
Chapter 9
Combinational Circuits

introduCtion
Combinational logic is a type of logic circuit whose output is a
function of the present input only.

Combinational
circuits

Outputs
Z = F (X)

Inputs
X

CoMbinational logiC design
The design of combinational circuit starts from the problem, state-
ment and ends with a gate–level circuit diagram.

The design procedure involves the following steps:

 1. Determining the number of input variables and output
variables required, from the specifi cations.

 2. Assigning the letter symbols for input and output.
 3. Deriving the truth table that defi nes the required relationship

between input and output.
 4. Obtain the simplifi ed Boolean function for each output by

using K-map or algebraic relations.
 5. Drawing the logic diagram for simplifi ed expressions.

We will discuss combinational circuits under the following
categories:

 • Arithmetic circuits
 • Code converters
 • Data processing circuits

aritHMetiC CirCuits
Arithmetic circuits are the circuits that perform arithmetic opera-
tion. The most basic arithmetic operation is addition.

Half Adder
Addition is an arithmetic operation, and here to implement addi-
tion in digital circuits we have to implement by logical gates. So
the addition of binary numbers will be represented by the logical
expressions. Half adder is an arithmetic circuit which performs
the addition of two binary bits, and the result is viewed in two
outputsum and carry.

The sum ‘S’ is the X-OR of ‘A’ and ‘B’ where A and B are
inputs.

∴ = + = ⊕S AB BA A B

The carry ‘C’ is the AND of A and B.

∴ C = AB

Truth Table

Inputs Outputs

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 So, half adder can be realized by using one X-OR gate and
one AND gate.

After reading this chapter, you will be able to understand:

 • Combinational logic design

 • Arithmetic circuits

 • Code converters

 • Decoder

 • Combinational logic implementation

 • Encoders

 • Multiplexer

 • Basic gates by using MUX

 • De-multiplexer

 • Memory and programmable logic

 • Random access memory

LEARNING OBJECTIVES

3.284  |  Analog and Digital Electronics

A

B
S

C

Half adder can also be realized by universal logic, such as
only NAND gate or only NOR gate as given below.

NAND logic

   S AB AB= +

 = + + +AB AA AB BB

 = + + +A A B B A B() ()

 = ⋅AAB BAB

  C AB A B= = ⋅

A S
B

C

A · B

Figure 1  Half adder using NAND logic

NoR logic
S A B AB

AB AA AB BB

A A B B A B

A B A B

A B A B

C A

= ⋅ +

= + + +

= + + +

= + +

= + + +

=

() ()

()()

()

⋅⋅ = ⋅ = +B A B A B

A S
B

C

Figure 2  Half adder using NOR logic

Full Adder
Full adder is an arithmetic circuit that performs addition of
two bits with carry input. The result of full adder is given by
two outputssum and carry. The full adder circuit is used
in parallel adder circuit as well as in serial adder circuit.

For full adder, if total number of 1’s is odd at input lines,
the sum output is equal to logic 1, and if total number of
1’s at input lines are more than or equal to 2, then the carry
output is logic 1.

Figure 3  Block diagram

A

B
S

C in
Cout

Full adder

Truth Table
A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

  S ABC ABC ABC ABC= + + +in in in in

 = ⊕ ⊕A B Cin

C ABC ABC ABC ABCout in in in in= + + +
 = AB + (A ⊕ B) C

in

 = AB + A C
in
 +B C

in

Full adder can also be realized using universal logic gates,
i.e., either only NAND gates or only NOR gates as explained
below.

Figure 4  Block diagram of full adder, by using half adder

Cout = (A ⊕ B)C in + ABA

B

C in
HA

HA A ⊕ B

AB

(NC) S = A ⊕ B ⊕ C in

Figure 5  Logic diagram of full adder

A

B

C in

Cout

(A ⊕ B)C in + AB

S + A ⊕ B ⊕ C in

NAND logic

A B AAB BAB⊕ =

So A ⊕ B ⊕ C
in

Let then in in inA B x s X XC C X C⊕ = = ⋅ ⋅

 = X ⊕ C
in

A
SB

C in Cout

Figure 6  Logic diagram of a full adder using only 2-input NAND gates

Chapter 9  Combinational Circuits  |  3.285

NOR logic
Full subtractor outputs.

Sum = a ⊕ b ⊕ c, carry = ab + bc + ac are self dual
functions.

[∴ A function is called as self dual if its dual is same as
the function itself f D = f ].

For self dual functions, the number of NAND gates are
same as number of NOR gates.

By taking the dual for above NAND gate implementa-
tion, all gates will become NOR gates, and the output is
dual of the sum and carry, but they are self dual (f D = f ).

So, output remain same, and only 9 NOR gates are required for
full adder, structure similar to NAND gate circuit.

Half Subtractor
Half subtractor is an arithmetic circuit which performs subtrac-
tion of one bit (subtrahend) from other bit (minuend), and the
result gives difference and borrow each of one bit. The borrow
output is logic 1 only if there is any subtraction of 1 from 0.

When a bit ‘B’ is subtracted from another bit ‘A’, a dif-
ference bit (d) and a borrow bit (b) result according to the
rule given below.

Truth Table
A B d b
0 0 0 0

1 0 1 0

1 1 0 0

0 1 1 1

d AB BA= +
 = A ⊕ B

 b AB=

Figure 7  Logic diagram of a half subtractor

A

B
d

b

A half subtractor can also realized using universal logic either
using only NAND gates or only NOR gates as explained below.

NAND logic
 d = A ⊕ B

 = ⋅AAB B AB

b AB B A B B AB B AB= = + = = ⋅() ()

A
B

A · AB

B · AB

d

b

nor logic

d A B

AB AB

AB BB AB AA

B A B A A B

B A B A A B

b AB

A A

= ⊕

= +

= + + +

= + + +

= + + + + +

=

= +

() ()

(BB

A A B

A A B

)

()= +

= + +()

Figure 8  logic diagram of half subtractor using NOR gate

A
B

d

b

B + A + B

A + A + B

full Subtractor
Full subtractor is an arithmetic circuit similar to half sub-
tractor but it performs subtraction with borrow, it involves
subtraction of 3-bitsminuend, subtrahend and borrow-in,
and two outputsdifference and borrow. The subtraction
of 1 from 0 results in borrow to become logic 1. The pres-
ence of odd number of 1’s at input lines make difference as
logic 1.

Truth Table

A B bi d b

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

d ABb ABb ABb ABb

b AB AB b AB AB

b A B b A B

i i i i

i i

i i

= + + +

= + + +

= ⊕ + ⊕

=

() ()

() ()

AA B bi⊕ ⊕

3.286  |  Analog and Digital Electronics

and

b ABb ABb ABb

AB A B b

i i i

i

= + +

= + ⊕()

A

B

bi

b

d = A ⊕ B ⊕ bi

NAND logic
d = A ⊕ B ⊕ b

i

 = ⊕ ⊕ ⊕()() () ,A B A B b b A B bi i i

 b AB b A Bi= + ⊕()

 = + ⊕AB b A Bi ()

 = ⊕ABb A Bi ()

= + + ⊕

B A B b b A Bi i() ()

Figure 9  Logic diagram of a full subtractor using NAND logic

A

b

B

bi

d

NOR logic
Outputs of full subtractor are also self dual in nature.
Therefore, same circuit with all NAND gates replaced by
NOR gates gives the NOR gate full subtractor. For this 9
NOR gates required.

Example 1:  How many NAND gates are required for
implementation of full adder and full subtractor?
(A)  11, 10   (B)  11, 11   (C)  9, 9   (D)  9, 10

Solution:  (C)
From the circuit diagrams in the previous discussion, full
adder requires 9 NAND gates, and full subtractor requires
9 NAND gates.

Binary Adder
A binary adder is a digital circuit that produces the arithme-
tic sum of two binary numbers.

F ·A F ·A F ·A F ·A

S3

A3B3 A2B2 A1B1 A0B0

Cout

C in

S2 S1 S0

C3 C2 C1

Figure 10  4-bit parallel adder

The output carry from each full adder is connected to the
input carry of next full adder.

