{x(1 - x^2)}$
5.	If $y = f(x)$ passing through	(1, 2) satisfies the differential equation	y(1+	xy) $dx - x dy = 0$, then		
	(a) $f(x) = \frac{2x}{2 - x^2}$	(b) $f(x) = \frac{x+1}{x^2+1}$	(c)	$f(x) = \frac{x-1}{4-x^2}$	(d)	$f(x) = \frac{4x}{1 - 2x^2}$
6.	Solution of the equation $x(d)$	$y/dx) + 2y = x^2 \log x$ is				
	(a) $16yx^2 = x^4 \log(x^4 / e)$	+ <i>c</i>	(b)	$yx^{2} = \frac{1}{4}x^{4}\log x - \frac{1}{16}x^{4} + c$		
	(c) $16yx^2 = 4x^4 \log x - x^4$	⁴ + <i>c</i>	(d)	None of these		
7.	Solution of the differential e	quation $x \cos x \left(\frac{dy}{dx}\right) + y(x \sin x + \cos x)$	x) = 1	is		
	(a) $xy = \sin x + c \cos x$	(b) $xy \sec x = \tan x + c$	(c)	$xy + \sin x + c \cos x = 0$	(d)	None of these
8.	The solution of the equation	$\frac{dy}{dx} - 3y = \sin 2x \text{ is}$				
	(a) $ye^{-3x} = -\frac{1}{13}e^{-3x}(2\cos \theta)$	$\sin 2x + 3\sin 2x) + c$	(b)	$y = -\frac{1}{13}(2\cos 2x + 3\sin 2x)$	$+ ce^{\frac{2}{3}}$	3 <i>x</i>
	(c) $y = \{-1/\sqrt{13}\}\cos(2x)$	$-\tan^{-1}(3/2))+ce^{3x}$	(d)	$y = \{-1/\sqrt{13}\}\sin(2x - \tan^{-1})$	(2/3)	$)) + ce^{3x}$
9.	Solution of the equation $\frac{dy}{dx}$	$+\frac{1}{x}\tan y = \frac{1}{x^2}\tan y \sin y$ is				
	(a) $2x = \sin y(1 + 2cx^2)$	(b) $2x = \sin y(1 + cx^2)$	(c)	$2x + \sin y(1 + cx^2) = 0$	(d)	None of these
0.	Solution of the differential ed	quation $(1 + y^2)dx = (\tan^{-1} y - x)dy$ i	S			
	(a) $xe^{\tan^{-1}y} = (1 - \tan^{-1}y)$	$e^{\tan^{-1}y} + c$	(b)	$xe^{\tan^{-1}y} = (\tan^{-1}y - 1)e^{\tan^{-1}y}$	+c	
	(c) $x = \tan^{-1} y - 1 + ce^{-\tan^{-1} y}$	h ⁻¹ y	(d)	None of these		
				Applic	ation	n of Differential Equati

241. The equation of the curve which passes through the point (1, 1) and whose slope is given by $\frac{2y}{x}$, is

[Roorkee 1987]

