Series JSR/1 Set 3 कोड नं. Code No. 30/1/3 रोल नं. Roll No. परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Code on the title page of the answer-book. - कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 16 हैं। - प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 31 प्रश्न हैं। - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें। - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे। - Please check that this question paper contains 16 printed pages. - Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. - Please check that this question paper contains **31** questions. - Please write down the Serial Number of the question before attempting it. - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. # संकलित परीक्षा - II SUMMATIVE ASSESSMENT - II गणित MATHEMATICS निर्धारित समय : 3 घण्टे] [अधिकतम अंक : 90 Time allowed: 3 hours] [Maximum marks: 90 ### सामान्य निर्देशः - (i) सभी प्रश्न अनिवार्य हैं। - (ii) इस प्रश्न-पत्र में 31 प्रश्न हैं जो चार खंडों अ, ब, स और द में विभाजित हैं। - (iii) खंड अ में **एक-एक** अंक वाले 4 प्रश्न हैं। खंड ब में 6 प्रश्न हैं जिनमें से प्रत्येक 2 अंक का है। खंड स में 10 प्रश्न तीन-तीन अंकों के हैं। खंड द में 11 प्रश्न हैं जिनमें से प्रत्येक 4 अंक का है। - (iv) कैलकुलेटर का प्रयोग वर्जित है। ### General Instructions: - (i) All questions are compulsory. - (ii) The question paper consists of 31 questions divided into four sections A, B, C and D. - (iii) Section A contains 4 questions of 1 mark each, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each. - (iv) Use of calculators is not permitted. ### खंड अ ### Section A प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है। Question numbers 1 to 4 carry 1 mark each. **1.** समांतर श्रेढ़ी 5, 9, 13,, 185 का अंतिम पद से (प्रथम पद की ओर) 9वाँ पद ज्ञात कीजिए। Find the 9th term from the end (towards the first term) of the A.P. 5, 9, 13,, 185. 2. कार्ड जिन पर 3, 4, 5,, 50 संख्याएँ अंकित हैं, एक बक्से में रख कर अच्छी प्रकार मिलाए गए हैं। बक्से में से एक कार्ड यादृच्छया निकाला जाता है। प्रायिकता ज्ञात कीजिए कि निकाले गए कार्ड पर एक पूर्ण वर्ग संख्या है। Cards marked with number 3, 4, 5,, 50 are placed in a box and mixed thoroughly. A card is drawn at random from the box. Find the probability that the selected card bears a perfect square number. 3. एक बाह्य बिन्दु P से O केन्द्र वाले वृत्त पर दो स्पर्श रेखाएँ PA तथा PB खींची गई हैं। यदि $\angle PAB = 50^{\circ}$ है, तो $\angle AOB$ ज्ञात कीजिए। From an external point P, tangents PA and PB are drawn to a circle with centre O. If \angle PAB = 50°, then find \angle AOB. 4. आकृति 1 में, AB एक 6 मी ऊँचा खम्भा है तथा CD एक सीढ़ी है जो क्षैतिज के साथ 60° का कोण बनाती है तथा खम्भे के बिन्दु D तक पहुँचती है। यदि AD = 2.54 मी है, तो सीढ़ी की लम्बाई ज्ञात कीजिए। ($\sqrt{3}$ =1.73 लीजिए) In Fig. 1, AB is a 6 m high pole and CD is a ladder inclined at an angle of 60° to the horizontal and reaches up to a point D of pole. If AD = 2.54 m, find the length of the ladder. (use $\sqrt{3}$ =1.73) आकृति 1 Fig. 1 ### खंड ब ### **Section B** प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंकों का है। Question numbers 5 to 10 carry 2 marks each. - 5. वह अनुपात ज्ञात कीजिए जिसमें y-अक्ष, बिन्दुओं A(5,-6) तथा B(-1,-4) को मिलाने वाले रेखाखंड को बाँटता है। विभाजन करने वाले बिन्दु के निर्देशांक भी ज्ञात कीजिए। Find the ratio in which y-axis divides the line segment joining the points A(5,-6) and B(-1,-4). Also find the coordinates of the point of division. - 6. यदि $x = \frac{2}{3}$ तथा x = -3 एक द्विघाती समीकरण $ax^2 + 7x + b = 0$ के मूल हैं, तो a तथा b के मान ज्ञात कीजिए। If $x = \frac{2}{3}$ and x = -3 are roots of the quadratic equation $ax^2 + 7x + b = 0$, find the values of a and b. - 7. बिन्दु P का x-निर्देशांक उसके y-निर्देशांक का दुगुना है। यदि बिन्दु P, बिन्दुओं Q(2, -5) तथा R(-3, 6) से समदूरस्थ है, तो P के निर्देशांक ज्ञात कीजिए। The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from Q(2, -5) and R(-3, 6), find the coordinates of P. - 8. आकृति 2 में, एक Δ ABC के अंतर्गत एक वृत्त बना है जो त्रिभुज की भुजाओं AB, BC तथा CA को क्रमशः बिन्दुओं D, E तथा F पर स्पर्श करता है। यदि AB, BC तथा CA की लम्बाइयाँ क्रमशः 12 सेमी, 8 सेमी तथा 10 सेमी हैं, तो AD, BE तथा CF की लम्बाइयाँ ज्ञात कीजिए। In Fig. 2, a circle is inscribed in a Δ ABC, such that it touches the sides AB, BC and CA at points D, E and F respectively. If the lengths of sides AB, BC and CA are 12 cm, 8 cm and 10 cm respectively, find the lengths of AD, BE and CF. 9. आकृति 3 में, O केन्द्र वाले वृत्त की AP तथा BP ऐसी दो स्पर्श रेखाएँ हैं कि AP = 5 सेमी तथा \angle APB = 60° है। जीवा AB की लंबाई ज्ञात कीजिए। In Fig. 3, AP and BP are tangents to a circle with centre O, such that AP = 5 cm and \angle APB = 60°. Find the length of chord AB. Fig. 3 **10.** समांतर श्रेढ़ी 65, 60, 55, के कितने पद लिए जाएँ कि उनका योग शून्य हो ? How many terms of the A.P. 65, 60, 55, be taken so that their sum is zero? ## खंड स Section C प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंकों का है। Question numbers 11 to 20 carry 3 marks each. 11. 4 मी व्यास का एक कुआँ, 21 मी की गहराई तक खोदा जाता है। इससे निकली हुई मिट्टी को कुएँ के चारों ओर 3 मी चौड़ी एक वृत्ताकार वलय (ring) बनाते हुए समान रूप से फैला कर एक बाँध बनाया जाता है। बाँध की ऊँचाई ज्ञात कीजिए। A well of diameter 4 m is dug 21 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 3 m to form an embankment. Find the height of the embankment. 12. यदि एक समांतर श्रेढ़ी के प्रथम 7 पदों का योग 49 तथा प्रथम 17 पदों का योग 289 है, तो समांतर श्रेढ़ी के प्रथम n पदों का योग ज्ञात कीजिए। If the sum of first 7 terms of an A.P. is 49 and that of its first 17 terms is 289, find the sum of first *n* terms of the A.P. 13. एक मीनार के शिखर से एक 50 मी ऊँचे भवन के शिखर तथा पाद के अवनमन कोण क्रमशः 45° तथा 60° हैं। मीनार की ऊँचाई ज्ञात कीजिए तथा भवन व मीनार के बीच क्षैतिज दूरी भी ज्ञात कीजिए। ($\sqrt{3}=1.73$ लीजिए) The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building. (use $\sqrt{3}$ =1.73) 14. आकृति 4 में, ABCD एक वर्ग है जिसकी भुजा 14 सेमी है। प्रत्येक भुजा को व्यास मान कर अर्धवृत्त बनाए गए हैं। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। $\left(\pi = \frac{22}{7}\right)$ लीजिए In Fig. 4, ABCD is a square of side 14 cm. Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region. $\left(\text{use }\pi = \frac{22}{7}\right)$ Fig. 4 15. आकृति 5 में, सजावट के लिए बना एक ब्लाक दर्शाया गया है जो दो ठोसों-एक घन तथा एक अर्धगोले से बना है। ब्लाक का आधार एक 6 सेमी भुजा का घन है तथा उसके ऊपर एक अर्धगोला है जिसका व्यास 3.5 सेमी है। ब्लाक का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $\left(\pi = \frac{22}{7}\right)$ लीजिए In Fig. 5, is a decorative block, made up of two solids—a cube and a hemisphere. The base of the block is a cube of side 6 cm and the hemisphere fixed on the top has a diameter of 3.5 cm. Find the total surface area of the block. $\left(\text{use } \pi = \frac{22}{7}\right)$ Fig. 5 16. आकृति 6 में, बनी Δ ABC, जिसके शीर्ष A के निर्देशांक (0, -1) हैं तथा भुजाओं AB तथा AC के मध्य-बिन्दुओं D तथा E के निर्देशांक क्रमशः (1, 0) तथा (0, 1) हैं। यदि F भुजा BC का मध्य-बिन्दु है तो त्रिभुजों DEF तथा ABC के क्षेत्रफल ज्ञात कीजिए। In Fig. 6, ABC is a triangle coordinates of whose vertex A are (0, -1). D and E respectively are the mid-points of the sides AB and AC and their coordinates are (1, 0) and (0, 1) respectively. If F is the mid-point of BC, find the areas of Δ ABC and Δ DEF. 17. आकृति 7 में, दो चाप PAQ तथा PBQ दर्शाई गई हैं। चाप PAQ, O केन्द्र वाले वृत्त का भाग है, जिसकी त्रिज्या OP है तथा चाप PBQ, PQ को व्यास मान कर बनाया गया अर्धवृत्त है जिसका केन्द्र M है। यदि OP = 10 सेमी तथा PQ = 10 सेमी तो दर्शाइए कि रेखांकित भाग का क्षेत्रफल $25\left(\sqrt{3}-\frac{\pi}{6}\right)$ सेमी 2 है। आकृति 7 In Fig. 7, are shown two arcs PAQ and PBQ. Arc PAQ is a part of circle with centre O and radius OP while arc PBQ is a semi-circle drawn on PQ as diameter with centre M. If OP = PQ = 10 cm show that area of shaded region is $25\left(\sqrt{3} - \frac{\pi}{6}\right) \text{cm}^2$. Fig. 7 - 18. एक डिब्बे में 100 कमीजें हैं जिनमें से 88 अच्छी हैं, 8 में कुछ छोटी सी खराबी है तथा शेष 4 में अधिक खराबी है। एक दुकानदार रमेश सिर्फ उन कमीजों को खरीदेगा जो बिल्कुल ठीक हैं परन्तु 'केवल' एक अन्य दुकानदार उन कमीजों को नहीं खरीदेगा जिनमें अधिक खराबी है। बक्से में से एक कमीज यादुच्छया निकाली गयी। प्रायिकता क्या है कि: - (i) निकाली गई कमीज रमेश खरीदेगा? - (ii) निकाली गई कमीज 'केवल' खरीद लेगा? A box consists of 100 shirts of which 88 are good, 8 have minor defects and 4 have major defects. Ramesh, a shopkeeper will buy only those shirts which are good but 'Kewal' another shopkeeper will not buy shirts with major defects. A shirt is taken out of the box at random. What is the probability that - (i) Ramesh will buy the selected shirt? - (ii) 'Kewal' will buy the selected shirt? - 19. निम्न द्विघाती समीकरण को x के लिए हल कीजिए: $$x^2 + \left(\frac{a}{a+b} + \frac{a+b}{a}\right)x + 1 = 0$$ Solve the following quadratic equation for x: $$x^2 + \left(\frac{a}{a+b} + \frac{a+b}{a}\right)x + 1 = 0$$ **20.