The bits are added with full adders, starting from the
LSB, position, to form the sum bit and carry bit.

The longest propagation delay time in parallel adder
is the time it takes the carry to propagate through the full
adders.

For n-bit parallel adders consider t
pds

 is the propagation
delay for sum of each full adder, and t

pdc
 is the propagation

delay of carry.
The total time required to add all n-bits at the nth full

adder is

T
S
 = t

pds
 + (n – 1)t

pdc

So propagation delay increases with number of bits. To
overcome this difficulty, we use look ahead carry adder.
Look ahead carry adder is the fastest carry adder.

Ai

Bi

Ci

Gi

Si

Pi
Pi ⊕ Ci

Pi Ci + Gi Ci + 1

Consider the full adder circuit for ith stage, in parallel adder,
with two binary variables A

i
, B

i
, input carry C

i
 are:

Carry propagate (P
i
) and carry generate (G

i
)

P
i
 = A

i
 ⊕ B

i

G
i
 = A

i
 ⋅ B

i

The output sum and carry can be expressed as

 S
i
 = P

i
 ⊕ C

i

C
i + 1

= P
i
 C

i
 + G

i

Now, the Boolean functions for each stage can be calculated
as substitute i = 0

C
0
 is input carry

C
1
 = G

0
 + P

0
 C

0

Substitute i = 1, 2 …

C
2
 = G

1
 + P

1
C

1
 = G

1
 + P

1
 (G

0
 + P

0
C

0
)

 = G
1
 + P

1
G

0
 + P

1
 P

0
 C

0

C
3
 = G

2
 + P

2
C

2
 = G

2
 + P

2
 (G

1
 + P

1
G

0
+ P

1
 P

0
C

0
)

 = G
2
 + P

2
G

1
 + P

2
P

1
G

0
 + P

2
P

1
P

0
C

0

Since the Boolean function for each output carry is
expressed in SOP form, each function can be implemented
with AND–OR form or two level NAND gates.

From the above equations, we can conclude that this cir-
cuit can perform addition in less time as C

3
 does not have to

wait for C
2
 and C

1
 to propagate: C

3
, C

2
, C

1
 can have equal

time delays.
The gain in speed of operation is achieved at the expense

of additional complexity (hardware).

Chapter 9  Combinational Circuits  |  3.287

n-bit Comparator
The comparison of two numbers is an operation that deter-
mines whether one number is greater than, less than, or
equal to the other number.

A magnitude comparator is a combinational circuit that
compares two input numbers A and B, and specifies the out-
put with three variables:

A > B, A = B, A < B

A

B

Magnitude
comparator

L

E

G

A < B

A = B

A > B

a

b

1-bit
Comparator

L

E

G

a < b

a = b

a > b

Figure 11  1-bit comparator will have only 1-bit input such as a, b.

a b a < b a = b a > b

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

By considering minterms for each output.

(a < b) = a′b
(a = b) = a′b′ + ab = a ⊙ b
(a > b) = ab′

a1

a0

b0

b1

2-bit
comparator

L

E

G

a < b

a = b

a > b

Figure 12  2-bit comparator will have 2-bit inputs, such as a1 a0 and
b1 b0.

a1 a0 b1 b0

L
a < b

E
a = b

G
a > b

0 0 0 0 0 1 0

0 0 0 1 1 0 0

0 0 1 0 1 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 0 1 0

(a < b) = S(1, 2, 3, 6, 7, 11)
(a > b) = S(4, 8, 9, 12, 13, 14)
(a = b) = S(0, 5, 10, 15)

00a1a0

b1b0

00

01

01

11

11

10

00

11 1

1

1

1

a < b = a
1
′a

0
′b

0
 + a

0
′b

1
b

0
 + a

1
′b

1

 L a b a b a b= +1 1 1 1 0 0()

Similarly, a > b = a
0
b

1
′b

0
′ + a

1
a

0
b

0
′ + a

1
b

1
′

G a b a b a b= +1 1 1 1 0 0()

a = b is possible when a
1
 = b

1
, a

0
 = b

0

So () ()()a b a b a b= = 1 1 0 0 

A3
A2
A1
A0

B3
B2
B1
B0

4-bit
Comparator

L

E

G

A < B

A = B

A > B

Figure 13  4-bit comparator will compare 2 input numbers each of
4-bits, as A3 A2 A1 A0 and B3 B2 B1 B0 (A = B) output will be 1 when
each bit of input A is equal to corresponding bit in input B.

So we can write (A = B) = (A
3
 ⊙ B

3
) (A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
)

(A
0
 ⊙ B

0
).

To determine whether A is greater or less than B, we
inspect the relative magnitudes of pairs of significant bits,
starting from MSB. If the two bits of a pair are equal, we
compare the next lower significant pair of bits. The com-
parison continues until a pair of unequal bits is reached.

for A < B, A = 0, B = 1
for A > B, A = 1, B = 0

A < B = �A
3
′B

3
 + (A

3
 ⊙ B

3
) A

2
′B

2
 + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
)

× A
1
′B

1
 + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
) A

0
′B

0

A > B = �A
3
B

3
′ + (A

3
 ⊙ B

3
) A

2
B

2
′ + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
)

× A
1
B

1
′ + (A

3
 ⊙ B

3
)(A

2
 ⊙ B

2
) (A

1
 ⊙ B

1
) A

0
B

0
′

4-bit comparator will have total 8 inputs and 28 = 256 input
combinations in truth table.

3.288  |  Analog and Digital Electronics

For 16 combinations (A = B) = 1, and for 120 combina-
tions A < B = 1.

For remaining 120 combination A > B = 1.

Parity Bit Generator and Parity Bit Checker
When digital information is transmitted, it may not be
received correctly by the receiver. To detect 1-bit error at
receiver, we can use parity checker.

For detection of error, an extra bit known as parity bit is
attached to each code word to make the number of 1’s in the
code even (in case of even parity) or odd (in case of odd parity).

For n-bit data, we use n-bit parity generator at the trans-
mitter end. With 1 parity bit and n-bit data, total n + 1
bit will be transmitted. At the receiving end, n + 1 parity
checker circuit will be used to check correctness of the data.

For even parity transmission, parity bit will be made 1
or 0 based on the data, so that total n + 1 bits will have
even number of 1’s. For example, if we want to transmit data
1011 by even parity transmission, then we will use parity bit
as 1, so data will have even number of 1’s, i.e., data trans-
mitted will be 11011. At the receiving end, this data will be
received and checked for even number of ones.

To transmit data B
3
B

2
B

1
B

0
 using even parity, we will

transmit sequence PB
3
B

2
B

1
B

0
, where P = B

3
⊕ B

2
⊕ B

1
⊕ B

0

(equation for parity generator).
At the receiving end, we will check data received

PB
3
B

2
B

1
B

0
for error, E = P ⊕ B

3
 ⊕ B

2
⊕ B

1
⊕ B

0
 (equation

for parity checker). If E = 0 (no error), or if E = 1 (1 bit error).
We use EX-OR gates for even parity generator/checker

as EX-OR of bits gives output 1 if there are odd number of
1’s else EX-OR output is 0.

Odd parity generator/checker is complement of even
parity generator/checker. Odd parity circuits check for pres-
ence of odd number of 1’s in data.

Code Converters
There are many situations where it is desired to convert
from one code to another within a system. For example, the
information from output of an analog to digital converter is
often in gray code, before it can be processed in arithmetic
unit, conversion to binary is required.

Let us consider simple example of 3-bit binary to gray
code converter. This will have input lines supplied by binary
codes and output lines must generate corresponding bit com-
bination in gray code. The combination circuit code con-
verter performs this transformation by means of logic gates.

The output logic expression derived for code converter
can be simplified by using the usual techniques, including
don’t-care, if any present. For example, BCD code uses
only codes from 0000 to 1001, remaining combinations are
treated as don’t care combinations, similarly. EXS-3 uses
only combinations from 0011 to 1100 remaining combina-
tions are treated as don’t care.

