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3.7

MOTION OF CHARGED PARTICLES IN ELECTRIC AND
MAGNETIC FIELDS

3372 Let the electron leave the negative plate of the capacitor at time = 0

3.373

- S R
and, therefore, the acceleration of the electron,
wo E_cat dv_ ea
m ml T dr mi
[}
or, fdv- fl—‘o’-:d:, or, v= %;_ﬂlrz (1)

But, from s = f vdr,

1
le f ;o (6mi%y
=5 T e

Putting the value of ¢ in (1),

2

1eaf6oml 9 ale
2ml( ) (2?) = 16 km/s.

The electric field inside the capacitor varies with time as,

E=at
Hence, clectric force on the proton,

F= eat
and subsequenily, acceleration of the proton,

Wa o

m

Now, if t is the time elapsed during the motion of the proton between the plates, then

t= -—!— as no acceleration is effective in this direction. (Here vn is velocity along the length
VH

of the plate.)
. dvy
From kinematics, — = w

dt

v, T
50, fva_ =fwd£,
o o

(as initially, the component of velocity in the direction, L to plates, was zero.)
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3.375

or ) _fﬂi ea 12
4 mm 2m,?
0 I
v !
L ea
Now, tang = —=
4 2myv
I i
L
eal®

ER

2
om (2 eV)
m

The equation of motion is,

dv Eiﬁ__‘]_
i vdx_ m(EO—ax)

al fm

4 2 eV

Integrating
1
2
But initially v = 0 when x = 0, so “constant” = 0

24 1o
v m(Eo_x 2axz) constant.

Thus, V= 29 (on - laxz)
m 2
. 2E,
Thus,v = 0, again for x= x, = 2

The corresponding acceleration is,

vy _ g 9k,
‘(dt)x m(ED'—zEO) T m

L.

From the law of relativistic conservation cf energy
my
= -eEx=mc
v1- (v2 / cz)
as the electron is at rest (v = 0 for x = 0) initially.

Thus clearly T= ekEx
2

myc
On the other hand V1 — W2/ ¢?) = —2,°~—

myc” +ekEx

2

\/(m0 ¢ + e Ex) -z ¢

my c*+ eEx

v
or, -=
c

2eVy? .
as v = |= |, from energy conservation.

(m (:2+eEx)dx
or, ct=fcdt=f 2

'\[(mﬂ & r eEJts)2 - mg ¢t
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3376

3371

\/(mﬂ ¢ + eEx)® — mZ ¢* + constant

ZeEfﬁ m[2]04 " e

The “constant” = 0, at ¢t= 0, for x= 0,

So, ct= Zlg\/(mocz + eEJc)2 m% ¢t

Finally, using T'= eE x,

Vr(r+2mgc2)

ceE ty= T(T+2moc2) or, f;=

eFc
As before, T= eEx
Now in linear motion,
d __myv _ myw . myw v
a1 Vi-vwe -V e
m T +m,c?)
9 ( 0 ) w= ek,

= W o=
(1 -v¥/H? m3 c®
2.6

S eEmyc eE ) T -3
0, W= _"'_T?I' — |1+
(T+myc) mD( mocz]

The equations are,

m
j_ _—_—.__mo x =0 and g—- -——-—-—-2——-0‘, = ek
dt\V1- 7/ ) @ |1 v/
H o tant 0
ence, ——————= constant = ——===—==u=
Vi-v¥/e Vi-03/76)
Also, by energy conservation,
mo t‘.‘2 mo (72 E
= +eby
Vi-62dd) Vi-(¥d
2
Dividing pom 00 TOC
* gteEy’ 0 4f1. 2
m, gg+teEy
Also, -
Vi-(v*/c?) c?
Thus, (eg+teEy)v, = ¢® e E t + constant,

“constant” = 0 as v, = 0atit=0.

Integrating again,

1 2_1 2.2
soyi-—ieEy =5¢ E t” + constant.
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“constant” = 0, as y= 0, at 1= 0.
Thus,(ce E r)2 = (eyE)2 +2¢e,eEy+ eg - eg

or, ceEt = Vg, + eEy) - €
or, gy +eby= \h>;‘2)+f:2e2}£2t2

Vo & ¢’ ekt

Hence, Vi= T also, V= e—————

\/s[,+ceE2 2 Vel + 22 B2 12

Y. £ AT
and tand= <= 1-(vp/c).
x My Vo
3.378 From the figure,
sina= 2. 498

R mv

As radius of the arc R = p B — where v is the

velocity of the particle, when it enteres into
the field. From initial condition of the problem,

gV = %—mv2 of, v= VM

m
Hence, sin a0 = —de8___ dB\/ 5—3{?
v
m

and a= sin‘l(dB V 2—%, ] = 30° on putting the values.