** एक खिलौना अर्धगोले पर लगे 3.5 सेमी त्रिज्या वाले शंकु के आकार का है जबिक अर्धगोले के आधार का व्यास 7 सेमी है। यदि खिलौने की कुल ऊँचाई 15.5 सेमी है, तो खिलौने का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $\left(\pi = \frac{22}{7}\right)$ लीजिए A toy is in the form of a cone of base radius 3.5 cm mounted on a hemisphere of base diameter 7 cm. If the total height of the toy is 15.5 cm, find the total surface area of the toy. $\left(\text{use } \pi = \frac{22}{7}\right)$ ## खंड द Section D प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंकों का है। Question numbers 21 to 31 carry 4 marks each. 21. वायुयान पर चढ़ते समय एक यात्री सीढ़ी से फिसल कर चोटिल हो गया। यान चालक उस यात्री को हवाई अड्डे के आपातकालीन क्लिनिक में इलाज के लिए ले गया जिसके कारण वायुयान आधा घंटा लेट हो गया। 1500 किमी दूर गंतव्य पर समय से पहुँचने के लिए, तािक यात्री अगली उड़ान पकड़ सकें, चालक ने यान की गित 250 किमी/ घंटा बढ़ा दी। वायुयान की मूल गित ज्ञात कीिजए। इस प्रश्न में क्या मूल्य दर्शाया गया है? A passenger, while boarding the plane, slipped from the stairs and got hurt. The pilot took the passenger in the emergency clinic at the airport for treatment. Due to this, the plane got delayed by half an hour. To reach the destination 1500 km away in time, so that the passengers could catch the connecting flight, the speed of the plane was increased by 250 km/hour than the usual speed. Find the usual speed of the plane. What value is depicted in this question? 22. आकृति 8 में, 5 सेमी त्रिज्या वाला O केन्द्र का वृत्त है। T एक ऐसा बिन्दु है कि OT = 13 सेमी है तथा OT वृत्त को बिन्दु E पर काटती है। यदि AB बिन्दु E पर वृत्त की स्पर्श रेखा है तो AB की लंबाई ज्ञात कीजिए, जबिक TP तथा TQ वृत्त की दो स्पर्श रेखाएँ हैं। In Fig. 8, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle. Fig. 8 23. 80 मी ऊँचे पेड़ के शिखर पर एक पक्षी बैठा है। धरती के एक बिन्दु से पक्षी का उन्नयन कोण 45° है। पक्षी क्षैतिज रूप से इस प्रकार उड़ता है कि वह धरती से एक समान ऊँचाई पर रहता है। 2 से. की उड़ान के बाद पृथ्वी के उसी बिन्दु से पक्षी का उन्नयन कोण 30° हो जाता है। पक्षी के उड़ने की चाल ज्ञात कीजिए। ($\sqrt{3}=1.732$ लीजिए) A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird. (Take $\sqrt{3}$ =1.732) 24. संयोग के खेल में एक तीर को एक वृत्ताकार बोर्ड, जो 8 समान भागों में विभाजित है, पर घुमाया जाता है जो संख्याओं 1, 2, 3, ..., 8 (आकृति 9) में से किसी एक संख्या के आगे रुकता है। यदि तीर की सभी संख्याओं पर रुकने का संयोग समान है तो प्रायिकता ज्ञात कीजिए कि तीर (i) किसी विषम संख्या पर रुकेगा (ii) 3 से बड़ी संख्या पर रुकेगा (iii) 9 से छोटी संख्या पर रुकेगा। A game of chance consists of spinning an arrow on a circular board, divided into 8 equal parts, which comes to rest pointing at one of the numbers 1, 2, 3, ..., 8 (Fig. 9), which are equally likely outcomes. What is the probability that the arrow will point at (i) an odd number (ii) a number greater than 3 (iii) a number less than 9. आकृति 9 Fig. 9 **25.** सिद्ध कीजिए कि एक त्रिभुज, जिसके शीर्ष (t,t-2), (t+2,t+2) तथा (t+3,t) है, का क्षेत्रफल t से स्वतंत्र है। Prove that the area of a triangle with vertices (t, t-2), (t+2, t+2) and (t+3, t) is independent of t. **26.