The relationship between the two codes is shown in the
following truth table:

Decimal B2 B1 B0 G2 G1 G0

0 0 0 0 0 0 0
1 0 0 1 0 0 1

2 0 1 0 0 1 1

3 0 1 1 0 1 0

4 1 0 0 1 1 0

5 1 0 1 1 1 1

6 1 1 0 1 0 1

7 1 1 1 1 0 0

For conversion, we require to find out minimized func-
tions of

G
2
(B

2
,

B

1
, B

0
) = ∑m(4, 5, 6, 7)

G
1
(B

2
,

B

1
, B

0
) = ∑m(2, 3, 4, 5)

G
0
(B

2
,

B

1
, B

0
) = ∑m(1, 2, 5, 6)

00B0B1

B2

0

01

1

11 10

1

11

1

G
0
(B

2
,

B

1
, B

0
) = B′

1
 B

0
+ B

1
B′

0
 = B

1
⊕ B

0

00B0B1
B2

0

01

1

11 10

1 1

1 1

G
1
(B

2
, B

1
, B

0
) =

B′

1
B

2
+ B

1
B′

2
= B

2
 ⊕ B

1

00B0B1
B2

0

01

1

11 10

1 1 1 1

G
2
(B

2
,

B

1
, B

0
) = B

2

B1

B2

B0
G0

G1

G2

In similar fashion, we can derive n-bit binary to gray code
conversion as

 G
n
 = B

n

 G
n-1

 = B
n-1

 ⊕ B
n

G
i-1

 = B
i-1

 ⊕ B
i

Thus conversion can be implemented by n - 1 X-OR gates
for n-bits.

For reverse conversion of gray to binary, by following
similar standard principle of conversion, we will get

B
0
 = G

0
 ⊕ G

1
 ⊕ G

2
, B

1
 = G

1
 ⊕ G

2
, B

2
 = G

2

B1

B0

B2G2

G1

G0

Chapter 9  Combinational Circuits  |  3.289

In general for n-bit gray to binary code conversion

B
i
 = G

n
 ⊕ G

n-1
 ⊕ G

n-2
 …⊕ G

i-1
 ⊕ G

i

B
n
 = G

n
(MSB is same in gray and binary). It also requires

n-1 X-OR gates for n-bits.

Example 2:  Design 84-2-1 to XS-3 code converter

Solution:  Both 84-2-1 and XS-3 are BCD codes, each
needs 4-bits to represent. The following table gives the rela-
tion between these codes. 84-2-1 is a weighted code, i.e.,
each position will have weight as specified. XS-3 is non
weighted code; the binary code is three more than the digit
in decimal.

Decimal
84-2-1

B3B2B1B0

XS-3
X3X2X1X0

0 0000 0011

1 0111 0100

2 0110 0101

3 0101 0110

4 0100 0111

5 1011 1000

6 1010 1001

7 1001 1010

8 1000 1011

9 1111 1100

We will consider minterm don’t care combinations as 1, 2,
3, 12, 13, 14. For these combinations 84-2-1 code will not
exist, and the remaining minimum terms can be found from
truth table.

X
0
(B

3
, B

2
, B

1
, B

0
) = ∑m(0, 4, 6, 8, 10)

+∑ =Φ(, , , , ,)1 2 3 12 13 14 0 B

X
1
(B

3
, B

2
, B

1
, B

0
) = ∑m(0, 4, 5, 8, 9, 15)

+∑ =Φ(, , , , ,)1 2 3 12 13 14 1 B
X

2
(B

3
, B

2
, B

1
, B

0
) = ∑m(4, 5, 6, 7, 15)

+ ∑Φ(1, 2, 3, 12, 13, 14) = B
2

X
3
(B

3
, B

2
, B

1
, B

0
) = ∑m(8, 9, 10, 11, 15)

+ ∑Φ(1, 2, 3, 12, 13, 14) = B
3

Decoder
A binary code of n-bits is capable of representing up to 2n
elements of distinct elements of coded information.

The three inputs are decoded into eight outputs, each rep-
resenting one of the minterms of the three input variables.

A decoder is a combinational circuit that converts binary
information from n input lines to a maximum 2n unique out-
put lines.

A binary decoder will have n inputs and 2n outputs.

n × 2n

Decoder
n

Inputs

2n

Outputs

EN

Figure 14  2 × 4 decoder

2 × 4
Decoder

EN

B1

Y0

Y1

Y2

Y3

B0

Truth Table

EN B1 B0 Y3 Y2 Y1 Y0

0 X X 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

Figure 15  2 × 4 decoder

A

B

EN

Y0 = EN ·A ·B

Y1 = EN ·A ·B

Y2 = EN ·A ·B

Y3 = EN ·A ·B

Decoder outputs are implemented by AND gates, but reali-
zation of AND gates at circuit level is done by the NAND
gates (universal gates). So, the decoders available in IC
form are implemented with NAND gates, i.e., the outputs
are in complemented form and outputs are maximum terms
of the inputs rather than minimum terms of inputs as in
AND gate decoders.

Furthermore, decoders include one or more enable inputs
to control the circuit operation. Enable can be either active
low/high input.

Active low 2 × 4 decoder:
EN

2 × 4
Decoder

with NAND
gates

B1

B0

Y0 = EN + B1 + B0

Y1 = EN + B1 + B0

Y2 = EN + B1 + B0

Y3 = EN + B1 + B0

Truth Table

EN B1 B0 Y3 Y2 Y1 Y0

1 X X 1 1 1 1

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

3.290  |  Analog and Digital Electronics

The block diagram shown here is 2 × 4. Decoder with
active low output and active low enable input.

The logic diagram is similar to the previous 2 × 4 decoder,
except, all AND gates are replaced by NAND gates and EN
will have inverter, EN is connected to all NAND inputs, as
EN is active low input for this circuit.

The decoder is enabled when EN is equal to 0.
As shown in the truth table, only one output can be equal

to 0 at any given time, all other outputs are equal to 1. The
output whose value is equal to 0 represents the minimum
term selected by inputs, enable.

Consider a 3 to 8 line decoder

Truth Table

Inputs Outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0
0
0
0
1
1
1
1

0
1
1
0
0
1
1

1
0
1
0
1
0
1

0
0
0
0
0
0
0

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
1

A 3 to 8 decoder has 3 input lines and 8 output lines, based
on the combination of inputs applied for the 3 inputs, one of
the 8 output lines will be made logic 1 as shown in the truth
table. So, each output will have only one minimum term.

A
B
C

D4 = ABC

D3 = ABC

D2 = ABC

D1 = ABC

D0 = ABC

D5 = ABC

D6 = ABC

D7 = ABC

Designing High Order Decoders from Lower
Order Decoders
Decoder with enable input can be connected together to
form larger decoder circuit.

The following configuration shows 3 × 8 decoder with
2 × 4 decoders.

2 × 4
Decoder

EN
B1

Y4

Y5

Y6

Y7

B0

2 × 4
Decoder

EN
B1

B2

Y0

Y1

Y2

Y3

B0

When B
2
 = 0, top decoder is enabled and other is disa-

bled, for 000 to 011 inputs, outputs are Y
0
 to Y

3
, respectively,

and other outputs are 0.
For B

2
 = 1, the enable conditions are reversed.

The bottom decoder outputs generates minterms 100 to
111, while the outputs of top decoder are all 0’s. 5 × 32
decoder with 3 × 8 decoders, 2 × 4 decoders.

EN Y0

3 × 8
Dec

EN

B1

Y8

Y15
B0

EN

2 × 4
Decoder

B4

B3

3 × 8
Dec

EN Y16

Y23

3 × 8
Dec

EN Y24

Y31

3 × 8
Dec

B2

B1

B0

B2

B1

B0

B2

B1

B0

B2

Y7

A 5 × 32 decoder will have 5 inputs B
4
 B

3
 B

2
 B

1
 B

0
. A 3 × 8

decoder will have 8 outputs, so 5 × 32 requires four 3 × 8 decod-
ers, and we need one of the 2 × 4 decoders to select one 3 × 8
decoders and the connections are as shown in the circuit above.

