

DPP No. 31

Total Marks : 27

Max. Time : 27 min.

Type of Questions		М.М.,	Min
Comprehension (no negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9,	9]
Single choice Objective (no negative marking) Q.4,5,6	(3 marks, 3 min.)	[9,	9]
Multiple choice objective (no negative marking) Q.7	(5 marks, 4 min.)	[5,	4]
Subjective Questions (no negative marking) Q.8	(4 marks, 5 min.)	[4,	5]

COMPREHENSION (Q. NO. 1 TO 3)

If $S = -1 - 1 + 1 + 7 + 19 + 39 + 69 + \dots$, then

Sequence & Series, Application of Derivatives

1. n^{th} term (t_n) will be

Topics :

(A) $\frac{-6+(n-1)(n-2)^2}{6}$	(B) $\frac{-3+(n-1)(n-2)^2}{6}$
(C) $\frac{n^3 - 3n^2 + 2n - 3}{3}$	(D) None of these

- t₁₀ is equal to

 (A) 299
 (B) 239
 (C) 171
 (D) 211

 Sum of first 10 term (S₁₀) is equal to -
- (A) 650 (B) 659 (C) 560 (D) 625
- 4. The gradient of the common tangent to the two curves $y = x^2 5x + 6$ and $y = x^2 + x + 1$ is : (A) - 1/3 (B) - 2/3 (C) - 1 (D) - 3
- A curve with equation of the form y = ax⁴ + bx³ + cx + d has zero gradient at the point (0, 1) and also touches the x axis at the point (– 1, 0) then the values of x for which the curve has a negative gradient are :
 (A) x > -1
 (B) x < 1
 (C) x < -1
 (D) -1 ≤ x ≤ 1
- 6. The equation of the tangent to the curve $y = e^{-|x|}$ at the point where the curve cuts the line x = 1 is (A) x + y = e (B) e(x + y) = 1 (C) y + ex = 1 (D) None of these
- 7. If a line is tangent to one point and normal at another point on the curve $x = 4t^2 + 3$, $y = 8t^3 1$, then slope of such a line is
 - (A) 1 (B) 1 (C) $\sqrt{2}$ (D) $\sqrt{2}$
- 8. Show that the curves $x^3 3xy^2 = a$ and $3x^2y y^3 = b$ cut each other orthogonally where a and b are constants.

Answers Key