(a) Circle

	(a) $y = x^2$	(b) $x^2 - y^2 = 0$	(c) $2x^2 + y^2 = 3$	(d) None of these
242.	Equation of curve through poi	int (1, 0) which satisfies the different	al equation $(1 + y^2)dx - xy dy = 0$, is [JEE West Bengal 19
	(a) $x^2 + y^2 = 1$	(b) $x^2 - y^2 = 1$	(c) $2x^2 + y^2 = 2$	(d) None of these
243.	Equation of curve passing three	bugh (3, 9) which satisfies the differe	ntial equation $\frac{dy}{dx} = x + \frac{1}{x^2}$, is	[JEE West Bengal 19
	(a) $6xy = 3x^2 - 6x + 29$	(b) $6xy = 3x^3 - 29x + 6$	(c) $6xy = 3x^3 + 29x - 6$	(d) None of these
44.	The equation of family of curv	ves for which the length of the norma	l is equal to the radius vector is	
	(a) $y^2 \pm x^2 = k$	(b) $y \pm x = k$	(c) $y^2 = kx$	(d) None of these
245.	The equation of a curve passin	ng through $\left(2,\frac{7}{2}\right)$ and having gradie	ent $1 - \frac{1}{x^2}$ at (x, y) is	
	(a) $y = x^2 + x + 1$	(b) $xy = x^2 + x + 1$	(c) $xy = x + 1$	(d) None of these
246.	The equation of the curve thro	bugh the point $(1, 0)$ and whose slope	is $\frac{y-1}{x^2+x}$ is	
	(a) $(y-1)(x+1) + 2x = 0$	(b) $2x(y-1) + x + 1 = 0$	(c) $x(y-1)(x+1)+2=0$	(d) None of these
47.	The slope of a curve at any po curve is	pint is the reciprocal of twice the ord	inate at the point and it passes throu	igh the point (4, 3). The equation of
	(a) $x^2 = y + 5$	(b) $y^2 = x - 5$	(c) $y^2 = x + 5$	(d) $x^2 = y - 5$
48.	Solution of differential equation	on $x dy - y dx = 0$ represents		[MP PET 19
	(a) Rectangular hyperbola		(b) Straight line passing through	h origin
	(c) Parabola whose vertex is	at origin	(d) Circle whose centre is at ori	igin
49.	The differential equation of th	e family of circles passing through the	the fixed points $(a, 0)$ and $(-a, 0)$ is	
	(a) $y_1(y^2 - x^2) + 2xy + a^2 =$	= 0	(b) $y_1 y^2 + xy + a^2 x^2 = 0$	
	(c) $y_1(y^2 - x^2 + a^2) + 2xy =$	= 0	(d) None of these	
		Advanc	e Level	
250.	If the gradient of the tangent a	at any point (x, y) of a curve which particular the second sec	asses through the point $\left(1, \frac{\pi}{4}\right)$ is $\left\{$	$\frac{y}{x} - \sin^2\left(\frac{y}{x}\right)$, then the equation of
	curve is			[MP PET 19
	(a) $y = \cot^{-1}(\log_e x)$	(b) $y = \cot^{-1}\left(\log_e \frac{x}{e}\right)$	(c) $y = x \cot^{-1}(\log_e ex)$	(d) $y = \cot^{-1}\left(\log_e \frac{e}{x}\right)$
51.	The differential equation of di	isplacement of all "simple harmonic 1	notions" of given period $\frac{2\pi}{n}$, is	
	(a) $\frac{d^2x}{dt^2} + nx = 0$	(b) $\frac{d^2x}{dt^2} + n^2x = 0$	(c) $\frac{d^2x}{dt^2} - n^2x = 0$	(d) $\frac{d^2x}{dt^2} + \frac{1}{n^2}x = 0$
252.	A curve having the condition origin of coordinates is a/an	that the slope of tangent at some po	int is two times the slope of the str	aight line joining the same point to [Orissa JEE 20

253. If rate of decrement of N with time is proportional to N, k being proportionality constant, the solution of the differential equation formed is

(c) Parabola

(d) Hyperbola

(a)
$$N = N_0 + e^{-kt}$$
 (b) $N = N_0 + e^{kt}$ (c) $N = N_0 e^{kt}$ (d) $N = N_0 e^{-kt}$