3.379 (a) For motion along a circle, the magnetic force acted on the particle, will provide the
centripetal force, necessary for its circular motion.

. m’ eBR
1Le. ——=¢evB of, v=—
R m
and the period of revolution,T = m_2ZmR_Zam
[0 v eB
a7
(b} Generzlly, e F
dp”_d ™ v myv” my VvtV

But, &2
i dtafy (v%) R (vfc’) (1-¢? /c)) 7o

For transverse motion, v+ v = 0 so,
iy

dp_ -
a Yi-(r¢hH V1- (v/cz)’

= 2
myv m, v
» here.
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Thus il ” Bev or v/e - B
rV1-02eh ViR M€
v Ber
or, —
< VBEPimP
2am
Finally, T= 2ar U, RV/*2 Erramc

3.380 (a) As beforep= Bgr.

by T= Ve ' +moc \[cszqzr +m

© w=t-

¢
[1 + (moC/qu) ]
using the resuit for v from the previous problem.

3.381 From (3.279),

2
2 - 2amyc o
T= = % (relativistic), T,= ———— (nonrelativistic),
¢ eB c eB
Here, my & / 1-v/t = E
Thus, o= M, (T= K.E)
cZeB
oT T )
NOW, —_— = , SO, T= m.c
Ty " mg C- ™o

3382 7= V= %—mvz

(The given potential difference is not large enough to cause significant deviations from
the nonrelativistic formula).

Thus, ve= Vﬂ
m
A /ZeV 4 /2eV .
So, v = — s, Vv, = —  sina
I m m

mvi my,
Now, = Bev, or, r= B
and T= 2E"-'= Zam

. 2mum /ﬂ A /ZmV
Pitch P vﬁT- Be o1 cosa 2n _eB2 COs Q.
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3.383 The charged particles will traverse a helical trajectory and will be focussed on the axis

3334

after traversing a number of turms. Thus

L_" 2mum _ ( +1)23‘\?:'1
Vo qB; 9B,
n n+1 1
5 B,” "B, " B,-B
! 2 mm
Hence, —=
vo 4q(B,-B)
or 1? @ n)? 1
’ 24Vim” B,-B) (q/m}
2
or, q 8x°V

m” 12(B,- B,

Let us take the point A as the origin O and the axis of the solenoid as z-axis. At an
arbitrary moment of time let us resolve the velocity of electron into its two rectangular
components, i'_lralong the axis and FI to the axis of solenoid. We know the magnetic

force does no work, so the kinelic cncrgy as well as the speed of the electron |17_: | will
rcmam constant in the x-y plane. Thus v_L can change only its direction as shown in the
Fig.. vy vy will remain constant as it is parallel to B

Thus att = ¢

V, = ¥, COS ¢ = Vin O. Ccos W,

v, = v silof = vsinasinwt

el
and v, = vcoso, where @ = o

Asatr =0, wehave x = y = 2 = (, so the motion law of the electron is.

Z=veosat

o .,
x= sinw¢t
vsino
= ——(cosmt-1
y e )
(The equation of the helix)
On the screen, z=1 sot= .
vV Cos o
2 2, .2 2% sin’ wl
Then, rr=x"ty =————|[1-cos
W v Cos O
, 2vsina w! 2mvs1na leB
o) 2 vcos o el 2mvcosu.
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3.385 Choose the wire along the z-axis, and the initial direction of the electron, along the x-axis.
Then the magnetic field in'the x - z plane is along the y-axis and outside the wire it is,

bo ! .
B=1B = T (B,=B,=0,if y=0)
The motion must be confined 1o the x - z plane. Then the equations of motion are,
d
FMe= -, B,
d(mv,)
e +tev, B,
Multiplying the first equation by v, and the second by v, and then adding,
dv,
g Vg = O
or, V_E'Fvg- v%,say, or, Vz- Vg—Vi
dv, e > Mol
Then, Ve e = Tm V0T Ve o
v, dv, o fe dyx
" e x
vf, -V
Ko le
Integrating, v vg - vf - 221':11 In %
on using,v, = v, if x= g (ie. initially).
Now, v,= 0, when x=x,_,
wyle

s0, X,

v /b
= e, where b= >

3.386 Inside the capacitor, the electric field follows a %law, and so the potential can be written as
_Ymhr/je , -V 1
" Ilnb/a’ Inb/ar

Here r is the distance from the axis of the capacitor.