Combinational Logic Implementation
An n × 2n decoder provides 2n minimum terms of n input
variables. Since any Boolean function can be expressed in
sum of minimum terms form, a decoder that generates the

Chapter 9  Combinational Circuits  |  3.291

minimum terms of the function, together with an external
OR gate that forms their logical sum, provides a hardware
implementation of the function.

Similarly, any function with n inputs and m outputs can
be implemented with n × 2n decoders and m OR gates.

Example 3:  Implement full adder circuit by using 2 × 4
decoder.
		 Sum = S(1, 2, 4, 7), Carry = S(3, 5, 6, 7)

Figure 16  Implementation of full adder circuit with decoder

3 × 8
Decoder

B1

B0

B2

0
1
2
3
4
5
6
7

A

B

C

Sum

Carry

The 3 × 8 decoder generates the 8 minimum terms for A, B,
and C. The OR gate for output sum forms the logical sum of
minimum terms 1, 2, 4 and 7. The OR gate for output carry
forms the logical sum of minimum terms 3, 5, 6 and 7.

Example 4:  The minimized SOP form of output F(x, y, z) is
(A)	 x′ y + z′	 (B)	 x′ y′ + z′
(C)	 x′ y′ + z′	 (D)	 x′ + y′ z

3 × 8
Decoder

B1

B0

B2

0
1
2
3
4
5
6
7

x

y

z

F

Solution:  (C)

The outputs of decoder are in active low state. So, we can

express outputs as Y Y Y7 6 0, 

Outputs 0, 1, 3, 5, 7 are connected to NAND gate to form
function F(x, y, z)

So,		 F Y Y Y Y Y= ⋅ ⋅ ⋅ ⋅0 1 3 5 7

			 = Y
0
 + Y

1
 + Y

3
 + Y

5
 + Y

7

			 = S(0, 1, 3, 5, 7)

By using K-maps

00x
yz

0

01

1

11 10

1

11 1

1

F = z + x′y′
Example 5:  The minimal POS form of output function f (P,
Q, R) is

(A)	 PQ PR+ 	 (B)	 P QR+

(C)	 P Q R()+ 	 (D)	 Q P R()+

3 × 8
Decoder

B1

B0

B2

0
1
2
3
4
5
6
7

R

Q

P

F(P, Q, R)

Solution:  (C)
The outputs of decoder are in normal form. 0, 2, 3, 4, 6
outputs are connected to NOR gate to form F(P, Q, R)

So	 F Y Y Y Y Y= + + + +0 2 3 4 6

 = ⋅ ⋅ ⋅ ⋅Y Y Y Y Y0 2 3 4 6

Y
0
, Y

1
 … Y

7
 indicate minimum terms, whereas Y Y Y0 1 7, 

are maximum terms.
So F = p (0, 2, 3, 4, 6)
Here, from the decoder circuit MSB is R, LSB is P.
By using K-map

00R
QP

0

01

1

11 10

0

00 0

0

F P Q R P R Q(, ,) () = +

Encoders
It is a digital circuit that performs the inverse operation of
a decoder.

An encoder has 2n (or fewer) input lines and n output
lines.

It is also known as an octal to binary converter.
Consider an 8–3 line encoder:

Truth Table

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

3.292  |  Analog and Digital Electronics

D1 D2 D3 D4 D5 D6 D7

C = D1 + D3 + D5 + D7

B = D2 + D3 + D6 + D7

A = D4 + D5 + D6 + D7

Octal inputs

Binary outputs

Figure 17  Logic diagram

Priority Encoder
A priority encoder is an encoder circuit that includes the
priority function.

When two or more inputs are present, the input with
higher priority will be considered.

Consider the 4 × 2 priority encoder.

4 × 2
Encoder

I0
I1
I2
I3

B1

B0

V

I3 I2 I1 I0 B1 B0 V

1 X X X 1 1 1

0 1 X X 1 0 1

0 0 1 X 0 1 1

0 0 0 1 0 0 1

0 0 0 0 X X 0

I
3
-I

0
 are inputs and B

1
 B

0
 are binary output bits, valid (V)

output is set to 1 when at least one input is present at input
(I

3
-I

0
).

When there is no input present, (I
3
-I

0
 = 0000) then V = 0,

for this combination the output B
1
B

0
 will not be considered.

The higher the subscript number, the higher the priority
of the input. Input I

3
 has the highest priority, I

2
 has the next

priority level. Input I
0
 has lowest priority level. The Boolean

expressions for output B
1
 B

0
 are

  B I I I1 3 3 2= +
  = I

3
 + I

2

 B I I I I0 3 3 2 1= +

  = +I I I3 2 1

  V = I
3
 + I

2
 + I

1
 + I

0

Multiplexer
A multiplexer (MUX) is a device that allows digital infor-
mation from several sources to be converted on to a single
line for transmission over that line to a common destination.

The MUX has several data input lines and a single output
line. It also has data select inputs that permits digital data
on any one of the inputs to be switched to the output line.

Depending upon the binary code applied at the selection
inputs, one (out of 2n) input will be gated to single output.
It is one of the most widely used standard logic circuits in
digital design. The applications of multiplexer include data
selection, data routing, operation sequencing, parallel to
serial conversion, and logic function generation.

2n inputs will be controlled by n selection lines and mul-
tiplexer will have 1 output, we denote it as 2n × 1 multi-
plexer (data selector).

In other words, a multiplexer selects 1 out of n input data
sources and transmits the selected data to a single output
channel, this is called as multiplexing.

Basic 2 × 1 Multiplexer
The figure shows 2 × 1 multiplexer block diagram; it will
have 2 inputs I

0
 and I

1
, one selection line S, and one output

Y. The function table is as shown here.

EN S Y

0 x 0

1 0 I0

1 1 I1

2 × 1
MUX

I0

S

I1

Y
EN

The output equation of 2 × 1 multiplexer is Y

= EN I S I S().0 1+
When enable is 1, the multiplexer will work in normal

mode, else the multiplexer will be disabled.
Sometimes enable input will be active low enable EN ,

then Y EN I S I S= +().0 1

The 4 × 1 Multiplexer

4 × 1
MUX

D0

S1 S0

D1

D2

D3

y
Output

Data input’s

Selected
lines

Chapter 9  Combinational Circuits  |  3.293

If a binary zero S
1
 = 0 and S

0
 = 0 as applied to the data select

line the data input D
0
 appear on the data output line and so on.

S1 S0 y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

y S S D S S D S S D S S D= + + +1 0 0 1 0 1 1 0 2 1 0 3

D1

S1

D0

S0

D2

D3

y

Figure 18  Logic diagram

For 8 × 1 multiplexer with 8 inputs from I
0
 to I

7
 based on

selection inputs S
2
S

1
S

0
, the equation for output

Y I S S S I S S S I S S S I S S S

I S S S I S S S I

= + + +

+ + +
0 2 1 0 1 2 1 0 2 2 1 0 3 2 1 0

4 2 1 0 5 2 1 0 6SS S S I S S S2 1 0 7 2 1 0+

From multiplexer equation we can observe, each input is
associated with its minterm (in terms of selection inputs).

2 × 1
MUX

I0

S

I1

Y

B

B

A

Figure 19  Basic gates by using MUX

Y AB AB X= + = -OR gate, we can interchange inputs A
and B also,

By interchanging inputs I
0
 and I

1
, Y AB AB X= + , -NOR

gate.
Similarly, we can build all basic gates by using 2 × 1

multiplexer.

Example 6:  If I
0
= 1, I

1
= 0, S = A, then Y is?

Solution:  = + =() .I S I S A0 1 It implements NOT gate.

Example 7:  What should be the connections to implement
NAND gate by using 2 × 1 MUX?

Solution:  Y AB A B A AB A B A= = + = + = ⋅ + ⋅1

By considering I
0

= 1, I B1 = , S = A, we can implement
NAND gate, or by interchanging A and B also we can get
the same answer.

