Trigonometric Functions

- If in a circle of radius *r*, an arc of length *l* subtends an angle of θ radians, then $l = r\theta$. Radian measure = $\frac{\pi}{180} \times Degree measure$ •
- Degree measure = $\frac{180}{\pi}$ ×Radian measure
- A degree is divided into 60 minutes and a minute is divided into 60 seconds. One sixtieth of • a degree is called a minute, written as 1', and one sixtieth of a minute is called a second, written as1".

Thus, $1^{\circ} = 60'$ and 1' = 60''

Signs of trigonometric functions in different quadrants: •

Trigonometric function	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
sin x	+ ve (Increases from 0 to 1)	+ ve (Decreases from 1 to 0)	–ve (Decreases from 0 to ⊠1)	-ve (Increases from 🛛 1 to 0)
cos x	+ ve (Decreases from 1 to 0)	-ve (Decreases from 0 to ⊠1)	-ve (Increases from 21 to 0)	+ ve (Increases from 0 to 1)
tan x	+ ve (Increases from 0 to ∞)	–ve (Increases from ⊠∞ to 0)	+ ve (Increases from 0 to ∞)	-ve (Increases from ℤ∞ to 0)
cot x	+ ve (Decreases from ∞ to 0)	-ve(Decreases from 0 to 涩∞)	+ ve (Decreases from ∞ to 0)	-ve (Decreases from 0 to ⊠∞)
sec x	+ ve (Increases from 1 to ∞)	–ve (Increases from ً∞ to 21)	–ve (Decreases from ☑1 to ☑∞)	+ ve (Decreases from ∞ to 1)
cosec x	+ ve (Decreases from ∞ to 1)	+ ve (Increases from 1 to ∞)	-ve (Increases from ℤ∞ to ℤ1)	–ve (Decreases from 🛛 1 to 🖾∞)

Example 1:

 $\sin \theta = -\frac{1}{\sqrt{3}}$, where $\pi < \theta < \frac{3\pi}{2}$, then find the value of $3 \tan \theta - \sqrt{3} \sec \theta$. If

Solution: Since θ lies in the third quadrant, therefor tan θ is positive and $\cos \theta$ (or $\sec \theta$) is negative.

$$\cos^{2}\theta + \sin^{2}\theta = 1$$

$$\Rightarrow \cos\theta = \pm \sqrt{1 - \sin^{2}\theta}$$

$$\Rightarrow \cos\theta = \pm \sqrt{1 - \left(-\frac{1}{\sqrt{3}}\right)^{2}} = \pm \sqrt{1 - \frac{1}{3}} = \pm \sqrt{\frac{2}{3}}$$

$$\therefore \cos\theta = -\sqrt{\frac{2}{3}}$$

$$\Rightarrow \sec\theta = -\sqrt{\frac{3}{2}}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{1}{\sqrt{3}}}{-\sqrt{\frac{2}{3}}} = \frac{1}{\sqrt{2}}$$

$$\therefore 3\tan\theta - \sqrt{3}\sec\theta = 3 \times \frac{1}{\sqrt{2}} - \sqrt{3} \times \left(-\sqrt{\frac{3}{2}}\right) = \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}} = 3\sqrt{2}$$

Example 2: Find the value of cos 390^o cos 510^o + sin 390^o cos (-660^o).

Solution:

$$\frac{\sqrt{3}}{2}$$

$$\cos 390^{\circ} = \cos (2 \times 180^{\circ} + 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos 510^{\circ} = \cos (3 \times 180^{\circ} - 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\sin 390^{\circ} = \sin (2 \times 180^{\circ} + 30^{\circ}) = \sin 30^{\circ} = \frac{1}{2}$$

$$\cos (-660^{\circ}) = \cos 660^{\circ} = \cos (4 \times 180^{\circ} - 60^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$$

$$\therefore \cos 390^{\circ} \cos 510^{\circ} + \sin 390^{\circ} \cos (-660^{\circ})$$

$$= \frac{\sqrt{3}}{2} \times \left(-\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)$$

$$= -\frac{3}{4} + \frac{1}{4}$$

$$= -\frac{2}{4}$$

• Domain and Range of trigonometric functions:

Trigonometric function	Domain	Range
sin x	R	[-1, 1]
cos x	R	[-1, 1]
tan x	$\mathbf{R} - \left\{ X : X = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R
cot x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R
sec x	$\mathbf{R} - \left\{ X : X = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R - [-1, 1]
cosec x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R - [-1, 1]

