Chapter-1

Introduction to ‘C' Language

Different programming languages develop for the Computer. These are designed
for specific purpose. Machine language was first language to be developed as Computer
programming language. It is very hard to write a Computer program in this language
because it has very large Instruction set. It can directly run hardware of Computer System.

FORTRAN was developed for solution of scientific and mathematical problems
and COBOL was developed to solve commercial problems. 'C' language was developed
for the need of the current scenario. This language can be used in all types of works.

In 1972, 'C' language was developed by Dennis Ritchie in the Bell Telephone
Laboratories Industry (Now, it is AT & T Bell Laboratories) as the successor of BCPL
(Basic Combined Programming Language) and 'B'. This language can be used with both
Unix and Dos Operating systems. It requires different compiler program. The new version
'C++' of ANSI 'C' and TURBO 'C' was developed in 1980.

1.1 Charecterstic of ‘C' language

1. 'C' language is a flexible language so that it is easy to make different kinds of
programs.

2. The program is written in this language, can run speedily.

3. 'C'language is a high level language but it also has the characteristics of low level
language.

4. The program is written in this language can store in less memory.

5. 'C'language program can be arranged in blocks, so that it can easy to make large
program.

6. Pointers are used to make the program in 'C' language.

7. Bit operators (0 or 1) are presented in the 'C' language, which makes easy to work

with Bytes.

1.2 Structure of Program

The program of 'C' language is the group of different functions. Every function is
a group of statements and it performs a special task. The first function called by the
compiler is main() function. It must be present in every 'C' language program. It is very
important to know the structure of the program, where, we have to write the statements in
the program. The structure of the program is as following :

1. Pre-Processor directive or/ and Header file

2. Global declarations of variables and Function Prototype

3. main()

4. |

5. Local declarations of variables and Function Prototype of main function
6. Single or compound statements

7. }

8. Header of other function with its arguments

9. {

10. Local variables of function

11. Single or compound statements
12. }

Description

Line No. 1: The header file selects according to the library functions have to be used in
which contain information that must be included in the program when it complied. If we
want to include maths library function (for example sin(), cos() and sqrt()) in the program
then we have to write following statement.

#include<math h>
A program can contain one or more header file and write in any order.
Pre-Processor Directive

The pre-processor directives are executed before the execution of the program
by the compiler. They give the directions to the compiler. Some pre-processor directives

2

are #include, #define etc.

The #include pre-processor directive is used to include header files in the program
and the #define is used to declare symbolic constants in the program.

Example :
#define A 10
A is a constant and its value is 10.

Line No. 2 : The variables are declared in this line. These variables can be used anywhere
in the program. It can be used in function only if the same name variable is not declared in
the function.

Example :
intA;
float B, C;

Here, the function prototypes are also be declared. And these functions can be
called in any part of the program.

Line No. 3 : It is main() function. Every 'C' program must contain main() function
because the first function called by compiler is main() function.

Line No. 4 : Start the boundary of the main() function with open curly bracket ({).

Line No. 5 : Variables are declared after the curly bracket, can be used within main()
function.

These are also called local variables. These will be declared as global variables
(Line No. 2). Here, the function prototypes are also be declared. And these functions can
be called within the main() function.

Line No. 6 : Definition of main() function is written here. It includes single or compound
statements.

Line No. 7 : End of the main() function boundary with close curly bracket ({).

Line No. 8, 9, 10, 11, and 12 : These lines are similar to line 3, 4, 5, 6, and 7. The
function name and its arguments are written at line no. 8 that is also called header of the
function.

These lines are optional and these lines write when a user defines a function in
the program.

(©)

The comments are used for documentation. The compiler does not execute the
comments. These are written between /* and */.

Program 1 : Write a 'C' language program to findout the area of the rectangle.
#include<stdio.h>

/* To calculate the of Rectangle.*/

main()
{
float a,b,area;
printf("Enter Side of the Rectangle :\n");
scanf("%f %f",&a,&b);
area=a * b;
printf("\nThe area of the Rectangle = %t",area);
}

Enter Side of the Rectangle : 12 14
The area of the Rectangle = 168
Program 2 : Write a 'C' language program to calculate the given formula.
#include<stdio.h>
main()
{
float m,v,C;
printf("Enter The value of m & v :\n");
scanf(" %t %f",&m,&v);
C=05*m*v*v;

printf("\nThe value of C = %f",C);

)

Enter The valueof m & v: 2.5 1.7
The value of C = 3.612500
1.3 Character set of ‘C'
The 'C' language includes lower and upper case letters, digits, and special symbols.

Alphabets ABC,......... Z

Digits 0,1,2,3,........ 9

Some of the special characters are shown in the table 1.1

Table - 1.1

Symbol| Meaning Symbol Meaning
Hash ? Question Mark
< Less than : Colon
> Greater than ; Semicolon
= Equal to A Caret Sign
+ Plus & Ampersand
- Minus ~ Tiled
* Asterisk $ Dollar sign
% Percentage , Comma
/ slash \ Back slash
@ At the rate ' single quotes
" Double quote ! Exclamation sign
I Filter sign

1.4 Identifier

Identifiers are the name given to various program elements such as variable name,

©)

function name, and symbolic constant name etc. by the user.
The rules for writing identifier are following :
1. The first letter of identifier must be a letter.

2. After the first letter, the identifier can include both uppercase and lowercase letters,
all digits and underscore (_).