(b) Ellipse

		tial equation $x \frac{d^2 y}{dx^2} = 1$, given that	,	
		Ba	sic Level	
			M	iscellaneous Differential Equation
	(a) - 5/3	(b) -1	(c) 1	(d) 5/3
64.	Integral curve satisfying y'	$=\frac{x^2+y^2}{x^2-y^2}, y(1)=2$ has the slope a	t the point (1, 0) of the curve equal to	[MP PET 200
	(a) $2(x^2 - y^2) = 3x$	(b) $2(x^2 - y^2) = 6y$	(c) $x(x^2 - y^2) = 6$	(d) $x(x^2 + y^2) = 10$
63.	The slope of the tangent at	(x, y) to a curve passing through a p	boint (2, 1) is $\frac{x^2 + y^2}{2xy}$ then the equation	ion of the curve is [MP PET 2002
	(a) $x = \frac{1}{4}$	(b) $x = \frac{3}{4}$	(c) $x = \frac{1}{2}$	(d) $x = 1$
	$\frac{dx}{dt} = \cos^2 \pi x$. Then the particular terms of $\frac{dx}{dt}$	article never reaches the point on		[AMU 2000
62.	A particle starts at the or	igin and moves along the x-axis i	in such a way that its velocity at	the point $(x, 0)$ is given by the formula
	(a) An ellipse	(b) A parabola	(c) A rectangular hyperbola	(d) A circle
61.	. ,		the ratio of the abscissa to the ordina	
	x = 4 equals (a) 0	(b) 10	(c) 8	(d) 2
60.				and $f(2) = 3$, $g(2) = 9$, then $f(x) - g(x) = 3$
	(a) e^2	(b) $2e^2$	(c) $3e^2$	(d) $2e^{3}$
59.	If $\phi(x) = \phi'(x)$ and $\phi(1) = 1$			
		(b) $y^2 = x^2 + 3x + 1$	(c) $y = x^3 + 3x + 1$	(d) None of these
58.	The equation of the curve s x = 0 as 3 is	atisfying the differential equation y	$_2(x^2+1) = 2xy_1$ passing through the	point (0, 1) and having slope of tangent a
	(a) $a = 0, b = 0$		(c) $a = 0, b \neq 0$	(d) $a = 2, b = 1$
57.	The solution of $\frac{dy}{dx} = \frac{ax+by}{by+by}$	$\frac{h}{k}$ represents a parabola when		
	(a) An ellipse	(b) A rectangular hyperbola	(c) A circle	(d) None of these
56.	The curve for which the no	rmal at any point (x, y) and the line j	joining origin to that point form an is	osceles triangle with the x-axis as base is
	(a) $y = ax + b$	(b) $y^2 = 2ax + b$	(c) $ay^2 - x^2 = a$	(d) None of these
55.	The equation of the curve w	whose subnormal is constant is		
	(a) Touch each other	(b) Are orthogonal	(c) Are one and the same	(d) None of these
		·····	family represented by $\frac{dy}{dx} + \frac{y^2 + y + y}{x^2 + x + y}$	

