ENGINEERING MECHANICS TEST I

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. The value of coefficient of restitution is one for
 - (A) perfectly elastic collision
 - (B) perfectly inelastic collision
 - (C) neither plastic nor elastic collision
 - (D) None of these
- 2. The radius of gyrations for a sphere and cylinder of radius 'R' are respectively.
 - (A) 0.6324 R and 0.707 R
 - (B) 0.6234 R and 0.77 R
 - (C) 0.6432 R and 1.414 R
 - (D) 0.6324 R and 1.414 R
- 3. Which of the following relation represents motion under variable acceleration?

(A)
$$v = a \frac{dv}{ds}$$
 (B) $a = v \frac{dv}{ds}$
(C) $v = \frac{1}{a} \frac{dv}{ds}$ (D) None of these

4. If a projectile motion with usual notations is expressed is

$$y = xP - \frac{gx^2}{2u^2Q^2}$$
 (α = Angle of projection), then 'P'

and 'O' are

- (A) tan α and cos² α
- (B) $\tan \alpha$ and $\cos \alpha$
- (C) tan α and sec α
- (D) tan α and sec² α
- 5. A mechanism has 5 numbers of joints and 6 members. The number of additional members needed to make it a perfect frame will be

(A)	4	(B)	3
(C)	2	(D)	1

- 6. The rate of change of velocity and the rate of change of momentum of a moving body respectively are
 - (A) acceleration and impulse
 - (B) acceleration and force
 - (C) displacement and force
 - (D) force and displacement
- 7. In the equation of virtual work, which of the following force is neglected?
 - (A) reaction at any smooth surface with which the body is in contact
 - (B) reaction of rough surface of a body which rolls on it without shipping
 - (C) reaction at a point on an axis fixed in space, around which a body is constrained to turn.
 - (D) All of these

- 8. Two metallic balls having potential energy in the ratio 3 : 5 are made to slide down a frictionless inclined plane with zero position. What will be the ratio of their kinetic energy when they reach at bottom of inclined plane?
 - (A) 5:3 (B) 3:5 (D) 2:3
 - (C) 1:1
- 9. Two forces form a couple only when
 - (A) magnitude is same have parallel lines of action and same sense
 - (B) magnitude is different, have parallel lines of action but same sense
 - (C) magnitude is same have non parallel lines of action but same sense
 - (D) magnitude is same and have parallel lines of action and opposite sense
- 10. A wheel is rolling on a straight road as shown below. For this wheel the acceleration of the center 'O' and its instantaneous center are

- (A) $\omega^2 r$ and O (B) $\omega^2 r$ and D
- (C) V^2/r and D (D) zero and O
- 11. A particle moving from rest moves in a straight line. Its acceleration is given by the equation

$$a = 10 - 0.006 S^2$$

- Velocity of the particle when it has travelled 40 m is
- (A) 19.16 m/s (B) 23.32 m/s
- (D) 30.14 m/s (C) 26.84 m/s

A wheel of radius 1 m rolls on a flat horizontal ground without slipping as shown in figure. Resultant velocity at point B is 1 m/s. Angular velocity of the wheel about its centre in rad/s is

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\sqrt{2}$

(C) 1 (D)
$$\frac{1}{2}$$

Time: 60 min.

3.6 | Engineering Mechanics Test 1

10	A 1 /*	C		•	•	1
13.	Acceleration	of a	narficle	15	given	hv
10.	1 locoloration	UI U	particle	10	51,611	$\mathcal{O}_{\mathcal{J}}$

 $a = t^3 - 3t^2 + 5$

Where t = time in seconds and

a = acceleration in m/s². Velocity of particle when t = 2 sec is 8 m/s. Velocity of the particle when t = 4 sec is

500	15		
(A)	22 m/s	(B)	25 m/s
(C)	28 m/s	(D)	32 m/s

Statement for Linked Data Questions 14 and 15:

14. A body of mass 5 kg falls from a height of 50 m and penetrates into the ground by 90 cm. Average resistance to penetration is

(A)	2668 N	(B)	2774 N
(C)	2814 N	(D)	2892 N

15. Time taken for penetration is

(A)	19.7 s	(B)	12.7 s
$\langle \alpha \rangle$	1		

- (C) 17.4 s (D) 15.4 s
- **16.** Angular displacement of a body is given by $\theta = 6t^2 + 3t + 10$

Where t is in seconds. Angular velocity and angular acceleration of the body when

t = 10 seconds are

- (A) 123 rad/s, 12 rad $/s^2$
- (B) 135 rad /s, 14 rad /s²
- (C) 142 rad/s, 16 rad/s²
- (D) 153 rad/s, 18 rad/s²

Statement for Linked Answer Questions 17 and 18:

A ball can be projected with a maximum velocity of 50 m/s. On an inclined plane, the maximum range obtained on projecting the ball is 190 m.

