DESIGN OF THE QUESTION PAPER

MATHEMATICS - CLASS XI

Time : 3 Hours Max. Marks : 100

The weightage of marks over different dimensions of the question paper shall be as follows:

1. Weigtage of Type of Questions

- (i) Objective Type Questions
- (ii) Short Answer Type questions
- (viii) Long Answer Type Questions Total Questions

Marks					
(10)	10 × 1 =		10		
(12)	$12 \times 4 =$		48		
(7)	$7 \times 6 = 42$				
(29)		100			

2. Weightage to Different Topics

S.No.	Торіс	Objective Type Questions	S.A. Type Questions	L.A. Type Questions	Total
1.	Sets	-	1(4)	_	4(1)
2.	Relations and Functions			1(6)	6(1)
3.	Trigonometric Functions	2(2)	1(4)	1(6)	12(4)
4.	Principle of Mathematical	-	1(4)	-	4(1)
	Induction				
5.	Complex Numbers and	2(2)	1(4)	-	6(3)
	Quadratic Equations			-	
6.	Linear Inequalities	1(1)	1(4)	-	5(2)
7.	Permutations and				
	Combinations	-	1(4)	-	4(1)
8.	Binomial Theorem	-	-	1(6)	6(1)
9.	Sequences and Series	-	1(4)	-	4(1)
10.	Straight Lines	2(2)	1(4)	1(6)	12(4)
11.	Conic Section	-	-	1(6)	6(1)
12.	Introduction to three	-	1(4)	-	4(1)
	dimensional geometry				
13.	Limits and Derivatives	1(1)	1(4)	-	5(2)
14.	Mathematical Reasoning	1(1)	1(4)	-	5(2)
15.	Statistics	-	1(4)	1(6)	10(2)
16.	Probability	1(1)	-	1(6)	7(2)
	Total	10(10)	48(12)	42(7)	100(29)

SAMPLE QUESTION PAPER Mathematics Class XI

General Instructions

- (i) The question paper consists of three parts A, B and C. Each question of each part is compulsory.
- (ii) Part A (Objective Type) consists of 10 questions of 1 mark each.
- (iii) Part B (Short Answer Type) consists of 12 questions of 4 marks each.
- (iv) Part C (Long Answer Type) consists of 7 questions of 6 marks each.

PART-A

- 1. If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$, then what is the value of $(\theta + \phi)$?
- 2. For a complex number z, what is the value of arg. $z + \arg$. \overline{z} , $z \neq 0$?
- 3. Three identical dice are rolled. What is the probability that the same number will appear an each of them?

Fill in the blanks in questions number 4 and 5.

- 4. The intercept of the line 2x + 3y 6 = 0 on the x-axis is
- 5. $\lim_{x \to 0} \frac{1 \cos x}{x^2}$ is equal to

In Questions 6 and 7, state whether the given statements are True or False:

$$6. \quad x + \frac{1}{x} \ge 2, \quad \forall x > 0$$

7. The lines 3x + 4y + 7 = 0 and 4x + 3y + 5 = 0 are perpendicular to each other. In Question 8 to 9, choose the correct option from the given 4 options, out of which only one is correct.

8. The solution of the equation $\cos^2\theta + \sin\theta + 1 = 0$, lies in the interval

(A)
$$\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$$
 (B) $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$ (C) $\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$ (D) $\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$

- 9. If $z = 2 + \sqrt{3}i$, the value of $z \cdot \overline{z}$ is
 - (A) 7 (B) 8 (C) $2 \sqrt{3}i$ (D) 1
- **10.** What is the contrapositive of the statement? "If a number is divisible by 6, then it is divisible by 3.

PART - B

11. If $A' \cup B = U$, show by using laws of algebra of sets that $A \subset B$, where A' denotes the complement of A and U is the universal set.