	1					
266.	the solution of the equation $\frac{d}{dt}$	$\frac{x^2}{x^2} = -\frac{1}{x^2}$ is				[MP PET 2003]
	(a) $y = \log x + c_1 x + c_2$	(b) $y = -\log x + c_1 x + c_2$	(c)	$y = \frac{-1}{x} + c_1 x + c_2$	(d)	None of these
267.	The solution of the differential	equation $\cos^2 x \frac{d^2 y}{dx^2} = 1$ is				
	(a) $y = \log \cos x + cx$	(b) $y = \log \sec x + c_1 x + c_2$	(c)	$y = \log \sec x - c_1 x + c_2$	(d)	None of these
268.	The solution of $y' - y = 1$, $y(0)$	y(x) = -1 is given by $y(x) =$				[MP PET 2000]
	(a) $-\exp(x)$	(b) $-\exp(-x)$	(c)	- 1	(d)	$\exp(x) - 2$
269.	The number of solutions of y'	$=\frac{y+1}{x-1}, y(1)=2$ is				[MP PET 2000]
	(a) None	(b) One	(c)	Two	(d)	Infinite
270.	The solution of $y' = 1 + x + y^2$	$x^2 + xy^2, y(0) = 0$ is				[MP PET 2000]
	(a) $y^2 = \exp\left(x + \frac{x^2}{2}\right) - 1$	(b) $y^2 = 1 + C \exp\left(x + \frac{x^2}{2}\right)$	(c)	$y = \tan(C + x + x^2)$	(d)	$y = \tan\left(x + \frac{x^2}{2}\right)$
271.	$\frac{d^2y}{dx^2} = 0$, then					[UPSEAT 1999]
	(a) $y = ax + b$	(b) $y^2 = ax + b$	(c)	$y = \log x$	(d)	$y = e^x + C$
		Advance	e Lev	el		
272.	The solution of the equation $\frac{d}{dt}$	$\frac{d^2y}{dx^2} = e^{-2x}$				[AIEEE 2002]
	(a) $\frac{1}{4}e^{-2x} = y$	(b) $\frac{1}{4}e^{-2x} + cx + d = y$	(c)	$\frac{1}{4}e^{-2x} + cx^2 + d = y$	(d)	$\frac{1}{4}e^{-2x} + c + d = y$
273.	If $x^2 + y^2 = 1$ then $\left(y' = \frac{dy}{dx}\right)$	$, y'' = \frac{d^2 y}{dx^2} \bigg)$				[IIT Screening 2000]
	(a) $yy'' - 2(y')^2 + 1 = 0$	(b) $yy'' + (y')^2 + 1 = 0$	(c)	$yy'' - (y')^2 - 1 = 0$	(d)	$yy'' + 2(y')^2 + 1 = 0$
274.	If $\frac{d^2y}{dx^2} + \sin x = 0$, then the set	olution of the differential equation is				[Karnataka CET 2000]
	(a) $\sin x$	(b) $\cos x$	(c)	tan x	(d)	$\log \sin x$
275.	If $y^2 = ax^2 + bx + c$, then y^3	$\frac{d^2y}{dx^2}$ is				[DCE 1999]
	(a) A constant	(b) A function of <i>x</i> only	(c)	A function of <i>y</i> only	(d)	A function of x and y
276.	If $\frac{dy}{dx} = e^{-2y}$ and $y = 0$ when	x = 5, then value of x for $y = 3$ is				[MP PET 2001]
	(a) e^5	(b) $e^{6} + 1$	(c)	$\frac{e^6+9}{2}$	(d)	$\log_e 6$