17. Inclination of the plane to the horizontal is

(A)	20°	(B)	18°
(C)	16°	(D)	14°

18. The projection angle from horizontal is

(A)	68°	(B)	65°
(C)	60°	(D)	55°

Statement for Linked Answer Questions 19 and 20:

A projectile is fixed at an angle of 30° in a horizontal level ground with a velocity of 50 m/s.

19. Time taken by the projectile to reach the ground after firing is

(A) 9.8 s	(B)	8.6 s
(C) 7.2 s	(D)	5.1 s

- **20.** Horizontal range of the projectile is (A) 220.7 m (B) 208.5 m
 - (C) 192.6 m (D) 186.1 m

Common Data for Questions 21 to 23:

Block *A* of mass 10 kg placed on a rough horizontal plane is connected to another block *B* of mass 5 kg by a string passing over a pulley as shown in figure. Coefficient of friction between block *A* and horizontal plane is 0.25. If the system is released from rest and block *B* is falling,

21. Tension on the string is

	(A)	28.43 N	(B)	33.41 N
	(C)	37.62 N	(D)	40.88 N
22.	Acce	eleration of block B is		
	(A)	1.268 m/s ²	(B)	1.635 m/s^2
	(C)	1.824 m/s ²	(D)	2.116 m/s ²

- **23**. Velocity acquired by block *B* when it falls through a vertical distance of 1 m, is
 - (A) 1.24 m/s (B) 1.56 m/s
 - (C) 1.81 m/s (D) 2.35 m/s

Common Data for Questions 24 and 25:

Angular displacement of a particle, moving in a circular path of 150 m radius is given by

$$\theta = 18t + 3t^2 - 2t^3$$

- **24.** Angular acceleration at 2 seconds from start is
 - (A) 15 rad/s^2 (B) 18 ard/s^2
 - (C) -15 ard/s^2 (D) -18 rad/s^2
- **25.** Maximum angular velocity is

(A)	16.4 rad/s	(B)	19.5 rad/s
(C)	22.3 rad/s	(D)	25.4 rad/s

	Answer Keys								
1. A	2. A	3. B	4. B	5. D	6. B	7. D	8. B	9. D	10. D
11. B	12. D	13. A	14. B	15. C	16. A	17. A	18. D	19. D	20. A
21. D	22. B	23. C	24. D	25. B					

HINTS AND EXPLANATIONS

2. Radius of gyration = $\sqrt{\frac{I_{\min}}{m}}$ I = mass moment of inertia about the central axis R = radius of sphere or cylinder. For sphere: $I = \frac{2}{5}mR^2$ or $mK^2 = \frac{2}{5}mR^2$ k = radius of gyration $\therefore \quad k = \sqrt{\frac{2}{5}} R = 0.6324R$ For cylinder: $I = \frac{mR^2}{2}$ or $mk^2 = \frac{mR^2}{2}$ $\therefore k = R = 0.707R.$ Choice (A) 5. Kutzbach equation $F = 3(\ell - 1) - 2j - h$ F =degree of freedom ℓ = number of links or member J = number of lower pair H = number of higher pair When 5 joints and 6 members are there $\ell = 6$ J = 7 \therefore F = 1(kinematic chain) For perfect frame, F = 0... When 5 joints and 7 members then $\ell = 7$ J = 9 \therefore F = 0 (perfect frame) Number of additional member = 1. Choice (D) 8. Since plane is frictionless, so KE at ground will be equal to P. E at top. $m_1gh = \frac{1}{2}m_1v_1^2$ and $m_2gh = \frac{1}{2}m_2v_2^2$ $\frac{KE_1}{KE_2} = \frac{m_1 \ gh}{m_2 \ gh} = \frac{PE_1}{PE_2} = \frac{3}{5}$ Choice (B) **11.** $a = \frac{dv}{dt} = \frac{dv}{dS} \cdot \frac{dS}{dt} = v \cdot \frac{dv}{dS}$ $\therefore \quad v \frac{dv}{dS} = 10 - 0.006 S^2$ $vdv = (10 - 0.006S^2) dS$