** ऊपर से खुली एक बाल्टी शंकु के छिन्नक के आकार की है जिसकी धारिता 12308.8 सेमी की है। उसके ऊपरी तथा निचले वृत्तीय सिरों की त्रिज्याएँ क्रमश: 20 सेमी तथा 12 सेमी हैं। बाल्टी की ऊँचाई ज्ञात कीजिए तथा बाल्टी को बनाने में लगी धातु की चादर का क्षेत्रफल ज्ञात कीजिए। $(\pi = 3.14 \text{ लीजिए})$ A bucket open at the top is in the form of a frustum of a cone with a capacity of 12308.8 cm³. The radii of the top and bottom circular ends are 20 cm and 12 cm respectively. Find the height of the bucket and the area of metal sheet used in making the bucket. (use $\pi = 3.14$) 27. एक लचीली बैल्ट को एक घिरनी (pulley), जिसकी त्रिज्या 5 सेमी है, के गिर्द लपेटा गया है। (आकृति 10)। बैल्ट के एक बिन्दु C से लचीली बैल्ट को केन्द्र O से सीधा इस प्रकार खींचा जाता है कि वह बिन्दु P पर पहुँच जाता है जहाँ OP =10 सेमी है। बैल्ट के उस भाग की लंबाई ज्ञात कीजिए जो अब भी घिरनी के साथ लगा है। रेखांकित भाग का क्षेत्रफल भी ज्ञात कीजिए। $$(\pi = 3.14 \text{ तथा } \sqrt{3} = 1.73 \text{ लीजिए})$$ An elastic belt is placed around the rim of a pulley of radius 5 cm. (Fig. 10). From one point C on the belt, the elastic belt is pulled directly away from the centre O of the pulley until it is at P, 10 cm from the point O. Find the length of the belt that is still in contact with the pulley. Also find the shaded area. (use $$\pi = 3.14$$ and $\sqrt{3} = 1.73$) Fig. 10 28. तीन संख्याओं, जो एक समान्तर श्रेढ़ी में हैं, का योग 12 है तथा उनके घनों (cubes) का योग 288 है। संख्याएँ ज्ञात कीजिए। The sum of three numbers in A.P. is 12 and sum of their cubes is 288. Find the numbers. 29. सिद्ध कीजिए कि वृत्त के किसी बिन्दु पर स्पर्श रेखा, स्पर्श-बिन्दु से जाने वाली त्रिज्या पर लंब होती है। Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. **30.** किसी व्यक्ति द्वारा 150 किमी की दूरी तय करने में जाते हुए लगने वाला समय वापिस आते हुए लगने वाले समय से $2\frac{1}{2}$ घंटे अधिक था। यदि वापसी पर चाल, जाते समय की चाल से 10 किमी/घंटा अधिक थी, तो प्रत्येक दिशा में यात्रा की चाल ज्ञात कीजिए। The time taken by a person to cover 150 km was $2\frac{1}{2}$ hours more than the time taken in the return journey. If he returned at a speed of 10 km/hour more than the speed while going, find the speed per hour in each direction. 31. एक त्रिभुज की रचना कीजिए जिसमें BC = 7 सेमी, $\angle B = 45^\circ$, तथा $\angle A = 105^\circ$ । फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी प्रत्येक भुजा, Δ ABC की संगत भुजा का $\frac{4}{5}$ भाग है। Draw a triangle ABC with BC = 7 cm, $\angle B = 45^\circ$ and $\angle A = 105^\circ$. Then construct a triangle whose sides are $\frac{4}{5}$ times the corresponding sides of Δ ABC. ### 30/1/3 ### QUESTION PAPER CODE 30/1/3 # EXPECTED ANSWER/VALUE POINTS ### **SECTION A** 1. $$l = 185$$, $d = -4$ $$l_9 = 153$$ $$\therefore \quad P(\text{perfect square number}) = \frac{6}{48} \text{ or } \frac{1}{8}$$ 3. $$\angle APB = 80^{\circ}$$ $\frac{1}{2}$ $$\therefore \quad \angle AOB = 100^{\circ}$$ 4. DB = 3.46 m $$\frac{1}{2}$$ $$\therefore DC = 4 \text{ m}$$ ### **SECTION B** 5. Let the point on y-axis be $$(0, y)$$ and AP: PB = K : 1 $\frac{1}{2}$ Therefore $$\frac{5-k}{k+1} = 0$$ gives $k = 5$ $$y = \frac{-4(5) - 6}{6} = \frac{-13}{3}$$ Hence point on y-axis is $$\left(0, \frac{-13}{3}\right)$$. $\frac{1}{2}$ $\frac{1}{2}$ **6.