3. The maximum size of the identifier is 31 characters.
4. Keyword (or reserve word) cannot be used as identifier.
5. 'C' language is case sensitive language, lowercase letters are different from

uppercase letters. Mostly, should use lowercase letters.
1.5 Constant :

The value of the identifier does not change during the execution of the program.
Constants are three types.

Constant

. l .
Numnieric Character String

Integer Real

Fig. 1.1 Types of contants
1. Numeric Constant :
These are three types
(a) Integer Constant :

These are made of numbers and not included decimal points. These are shown in
three different number system :

(i) Decimal (Base 10)
(i) Octal (Base 8)
(i) Hexa decimal (Base 16)

Numbers and characters used in different number systems are shown in the
Table-1.2.

(©6)

Table-1.2

Type Digits / alphabet Example
Decimal 0,1,2, ... 9 0,279,972,32767
Octal 0,1,3, ..ccee 7 02,027,07777

Octal number starts with

0 (zero).
Hexa decimal [0, 1,2, ...9 and 0x1, Oxab, Oxffff
a, b, c.... (upper and | Hexa Decimal number
lower case) starts with Ox or 0X.

(b) Real Constant :
The number which includes decimal points, they are called real number constant.
Example :
0.96, 872.127, 2.0E-7
0.0693, 1.7676E + 10
2. Character Constant :

When a character written in a single quotation then it is called single character
constant. It includes alphabets, numbers and special characters.

Example :

3. String Constants :

When zero, one or more than one characters encloses within the double quotation
then it is called string constant.

Examples :
"Home Loan" "ALWAR"

n " "2*6*7—5""2"

@)

4. Back Slash Character Constant

These are also character constants, which are not used for printing character.
These character constant are used for controlling the output. They are written with back
slash (\). Some black slash constant and their meaning are shown in the table-1.3.

Table-1.3

Escape Sequence Meaning

\a bell (alert)

\t horizontal tab

\Wv vertical tab

\n new line

\Wv carriage return

\' quotation mark

\b back space

\0 NULL

1.6 Variable

Variable are identifiers, which store the value, and value can be changed during
the execution of the program. The same rules are applicable on variable, which are used
for writing identifier. Some valid variables are :

employee, result123, roll_num, min

And some invalid variables are :

short Reserve word
b's Special character
Sort First letter must be alphabet
int eger blank space
1.7 Data Type

'C' programming language support different types of Data types. They takes different

@®)

size in memory to store the data. Generally, 'C' language uses four type of data types.

1.int To store integer value

2. char To store one character

3. float To store single precision floating point
4. double To store double precision floating point

Some of the datatype, size, keyword and range are shown in Table-1.4.

Table-1.4

Data type key word | Size (in bits) | Range

Character | char 8 0to 225

Integer int 16 -32768 to 32767
short int 16 -32768 to +32767
long int 32 -2,147,483, 648

to +2,147, 483, 647

unsigned int 16 0to 65535
unsigned 32 0to 4,294,967, 295
long int
Float float 32 3.4E-38 to 3.4E+38
Double double 64 1.7E-308 to 1.7E+308
long double 80 3.4E-4932 to
1.7E +4932

1.8 Declaration

All variables must be declared before they are executed in the program. Variables
are declared at the top (as shown in the program structure) of the program. The general
format is :

<data type> <variable name>

()

Example :

1.9 Keyword

The keywords (or reserve words) are the special words that have already defined
in the 'C' language. The keywords can be used only for their intended purpose. The
keyword cannot be used as identifier (User Defined Words) in program. 'C' language
includes 32 keywords. They are shown in table-1.5.

inta, b, c;

char cl;

Table-1.5
auto float const struct
break for continue switch
case goto default typedef
char if do union
double int short unsinged
else long singned void
enum register sizeof volatile
extern return static while

1.10 Operatorss

The symbols are used in the program for calculation by the computer. These
symbols are called operators. The operator tells which operation to be performed. With
the help of variable, constant and operator makes the expression. 'C' language includes
Unary, Binary and Ternary operators.

Operators is used in the 'C' language are divided into different categories as

follows:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Conditional Operators

(10)

5. Increment and Decrement Operator
6. Bitwise Operators

7. Assignment Operators
1.10.1 Arithmetic Operator

Arithmetic operators are used for the purpose of numerical calculations. 'C'

language includes following Arithmetic operators are shown in table-1.6

Table-1.6
Operator Purpose
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder (Remaining after division)

There is no exponentiation operator in 'C'". The library function pow(x,y) is used to
calculate exponentiation which is available in the header file <math.h>. It's meaning X".

1.10.2 Arithmetic Expression

Variables and constants are interconnected with the help of operator called
expressions. If both operands are integer variable or constant then it is called Integer
Expression.

Example : if a = 15 and b = 2 then result of expression will be

Expression Result
a+b 17
a-b 13
a*b 30
alb 7
a%b 1

(11

The actual value of a/b is 7.5. If both operands are integer variable (or constant)
then result will be in integer number. So the result of 15/2 will be 7. It is shown in figure
1.2.

Integer division
15/2 -7 times 2, — remainder 1
result =7 discarded
Figure 1.2

The modulus operator (%), complement of the division operator in that it provides
a means for us to obtain the remainder after integer division. It is shown in figure 1.3.