Integrating,

$$\frac{v^{2}}{2} = 10 S - \frac{0.006S^{3}}{3} + C$$
When $S = 0, v = 0$
 $\therefore C = 0$
 $\therefore \frac{v^{2}}{2} = 108 0.002S^{3}$
When $S = 40$ m
 $\frac{v^{2}}{2} = 10 \times 40 - 0.002 \times (40)^{3}$
 $v = 23.32$ m/s. Choice (B)
12. Resultant velocity at B
 $R = 2 v = 2 \omega r$
 $\therefore 1 = 2 \omega \times 1$
 $\omega = \frac{1}{2}$ radian. Choice (D)
13. $a = \frac{dv}{dt} = t^{3} - 3t^{2} + 5$
 $dv = (t^{3} - 3t^{2} + 5) dt$
Integrating,
 $v = \overline{1}(t^{3} - 3t^{2} + 5) dt$
 $z = \frac{t^{4}}{4} - t^{3} + 5t + C$
when $t = 2, v = 8$
 $\therefore 8 = \frac{2^{4}}{4} - 2^{3} + 5 \times 2 + C$, $C = 2$
 $\therefore v = \frac{t^{4}}{4} - t^{3} + 5t + 2$
When $t = 4$
 $v = \frac{4^{4}}{4} - 4^{3} + 5 \times 4 + 2 = 22$ m/s. Choice (A)
14. $m = 5$ kg, $h = 50$ m
 $x = 90$ cm $= 0.9$ m
 $v_{1} = \sqrt{2gh} = 4.43 \sqrt{h} = 4.43 \sqrt{50} = 31.32$ m/s
 $v_{2} = 0$
Let R be the average resistance of penetration
 $\frac{1}{2}m(v_{2}^{2} - v_{1}^{2}) = (mg - R) x$
 $\frac{1}{2} \times 5(0 - 31.32^{2}) = (5 \times 9.81 - R) 0.9 - 2724.84$
 $= 49.05 - R$
 $R = 2773.89$ N. Choice (B)
15. Applying impulse momentum equation,
 $F \times t = m(v_{2} - v_{1})$

3.8 | Engineering Mechanics Test 1

 $\therefore -2724.84 \times t = 5(0 - 31.32)$ $t = 17.4 \text{ sec.} \qquad \text{Choice (C)}$ **16.** $\theta = 6t^2 + 3t + 10$ Angular velocity $\omega = \frac{d\theta}{dt} = 12t + 3$ when t = 10 $\omega = 12 \times 10 + 3 = 123 \text{ rad/s}$ Angular acceleration $\alpha = \frac{d\omega}{dt} = 12 \text{ rad/s}^2.$ Choice (A)

17.

$$R_{\max} = \frac{u^2}{g(1 + \sin\beta)}$$

$$190 = \frac{50^2}{9.81(1 + \sin\beta)}$$

sin $\beta = 0.3413$
 $\beta = 19.95^\circ \text{ or } 20^\circ.$ Choice (A)

18. $\beta = 19.95^{\circ} = 0.3482$ radian

$$\frac{1}{2}\left(\frac{\pi}{2}-\beta\right) = \alpha - \beta$$
$$\frac{1}{2}\left(\frac{\pi}{2}-0.3482\right) = \alpha - 0.3482$$
$$\alpha = 0.9595 \text{ radian} = 54.98 \text{ or } 55^{\circ}.$$
 Choice (D)

19. Time taken is given by

$$t = \frac{2u \sin \alpha}{g} = \frac{2 \times 50 \times \sin 30}{9.81}$$

= 5.097 sec or 5.1 sec . Choice (D)

20. Horizontal range

= Horizontal velocity × time of flight = $(u \cos \alpha) \times t$ = 50 cos 30 × 5.097 = 220. 7 m. Choice (A)

21. Let mass of block *B* be
$$m_1$$
 and block *A* be m_2

$$m_{1}g - T = m_{1}a$$

$$T - \mu m_{2}g = m_{2}a$$

$$\therefore \quad a = g \frac{(m_{1} - \mu m_{2})}{(m_{1} + m_{2})}$$

$$T = \frac{m_{1}m_{2}g(1 + \mu)}{m_{1} + m_{2}}$$

$$T = \frac{5 \times 10 \times 9.81(1 + 0.25)}{5 + 10} = 40.88 \text{ N. Choice (D)}$$

22.
$$a = \frac{g(m_1 - \mu m_2)}{m_1 + m_2}$$

 $a = \frac{9.81(5 - 0.25 \times 10)}{5 + 10} = 1.635 \text{ m/s}^2.$ Choice (B)

Choice (C)

$$v = 1.81$$
 m/s.
24. $\theta = 18 t + 3t^2 - 2t^3$
Angular velocity

2

$$\omega = \frac{d\theta}{dt} = 18 + 6t - 6t^2$$

23. $v^2 = u^2 + 2as = 0 + 2 \times 1.635 \times 1$

Angular acceleration

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = 6 - 12t$$

When $t = 2$
 $\alpha = 6 - 12 \times 2 = -18 \text{ rad/s}^2$. Choice (D)
25. Angular velocity is maximum when
 $\frac{d\omega}{dt} = 0$

i.e.,
$$6 - 12 t = 0$$
 or $t = 0.5$ sec
Maximum angular velocity
 $= 18 + 6 \times 0.5 - 6 \times (0.5)^2 = 19.5$ rad/s. Choice (B)