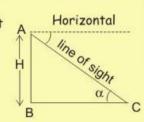

## Angle of Elevation

**Applications** 

Angle of Depression

Angle formed by the line of sight with the horizontal when the point is above the horizontal.

Height of tower  $BC = AB \times \tan \theta$  (given  $AB \& \theta$ )




 $\theta$  = Angle of elevation

- @ Navigation
- @ Land surveys
- @ Buildings
- @ Optics
- @ Statics
- @ Crystallography

Angle formed by the line of sight with the horizontal when the point is below the horizontal.

Height of tower  $AB = \tan \alpha \times BC$ (given  $\alpha \& BC$ )



 $\alpha$  = Angle of Depression

The angle of elevation of the top of a tower, as seen from two points A & B situated in the same line and at distances 'p' and 'q' respectively from the foot of the tower, are complementary, then show that the height of the tower is  $\sqrt{pq}$ 

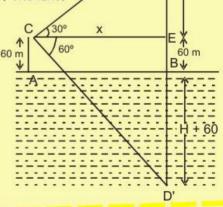
Sol. In AAOT,

$$\tan \alpha = \frac{OT}{OA} = \frac{h}{p}$$
 ..... (I)

$$\ln \Delta BOT 
\Rightarrow \tan (90 - \alpha) = \frac{OT}{OB} = \frac{h}{q} \text{ or } \cot \alpha = \frac{h}{q} ....(ii)$$

Multiplying (i) and (ii), we have

$$\Rightarrow \tan \alpha \cot \alpha = \frac{h}{p} \times \frac{h}{q} \Rightarrow 1 = \frac{h^2}{pq} \Rightarrow h = \sqrt{pq}$$


The angle of elevation of a cloud from a point 60m above a lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60°. Find the height of the cloud from the surface of the lake.

tan 30° = 
$$\frac{H}{x}$$
  $\Rightarrow x = \sqrt{3}H$  ... (i)  
tan 60° =  $\frac{H+120}{x}$   $\Rightarrow x = \frac{H+120}{\sqrt{3}}$  ... (ii)

From eq. (i) and (ii)

$$\Rightarrow$$
 H = 60m

Height of the cloud from the surface of the lake = H + 60 = 60 + 60 = 120m