Modulus Operation
15%2 - 7 time 2, — remainderl
discarded result = 1

Figure 1.3

Other examples of modulus operator are as following :

-15%2 =-1
-15% -2 =-1
15%-2 =1

If both operands are real numbers then the result of the expression will be a real
number. This type of expression are called real expression. If a operand is real number
and other operand is integer number the result will be real number and this expression
called a mixmode expression.

Example :
ifa=15.5, b=4.2 then
a+b = 155 + 4.2 = 19.700000
a*b =155 * 4.2 = 65.100000

above both operands are real numbers

(12)

Example :
if a=15.5 (real), b = 4 (integer) then
a+ b =15.5 (real) + 4(int) = 19.500000 (real)
a*b =15.5 (real) * 4 (int) = 62.000000 (real)
above both are Mixmode expressions.

1.10.3 Relational Operators

Relational operators are used to compare two values. All operators are needed
two operands. If it's value is true after comparison then it return 1 otherwise it returns 0 on
false value. In the relational expression, both operands must have same data type. The
relational operators used in 'C' language are as follows.

Table-1.7
Operator Meaning
< less than
<= less than equal to
== equal to

I= not equal to

> greater than

>= greater than equal to

Example :

If p, q and r are integer variable and their values are 1,2 and 3 respectively. Result
of the relational expression are given in the table.

Table 1.8
Relational expression | Result value
p<q true 1
(p+q>=r true 1
(p+5)==r+4 False 0
r!'=5 true 1
p*¥q>q*r False 0

(13)

1.10.4 Logical Operator

Logical operators are also used with two operators. These operators may be
logical or relational expression. The result of logical operators are true or false. 'C' language
includes three logical operators.

Table-1.9

Operators |Meaning

&& and

[or

! not

Logical AND (&&)

The result of the logical operator AND (&&) will be true only if both operands
are true otherwise false.

Example :

if i =9 and j = 8.5 then the result of the following expression will be true because
both expressions are true.

(1>6) && (j<9.5)
Logical OR (1Il') :

The result of the logical operator OR (Il) will be true if one operand is true out of
two operators otherwise false.

Logical NOT (!) :

Logical NOT is a Unary operator. There fore, it requires one operand. If operand
is true then result will be false and if operand is false then result will be true.

1.10.5 Boolean Expression

The value of boolean expressions is true or False. A boolean expression is
interconnected with boolean variable, constant and relational operators. Two boolean
expressions can also be interconnected with logical operator.

Examples of logical operators are as follows :

(14)

(1) age >55 && salary <1000
(i) number <0 && number >100
(i) ! (status==1)

Example :

Let i=7, f=35 and ¢ = ‘W' ,here some of the complex logical expression are

shown in the table.
Boolean Expression Result Value
(1>=6) && (c =='"W") True 1
(f>11) && (1>100) False 0
Cl="all(1+1)<=10 True 1
C==1illf>20 False 0

1.10.6 Conditional Operator
This is a ternary operator, so it has three operands. This is write as follows :
variable = expl ? exp2:exp3;

The expl is a boolean expression and it will evaluate first it, if expl is true then
exp2 will evaluate and result will be stored in the variable otherwise exp3 will evaluate and
result will be stored in the variable. Example :

if a=5,b=9
c =a>b?a:b;

The value of ¢ will be 9. Because the value of expression a>b will be False and
the value of exp3 will be stored in ¢ which is b. So, the value of b will be stored in c.

1.10.7 Increment and decrement operators
'C' language has two very useful operators.
(i) Increment Operator - ++

(i) Decrement Operator - --

(15)

These are unary operators. So, they required one operand. The increment operator
(++) increase the value of the variable by one and decrement operator (--) decrease the
value of the variable by one. These operators are written as follows :

++A or A++
and
--A or A--

If the operator is used before the operand (eg ++a), then the operand would be add
or subtract one from the variable before it is utilized for its intended purpose within the
program. If the operator follows the operand (eg a++) then the value of the operand
would be add or subtract one from the variable after it utilized.

1.10.8 Assignment Operators

Assignment operators are used to assign the result of an expression to a variable.
This is shown by '=' sign. This operator stores the value of the right hand side expression
after calculation into the left hand side variable. The general format are as follows :

variable = Expression
Example :
These are the example of the assignment operator :
area = 2 *PI *rl
X=Y
a =752
Total = A[1] + A[2]

In the above assignment statements, the left hand side must have only one variable
(cannot be constant and expression).

'C' language also includes special assignment operator, these are as follows :
=, *=, %=, -=, /=
Example :
X=X+4 writesas x+=4

X=X%*5 writesas x *=5

(16)

X=X % 4 writes as X %=4
X=X-5 writesas Xx-=5
x=x/4 writesas x/=4

1.10.9 Type Conversion of expression

These are used to change the data type of the result of the expression. This
writes as follows :

(Data type) Expression;

(datatype) expression, the value of the expression will be converted into the data
type which is written in the bracket.

If a expression have more than one operand then the result of the expression
automatically converted into higher precision data type, presented in the expression. This
type of casting is called implicit type casting.