4 × 1
MUX

I0

I1

Y1

1

I2

I3
S2S1

0

0

A B

For the above 4 × 1 multiplexer Y AB AB X= + = -NOR gate.
Similarly to implement 2-input gates by using 4 × 1 multiplexer,
the inputs I

0
, I

1
, I

2
, I

3
 should be same as the terms in the truth

table of that gate.

Logic Function Implementation
by Using Multiplexer
Let us consider a full subtractor circuit (Barrow) to be
implemented by using multiplexer.

Full subtractor Barrow (B) is a function of 3-inputs X, Y,
Z. The truth table is

X Y Z B 4 × 1 MUX 2 × 1 MUX

0 0 0 0
B = Z

B = Y + Z
0 0 1 1

0 1 0 1
B = 1

0 1 1 1

1 0 0 0
B = 0

B = YZ
1 0 1 0

1 1 0 0
B = Z

1 1 1 1

To implement Barrow by using 8 × 1 multiplexer, connect
the three variables X, Y, Z directly to selection lines of the
multiplexer, and connect the corresponding values of B to
inputs, i.e., for I

0
= 0, I

1
= 1, I

2
= 1, etc. as per above truth table.

To implement Barrow by using 4 × 1 multiplexer, con-
nect any two variables to selection lines (in this case X, Y)
and write output (B) in terms of other variable, for XY = 00,
output B is same as Z, so connect I

0
= Z, similarly 1, 0, Z for

remaining inputs.
To implement the function by using 2 × 1 multiplexer,

connect 1 variable as selection line (in this case consider X)
and write output (B) in terms of other variables, for X = 0,

3.294  |  Analog and Digital Electronics

output B is varies as B = Y + Z, so connect I
0
= Y + Z. For X

= 1, output B varies as B = YZ, connect I
1
= YZ.

N variable function can be implemented by using 2N-1 × 1
multiplexer without any extra hardware.

Implementation of Higher Order
Multiplexer by Using Lower
Order Multiplexers
By using lower order multiplexers, we can implement higher
order multiplexers, for example by using 4 × 1 multiplexer,
we can implement 8 × 1 MUX or 16 × 1 MUX or other
higher order multiplexers.

Let us consider implementation of 16 × 1 MUX by using
4 × 1 MUX. 16 × 1 MUX will have inputs I

0
 to I

15
 and selec-

tion lines S
0
 to S

3
, whereas 4 × 1 MUX will have only 4 input

lines, and 2 selection lines, so we require four 4 × 1 MUX
to consider all inputs I

0
 to I

15
, and again to select one of the

four outputs of these four multiplexers one more 4 × 1 mul-
tiplexer is needed (for which we will connect higher order
selection lines S

2
 and S

3
). So, total of 5, 4 × 1 multiplexers

are required to implement 16 × 1 MUX.

I0 S1 D

I3 S4
C2C1

S1S0

S1 D

S4

C2C1

S3S2

I8 S1 D

I11 S4 C2C1

S1S0

I12 S1 D

I15 S4 C2C1

S1S0

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

I4 S1 D

I7 S4 C2C1

S1S0

In a similar fashion, to design 4 × 1 MUX, we require three,
2 × 1 multiplexers, and to design 8 × 1 multiplexer, we
require seven, 2 × 1 multiplexers.

De-multiplexer
The de-multiplexer [DeMUX] basically serves opposite of
the multiplexing function. It takes data from one line and
distributes them to a given number of output lines.

The other name for de-multiplexer is data distributor, as
it receives information on a single line and distributes it to a
possible 2n output lines, where n is the number of selection
lines, and value of n selects the line.

1 × 4
DE-MUX

D0

D1
E

D2

D3

S0S1

input

S1 S0 D3 D2 D1 D0

0 0 0 0 0 E

0 1 0 0 E 0

1 0 0 E 0 0

1 1 E 0 0 0

When S
1
S

0
 = 10; D

2
 will be same as input E, and other

outputs will be maintained at zero (0).

S1 S0

E
D0 = ES1S0

D1 = ES1S0

D2 = ES1S0

D3 = ES1S0

Figure 20  Logic diagram

Memory and Programmable Logic
A memory unit is a device to which binary information
is transferred for storage and from which information is
retrieved when needed for processing.

There are two types of memories that are used in digital
systems. (1) Random Access Memory (RAM) and (2) Read
Only Memory (ROM).

RAM stores new information for later use, RAM can
perform both write and read operation, whereas ROM can
perform only the read operation.

Chapter 9  Combinational Circuits  |  3.295

ROM is one example of a programmable logic device
(PLD). Other such units are programmable logic array
(PLA), programmable array logic (PAL) and field program-
mable logic array (FPGA).

A PLD is an integrated circuit with internal logic gates
connected through electronic paths that behave similar to
fuses.

Random Access Memory
If the time taken to read or write data from any memory
location is the same, then we call it as random access mem-
ory, whereas in serial access memory like magnetic tapes,
the time taken to access different locations is different.

Any memory element will have address selection inputs
to locate each word in memory, and the control input Read/
Write specify the operation as well as data input or output
lines for data writing or reading operation.

Each word in memory is assigned with an address,
starting from 0 to 2k–1, where k is the number of address
lines.

‘n’ data input
lines

Memory unit

2k words

n-bit per word

‘k ’ address lines

Read

Write

The selection of a specific word inside memory is done by
applying the k-bit address to the address lines.

For example, 4k × 16 memory has 12-bits in address and
16-bit in each word. Similarly, 32k × 16 memory has 15-bits
as address lines and 16-bit in each word.

The memory enable (chip select) is used to enable the
particular memory chip in a multichip implementation of a
large memory.

Memory Enable Read/Write Memory Operation

0 X No operation

1 0 Write to selected location

1 1 Read from selected location

Read-only Memory
A read-only memory (ROM) is a type of memory which
stores data permanently or semi-permanently, i.e., data can
be erasable. As the name indicates, data stored in ROM can
only be read. The data that a user wanted to store on ROM
will be given to manufacturer to fabricate the masked ROM
which stores permanently. Or the user can programme the
ROM in lab according to their specifications in the case of
PROM. EPROM/EEPROM are the type of ROMs where
user can erase data, and rewrite new data to ROM.

ROM also have address inputs similar to RAM, to access
one of the memory location, and to read the data from that
memory location, data output lines are available.

‘k ’ inputs

(address)

n outputs

(data)

2k × n

ROM

The number of words in a ROM is determined from the
fact that k address input lines are needed to specify 2k
words.

ROM does not have data inputs because it does not have
write operation.

Consider for example 8 × 4 ROM, the unit consists of
eight words of 4-bit each. There are three input lines that
from the binary numbers from 0 to 7 for address.

A3 A2

l2

l1

l0

A1 A0

decoder
3 × 8

0
1
2
.
.
.

6
7

.

.

.

The above figure shows the internal logic construction of
ROM, the three inputs are decoded into eight district out-
puts by means of 3 × 8 decoder, each output of the decoder
represents a memory address. The eight outputs of decoder
are connected to each of the four OR gates.

Each OR gate must be considered as having eight inputs.
Each output of the decoder is connected to one of the inputs
of each OR gate. Since each OR gate has eight input con-
nections and there are four OR gates, the ROM contains 8 ×
4 = 32 internal connections.

In general, a 2m × n ROM will have an internal m × 2m
decoder and n OR gates. Each OR gate has 2m inputs,
which are connected to each of the outputs of the decoder.

These intersections are programmable. A programmable
connection between two lines is logically equivalent to a
switch that can be altered to be either closed or open.

The internal binary storage of ROM is specified by a
truth table that shows the word content in each address.

Combinational circuits can be implemented by ROM.
For this, each output terminal of PROM is considered as
separately as, the output of a Boolean function expressed as
a sum of min terms.

The PROM is a combinational programmable logic
device (PLD)—an integrated circuit with programmable
gates divided into an AND array and an OR array to provide
an AND-OR sum of product implementation.

There are three major types of combinational PLDS, dif-
fering in the placement of the programmable connections in
the AND-OR array.