12. If $\cos x = \frac{1}{7}$ and $\cos y = \frac{13}{14}$, x, y being acute angles, prove that $x - y = 60^{\circ}$.

- **13.** Using the principle of mathematical induction, show that $2^{3n} 1$ is divisible by 7 for all $n \in \mathbb{N}$.
- **14.** Write $z = -4 + i 4\sqrt{3}$ in the polar form.
- **15.** Solve the system of linear inequations and represent the solution on the number line:

$$3x - 7 > 2(x - 6)$$
 and $6 - x > 11 - 2x$

16. If $a + b + c \neq 0$ and $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P., prove that $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

- **17.** A mathematics question paper consists of 10 questions divided into two parts I and II, each containing 5 questions. A student is required to attempt 6 questions in all, taking at least 2 questions from each part. In how many ways can the student select the questions?
- **18.** Find the equation of the line which passes through the point (-3, -2) and cuts off intercepts on *x* and *y* axes which are in the ratio 4:3.
- **19.** Find the coordinates of the point R which divides the join of the points P(0, 0, 0) and Q(4, -1, -2) in the ratio 1 : 2 externally and verify that P is the mid point of RQ.
- 20. Differentiate $f(x) = \frac{3-x}{3+4x}$ with respect to *x*, by first principle.

324 EXEMPLAR PROBLEMS – MATHEMATICS

21. Verify by method of contradiction that $p = \sqrt{3}$ is irrational.

22. Find the mean deviation about the mean for the following data:

x _i	10	30	50	70	90
f_i	4	24	28	16	8

PART C

23. Let $f(x) = x^2$ and $g(x) = \sqrt{x}$ be two functions defined over the set of non-negative real numbers. Find:

(i)
$$(f+g)(4)$$
 (ii) $(f-g)(9)$ (iii) $(fg)(4)$ (iv)

24. Prove that:
$$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$$

25. Find the fourth term from the beginning and the 5th term from the end in the

expansion of
$$\left(\frac{x^3}{3} - \frac{3}{x^2}\right)^{10}$$
.

- 26. A line is such that its segment between the lines 5x-y+4=0 and 3x+4y-4=0 is bisected at the point (1, 5). Find the equation of this line.
- 27. Find the lengths of the major and minor axes, the coordinates of foci, the verti-

ces, the ecentricity and the length of the latus rectum of the ellipse $\frac{x^2}{169} + \frac{y^2}{144} = 1$.

28. Find the mean, variance and standard deviation for the following data:

Class interval:	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency:	3	7	12	15	8	3	2

29. What is the probability that

- (i) a non-leap year have 53 Sundays.
- (ii) a leap year have 53 Fridays
- (iii) a leap year have 53 Sundays and 53 Mondays.

MARKING SCHEME MATHEMATICS CLASS XI

PART-A

Answer	Marks	
1.	$\frac{\pi}{4}$	1
2.	Zero	1
3.	$\frac{1}{36}$	1
4.	3	1
5.	$\frac{1}{2}$	1
6.	True	1
7.	False	1
8.	D	1
9.	A	1
10.	If a number is not divisible by 3, then it is not divisible by 6.	1

PART - B

11.
$$B = B \cup \phi = B \cup (A \cap A')$$

$$= (B \cup A) \cap (B \cup A') \quad 1$$

$$= (B \cup A) \cap (A' \cup B) = (B \cup A) \cap U \text{ (Given)}$$

$$= B \cup A$$

$$\Rightarrow A \subset B.$$

1
1
1
2
1
2
1
2

326 EXEMPLAR PROBLEMS – MATHEMATICS

12.
$$\cos x = \frac{1}{7} \Rightarrow \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \frac{1}{49}} = \frac{4\sqrt{3}}{7}$$