Example :

If a="7 (integer) b = 9.5 (float) then the result of 2a + b will be 23.500000
Program 3
/* Program to convert a centimeter into meter-centimeter with integer Arithmetic*/
#include<stdio.h>
main()

{
int cent,meter;
printf(“Enter the value = *);
scanf(“%d",¢);
meter = cent / 100;

cent = cent % 100;

printf(“\nMeters = %d and Centimeter = %d",meter,cent);

(7

Enter the value = 1056
Meters = 10 and Centimeter = 56
Program 4
/* Program to explain explicit and implicit conversion */
#include<stdio.h>
main()
{
int A=7,B=8;
float X,Y=7.5;
X =A+Y; /*Implicit Type Conversion*/
printf(“X = %f\n",X);
X = (float)A/B; /*Explicit Type Convesion*/

printf(“X = %f\n",X);

}

Output:

X =14.500000
X =0.875000

1.11 Precedence of Operators

If a expression has more than one operator then it is necessary to know how they
will execute in a sequence. It is predefined which operator will execute first. The
precedence of the operator are predefined. The sequence in which same group operators
in an expression are executed is determined by the associativity of the operator.

(18)

Table-1.10 :Precedence of Operators and associativity rules

Precedence group Operator Associativity

Function,array,

struct member and pointer O[]1.~ L->R

Unary Operator - ++ — |~ R->L

* & sizeof(type)

Arithmetic multiplication,

division and remainder *1 % L2>R
Arithmetic add and subtract + - L>R
Bitwise shift operator << >> L->R
Relational Operator <<=>>= L->R
Equality Operators == I= L->R
Bitwise AND & L2>R
Bitwise XOR A L2>R
Bitwise OR I L2>R
Logical AND & & L>R
Logical OR L L=2>R
Conditional Operators ?: R->L
Assignment Operators =+=-=*= /= %= R->L

&= "= |=<<=>>=

Comma Operators , L->R

Example :
fX=7y=3.0 Z=2 A=2.5 B =7 then solve the following expression

X+Y/(Z*A+B/Z)

(19)

Solution :

X+Y/(Z*A+B/Z)
=7+3.0/2*25+7/2)
=7+3.0/(5.0+7/2)
=7+3.0/(5.0+3)
=7+3.0/8.0
=7+0.375
=7.375

Program 5

/* Program to calculate a expression */

#include<stdio.h>

main()

{
float A,B=2.5,D=9.25;
inti=5,j=10;
A = (float)i/j + (B*2)/(1 +j) + D;
printf(“Result = %f\n",A);

}

Output:

A =10.083333

1.12 Input-Output Function

Generally, a program do three work read data, process on data and gives output.
Program uses functions to take input and to produce output. These functions are scanf(),
printf(), getchar(), putchar(). The input/output are of two types formatted and unformatted.
The function printf() and scanf() are formatted and putchar() and getchar() are
unformatted /O statement.

(20)

1.12.1 Console Input/Output
Console input/output functions are divided into two categories.
1. Unformatted console input/output functions

2. Formatted console input/output functions

The main difference between these two type of I/O statement is, the formatted
console input takes the input from keyboard and print the output on the VDU according to
the requirement of the user. But unformatted statement takes the data and print in normal
form. For example we wants to print Total_item and sale_item on VDU. Where does it
print on VDU and how much space is required between two data? This can be done using
formatted console input/output statements. Both types of functions are shown in the figure
given below.

HicT FTYC /3MMSCYS Bl

}

v v

Formatted Function Unformatted Function
Type | Input [Output Type | Input Output
char |scanf() |printf() char |getchar() [putchar()
getch()
getch()

int scanf() |printf() int

float |scanf() |printf() float

string |scanf() |printf() String | gets() puts()

Fig. 1.4
1.12.2 Qutput Function printf()

The output function sends the values to output device or output file from the
memory. The printf() function in the 'C' language sends data to output device from the
memory. The printf() function write as follows :

printf("Control string", variable1,variable2,variable3);

The variablel,variable2,variable3 are variable name. The values of these variables
will send to the output device. The control string writes between double quote (" "). The
control string writes according to the data types to be printed. For example %d used for
integer data type. The formats of the control string are shown in table-1.11.

21

Table-1.11

Format Data type of variable

%d int (Decimal)
Yx int (Hexa Decimal)
%0 int (Octal)

%h short int

%ou unsigned int
%l1d long int

%t float

%e float (Exponent)
olf double float
%Lf long double

Joc character

% string

Example :
A =20, B=30

printf("%d %d",A,B)

Output : 20 30

A and B are integer type variables and according to control string it print the value
of A and B variables. The printf() function also prints a same string which is written in the

double quotation.

Example :

printf ("C is a good programming language.")

Output : C is a good programming language.

1.12.3 Formatted printf() function

When printf() function print the value of the variables in the format form then we

(22)

have to place some extra character in the control string.
Output of integer numbers
The format specification for printing an integer number is :

Jowd

Where w is an integer value that specifies the total number of column for the
output.

Example :
int A=1476
main()
{
printf("%7d",A);
}

The output of the above program is :

1 4 716

This output will be written in seven columns but number will arrange in four
columns. So, first three columns will be empty.

QOutput of real numbers
The format specification for printing a real number is :
Y%ow.pf

Where w and p are two integer value and w specifies the total number of column
for the output and p is the total number of column after decimal point.

Example
float x =17.7927 ;
main()
{
printf("7.3f", x) ;
(23)

}

The output of the above program is :

1 7 . 71 91| 2

This output will be written in seven columns. It will use three columns after decimal
point, one for decimal point and two for number written before the decimal point. One
column will be blank because it uses 6 column. Which is shown in the output.

Output of strings
The format specification for printing a string is :
Jow.ps

Where w and p are two integer values and w specifies the total number of
column for the output and p is the total number of characters to be printed.