3.296  |  Analog and Digital Electronics

Inputs
Fixed AND array

(decoder)
Programmable

OR array

Outputs

(a) PROM

(b) PAL

(c) PLA

Programmable
AND array

Fixed OR array
Inputs Outputs

Programmable
AND array

Programmable
OR array

Inputs Outputs

The PROM has fixed AND array constructed as a decoder,
and a programmable OR array. The programmable OR gates
implement the Boolean function in sum of min terms form.

Most flexible PLD is PLA, in which both the AND and
OR arrays can be programmed.

The PLA is similar in concept to the PROM, except that
the PLA does not provide full decoding of the variables and
doesn’t generate all the min terms.

PLA for the functions,
F

1
 = AB′ + AC + A′ B C′

F
2
 = AC + BC ′ is shown below.

A

A B
F1 F2

A ′ B ′ C C ′

X

X

X

X

X

X X

X

X

X

X

X

X

X

B

C

Solved Examples

Example 1:  The multiplexer shown in the figure is a 4 : 1
multiplexer, where the output ‘z’ is

MUX
4 × 1

I3

I2
Z

I1

I0
S0S1

A B

C

C

Solution:  A
1
	 B

0
	 Z

	  0	 0	 C
	  0	 1	 C

	  1	 0	 C

	  1	 1	 C

		 ∴ = + + +Z ABC ABC ABC ABC

		

= + + +

= + + + =

B AC AC B AC AC

AC AC B B x x

() ()

()()()1

		 ∴ = + = ⊕AC AC A C

Example 2:  The logic circuit shown in figure implements

3 to 8
Decoder

I0

I1

I2

D0

D1

D2

D3

D4

D5

D6

D7

A

D

B

C

Solution:  z D ABC ABC ABC ABC ABC= + + + +()

		 = + + + +D AB C C BC A A ABC(() ())

 × + +D BA BC BC()

  = +D B C AB()Θ

Example 3:  The network shown in figure implements

MUX

f2

f1

S0

B

c

1

A

0

1

MUX

S0

0 0

1

Solution:  f C CB CB f CB1 0 1= + = =,

 F f f A A CB CB2 1 1= + = ⋅ +

  = +A CB

  = + + =A C B ABC

\  NAND gate

Chapter 9  Combinational Circuits  |  3.297

Example 4:  In the TTL circuit in figure, S
2
 to S

0
 are select

lines and x
7
 to x

0
 are input lines. S

0
 and X

0
 are LSBs. The

output y is

8 : 1 MUX
S1

S2

S0

X0 X1 X3X2 X4 X5 X6 X7

A
B

C

y

0

1
0

Solution:  S
2
 = A, S

1
 = B, S

0
 = C

S2(A) S1(B) S0(C) Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

		 Y ABC ABC ABC ABC= + + +

		  = + + +C AB AB C AB AB() ()

		 Y C A B C A B A B C= ⊕ + ⊕ = ⊕() () 

Example 5:  The logic realized by the adjoining circuit is

MUX

Select
lines

0

1
F

2

3

B C

A

A

MSB

Solution:  F BCA BCA BC A BC A= + + +

 

= + + +

= + + = ⊕

C BA BA C BA BA

AB AB C C A B

() ()

()

Example 6:  Consider the following multiplexer, where I
0
,

I
1
, I

2
, I

3
 are four date input lines selected by two address

line combinations A
I 
A

0
 = 00, 01, 10, 11, respectively and f

is the output of the multiplexer. EN is the enable input, the
function f (x, y, z) implemented by the below circuit is

4 × 1
MUX

F (x, y, z)

x

z

y

I3

I2

I1

A0

I0

A1

EN

Solution:  A y A z EN z1 0= ⋅ = =,

A1 A0 S I

0 0 (yz) x

0 1 (y z) x

1 0 ()yz y

1 1 (yz) y

f x y z xy yz EN(, ,) ()= = + + ⋅SI 0

 = ⋅xy z

Exercises

Practice Problems 1
Directions for questions 1 to 25:  Select the correct alterna-
tive from the given choices.
	 1.	 The binary number 110011 is to be converted to gray

code. The number of gates and type required are
	 (A)	 6, AND	 (B)	 6, X-NOR
	 (C)	 6, X-OR	 (D)	 5, X-OR

	 2.	 The number of 4- to 16-line decoder required to make
an 8 to 256-line decoder is

	 (A)	 16	 (B)	 17
	 (C)	 32	 (D)	 64

	 3.	 f (x
2
, x

1
, x

0
) = ?

3 to 8
Decoder

I0

I1

I2

D0

D1

D2

D3

D4

D5

D6

D7

x2

x1

x0

f

	 (A)	 p(1, 2, 4, 5, 7)	 (B)	 Σ(1, 2, 4, 5, 7)
	 (C)	 Σ(0, 3, 6)	 (D)	 p(0, 2, 3, 6)

3.298  |  Analog and Digital Electronics

	 4.	 A 3 to 8 decoder is shown below:

3

2

1

1

2

3

4

5

6

7

8

G2 G

Input Output

Enable
decoder

Signal
decoder

		 All the output lines of the chip will be high except pin
8, when all the inputs 1, 2, and 3

	 (A)	 are high; and G, G
2
 are low

	 (B)	 are high; and G is low G
2
 is high

	 (C)	 are high; and G, G
2
 are high

	 (D)	 are high; and G is high G
2
 is low

	 5.	 The MUX shown in figure is 4 × 1 multiplexer the
output z is

MUX
4 × 1

I0

I1
Z

I2

I3
S0S1

A B

C

+5 V

	 (A)	 A B C
	 (B)	 A ⊕ B ⊕ C

	 (C)	 A Q B Q C

	 (D)	 A + B + C

	 6.	 If a 4 to 1 MUX (shown below) realizes a three vari-
able function f x y z xy xz(, ,) ,= + then which of the
following is correct?

4 to 1
MUX

I0

I1
F(x, y, z)

I2

I3

Y Z

(MSB)

	 (A)	 I
0
 = X, I

1
 = 0, I

2
 = X, I

3
 = X

	 (B)	 I
0
 = 0, I

1
 = 1, I

2
 = Y

1
, I

3
 = X

	 (C)	 I
0
 = X, I

1
 = 1, I

2
 = 0, I

3
 = X

	 (D)	 I
0
 = X, I

1
 = 0, I

2
 = X, I

3
 = Z

	 7.	 The circuit shown in the figure is same as

4 : 1I0

I1
y

I2

I3

b
c

a

	 (A)	 Two input NAND gate with a and c inputs

	 (B)	 Two input NOR gate with a and c inputs

	 (C)	 Two input X-OR gates with a and b inputs

	 (D)	 Two input X-NOR gate with b and c as inputs.

	 8.	 If the input x
3
, x

2
, x

1
, x

0
 to the ROM in the figure are

8421 BCD numbers, then the outputs y
3
, y

2
, y

1
, y

0
 are

x3 x2 x1 x0

y0

D0 D1 D8 D9

y1

y2

y3

BCD to Decimal decoder

ROM

	 (A)	 Gray code numbers
	 (B)	 2421 BCD
	 (C)	 Excess – 3 code numbers
	 (D)	 84 – 2 – 1

	 9.	 A 4-bit parallel full adder without input carry requires
	 (A)	 8 HA, 4 OR gates
	 (B)	 8 HA, 3 OR gates
	 (C)	 7 HA, 4 OR gates
	 (D)	 7 HA, 3 OR gates

	10.	 In the circuit find X.

4 × 1

I0

I1

I2

I3

A B

0

1

1

0

4 × 1

I0

I1
xyy

I2

I3
S0S1

C

0

1

1

0

Chapter 9  Combinational Circuits  |  3.299

	 (A)	 ABC ABC ABC ABC+ + +

	 (B)	 ABC ABC ABC ABC+ + +
	 (C)	 AB + BC + AC
	 (D)	 AB BC AC+ +

	11.	 Find the function implemented.

4 × 1

I3

I2

I1

I0

R S

Z

P

P

P

P
Q

Q

	 (A)	 PQ PS QRS+ +

	 (B)	 PQ PQR PQS+ +

	 (C)	 PQR PQR PQRS QRS+ + +

	 (D)	 PQR PQRS PQRS QRS+ + +
	12.	 Which function is represented by the given circuit?