Also, m?_ gV 1 o 4V
r Inb/arr Inb/a

On the other hand,

my = g Brin the magnetic ficid.

q _ V
- =

v
Thus, = o m ———
Br B Pmn(/a)

V= ———V— and
T Brlnb/a
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3.387 The equations of motion are,

dv, dv, dv
A RS - B
mdt qsz,mdt gqE and m at qv,
These equations can be solved easily.
, gE gE »
First, v, - -——t y= 3= £
Then, v2 +v? = constant = v} as before.

In fact, v, = vycos o and v, = v, sin wt as one can check.

Integrating again and using x= z= 0, at t= 0

V, V,
X = -9~sinwr, z= —0(1—cosmt)
m »
Thus, x=z=0 fort= t"==n-2—rL
w
2 2
. - gE 2m 2, 2x _2x"mEn
At that instant, y, > qulmxn qu/m pr
v
Also, tano, = —=, (v,= 0 at this moment)

Yy
my, my, 92 1 By,
"~ gqEt, qE m  Zmn 2mEn’

31.388 The equation of the trajectory is,
v
X = —Dsm wt, z= —(1 cos ), y = ;:; t* as before see (3.384).

Now on the screen x = [, so

. ol . _10.)l
sinwt= .—— or, Wf=sin ~-—
Yo Vo
At that moment,
_1 mI
2
o, V2mey /248y
Vo gE Em
Vo
and z= —2sin 2ut Itan il
o 2
[ -1 t'fx
-ltanz[sm Itan > mE
For small
2 2 2
gBy _ -1Z z
A sz—(b'in l)~[2
or, y= 2mE Zisa parabola.

gB*I*’
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3.389

3.3%0

3391

In crossed field,

eE = evB, so v=£

B
I E mlE
ThenF = force exerted on the plate = cXME= "B

When the electric field is switched off, the path followed by the particle will be helical.
and pitch, Al = v" T, (where v” is the velocity of the particle, parallel to B, and 7, the

time period of revolution.)

=vecos (0 -@)T= vsingT
2 mm 2n
= ysin as Tm — i
v qB) ®
Now, when both the fields were present, gE = gvB sin (90 — ), as no net force was effective
on the system.

E

= 2
or, V= Becos P &)
E2xm
From (1) and (2), Al = B 4B tang= 6cm.
When there is no deviation, — -
-gE= g(vxB)
or, in scalar from, E= vB(as viB) or, vm= 3 (1)
Now, when the magnetic field is switched on, let the deviation in the field be x. Then,
- 428
2l m
where ¢ is the time required to pass through this region.
a
also, t= —
v
Thus o L(@B)(a) _ Lgd'P @)
21 m v 2m E
For the region where the ficld is absent, velocity in upward direction
- (ﬂ):a 4,p 3)
m m
Now, Ax —x = 908 t
m
2
= iﬂB b ! = -ll- 22 4
when ¢ = F @

From (2) and (4},
_l_q_aszz _q_asz
2m E m E

q,_ __2EA
m a8 (a+2b)

or,
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3392 (a) The equation of motion is,

—- —»
I;} g(E+vXB)
L |TTE] o -
Now, vxB= |x y z|=iBy-jBx
0 0B

So, the equation becomes,

dv, aBv, &y _gE gB

, an
dt m d m m* dt
Here, v, = x, vy = ¥, v,= z The last equation is casy to intcgrate;
v, = constant = 0,
since v, is zero initially. Thus integrating again,
z= constant = 0,
and motion is confined to the x — y plane. We now multiply the second equation by i and
add to the first equation.
E= v+,
we get the equation,

E_iwE_; _ 4B
&= 03 Ing w= "
This equation after being multiplied by e “can be rewritten as,
4
dr
and integrated at once to give,

(geiw)= imeim%

E P
N rof :a’
E B +Ce
where C and o arc two real constants. Taking real and imaginary parts.

v, = §+Ccos(mt+a) and v, = - Csin (ot + o)

, E
Since v, = 0, when r= 0, we can take o = 0, then v, = 0 at r= 0 gives, C= )
and we get,
v, = %(1 -cos wf) and v, = %sin wt.
Integrating again and using x=y = 0, at £= 0, we get
xm-%G-

This is the equation of a cycloid.
(b) The velocity is zero, when wt = 2 n . We sce that

sin wt

}ym-ﬁ%ﬂ—amml

2
V= vf+v§- (%) (2 - 2 cos wi)
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2E wt
or, ve =g Sin

The quantity inside the moduius is positive for 0 < wf < 2 x. Thus we can drop the modulus
and write for the distance traversed between two successive zeroes of velocity.