11. $\cos y = \frac{13}{14} \Rightarrow \sin y = \sqrt{1 - \frac{169}{196}} = \frac{3\sqrt{3}}{14}$
12. $\cos y = \frac{13}{14} \Rightarrow \sin y = \sqrt{1 - \frac{169}{196}} = \frac{3\sqrt{3}}{14}$
13. $\operatorname{Let P}(n) : "2^{3n} - 1$ is divisible by 7"
14. $\operatorname{Let} - 4 + i 4\sqrt{3} = r(\cos \theta + i \sin \theta)$
 $\Rightarrow r \cos \theta = -4, r \sin \theta = 4\sqrt{3} \Rightarrow r^2 = 16 + 48 = 64 \Rightarrow r = 8.$

$$\tan\theta = -\sqrt{3} \implies \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \qquad \qquad 1\frac{1}{2}$$

$$\therefore \quad z = -4 + i 4\sqrt{3} = 8 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) \qquad \qquad \frac{1}{2}$$

15. The given in equations are :

$3x - 7 > 2(x - 6) \dots (i)$ and	$6 - x > 11 - 2x \dots (ii)$	
$(i) \Longrightarrow 3x - 2x > -12 + 7 \text{ or}$	$x > -5 \dots (A)$	1
$(ii) \Longrightarrow -x + 2x > 11 - 6 \text{or}$	$x > 5 \dots (B)$	1
From A and B, the solutions of the	e given system are $x > 5$	1

Graphical representation is as under:

x > 5 $\odot x > -5$ -7 -6 -5 -4 -3 -2 -1 0 1 2 1 3 4 5 7 8 6 **16.** Given $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P. x > 5 $\therefore 1 + \frac{b+c}{a}, 1 + \frac{c+a}{b}, 1 + \frac{a+b}{c}$ will also be in A.P. $1\frac{1}{2}$ $\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c} \text{ will be in A.P.}$ 1 Since, $a + b + c \neq 0$

$$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ will also be in A.P.} \qquad 1\frac{1}{2}$$

17. Following are possible choices:

Choice	Part I	Part II	•	
(i)	2	4		
(ii)	3	3	}	1
(iii)	4	2	J	

328 EXEMPLAR PROBLEMS - MATHEMATICS

... Total number of ways of selecting the questions are:

$$= \left({}^{5}C_{2} \times {}^{5}C_{4} + {}^{5}C_{3} \times {}^{5}C_{3} + {}^{5}C_{4} \times {}^{5}C_{2}\right) \qquad 1\frac{1}{2}$$

$$=10 \times 5 + 10 \times 10 + 5 \times 10 = 200$$
1 $\frac{1}{2}$
Let the intercepts on *x*-axis and *y*-axis be 4*a*, 3*a* respectively
 $\frac{1}{2}$

18. Let the intercepts on x-axis and y-axis be 4a, 3a respectively

 $\frac{1}{2}$: Equation of line is: $\frac{x}{4a} + \frac{y}{3a} = 1$ or 3x + 4y = 12a $1\frac{1}{2}$ (-3, -2) lies on it $\Rightarrow 12a = -17$ Hence, the equation of the line is $\frac{1}{2}$ 3x + 4y + 17 = 0**19.** Let the coordinates of R be (x, y, z) $\therefore x = \frac{1(4) - 2(0)}{1 - 2} = -4$ 1 $y = \frac{1(-1) - 2(0)}{1 - 2} = 1$ 1 $z = \frac{1(-2) - 2(0)}{1 - 2} = 2$: R is (-4, 1, 2) 1 Mid point of QR is $\left(\frac{-4+4}{2}, \frac{1-1}{2}, \frac{2-2}{2}\right)$ i.e., (0, 0, 0)1

Hence verified.