A
B x

yC

	 (A)	 Full adder	 (B)	 Full subtractor
	 (C)	 Comparator	 (D)	 Parity generator

	13	 Which of the following represents octal to binary
encoder?

	 (A)	

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

	 (B)	

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

	 (C)	

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

	 (D)	

A2

A1

A0

D0 D1 D2 D3 D4 D5 D6 D7

	14.	 For a MUX to function as a full adder what should be the
input provided to the I

0
, I

1
, I

2
, I

3
 if A and B are the select

lines?

4 × 1

I0

I1
I2
I3

F

S0S1

A B

	 (A)	 I I C I I C0 1 2 3= = = =in in;

	 (B)	 I I C I I C0 1 2 3= = = =in in;

	 (C)	 I I C I I C0 3 1 2= = = =in in;

	 (D)	 I I C I I C0 3 1 2= = = =in in;

	15.	 The given circuit act as

MUX
1

0

y0

y1

y2

S0

MUX
1

0
S0

S0

MUX
1

0

a

c

c

bb

a

c

	 (A)	 full adder	 (B)	 half adder
	 (C)	 full subtractor	 (D)	 half subtractor

	16.	 For a 4 × 16 decoder circuit, the outputs of decoder (y
0
,

y
1,
 y

4
 . y

5
 . y

10
 . y

11
 . y

14
 . y

15
) are connected to 8 input

NOR gate. The expression of NOR gate output is?
	 (A)	 A ⊕ D	 (B)	 A ⊙ D
	 (C)	 A ⊙ C	 (D)	 A ⊕ C

	17.	 The function implemented by decoder is.

3 to 8
Decoder

D0

D1

D2

D3

D4

D5

D6

D7

C

B

A
X

Y

3.300  |  Analog and Digital Electronics

	 (A)	 X = A′BC′ + B′C′, y = A + B

	 (B)	 X = A′C′ + B′C′, y = 1

	 (C)	 X A y= =, 0

	 (D)	 X A y= =, 1

	18.	 A relay is to operate with conditions that it should be on
when the input combinations are 0000, 0010, 0101, and
0111. The states 1000, 1001, 1010 doesn’t occur. For
rest of the status relay should be off. The minimized
Boolean expression notifying the relationship is

	 (A)	 BC + ACD	 (B)	 BD ABD+
	 (C)	 BD + AC	 (D)	 AB + CD

	19.	 If a function has been implemented using MUX as
shown, implement the same function with a and c as
the select lines

4 × 1

a

a
0
1

y

b c

	 (A)	

4 × 1

b
b
0
0

a c

	 (B)	

4 × 1

0
1
b
b

a c

	 (C)	

4 × 1

b
b
1
0

a c

	 (D)	

4 × 1

1
1
1
1

a c

	20.	 The circuit is used to convert one code to another.
Identify it.

B0

B1

B2

B3

A0

A1

A2

A3

	 (A)	 Binary to grey
	 (B)	 Grey to binary
	 (C)	 Grey to XS – 3
	 (D)	 Grey to 8421

	21.	 The Boolean function realised by logic circuit is

I0

I1
F(A, B, C, D)

I2

I3
S0S1

A B

D

C

Y

	 (A)	 F = Σm(0, 1, 3, 5, 9, 10, 14)
	 (B)	 F = Σm(2, 3, 5, 7, 8, 12, 13)
	 (C)	 F = Σm(1, 2, 4, 5, 11, 14, 15)
	 (D)	 F = Σm(2, 3, 5, 7, 8, 9, 12)

22.	 A circuit receives a 4-bit excess three code. The func-
tion to detect the decimal numbers 0, 1, 4, 6, 7, 8 is
(assume inputs as A, B, C, D)?

	 (A)	 ABC AC BCD AD+ + +
	 (B)	 CD AD AC ACD+ + +
	 (C)	 CD AD AC ACD+ + +
	 (D)	 CD AD AC ACD+ + +

F1

F2

A

B

C

XX

X

X

X

XX

XXX

X X X X

X

X

X

X

XX

X

X X

X X

Common Data for Questions 23 and 24:

23.	 Identify the function implemented.
	 (A)	 f

1
 (A, B, C) = AB + BC + AC

	 (B)	 f
1
 (A, B, C) = ABC ABC ABC ABC+ + +

	 (C)	 f
1
 (A, B, C) = A + B + C

	 (D)	 None of these

24.	 From the above, PLD implemented is
	 (A)	 PLA
	 (B)	 PROM
	 (C)	 PAL
	 (D)	 CPLD

25.	 The circuit implemented using the PLA in the above
figure is

	 (A)	 full adder
	 (B)	 full subtractor
	 (C)	 half adder
	 (D)	 half subtractor

Chapter 9  Combinational Circuits  |  3.301

Practice Problems 2
Directions for questions 1 to 24:  Select the correct alterna-
tive from the given choices.
	 1.	 For a binary half subtractor having two input A and

B, the correct set of logical expression for the outputs
D = (A minus B) and X (borrow) are

	 (A)	 D AB AB X AB= + =,

	 (B)	 D AB AB AB X AB= + + =, ,

	 (C)	 D AB AB X AB= + =,

	 (D)	 D AB AB X AB= + =,

	 2.	 The function ‘F’ implemented by the multiplexer chip
shown in the figure is

I3I2

F

I1I0

S0

S1A

1 0 10

B
Y

	 (A)	 A	 (B)	 B

	 (C)	 AB 	 (D)	 AB AB+
	 3.	 The following multiplexer circuit is equal to

4 : 1
MUX

0

1
y

2

3

b
c

a
S0S1

	 (A)	 implementation of sum equation of full adder
	 (B)	 implementation of carry equation of full adder
	 (C)	� implementation of Borrow equation of full

substractor
	 (D)	 All of the above

	 4.	 The output ‘F’ of the multiplexer circuit shown in the
figure will be

MUXI0

I1
F

I2

I3
S1S0

B
A

C

C

C

C

	 (A)	 AB BC CA BC+ + + 	 (B)	 A ⊕ B ⊕ C
	 (C)	 A ⊕ B	 (D)	 B ⊕ C

	 5.	 Full subtractor can be implemented by using
	 (A)	 3 to 8 line decoder only
	 (B)	 3 to 8 line decoder and one OR gate
	 (C)	 3 to 8 line decoder and two OR gates
	 (D)	 None

	 6.	 What are the difference and Borrow equations for the
above circuit?

	 (A)	 D = x Q y Q z, B = x′y + yz + zx′
	 (B)	 D = X ⊕ y ⊕ z, B = xy + yz + zx
	 (C)	 D = x ⊕ y ⊕ z, B = x′y + yz + zx′
	 (D)	 A, C both

	 7.	 Combinational circuits are one in which output depends
_________, whereas sequential circuit’s output depends

	 (A)	 only on present input, only on past input
	 (B)	 only on present input, only on past and future input
		 (C)	� only on present input, only on present input and

past output
	 (D)	 on present input, on past and present output

	 8.	 The sum output of the half adder is given by (assume A
and B as inputs)

	 (A)	 S AB A B= +() 	 (B)	 S A B AB= +()

	 (C)	 S A B AB= +()() 	 (D)	 S A B AB= +()()

	 9.	 MUX implements which of the following logic?
	 (A)	 NAND-XOR	 (B)	 AND-OR
	 (C)	 OR-AND	 (D)	 XOR-NOT

	10.	 A DeMUX can be used as a
	 (A)	 comparator	 (B)	 encoder
	 (C)	 decoder	 (D)	 adder

	11.	 If we have inputs as A, B and C and output as S and D.
We are given that S = A ⊕ B ⊕ C. D BC AB AC= + + .
Which of the circuit is represented by it?