Example :
char str[9] = "computer" :
main()
{
printf("\n%12.5s", str) ;
printf("\n%.5s", str) ;

printfl("\n%12s", str) ;

The output of the above program is :

clo |m|plu

clo|lm]p | u

clolm|plujti]e |r

First printf() statement will write output in 12 column and only five characters of
the string will be printed. Second printf() statement print only five character in first five
column and third printf() statement print the "computer" string in 8 column out of 12
column and four column will be empty. Which is shown in the output.

24

The format specification for printing a single character is :
Jowc
This character leaves blank (w-1) column and print in the w' column.
1.12.4 Input function scanf()

The scanf() function used to store data in the variable of the program from Input
device (keyboard). The printf() function write as follows :

scanf(" Control String ",&variablel,&variable2,&variable3);

The &variablel,&variable2, and &variable3 are the address of the variables in
the scanf where receive data from keyboard will stored. The ampersand sign (&) shows
the address of the variable not value. The percentage sign (%) written with English alphabet
in the control string as same in the printf() function. These are shown in the table-1.11.

Example :
scanf("%d%d%d", &KNUMI1, &NUM?2, &NUM3) ;

NUMI1, NUM?2 and NUM3 are integer variable. All variable have to write different
control string for different variable.

Program 6 : Write a 'C' language program to read three real numbers and findout the
smallest number.

#include<stdio.h>
/* C program to read three float number and find smallest number.*/
main()
{
float a,b,c,small; /*Declaration of float numbers*/
printf(“Enter three float Numbers :\n");
scanf(“%f %f %t",&a,&b,&c); /[*read three float numbers*/
if(a <b)
if(a < ¢)

small = a;

(25)

else

small = ¢;
else
if(b <c)
small = b;
else
small = ¢;

printf(“\nThe Smallest Number = %t" ,small);

}

Input :Enter three float Numbers :
78.2378.96 85.52

Output: The Smallest Numbers : 85.52

Input :Enter three float Numbers :
23.2323.1523.16

Output:The Smallest Numbers : 23.15

getchar() function

This function takes a character from the input device and gives to the computer.
The general format is :

Variable Name = getchar();

Example :

¢ = getchar ();

In the above example, the ¢ variable define as char type. When second statement

(26)

c=getchar() is executed then computer waits for pressing a key on the keyboard(if data
is not in a buffer) and store in the variable c. So, ¢ = getchar() and scanf(" %c", &c) both
are equavlent statement.

putchar() Function

This function puts a character from the memory to the output device. The general
format is :

putchar(Name of char Variable);
The character variable defined previously which will print on the monitor.

Example :

putchar(a)

In the above example, a variable defines as char type through the first statement.
And second statement putchar(a) send a charater to the output unit. The type of variable
must be char. So, putchar(a) and printf("%c", c) both are equivalent statement.

Program 7 : Write a 'C' language program to read a line and print it in the uppercase.
#include<stdio.h>
/* C program to read a line and print it into upper case.*/
main()
{
char c[80];/*Declaration of char array or string*/
inti;
printf(“Enter A line:\n");
for(i=0;(c[i]=getchar()) != “\n";i++);/*This statement read a

line*/

@27

c[i]=\0"; /* Store NULL char at end*/
printf(“The UpperCase line is:\n");
for(i=0;c[i]!'=\0";i++)
{
c[i] = toupper(c[i]);/*Convert into the UpperCase Letter*/

putchar(c[i]); /*To print a Character on the screen*/

}

Input :Enter a line :
The string is a combination of character.
Output:The UpperCase line is:
- THE STRING IS A COMBINATION OF CHARACTER.
1.13 Control Statements

In the 'C' language, a statements executes in the sequential fashion in which
sequence they are written in the program. Each statement is executed once and once
only. But a logical condition decides which statement will execute and which will not
execute in the program. The if and switch statements can fulfil the above requirement of
'C' language.

Some of the statements will be executed until the logical condition is true. It is
called looping.

The control statements execute the program statement in the predefine sequence.
These are the following control statements in the 'C' language :

1. Decision Making Statement

(a) if Statement (b) if else statement (c) switch statement
2. Loop statement

(a) for loop (b) while loop (c) do while loop

3. Other control statement

(28)

(a) break (b) continue (c) goto
1.14 if statement

It is a powerful control statement which first check the condition than after it
execute other statements according to result of the condition. The if statement are following
four types.

(1) Simple if statement

(i) if else statement

(i) Nested if else statement
(@iv) else if stairs

1.14.1 Simple if statement

First, it checks the condition in the statement. If the condition is True then it
executes the group of statement otherwise it does not. One or more statement can be in
the group of statement. The general format of the if statement is as following :

if (Condition)
{

Group of statement

}

If control statement has one statement in the group of statement then there is no
need to close within curly bracket. As shown in the example.

(a) if (a>10)

printf("a is greater than 10");
(b) if (a>10llb==15)

printf("a is greater than10 or equal to 5");
(c) if (%2 ==0)

printf("N is a even number");

(29)

1.14.2 if-else statement

The control flow is bi-directional in this statement. First, it checks the condition. If
the condition is true then it executes first group of statements. If it is false then it executes
second group of statement. if-else statement will be written as follows :

if (Condition 1)
{

Statement Group 1

else

Statement Group 2
}
Examples of if else statements are as follows:
(a) if (a>Db)
printf("a is greater than b");
else
printf("b is greater than a");
(b) if (n%2 ==0)
printf("N is Even Number") ;
else
printf("N is odd Number") ;
(c) if (Basic > 50000)
{
HRA = BASIC *0.15;

DA = BAISC * 0.61 ;

(30)

else
{
HRA = BASIC * 0.10
DA =BASIC *0.61 ;
}

The example (a) and (b) include the single statement so, there is no need to close
with in curly bracket. But in the example (c) close the curly bracket due to two statements.