S = iE—(l—cosg—)

wB 2
Putting wt= 2x, we get
8E 8mE

--ED—E—:—q-—Bj-

{c) The drift velocity is in the x-direction and has the magnitude,

<y >= < %(l—cosmt)>= =

3393 When a current / flows along the axis, a magnetic field B = is set up where

Al
2n
p2 -4 y2. In terms of components,
o fy Mo Ix
B = ‘m, ByS —and B, = 0

Suppose a p.d. V is set up between the inner cathode and the outer anode. This means a
potential function of the form

V]—E‘p—/—b-, a>p>b,

TN
as one can check by solving Laplace equation. \-}-'/
The electric field corresponding to this is, J[ 2
e Vgl W g, |

p'lna/b p Ina/b’ I-—)
The equations of motion are, Ié
d lelvz el wp! l
2= v + Xz i
plma/b 2mp |
G L1, B LA L |
dt p Ina fb 2 1t p?
d kol g
and d‘mv-—|e| (xx+yy)-—|e|2 dtlnp

(-1e|) is the charge on the electron.
Integrating the last equation,

1 .
myv, = —|e| %lnp/as mz.



419

since v, = O where p = 4. We now substitute this z in the other two equations to get

d 1mv +1mv2
dr 2

V 2 I . - .
lel Iel (Po) lnp/bJ-x“'ﬁ

Ina/b m \2x

- ne TTm \2x b| 20% dt
b
2
I A L ]
n:E ™ px. bldt™ b
b

Integrating and using V= 0, at p= b, we get,

1 le|V P 21*012 £
Thadale -5 lel ( 27 (’“b]

ll‘l'b-

The RHS must be positive, for all a > p > b. The condition for this. is,

2
1|e| uod a
V22 (2:1: "%

3.394 This differs from the previous problem in (a +»b) and the magnetic ficld is along the
z-direction. Thus B, = B,= 0, B,= B
Assuming as usual the charge of the clectron to be — | e | , we write the equation of motion

d le| Ve . d le|V, .
7k Tl b—| |By,dtmvy= - b+|e|Bx
p]n-a- pln;

and g—mvz= 0 => z= 0

The motion is confined to the plane z= 0. Eliminating B from the first two equations,
dt (2 mv] e

lnb/a p2
lne/a

1 2
on 2= lelViga

so, as expected, since magnetic forces do not work,

VT oo
m ¥
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3.395

On the other hand, climinating V, we also get,

d .
Em(xvy—yvx)- |e| B (xx +yy)

ie. bovy - yv) = L%imﬁ p? + constant

The constant is easily evaluated, since v is zero at p = a. Thus,

B
(- )= LB ()5 0

At p=0b, (xv,~w)s vb
Thus, vbe J—‘-B-I—B—(bz--az)

2m
i ps 2mb  f7[e][V 1
> -2V m el

2b 2m B
or, Bs<

b -d bel

The equations are as in 3.392.
»._gB, Py &,

v - —
dt m ¥ dt m

. dv
cos mt—gg-vx and —=-
m dt

. B .
with m-%—,%-v,+wy,weget,

[

&_ . En i
a- ig wcost~iwk

or multiplying by em',

d o oy Em o 2im
dt(’g‘e ) :?Bm(e +1)
; E e B
: : i Tm Qiat 7M.
or integrating, Ee' = a5 ¢ tog it
4 Em it . i it
or, Em= Z—E(e +2i0te’™ )+ Ce
since E-Oatt-O,C--ﬁ.
.E.u . -E.l'l iwt
Thus, Ew i>g smcot-!-tﬁmte
or, v, = ——otsin ot and v, = E—"'s-inmt+glwtcosmt
’ * 2B Y~ 2B 28

Integrating again,
a
2 w?

. a .
X = (sin ot — ot cos wt), y= E-atsm wt.
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qE,,
where g = L and we have used xw y= 0, at t= 0.
The trajectory is an unwinding spiral.