** $$\frac{-7}{a} = \frac{2}{3} - 3$$ $$\Rightarrow$$ a = 3 and $$\frac{b}{a} = \frac{2}{3} \times (-3)$$ $$\Rightarrow$$ b = -6 1 7. Let the point P be (2y, y) PQ = PR $$\Rightarrow \sqrt{(2y-2)^2 + (y+5)^2} = \sqrt{(2y+3)^2 + (y-6)^2}$$ $$\frac{1}{2}$$ Solving to get $$y = 8$$ $$\frac{1}{2}$$ Hence coordinates of point P are (16, 8). $\frac{1}{2}$ **8.** Let $$AD = AF = x$$ $$\therefore DB = BE = 12 - x$$ and $$CF = CE = 10 - x$$ $$BC = BE + EC \Rightarrow 8 = 12 - x + 10 - x$$ $$\Rightarrow$$ x = 7 $$\therefore$$ AD = 7 cm, BE = 5 cm, CF = 3 cm 9. $$PA = PB$$ $$\frac{1}{2}$$ $$\Rightarrow$$ $\angle PAB = \angle PBA = 60^{\circ}$ $$\frac{1}{2}$$ \therefore $\triangle PAB$ is an equilateral triangle. Hence AB = PA = 5 cm. $$\frac{1}{2}$$ $\frac{1}{2}$ 1 **10.** Here $$a = 65$$, $d = -5$, $Sn = 0$ $$130 + (n-1)(-5) = 0$$ $$\Rightarrow$$ n = 27 ### **SECTION C** 11. Volume of earth dug out = $\pi \times 2 \times 2 \times 21 = 264 \text{ m}^3$ 1 1 1 Volume of embankment = π (25 – 4) × h = 66 h m³ $$\therefore 66h = 264$$ $$\Rightarrow h = 4 \text{ m}$$ 12. $$S_7 = 49 \Rightarrow 2a + 6d = 14$$ $\frac{1}{2}$ $$S_{17} = 289 \Rightarrow 2a + 16d = 34$$ Solving equations to get a = 1 and d = 2 Hence $$\operatorname{Sn} = \frac{n}{2} [2 + (n-1)2] = n^2$$. 13. Correct Figure $$\tan 45^{\circ} = \frac{h - 50}{x} \Rightarrow x = h - 50$$ $\frac{1}{2}$ $$\tan 60^\circ = \frac{h}{x} \Rightarrow x = \frac{h}{\sqrt{3}}$$ $\frac{1}{2}$ Hence $$h - 50 = \frac{h}{\sqrt{3}}$$ $\frac{1}{2}$ $$\Rightarrow$$ h = 75 + 25 $\sqrt{3}$ = 118.25 m. **14.** Area of square = 196 cm^2 Area of semicircles AOB + DOC = $$\frac{22}{7} \times 49 = 154 \text{ cm}^2$$ $\frac{1}{2}$ Hence area of two shaded parts $$(X + Y) = 196 - 154 = 42 \text{ cm}^2$$ Therefore area of four shaded parts = $$84 \text{ cm}^2$$. 15. Surface area of block = $216 - \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} + 2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}$ = 225.42 cm^2 . (18) 30/1/3 ### 16. Using Mid Point formula coordinates of point B are (2, 1) and coordinates of point C are (0, 3). $\frac{1}{2}$ Area $$\triangle ABC = \frac{1}{2}[0+2(3+1)+0] = 4 \text{ sq u.}$$ Coordinates of point F are (1, 2) Area of $$\triangle DEF = \frac{1}{2} |1(1-2) + 0 + 1(0-1)| = 1 \text{ sq u.}$$ 17. $$\angle POQ = 60^{\circ}$$ Area of segment PAQM = $$\left(\frac{100\pi}{6} - \frac{100\sqrt{3}}{4}\right)$$ cm². Area of semicircle = $$\frac{25\pi}{2}$$ cm² $\frac{1}{2}$ Area of shaded region = $$\frac{25\pi}{2} - \left(\frac{50\pi}{3} - 25\sqrt{3}\right)$$. = $25\left(\sqrt{3} - \frac{\pi}{6}\right)$ cm². P(Ramesh buys the shirt) = $$\frac{88}{100}$$ or $\frac{22}{25}$ (ii) Number of shirts without Major defect = 96 $$P(\text{Kewal buys a shirt}) = \frac{96}{100} \text{ or } \frac{24}{25}$$ $$\frac{1}{2}$$ 19. $$x^2 + \frac{a}{a+b}x + \frac{a+b}{a}x + 1 = 0$$ $$x\left(x+\frac{a}{a+b}\right) + \frac{a+b}{a}\left(x+\frac{a}{a+b}\right) = 0$$ $$\left(x + \frac{a}{a+b}\right)\left(x + \frac{a+b}{a}\right) = 0$$ $$\Rightarrow x = \frac{-a}{a+b}, \frac{-(a+b)}{a}$$ 30/1/3 (19) $$h = 15.5 - 3.5 = 12 \text{ cm}$$ $$l = \sqrt{144 + 12.25} = 12.5 \text{ cm}$$ TSA $\pi rl + 2\pi r^2$ $$= \frac{22}{7} \times 3.5 \times 12.5 + 2 \times \frac{22}{7} \times 3.5 \times 3.5$$ $$= 137.5 + 77$$ $$= 214.5 \text{ cm}^2$$ 1 1 #### **SECTION D** **21.