Program 8 : Write a 'C' language program to find the given year is leap year or not.
#include<stdio.h>
#include<conio.h>
/*1t is C program to check for leap Year*/
main()
{
int year,leap;
printf("\nEnter the year :");
scanf("%d",&year);
if(year % 100 == 0) /* Checking for century*/
if(year % 400 == 0)/* Century is leap year*/
printf("It is century and leap year");
else
printf("It is century but not leap year");
else if(year % 4 == 0) /* Checking for leap year*/
printf("It is leap year");
else

€2Y)

printf("It is not leap year");
getch();
}
Input/Output:
Enter the year :2000
It is century and leap year
Enter the year :2001
It is not leap year
Enter the year :2004
It is leap year
Enter the year :1900
It is century but not leap year
1.14.3 Nested if else statement :

When an if else statement written within another if-else statement then it is called
nested if else.

if (Condition 1)

{

if (Condition 2)

{

Statement groupl

else

Statement group 2

(32)

Statement group 3

else

Statement group 4

}

First, it check the condition in the above control statement. If it is False then it
starts to execute statement group 4. It left all the statements groups. If the condition 1 is
true then condition 2 will be checked. If condition 2 is true then it execute statement group
1 otherwise on false it execute statement group 2. Then after control flow execute the
statement group 3 and leave the if else statement and it will not execute statement group
4.

Example :
if (x>=40)
{
if (x >=65)
{
printf("FIRST DIVISION") ;
}
else
{
printf("SECOND DIVISION");
}
}
else
{

(33)

printf("FAIL") ;

}
1.14.4 else if stairs

This type helps to take decision on multi-way statement. This statement is used
when the multiple condition is checked one by one. This is written as follows :

if (Condition 1)

{

Statement Group 1

}
else if (Condition 2)
{
Statement Group 2
}
else if (Condition 3)
{
Statement Group 3
}
else
{
Statement Group 4
}

1.14.5 switch statement

This is a multi-way conditional statement. It also have a condition similar to if else
statement. Different statements will be executed according to expression or variable in
the switch statement. The value of expression or variable must be integer or character.

The format is as follows :

(34)

switch (Expression or variable)

{
case 1 : Statement group 1
break ;
case 2 : Statement group 2
break :
case n : Statement group n
break ;
default : Statement group
}

Here switch, case, break and default are keywords. First of all, switch statement
checks the value of expression or variable. It compares with the constant written with
case keyword. If this value find equal to any case constant then it executes the statement
group related to the case statement and it will be out from the switch statement after
executing break statement otherwise it will execute all case statements. If the value of
expression or variable does not match with any case value then it executes the default
statement group. If default statement does not present in the switch statement then the
control flow come out from the switch statement without executing any statement group
if any case value does not match.

Example :
switch (N) /* N is an integer value * /
{
case 1 : printf("ONE") ;
break ;
case 2 : printf("TWO") ;
break ;

case 3 : printf("THREE") ;

35)

break ;
case 4 : printf("FOUR") ;
break ;
case 5 : printf("FIVE") ;
break ;
default : printf("Enter Between 1-5")

}

In the above example, it will print the numbers in words. The value of N compares
with constant (1, 2, 3, 4 and 5). If there is any value matches with case constant then it
prints a number in word otherwise it executes the default statement and control flow
come out from the switch statement.

Program 9 : Write a 'C' program to print the grade of the students. Grades are as follows:

100 - 90 A+

89 - 80 A

79-70 B+

69 - 60 B

56 - 50 C

50-0 Fail (using switch statement)
#include<stdio.h>

#include<conio.h>
#include<string.h>
/* It is C program to Use switch Statement.*/
main()
{
int marks,Rollno;
char Name[20],grade([5];

(36)

clrscr();
printf("Enter The Name of a Student : ");
gets(Name); /*Library function to read a string™*/
printf("Enter The Roll No. of a Student : ");
scanf("%d",&Rollno);
printf("Enter The Marks Obtained ")
scanf("%d",&marks);
switch(marks/10)
{

case 10:

case 9: strcpy(grade,"A+");break;

case 8: strcpy(grade,"A");break;

case 7: strecpy(grade,"B+");break;

case 6: strcpy(grade,"B");break;

case 5: strecpy(grade,"C");break;

default: strcpy(grade,"Fail");
}
printf("\nName of a Student . %s",Name);
printf("\nThe Roll No. of a Student : %d",Rollno);
printf("\nThe Marks Obtained 1 %d" marks);
printf("\nThe Grade Obtained : %s",grade);

getch();
}

Result:

@37

Input:
Enter The Name of a Student : Sunil Methi

Enter The Roll No. of a Student : 8542

Enter The Marks Obtained 1 85
Output:
Name of a Student : Sunil Methi

The Roll No. of a Student : 8542

The Marks Obtained 1 85
The Grade Obtained TA
Input:

Enter The Name of a Student : Karishma Methi

Enter The Roll No. of a Student : 8645

Enter The Marks Obtained 145
Output:
Name of a Student : Karishma Methi

The Roll No. of a Student : 8645

The Marks Obtained 145

The Grade Obtained : Fail

1.15 Looping

Besides of decision-making statements, some statements are required to execute

more than once in the program. When some statements execute again and again in the
same order then this processing is called looping. for, while and do-while are three loop
statement in the 'C' language. These all statements have two parts:

(1) Looping body

(i) Condition

It checks the control statement in the loop and if this condition is true then loop

(38)

will be executed otherwise control flow will come out from the loop.
1.15.1 for loop

The general format of for statement is :

for (expl ; exp2 ; exp3)

{

Loop body
}

Where expl : This tell the initial value of the counter variable and the initializing
expression is evaluated once only, at the beginning of the for loop.

exp2 : This is aboolean expression. If it is true then loop will executing continuously.

exp3 : Increment/ decrement statement is used to increase/decrease the value of
counter variable.

Example :
(a) for(1=0;i<10;i++)
printf("%d", 1) ;
(b) for=1;j<=20;j+=2)
{
printf("%d\n"j) ;
SUM =SUM +j ;
{
printf("SUM = %d", SUM);
(c) forG=1,i=10;j<i;j++1--)
printf("%d %d", j, 1);
Program 10 : Write a program to add 10 numbers.

#include<stdio.h>

(39)

#include<conio.h>
main()
{
int N,sum=0,i;/*Sum initialize by zero at declaration*/

for(i=1; i<=10;i++)

{
printf("Enter %d Number :",i);
scanf("%d",&N);
sum += N; /*short hand assignment operator.*/
}

printf("\nSum of ten integer Number = %d",sum);
getch();
}
Input/Output:
Enter 1 Number :23
Enter 2 Number :47
Enter 3 Number :98
Enter 4 Number :45
Enter 5 Number :85
Enter 6 Number :93
Enter 7 Number :123
Enter 8 Number :243
Enter 9 Number :24

Enter 10 Number :45

(40)

Sum of ten integer Number = 826
1.15.2 while loop

It is not known in advance, how many times a loop will be executed and it is
depends on a condition. When the condition is true then the statements will be executed
continuously. It written as follows :

while (Condition)
{
Loop body
}
Example :

(a) while (i < 10)/ * initial value of i is one * /
{
printf("%d", 1) ;
i++;
}
(b) while (j <=20)/ * initial value of j is one * /
{
printf("%d", j) ;
SUM =SUM +j;
j+=2;
}
printf("SUM = %d", SUM) ;
Program 11 : Write a program to add the digit of the given number.
#include<stdio.h>

#include<conio.h>

(41)

/*1t is C program to Add the digit of a given number™*/
/*e.g. 12345 sum=1+2+3+4 +5 %/
main()
{
int m,N,sum=0;/* Sum initialize by zero at declaration*/
printf("Enter a Number :");
scanf("%d",&N);
while(N !=0)
{
m=N % 10;
sum = sum + m;
N=N/10;
}
printf("\nSum of digits = %d",sum);
getch();
}
Input/Output:
Enter a Number :24563
Sum of digits = 20
1.15.3 do while loop

The do-while loop is similar to the while loop. First it check the condition in the
while loop then after it executes the loop body. Whenever in the do-while loop, first, it
executes the loop body then after it checks the condition. So, the do-while loop statement
is always executed at least once. The general format of the do - while loop is :

do

{
(42)

Loop body
} while (Condition);
Example :
(a) do
{
printf("%d", i) ; / * /initial value of i is one */
i++;
} while (i< 10) ;
(b) do /* initial value of j is one * /
{
printf("%d", j) ;
SUM +=j;
j+=2;
} while j <=20);
Program 12 : Write a 'C' program to reverse a given number.
#include<stdio.h>
#include<conio.h>
/*1t is C program to reverse a given number*/
/*e.g. 12345 print as 54321%/
main()
{
int m,N,rev=0;
printf("Enter a Number :");

scanf("%d",&N);

43)

do

m=N % 10;

rev=rev * 10 + m;

N=N/10;
}while(N !=0);

printf("\nReverse Number is = %d" rev);

getch();

return O;
}
Input/Output:

Enter a Number :32512
Reverse Number is = 21523

1.15.4 Nested Loop

When a loop run in side the another loop then it is called nested loop. For example
: for loop inside the other for loop. It must be remembered that the inside loop must close
first and after this outer loop will close. As shown in the figure.

for ()

{
for ()
{
{

}

Example :

(a) for1=0;i<10;i++)

(44)

for(G=1;j<10;j++)
printf("%d", 1) ;
printf statement print 55 integers.
(b) for (i=1;i<10;i++)
{ =k
while (j <=10)
{
printf("%d", i*j) ;
s
}

printf("\n") ;

The above loop will print 1 to 10 tables.
1.15.5 break statement

Generally, break statement is used with loops or switch statement. It is used to
terminate a loop. If break statement executes in nested loop then the control flow will
come out from the loop where the break statement is be executed.

Example :
(a) for(i=1;i<=10;i++)
{
scanf("%d", &N) ;
SUM =SUM + N ;
if (SUM> =200)

break ;

(45)

The loop can terminate in two way first, the value of i reaches to 10 or SUM
exceeds 200. When the value of SUM exceed 200 then break statement will execute and
it terminate the loop.