20.
$$f(x) = \frac{3-x}{3+4x}$$
 : $f(x + \Delta x) = \frac{3-(x + \Delta x)}{3+4(x + \Delta x)}$ $\frac{1}{2}$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\lim_{\Delta x \to 0} \frac{3 - x - \Delta x}{3 + 4x + 4\Delta x} - \frac{3 - x}{3 + 4x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(3 - x - \Delta x)(3 + 4x) - (3 + 4x + 4\Delta x)(3 - x)}{(\Delta x)(3 + 4x + 4\Delta x)(3 + 4x)} \qquad \qquad \frac{1}{2}$$

$$= \lim_{\Delta x \to 0} = \frac{9 + 12x - 3x - 4x^2 - 3\Delta x - 4x\Delta x - 9 + 3x - 12x + 4x^2 - 12\Delta x + 4x\Delta x}{(\Delta x)(3 + 4x + 4\Delta x)(3 + 4x)}$$

1

 $\frac{1}{2}$

_ lim =	$-15\Delta x$	-15	
$=$ $\lim_{\Delta x \to 0} -$	$\overline{(\Delta x) (3+4x+4\Delta x) (3+4x)}$	$(3+4x)^2$	
21. Assume	that p is false, i.e., $\sim p$ is true		

i.e., $\sqrt{3}$ is rational

 \therefore There exist two positive integers *a* and *b* such that

$$\sqrt{3} = \frac{a}{b}, a \text{ and } b \text{ are coprime} \qquad \qquad \frac{1}{2}$$

$$\Rightarrow a^2 = 3b^2 \Rightarrow 3 \text{ divides } a^2 \Rightarrow 3 \text{ divides } a \qquad \qquad 1$$

$$\therefore a = 3c, c \text{ is a positive integer,} \qquad \qquad 1$$

$$\therefore 9c^2 = 3b^2 \Rightarrow b^2 = 3c^2 \Rightarrow 3 \text{ divides } b \text{ also} \qquad \qquad 1$$

$$\therefore 3 \text{ is a common factor of } a \text{ and } b \text{ which is a contradiction} \qquad \qquad 1$$

$$as a, b \text{ are coprimes.} \qquad \qquad 1$$

Hence $p: \sqrt{3}$ is irrational is true.

PART C

23. $(f + g)(4) = f(4) + g(4) = (4)^2 + \sqrt{4} = 16 + 2 = 18$	$1\frac{1}{2}$
$(f-g)(9) = f(9) - g(9) = (9)^2 - \sqrt{9} = 81 - 3 = 78$	$1\frac{1}{2}$
$(f \cdot g) (4) = f(4) \cdot g(4) = (4)^2 \cdot \sqrt{(4)} = (16) (2) = 32$	$1\frac{1}{2}$
$\left(\frac{f}{g}\right)(9) = \frac{f(9)}{g(9)} = \frac{(9)^2}{\sqrt{9}} = \frac{81}{3} = 27$	
$24. \sin 7x + \sin 5x = 2 \sin 6x \cos x$	1
$\sin 9x + \sin 3x = 2 \sin 6x \cos 3x$	1
$\cos 7x + \cos 5x = 2 \cos 6x \cos x$	1
$\cos 9x + \cos 3x = 2 \cos 6x \cos 3x$	1
$\therefore L.H.S = \frac{2\sin 6x\cos x + 2\sin 6x\cos 3x}{2\cos 6x\cos x + 2\cos 6x\cos 3x}$	$\frac{1}{2}$
$=\frac{\sin 6x (\cos 3x + \cos x)}{\cos 6x (\cos 3x + \cos x)} = \frac{\sin 6x}{\cos 6x}$	1
$= \tan 6x$	$\frac{1}{2}$
25. Using $T_{r+1} = {}^{n}C_{r} x^{n-r} \cdot y^{r}$ we have	1
$\mathbf{T}_4 = 10C_3 \left(\frac{x^3}{3}\right)^7 \cdot \left(\frac{-3}{x^2}\right)^3$	1
$= -\frac{10.9.8}{3.2.1} \cdot \frac{1}{3^4} \cdot x^{15} = -\frac{40}{27} x^{15}$	1