- Trigonometric identities and formulas:
 - $\operatorname{cosec} x = \frac{1}{\sin x}$ $\operatorname{sec} x = \frac{1}{\cos x}$ $\operatorname{tan} x = \frac{\sin x}{\cos x}$ $\operatorname{cot} x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$ $\operatorname{cos}^{2} x + \sin^{2} x = 1$ $1 + \tan^{2} x = \sec^{2} x$ $1 + \cot^{2} x = \csc^{2} x$ $1 + \cot^{2} x = \csc^{2} x$ $\cos (2n \pi + x) = \cos x, n \in \mathbb{Z}$ $\sin (-x) = -\sin x, n \in \mathbb{Z}$ $\sin (-x) = -\sin x$ $\cos (-x) = \cos x$ $\cos (x + y) = \cos x \cos y \sin x \sin y$

$$\cos (x - y) = \cos x \cos y + \sin x \sin y$$

$$\cos \left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin \left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin (x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos \left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin \left(\frac{\pi}{2} + x\right) = -\cos x$$

$$\sin (\pi - x) = -\cos x$$

$$\sin (\pi - x) = -\sin x$$

$$\cos (\pi + x) = -\sin x$$

$$\cos (2\pi - x) = -\sin x$$

$$\sin (2\pi - x) = -\sin x$$

• If none of the angles x, y and $(x \pm y)$ is an odd multiple of $\frac{\pi}{2}$, then

 $\tan (x + \gamma) = \frac{\tan x + \tan \gamma}{1 - \tan x \tan \gamma}, \text{ and } \tan (x - \gamma) = \frac{\tan x - \tan \gamma}{1 + \tan x \tan \gamma}$

• If none of the angles x, y and $(x \pm y)$ is a multiple of π , then $\cot(x + y) = \frac{\cot x \cot y - 1}{\cot y + \cos x}$, and $\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$
$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = 1 - 2\sin^2 \frac{x}{2} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$
$$\circ \text{ In particular,}$$
$$\sin 2x = 2\sin x \cos x = \frac{2\tan x}{1 + \tan^2 x}$$

 $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$ In particular, tan $2x = \frac{2 \tan x}{2}$

In particular,

- General solutions of some trigonometric equations: .
- 0
- $\sin x = 0 \Rightarrow x = n \pi$, where $n \in \mathbb{Z}$ $\cos x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$ 0
- $\sin x = \sin y \Rightarrow x = n\pi + (-1)^n y$, where $n \in \mathbb{Z}$ 0
- $\cos x = \cos y \Rightarrow x = 2n\pi \pm y$, where $n \in \mathbb{Z}$
- $\tan x = \tan y \Rightarrow x = n\pi + y$, where $n \in \mathbb{Z}$ 0

Example 1: Solve $\cot x \cos^2 x = 2 \cot x$

Solution: $\cot x \cos^2 x = 2 \cot x$

```
\Rightarrow \cot x \cos^2 x - 2\cot x = 0
\Rightarrow \cot x (\cos^2 x - 2) = 0
\Rightarrow \cot x = 0 \text{ or } \cos^2 x = 2
\Rightarrow \frac{\cos x}{\sin x} = 0 \text{ or } \cos x = \pm \sqrt{2}
\Rightarrow \cos x = 0 \text{ or } \cos x = \pm \sqrt{2}
Now, \cos x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{2}, where n \in \mathbb{Z}
 and \cos x = \pm \sqrt{2}
```

But this is not possible as $-1 \le \cos x \le 1$ Thus, the solution of the given trigonometric equation is $x = (2n + 1)\frac{\pi}{2}$ where $n \in \mathbb{Z}$.

Example 2: Solve $\sin 2x + \sin 4x + \sin 6x = 0$.

Solution:

$$\sin 4x + (\sin 2x + \sin 6x) = 0$$

$$\Rightarrow \sin 4x + 2\sin\left(\frac{2x+6x}{2}\right)\cos\left(\frac{2x-6x}{2}\right) = 0$$

$$\Rightarrow \sin 4x + 2\sin 4x \cos 2x = 0$$

$$\Rightarrow \sin 4x + 2\sin 4x \cos 2x = 0$$

$$\Rightarrow \sin 4x + 2\cos 2x = 0$$

$$\Rightarrow \sin 4x = 0 \text{ or } 1 + 2\cos 2x = 0$$

$$\Rightarrow \sin 4x = 0 \text{ or } \cos 2x = -\frac{1}{2}$$

$$\sin 4x = 0$$

$$\Rightarrow 4x = n\pi, n \in \mathbb{Z}$$

$$\Rightarrow 4x = n\pi, n \in \mathbb{Z}$$

$$\Rightarrow x = \frac{n\pi}{4}, n \in \mathbb{Z}$$

$$\cos 2x = -\frac{1}{2}$$

$$\Rightarrow \cos 2x = \cos \frac{2\pi}{3}$$

$$\Rightarrow 2x = 2m\pi \pm \frac{2\pi}{3}, m \in \mathbb{Z}$$

$$\Rightarrow x = m\pi \pm \frac{\pi}{3}, m \in \mathbb{Z}$$

Thus, $x = \frac{n\pi}{4}$ or $x = m\pi \pm \frac{\pi}{3}$, where $m, n \in \mathbb{Z}$