277.	The solution of the differential	l equation $y_1y_3 = 3y_2^2$ is				
	(a) $x = A_1 y^2 + A_2 y + A_3$	(b) $x = A_1 y + A_2$	(c)	$x = A_1 y^2 + A_2 y$	(d)	None of these

			*
278.	Solution of the differential equation $\sin \frac{dy}{dx} = a$ with $y(0) = 1$ is		[Kurukshetra CEE 1998]
	(a) $\sin^{-1}\frac{(y-1)}{x} = a$ (b) $\sin\frac{(y-1)}{x} = a$	(c) $\sin \frac{(1-y)}{(1+x)} = a$	(d) $\sin \frac{y}{(x+1)} = a$
279.	If $y = ax^{n+1} + bx^{-n}$, then $x^2 \frac{d^2y}{dx^2}$ equals to		[Rajasthan PET 2001]
	(a) $n(n-1)y$ (b) $n(n+1)y$	(c) <i>ny</i>	(d) $n^2 y$
280.	The solution of $\frac{d^2y}{dx^2} = \cos x - \sin x$ is		
	(a) $y = -\cos x + \sin x + c_1 x + c_2$	(b) $y = -\cos x - \sin x + $	$-c_1x + c_2$
	(c) $y = \cos x - \sin x + c_1 x^2 + c_2 x$	(d) $y = \cos x + \sin x + c$	$c_1 x^2 + c_2 x$
281.	The solution of $\frac{d^2y}{dx^2} = \sec^2 x + xe^x$ is		[DSSE 1985]
	(a) $y = \log(\sec x) + (x - 2)e^x + c_1x + c_2$	(b) $y = \log(\sec x) + (x + x)$	$(-2)e^{x} + c_{1}x + c_{2}$
	(c) $y = \log(\sec x) - (x+2)e^x + c_1x + c_2$	(d) None of these	
282.	The general solution of the differential equation $\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) =$	$\sin\left(\frac{x-y}{2}\right)$ is	[MP PET 2001]
	(a) $\log \tan\left(\frac{y}{2}\right) = c - 2\sin x$	(b) $\log \tan\left(\frac{y}{4}\right) = c - 2s$	$\sin\left(\frac{x}{2}\right)$
	(c) $\log \tan\left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2\sin x$	(d) $\log \tan\left(\frac{y}{4} + \frac{\pi}{4}\right) = c$	$-2\sin\left(\frac{x}{2}\right)$
283.	A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x \frac{dy}{dx} + y = 0$ is		[IIT 1999; Karnataka CET 2002]
	(a) $y = 2$ (b) $y = 2x$	(c) $y = 2x - 4$	$(d) y = 2x^2 - 4$
284.	If $\phi(x) = \int {\{\phi(x)\}}^{-2} dx$ and $\phi(1) = 0$ then $\phi(x) =$		
	(a) $\{2(x-1)\}^{1/4}$ (b) $\{5(x-2)\}^{1/5}$	(c) $\{3(x-1)\}^{1/3}$	(d) None of these
285.	Solution of the differential equation $\sin y \frac{dy}{dx} = \cos y(1 - x \cos y)$ is		
	(a) $\sec y = x - 1 - ce^x$ (b) $\sec y = x + 1 + ce^x$	(c) $y = x + e^x + c$	(d) None of these
	**	¢	

