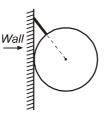


DPP No. 22


Total Marks : 26

Max. Time : 26 min.

Topics : Newton's Law of Motion, Rectilinear Motion, Projectile Motion

Type of Questions	M.M., Min.	
Single choice Objective ('–1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Multiple choice objective ('–1' negative marking) Q.7 to Q.8	(4 marks, 4 min.)	[8, 8]

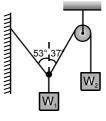
A uniform sphere of weight w and radius 3 m is being held by a string of length 2 m. attached to a 1. frictionless wall as shown in the figure. The tension in the string will be:

(A) 5 w/4

(B) 15 w/4

(B) 4/5

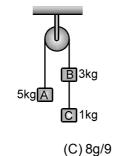
(B) g/9


(C) 15 w/16

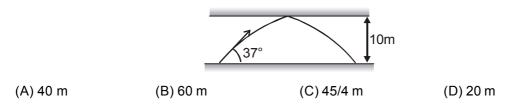
(D) none of these

2. Two weights W_1 and W_2 in equillibrium and at rest, are suspended as shown in figure. Then the ratio $\frac{W_1}{W_2}$ is:

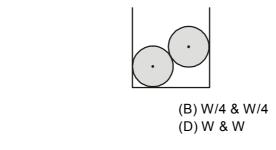
(A) 5/4


(A) g

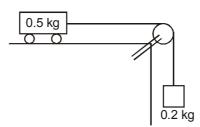
(C) 8/5


(D) none of these

- 3. If $v = x^2 - 5x + 4$, find the acceleration of the particle when velocity of the particle is zero. (A) 0 (B) 2 (C) 3 (D) none of these
- Three weights are hanging over a smooth fixed pulley as shown in the figure. What is the tension in the 4. string connecting weights B and C?



(D) 10g/9


5. A ball is shot in a long hall having a roof at a height of 10 m with 25 m/s at an angle of 37° with the floor. The ball lands on the floor at a distance of from the point of projection. (Assume elastic collisions if any)

6. Two smooth spheres each of radius 5 cm and weight W is in equilibrium inside a fixed smooth cylinder of radius 8 cm as shown in the figure. The reactions between the spheres and the vertical side of the cylinder are:

7. A cart of mass 0.5 kg is placed on a smooth surface and is connected by a string to a block of mass 0.2 kg. At the initial moment the cart moves to the left along a horizontal plane at a speed of 7 m/s. (Use g = 9.8 m/s^2)

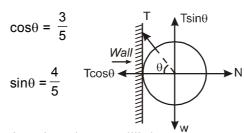
(A) The acceleration of the cart is $\frac{2g}{7}$ towards right.

(A) W/4 & 3W/4 (C) 3W/4 & 3W/4

- (B) The cart comes to momentary rest after 2.5 s.
- (C) The distance travelled by the cart in the first 5s is 17.5 m.
- (D) The velocity of the cart after 5s will be same as initial velocity.
- 8. Three blocks are connected by light strings as shown in figure and pulled by a force F = 60 N. If $m_A = 10 \text{ kg}$, $m_B = 20 \text{ kg}$ and $m_C = 30 \text{ kg}$, then :

(A) acceleration of the system is 2 m/s ²	(B) T ₁ = 10 N
(C) $T_2 = 30 N$	(D) $T_1 = 20 \text{ N \& } T_2 = 40 \text{ N}$

Answers Key

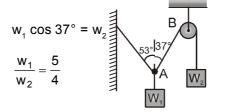

DPP NO. - 22

1.	(A)	2.	(A)	3. (A)	4.	(D)	5. (A)
6.	(C)	7.	(A), (B), (C)		8.	(B), (C)	

Hint & Solutions

DPP NO. - 22

1. From geometry :

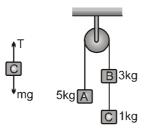


As sphere is at equilibrium, \forall T sin θ = w

$$T\left(\frac{4}{5}\right) = w$$

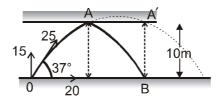
$$T = \frac{5w}{4}.$$

2. Resolving forces at point A along string AB



3. $v = 0 \Rightarrow x^2 - 5x + 4 = 0$ x = 1m & 4m

$$\frac{dv}{dt} = (2x - 5) v = (2x - 5) (x^2 - 5x + 4)$$


at x = 1 m and 4m ; $\frac{dv}{dt}$ = 0

4. $a = \left(\frac{5-4}{5+4}\right)g = \frac{g}{9}$ T - mg = ma

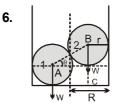
$$T = m(g + a)$$
$$= 1\left(g + \frac{g}{9}\right) = \frac{10g}{9}.$$

5. Time taken by ball from O to A is same as that from A to B.

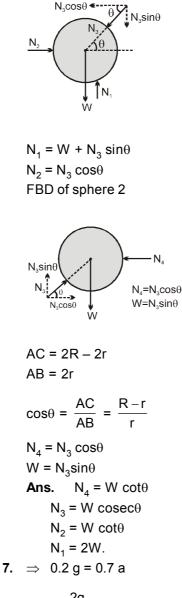
$$10 = 15 t - \frac{1}{2} (10) t^{2}$$

$$5t^{2} - 15 t - 10 = 0$$

$$t^{2} - 3t - 2 = 0$$


$$t = 1, 2$$

$$t = 2 \text{ is invalid as it is the time taken the time taken t$$


t = 2 is invalid as it is the time taken by the ball to come at A' if there was no roof.

 \therefore t = 1 seconds.

During this the ball will travel V × t = 20×2 = 40 m on the floor.

r = 5cm ; R = 8cm FBD of sphere 1

$$\Rightarrow$$
 a = $\frac{2g}{7}$ m/s²

For the case, it comes to rest when V = 0

0.2 - T = 0.2 a

Distance travelled till it comes to rest

$$0 = 7^2 + 2\left(-\frac{2g}{7}\right)s$$

S = 8.75 m

So in next 2.5s, it covers 8.75 m towards right. Total distance = $2 \times 8.75 = 17.5$ m After 5s, it speed will be same as that of initial (7 m/s) but direction will be reversed.

8. Acceleration of system a = $\frac{F}{m_A + m_B + m_C}$

$$a = \frac{60}{10 + 20 + 30} = 1 \text{ m/s}^{2}$$
FBD of A :

$$A \to T_{1}$$
T₁ = m_A.a
T₁ = 10(1) = 10N
FBD of B :

$$T_{2} - T_{1} = m_{B}a$$
T₂ - 10 = 20(1)
T₂ = 30 N.