** Let the usual speed of plane be x km/h. $$\therefore \frac{1500}{x} - \frac{1500}{x + 250} = \frac{1}{2}$$ $$\Rightarrow$$ $x^2 + 250x - 750000 = 0$ $$(x + 1000) (x - 750) = 0 \Rightarrow x = 750$$ Speed of plane = 750 km/h. For writing value 22. PT = $$\sqrt{169 - 25}$$ = 12cm and TE = 8 cm $\frac{1}{2} + \frac{1}{2}$ Let PA = AE = x $$TA^2 = TE^2 + EA^2$$ $$\Rightarrow (12 - x)^2 = 64 + x^2$$ $$\Rightarrow$$ x = 3.3 cm. Thus $$AB = 6.6 \text{ cm}$$. ### 23. $$\tan 45^\circ = \frac{80}{y} \implies y = 80$$ $\frac{1}{2}$ $$\tan 30^{\circ} = \frac{80}{x+y} \implies x + y = 80\sqrt{3}$$ $\frac{1}{2}$ $$\therefore x = 80(\sqrt{3} - 1) = 58.4 \text{ m}.$$ Hence speed of bird = $$\frac{58.4}{2}$$ = 29.2 m/s. (20) 30/1/3 **24.** (i) Favourable outcomes are 1, 3, 5, 7 i.e. 4 outcomes. $$\therefore P(\text{an odd number}) = \frac{4}{8} \text{ or } \frac{1}{2}$$ 1 1 (ii) Favourable outcomes are 4, 5, 6, 7, 8 i.e. 5 outcomes P(a number greater than 3) = $$\frac{5}{8}$$ $\frac{1}{2}$ (iii) Favarouble outcomes are 1, 2, 3...8 $P(a \text{ number less than } 9) = \frac{8}{8} = 1$ 25. Area of the triangle $$=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$$ $$= \frac{1}{2}[2t + 2t + 4 - 4t - 12]$$ = 4 sq. units which is independent of t. **26.** Here R = 20, r = 12, V = 12308.8 Therefore $$12308.8 = \frac{1}{3} \times 3.14(400 + 240 + 144)h$$ $$\Rightarrow$$ h = 15 cm $\frac{1}{2}$ $$l = \sqrt{(20 - 12)^2 + 15^2} = 17 \text{ cm}$$ Total area of metal sheet used = CSA + base area $$= \pi[(20 + 12) \times 17 + 12 \times 12]$$ $$= 2160.32 \text{ cm}^2$$ 27. $\cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$ $O \xrightarrow{5} \theta \quad C$ $Reflex \angle AOB = 240^{\circ}$ $$\therefore \widehat{ADB} = \frac{2 \times 3.14 \times 5 \times 240}{360} = 20.93 \text{ cm}$$ Hence length of elastic in contact = 20.93 cm Now, AP = $$5\sqrt{3}$$ cm 30/1/3 (21) #### 30/1/3 Area $$(\Delta OAP + \Delta OBP) = 25\sqrt{3} = 43.25 \text{ cm}^2$$ $$\frac{1}{2}$$ Area of sector OACB = $\frac{25 \times 3.14 \times 120}{360} = 26.16 \text{ cm}^2$ $$\frac{1}{2}$$ Shaded Area = $43.25 - 26.16 = 17.09 \text{ cm}^2$ 1 28. Let the three numbers in A.P. be a – d, a, a + d. $$3a = 12 \Rightarrow a = 4.$$ $$Also (4 - d)^3 + 4^3 + (4 + d)^3 = 288$$ $$\Rightarrow 64 - 48d + 12d^2 - d^3 + 64 + 64 + 48d + 12d^2 + d^3 = 288$$ $$\Rightarrow 24d^2 + 192 = 288$$ $$\Rightarrow d^2 = 4$$ $$d = \pm 2$$ The numbers are 2, 4, 6, or 6, 4, 2. 1 29. For correct Given, To prove, construction, figure $$4 \times \frac{1}{2} = 2$$ Correct Proof $$2$$ 30. Let the speed while going be x km/h Therefore $\frac{150}{x} - \frac{150}{x + 10} = \frac{5}{2}$ $$\Rightarrow x^2 + 10x - 600 = 0$$ $\Rightarrow (x + 30)(x - 20) = 0$ Speed while going = 20 km/h and speed while returning = 30 km/hr \Rightarrow x = 20 **Correct Construction** 31. (22) 30/1/3 1 1 $\overline{2}$ 4