3.396 We know that for a charged particle (proton) in a2 magnetic ficld,
mv

—r-- Bev or mv= Ber

But, w-é:
m
1 2_1 2
Thus E 2mv-2mu) .
So, AE = mo’rAr= 4702 Vimr Ar

On the other hand AE = 2 eV, where V is the effective acceleration voltage, across the
Dees, there being two crossings per revolution. So,

Va 20 vimr Ar/e
mvz
3397 (a) From - = Bev, or, mv= Ber

(BerY 1
and T T il 12 MeV
(b) From n, ____2:1-
v _1./T
we get, fin = 22 o Y om 15 MHz
3.398 (a) The total time of acceleration is,
1
2y 7
where »n is the number of passages of the Dees.
B i
But, T=nevV= “—E“m*—'
_Fer
or, IV
n B’er aBP mvi
So, t= X = = =30us
eB/m 2mV 2V eV
- - 1
{b) The distance covered is, 5§ = 2 Va'ow
But, ¥, = 2:—3—]- vn .

_1/8V =1/eV _.‘/eV 23/2
S0, &= 2mv? E\G 2mv? f\f:;dn 2 3
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2
Bzer2 2 2n2mv r

But,

T 2eVm eV
2
Thus, s-M = 124 km
3eV

2xnr
3.399 In the nth orbit,

n

v,= c. Also We cp= cBer,

n . :
=nT,= v We ignore the rest mass of the electron and write

Thus, 2“?- Ll
Bec v
or, n= Z:r:H;'v = 9
Bec

3.400 The basic condition is the telativistic equation,

m’ mgv
—= Bgv, or, mv= ———==—= Bgr.
r Vi1-v/e
Or calling, W= Eﬂ,,
m
)
we get, UJ=—O—, mo-—Bﬁr
1 wgF My
+
)

is the radius of the instantancous orbit.
The time of acceleration is,

Eh E—-Em

N is the number of crossing of either Dee.

But, W = m, 2+ 2 éw,

n moc AW,
So, t= p—1
gB ¢ 2gB¢

4 N(N+1):tAW - N2 n AW
wo 4 ¢Bc 44Bc*

there being two crossings of the Dees per revolution.

= N-=—

7 (N>>1)

W c o AW
@y, m aN"™ 2qBc

Also, r=ry
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0.)0
\/g_zwm

my c2 44 B

Hence finally,

pa) W
- =V1+ar’
1+1_‘£)._ 498
4m .‘FEAW
qB AW
a= T3
nmyc

3401 When the magnetic field is being set vp in the solcnoid, and electric field will be induced
in it, this will accelerate the charged particle. If B is the rate, at which the magnetic field
is increasing, then.

xrzé- 2xrE or E= %rB

dv. 1 - gBr
Thus, mdr- erq, or v= o’

After the field is set up, the particle will execute a circular motion of radius p, where

mv=Bqgp, or p= %r

3.402 The increment in energy per revolution is e®, so the number of revolutions is,

-5
The distance traversed is, s= 2wy
3.403 On the one hand,
_c_fg e dd e d ' ' {
- - e o m—— — d
" E" 0 a T wa / 2nr' B () dr
On the other ,
p= B(r)er, r= constant.
@ _, 4 ;
50, &t er B(rym erB(r)
Hence, eré(r)- ——‘;—an%<B>
1d
So, B(r)-——<B>

2dt
This cquations is most easily satisfied by taking B (ry) = %< B >.

o

3,404 The condition, B ()= 5 <B>= = [ B-2r dr/r}
1]
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or, B(rp= —:5 [ Brr
0 ¢

This gives r,.

In the present case,

Bo-—arg-%f(B—arz)rdr-—-( 0-33 rﬁ)
0o

or, —arz- Bo O Fg= v3_ao'

3.405 The induced clectric ficld (or eddy current ficld) is given by,

E(= - ——fsz ¢)B () dr
Hence,
r
dE 1 d , , dB{r
b dt{zms(r')dr +-—i—1dt
1d 4B (r)
2% <B>+ it
This vanishes for r = r, by the betatron condition, where r is the radius of the equilibrium
orbit.
3.406 From the betatron condition,
1d dB B
24 <> g 0=y
Thus, g;< B>= %
and &  a2d<B> 2 B

a - " T T M
So, energy increment per revolution is,
49 _ 2178
da T T A
3.407 (a) Even in the relativistic case, we know that : p = Ber

Thus, W= VEp2+mic® —myc®= mocz(\/1+(Ber/moc ? -1)

{b) The distance traversed is,

W W At
2:rr.re¢ mrz;n'rzijN' Ber ’

on using the result of the previous problem.