\mathcal{A} nswer Sheet

c a c b a a a a b b b d d b c a a 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 144 a c d b d c b a b a d b c a d b c a a a c a a d b b a d b b a d b b b d a a a d b <th< th=""><th colspan="13">Assignment (Basic and Advance Level)</th><th></th></th<>	Assignment (Basic and Advance Level)																			
b c a a a d a c b d a c d a a a a a a a a a a a a a a a a a a c a a c a a c a c a c a c a c a c a c a c a c a a c a c a a a a a c a c b a c a c b a c a b a c a b a c a b a c a b a c a a c a a c b a a a a a a a a a																				
b c a a a d a c b d a c d a a a a a a a a a a a a a a a a a a c a a c a a c a c a c a c a c a c a c a c a c a a c a c a a a a a c a c b a c a c b a c a b a c a b a c a b a c a b a c a a c a a c b a a a a a a a a a		-	-		_	6	_	0	-	1.0		40	40		4-		4-	10	4.5	
1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 a a d a a c a c c b a c b a c b a c b a c b a c b a c b a c b a c b a c c a c c a a c c a b c c a a a c c a c c a c c a a a c c a <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>,</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>			-	-	-		,		-				-	_	-				-	
a a d a a c a a c, d a c b a c b a b b a b a a a a b a a a a b a				_	_		_	_		_		_	_			_	_		_	_
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 57 58 59 60 a c a b a a a a c d d b c d b c b c b c b c d d b c d d b c d d b c d d b c d d b c d d b d d c d d b d </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• ·</td> <td>-</td> <td></td> <td></td>				-					-								• ·	-		
a c a b a a a a a a c d d c c b c c b c c b c c a c a a b b b a c b c a b a c b a c a b a c a b a c a b a c b a c a a c a a b a c a a b a				_								_						-		
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 76 77 78 79 76 77 78 79 82 a c a b b b a c a b a c a b a c d c a b a c a a a c a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b b a a a b b a	-	-						_		-	-	-				-		_		
a c a b b b a c b a b a c b a c b a c b a c b a c b a c b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b a b b a b b a b b a b a b a b a b a b a b a b a b a b a b a b a a b a			-		_											_	-	-		_
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 a c a c a, a a c a b a b a b a b a b a b a b a b a b a b a b b a b b a b b a b b a b b a b b a b b a b a	-	-	-	_	-				-		,	'								
a c a, c a, c a a a c a a b a b a b b a b b a b </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>_</td>										-		_					-	-		_
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 124 a a c d c d c d a a a a c d b d d d a a 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 144 a c d b d c 148 149 150 151 152 153 154 155 156 157 158 159 166 167 168 169 170 171 172 173 174 175 176 177 178 179 178 179 178 179 178 179 178 179 178 179 178 179 178 179	-		_	-	-			_	-	-	-	-				-		-		
c a c b a a a a c d b d d b c a a a 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 144 a c d b a a b d c b a,b,c,c b a d b b c a a c a a c a a c a b b c c a b b b b a b b c a b c a a b c a b c a b c a b c a b c a a b a a b a a c a a a a a a a a				_				_				-	_			-	-		_	120
121 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 136 137 138 139 144 a c d b a b d c b a,b, c c a b c a b b c a b b c a b b c a b b c a b		-		-	•			_	-				•	-	•				-	
a c d b a b a b a d b a d b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b b c c a b b c a b b c d b b c c a b b c c a b b c a b b c a b b c a b c a b c a b c a					_			_			-		_	-			137	-	_	140
14 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 156 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 158 158 150 156 157 158 159 151 152 153 154 153 158 158 159 151 152 153 154 153 158 159 151 153 156 157 158 159 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 15			•	-	•				-	_	-	-				-				_
a a d d c a b c a b b c d b c b d b c b c b c b c b c b c b c b c c b c				_		_	_		_											
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 1	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		157	158	159	160
d b a b c a d a b c b a a d a b a a b a								_	b	С	С	a	b	b	С		b		_	
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 20 c a a b b a a b a b a b a b a b a b a b a b a b a b a a b a b a a a b a a a a a a a<		162	163	164		166	167		169	170		172		174	175		177	178	179	180
c a b b b a a b a a a a a a a a a a a										_	b	_		a			_		_	_
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 a d b a b c c a b a c c a b a b a d b a d b a a d b a b c a b a b a b a b a b a b a b a b a b a b a b a b a c a b a b a b a b a b a b a b a b a b a b a a b a b a a a b a a a a a a a a a a a a	181	182	183	-					-		191		193	194		196		_		200
a d b a b c a b a c a b a a b a a b a a a b a a a b a				_	_			_								_	_			
221 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 244 d a c d c d a b a b a b a b a b a b a b a b a b a b c a a,b, c a,b, c,d a,b, c,d a b c a b c a b c a b c a a,b, c a,b, c a,b, c,d a b c c a b c a b c a b c a b c a b c a b c c b c a b c a b a a b a a a a a a a a a a a a a a a			•	-	-				-				•				,		-	220
a c d c d a b a c a b d a,b, c,d a,b, <		_		_				_					_				_			
1 1			•	-	•					-	-	-				_		-		240
241 242 243 244 246 247 248 249 250 251 253 254 255 256 257 258 259 256 267 258 259 256 257 256 257 258 259 256 267 258 259 260 267 268 269 260 260 1 </td <td>d</td> <td>а</td> <td>с</td> <td>d</td> <td>с</td> <td>d</td> <td>a</td> <td>b</td> <td>a</td> <td>с</td> <td>a</td> <td>a</td> <td>b</td> <td>d</td> <td>a</td> <td></td> <td>a,b</td> <td></td> <td>a,b</td> <td>b,c</td>	d	а	с	d	с	d	a	b	a	с	a	a	b	d	a		a,b		a,b	b,c
a b c b c c b c d b b b c c b b 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 288 c c a b,c c a d a b b a b b a 275 276 276 277 278 279 288 c a c b a b,c c a d a b b a a c a b b a 281 282 283 284 285	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257		259	260
c c a c b <u>a b,c c a d a b b a a c a b b a</u> 281 282 283 284 285	-	b		a				b												
c a c b a b,c c a d a b b a c a b b a 281 282 283 284 285 -	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281 282 283 284 285	с	с	a	С	b	a	b,c	С	a	d		b				С	a	b	b	a
a c c c b	281	282	283	284	285															
	a	С	С	С	b															