 5^{th} term from end = $(11 - 5 + 1) = 7^{\text{th}}$ term from beginning

1

$$\therefore T_7 = 10C_6 \left(\frac{x^3}{3}\right)^4 \cdot \left(\frac{3}{x^2}\right)^6$$

$$= \frac{10.9.8.7}{4.2.21} \cdot \frac{3^2}{1} = 1890$$
1

26. Let the required line intersects the line 5x - y + 4 = 0 at (x_1, y_1) and the line 3x + 4y - 4 = 0 at (x_2, y_2) . (x_1, y_1) (x_2, y_2) (1, 5) $\therefore 5x_1 - y_1 + 4 = 0 \Longrightarrow$ $y_1 = 5x_1 + 4$ 5x - y + 4 = 03x + 4y - 4 = 0 $3x_2 + 4y_2 - 4 = 0 \Longrightarrow y_2 = \frac{4 - 3x_2}{4}$

4.3.2.1 1

:. Points of inter section are
$$(x_1, 5x_1 + 4), (x_2, \frac{4 - 3x_2}{4})$$
 $\frac{1}{2}$

$$\therefore \quad \frac{x_1 + x_2}{2} = 1 \text{ and } \frac{\frac{4 - 3x_2}{4} + 5x_1 + 4}{2} = 5$$

$$\Rightarrow x_1 + x_2 = 2 \text{ and } 20x_1 - 3x_2 = 20$$
 $\frac{1}{2}$

Solving to get
$$x_1 = \frac{26}{23}$$
, $x_2 = \frac{20}{23}$ 1

$$y_1 = \frac{222}{23}, \quad y_2 = \frac{8}{23}$$
 $\frac{1}{2}$

:. Equation of line is
$$y - 5 = \frac{\frac{222}{23} - 5}{\frac{26}{23} - 1} (x - 1)$$
 1
or $107x - 3y - 92 = 0$ $\frac{1}{2}$

or
$$107x - 3y - 92 = 0$$

332 EXEMPLAR PROBLEMS – MATHEMATICS

27. Here
$$a^2 = 169$$
 and $b^2 = 144 \Rightarrow a = 13, b = 12$
 \therefore Length of major axis = 26
Length of minor axis = 24
Since $e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{144}{169} = \frac{25}{169} \therefore e = \frac{5}{13}$
foci are $(\pm ae, 0) = (\pm 13, \frac{5}{13}, 0) = (\pm 5, 0)$
vertices are $(\pm a, 0) = (\pm 13, 0)$
latus rectum = $\frac{2b^2}{a} = \frac{2(144)}{13} = \frac{288}{13}$
1
28. Classes: 30-40 40-50 50-60 60-70 70-80 80-90 90-100
f: 3 7 12 15 8 3 2. $\sum f = 50$ $\frac{1}{2}$
 x_i : 35 45 55 65 75 85 95
 $d_i := \frac{x_i - 65}{10}$ -3 -2 -1 0 1 2 3
 $f_i d_i$: -9 -14 -12 0 8 6 $6\sum f_i d_i = -15$ 1
 $f_i d_i^2$: +27 28 12 0 8 12 18 $\sum f_i d_i^2 = 105$ 1
Mean $\overline{x} = 65 - \frac{15}{50} \times 10 = 65 - 3 = 62$
Variance $\sigma^2 = \left[\frac{105}{50} - \left(\frac{-15}{50}\right)^2\right] \cdot 10^2 = 201$ $1\frac{1}{2}$
S.D. $\sigma = \sqrt{201} = 14.17$
1
29. (i) Total number of days in a non leap year = 365
= 52 weeks + 1 day

$$\therefore P(53 \text{ sun days}) = \frac{1}{7}$$

(ii) Total number of days in a leap year
$$= 366$$

= 52 weeks + 2 days

1

 $\frac{1}{2}$

 $1\frac{1}{2}$

:. These two days can be Monday and Tuesday, Tuesday and Wednesday, Wednesday and Thursday, Thursday and Friday, Friday and Saturday, Saturday and Sunday, Sunday and Monday

$$\therefore$$
 P(53 Fridays) = $\frac{2}{7}$

(iii) P(53 Sunday and 53 Mondays) = $\frac{1}{7}$ (from ii)

o herepublished