A
C

SS

BA
D

D

Output

D DC

X

Y

B

S

A
C

B

S

A
C

B

	 (A)	 4-bit adder giving X + Y
	 (B)	 4-bit subtractor giving X - Y
	 (C)	 4-bit subtractor giving Y - X
	 (D)	 4-bit adder giving X + Y + S

	12.	 The Boolean function f implemented in the figure using
two input multiplexers is

3.302  |  Analog and Digital Electronics

A

f
D

C

0

1

10

1 B

	 (A)	 AC AD DC ABD ABC+ + + +
	 (B)	 A AC AD DC+ + +
	 (C)	 B AC AD DC+ + +
	 (D)	 AC AD A B+ + +
	13.	 The Carry generate and Carry Propagate function of

the look ahead carry adder is
	 (A)	 CG = A + B, CP = A ⊕ B
	 (B)	 CG = A ⊕ B, CP = A + B
	 (C)	 CG = AB, CP = A ⊕ B
	 (D)	 CG = AB, CP = A + B

	14.	 If we have a comparator and if E represents
the condition for equality i.e., (A

n
 ⊕ B

n
), if A

n

and B
n
 are to be compared, then the expression

A B E A B E E A B E E E A B3 3 3 2 2 3 2 1 1 3 2 1+ + + ⋅ . represents
which of the condition for a 4-bit number?

	 (A)	 A > B	 (B)	 B > A
	 (C)	 A = B	 (D)	 None of these

	15.	 When full adder is used to function as a 1-bit incremen-
tor, which of the circuit configurations must be used?

	 (A)	

c

AF

a 0

0

s

	 (B)	

c

AF

a

s

0

0

	 (C)	

c

1

0

AF

a

s

	 (D)	

c

1
AF

a

s

0

	16.	 Identify the circuit.

Y1

Y2

Y3

A
B

	 (A)	 half adder
	 (B)	 full adder

	 (C)	 1-bit magnitude comparator
	 (D)	 parity generator

	17.	 In order to implement n variable function (without any
extra hardware), the minimum order of MUX is

	 (A)	 2n × 1	 (B)	 2n × 1
	 (C)	 (2n - 1) × 1	 (D)	 (2n - 1) × 1

	18.	 A full adder circuit can be changed to full subtractor by
adding a

	 (A)	 NOR gate	 (B)	 NAND gate
	 (C)	 Inverter	 (D)	 AND gate

	19.	 The half adder when implemented in terms of NAND
logic is expressed as

	 (A)	 A ⊕ B	 (B)	 A AB B AB⋅ ⋅ ⋅

	 (C)	 A AB B AB⋅ ⋅ ⋅ 	 (D)	 A ABB AB⋅ ⋅

	20.	 For a DeMUX to act as a decoder, what is the required
condition?

		 (A)	� Input should be left unconnected and select lines
behave as a input to decoder

		 (B)	� Input should be always 0 and select line behave as
inputs to decoder

		 (C)	 Both are same
		 (D)	� Input should become enable and select lines

behave as inputs to decoder

	21.	 For a full subtractor, which of the combination will give
the difference?

	 (A)	 ()() ()A B A B b b A B bi i i⊕ ⊕ ⋅ ⊕

	 (B)	 B AB b A Bi⋅ ⋅ ⊕()

	 (C)	 A B b A Bi+ + + ⊕

	 (D)	 None of these

22.	 A PROM contains
	 (A)	 a fixed AND array and programmable OR array
	 (B)	 a programmable AND array and OR array
	 (C)	 reprogrammable AND and OR array
	 (D)	 programmable AND array and fixed OR array

23.	 Which of the following is true of dynamic memories?
	 a.	� The power dissipation is slightly lower than that in

static ROM
	 b.	� Refreshing operation of data is required to store

data permanently
	 c.	 The clock will be needed
	 d.	 They will contain energy storage elements

	 (A)	 a, b, c, d	 (B)	 a, b, d

	 (C)	 a, b, c	 (D)	 c, b, d

24.	 For the given functions, we have to implement them
using a OR gate array. When the input to the gate array
must be product of one or two variables the terms A

1
,

A
2
, A

3
 should be

Chapter 9  Combinational Circuits  |  3.303

	 1.	 State diagram of a logic gate which exhibits a delay in
the output is shown in the figure, where X is the don’t
care condition, and Q is the output representing the
state.� [2014]

11/0

11/0

OX /1, 10/1

OX /1, 10/1Q = 1Q = 0

		 The logic gate represented by the state diagram is
	 (A)	 X-OR	 (B)	 OR
	 (C)	 AND	 (D)	 NAND

	 2.	 Two monoshot multivibrators, one positive edge trig-
gered (M

1
) and another negative edge triggered (M

2
),

are connected as shown in figure.� [2014]
+5 V

10 µF

10 kΩ

Q2

Q2

Q1

Q1

M1 M2

v0

		 The monoshots M
1
 and M

2
 when triggered produce

pulses of width T
1
 and T

2
, respectively, where T

1
 > T

2
.

The steady state output voltage vo of the circuit is

	 (A)	
T1 T2 T1 T2 T1

v0

t

	 (B)	
T1 T1 T1 T1

v0

t
	 (C)	

T2 T1 T2 T2T1

v0

t

	 (D)	
T2 T2 T2 T2 T2 T2

v0

t

	 3.	 In the 4 × 1 multiplexer, the output F is given by F =
A + B. Find the required input ‘I

3
 I

2
 I

1
 I

0
’.� [2015]

4 × 1
MUX

S1 S0

I3

I2

I1

I0

F

BA

	 (A)	 1010	 (B)	 0110

	 (C)	 1000	 (D)	 1110

	 4.	 A Boolean function f(A, B, C, D) = ∏(1, 5, 12, 15)
is to be implemented using an 8 × 1 multiplexer (A
is MSB). The inputs ABC are connected to the select
inputs S

2
 S

1
 S

0
 of the multiplexer respectively.

S2

0
1
2
3
4
5
6
7

A B C

f (A, B, C, D)

S1 S0

		 Which one of the following options gives the correct
inputs to pins 0, 1,2,3,4,5,6,7 in order?� [2015]

	 (A)	 D, 0, D, 0, 0, 0, D , D

	 (B)	 D , 1, D , 1, 1, 1, D, D

	 (C)	 D, 1, D, 1, 1, 1, D , D

	 (D)	 D , 0, D , 0, 0, 0, D, D

Previous Years’ Questions

f1

A1

A2

A3

A4

f2 f3

XX

X X

X

X

		 f abc bc abc1 = + +

		 f ac abc abc2 = + +

		 f bc abc abc3 = + +

	 (A)	 ab, ac, ab , bc

	 (B)	 ac, ab ab bc, ,

	 (C)	 ab ac ab bc, , ,

	 (D)	 None of these

3.304 | Analog and Digital Electronics

ansWer Keys

EXERCISES
Practice Problems 1
 1. D 2. B 3. B 4. D 5. D 6. A 7. C 8. B 9. D 10. A
 11. A 12. B 13. B 14. C 15. C 16. D 17. D 18. B 19. C 20. A
21. D 22. D 23. A 24. A 25. A

Practice Problems 2
 1. C 2. B 3. A 4. D 5. C 6. C 7. C 8. B 9. B 10. C
11. B 12. C 13. C 14. A 15. C 16. C 17. C 18. C 19. C 20. D
21. A 22. A 23. A 24. C

Previous Years’ Questions
1. D 2. C 3. B 4. B 5. D

5. Consider the following circuit which uses a 2-to-1
multiplexer as shown in the fi gure below. The Boolean
expression for output F in terms of A and B is

[2016]

 (A) A ⊕ B (B) A B+

 (C) A + B (D) A B⊕

	Part III: Electrical Engineering
	Unit II: Analog and Digital Electronics
	Chapter 9: Combinational Circuits
	Introduction
	Combinational Logic Design
	Arithmetic Circuits
	Decoder
	Encoders
	Multiplexer
	De-multiplexer
	Memory and Programmable Logic
	Exercises
	Previous Years’ Questions
	Anseer Keys