1.15.6 continue statement

The break and continue, both statements are used to stop execution. But break
statement stop the execution of the loop and control flow come out from the loop. The
loop does not terminate when continue statement is encounter then the remaining loop
statements are skipped and computation proceeds directly start the next pass of the loop.
It Is written as:

Example :

do

scanf("%d", &N) ;
it(N<O0)
{
printf("Error") ;
continue ;
}
/ * other statements * /
} while (N <=50) ;

In the above example, If N read a negative value then continue statement will be
executed and it cause to start new pass of the loop.

Important Points

1. The semicolon separates the statements. This is indication of end of statement. The
semicolon does not attach after the pre-processor directives.

2. 'C' language is a case sensitive language. It means, uppercase letters are different
from lowercase letters.

3. The printf() function sends the message to the output devices.

(46)

10.

11.

12.

13.

14.

The scanf() function also calls a function which takes the input from input device.
In the 'C' language, all 32 keywords are in lower case letter.

'C' language is a operator rich language. It includes arithmetic, relational, logical,
bitwise etc. operators.

The precedence and associativility rules are applicable to solve a expression.

The main() function is also a user define function and it must be presented in the
program.

scanf(), getchar(), getch(), getche() and gets() are input function.
printf(), putchar() and puts() are output function.
The decision statements if, if-else and switch are used in the 'C' language.

The part of the program can be executed more than once by looping. The for, while
and do while loop are used in the 'C' language.

The break statement is used to stop execution of switch and loop and control flow
comes out from the switch or loop.

The continue statement is used to stop execution part of the loop and start new iteration.

Exercises
Objective Type Questions
1. if(l)
printf("TRUE")
else
printf("FALSE")
(a) TRUE (b) FALSE
(c) satement is wrong (d) None of the above
2. Who was developed the 'C' language?
(a) Ken Thomson (b) Dennis Rechie
(©) Martin Recharson (d) Donavon
3. The symbol used to seperate the two statement in the 'C' language.

47

10.

11.

12.

(@ & (b) !

() ; a -

Which must be presented in the 'C' language program?
(a) Global variable (b) main() function
(c) Pointer (d) Function

The meaning and uses are predefined, these words are called.
(a) Variable (b) Constant

(c) Identifier (d) Reserve word
Which is not a reserve word?

(a) auto (b) while

(c) switch (d) total

The valid constant is :

(@ 478 (b) OX23A

(c) 177A (d 57,632

Which is not a valid identifier?

(a) 5XYZ (b) total_subject
(©) Stud_mark (d XSXY

The control string for long double data type in the printf statement.

(@) %d (b) %lIf

() %ld (d) %Lt

The purpose of % (percentage) operator is

(a) Addition (b) Division

(c) Remainder (d) Multiplication

If i=8 and b = --i + 3 then the value of b.

(a) 11 (b) 10

(c) 9 @ 12

Which statement is used to stop the execution of the loop :
(a) break (b) stop

(c) end (d) None of these

(48)

13. for (i=0;i<=5;i++)
for(j=isj<=5;j++)
printf("India");

In the above program, How many times will print India.

(a) 6 (b) 21
(c) 36 (d) 30
14. In which statement a case keyword is used-
(a) switch (b) for
(c) do while (d) while
15. Which loop will first terminate in the nested looping :
(a) Outer loop (b) Inner loop
(©) Both at once (d) None of these

Very Short Type Questions
What is reserve word?
. How many types are arguments are there?
How many times main() function can be used in the 'C' language?
What is use of ++ operator.
What do you mean by getchar().
Which function is used for giving output?
In which structure the "default" statement is used?

How does nested if else statement written?

R A o B

Where is continue statement used?

10. How many loop structures are presented in the 'C' Language?
11. Explain do while structure with the help of an example.

Short Type Questions

What is the meaning of algorithm?

What is constant?

How does declare a variable?

Differentiate between string constant and character constant.

What is identifier?

A S e

Explain ternary operator.

(49)

7. What is precedence of the operators? Explain.
8. When does it require associativility rules for operators?

9. Why does 'C' language call middle level language?
10. What is nested loop?
11. Explain do-while statement.
12. Write all types of the if statement.
13. How does switch statement writes, write format.
14. Differentiate between continue and break.
15. Write the output of the following program :
(a) #include<stdio.h>
main ()
{
mi=1,x=1;
for(i=1;i<10,i++)
{
printf("%d\n", x+i);

X=X+ 1;

}
(b) #include <stdio.h>

define p 10

{
intk=1,w=p;
while (k <=w)
{
printf("%d\n" k);
}
}

(50)

Essay Type Questions

1.

N o v oA W

10.
11.
12.
13.

Explain the structure of the 'C' language program.
What is meaning of program structure?

How many type of data types are there in C language?

Explain the input/output statements used in the 'C' language.

What do you understand by precedence and associativity of the operators?
Explain all input function with the help of an example.

How does you get the output from the output function? Explain with the help of an
example.

Convert the following expression into 'C' equivalent expression.

@)

. a+b’

(i1)

(i)

O T

Write a program to read three numbers for finding largest number with using
conditional operator.

Which statements are used for looping? Explain.
Write a 'C' program for printing all odd numbers from 1 to 50.
Differentiate while loop and do-while loop with the help of examples.

Write a program to findout the sum of the following series.

Answer Key

l.a 2.b 3. 4.b 5.d 6.d 7.b 8.a 9d
10c 11.b 12.a 13.b 14.a 15.b

(S2)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283

