PART THREE

ELECTRODYNAMICS

3.1 CONSTANT ELECTRIC FIELD IN VACUUM

2 2
3.1 F, (for electomns) = ——q—-—-z and F, = ——";—-

4REyr r
Fq
Thus 7 (for clectrons) =
P dne,ym

-19 2
. (1602 x 10~ C) . ax10®

(9 :109) x 6-67x 107" m* [ (kg - s%) x (911 x 10~ * kg’

. Fy 7
Similarly - (for proton) = m
o 0

. -19 (2
. (1-602x 10" C) - 1x10%
( 9] x 667 x 10" M m*/(kg - Y x (1672 x 10 ¥ kg)?

9x10

2
L __m e Lo Vaney
4n£or2 r m

-1
- Ves7x10 m(g=5) | gg610- 2 C/kg
9x10

3.2 Total number of atoms in the sphere of mass 1 gm = rZ 5 a5 " 6023 x 10%

6023 x 10
63-54
Now the charge on the sphere = Total nuclear charge — Total electronic charge

So the total nuclear charge A = x 16 x 107 x 29
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a3

34

6023 x 102 s 29x1 2
- eysq X 16x107PxZes = 4298 x10°C

Hence force of interaction between these two spheres,
1 [4398 x 10

2 .
10} N- 9x10°x10°x 19348 N = 174 x 10N
dme, 1

F-

Let the balls be deviated by an angle B, from the vertical when separtion between them
equals x.

Applying Newton’s second law of metion for any one of the sphere, we get,

TcosD=mg {1)
and Tsinf= F, (2)
From the Eqgs. (1) and (2)
F, |
tan @ = — (3)
But from the figure |
]
tanB-———x—-%asx-«I {4) !
!
2_(% i
2V p: : Fe
From Egs. (3) and (4) X ’l
F o= mgx or q2 . mgx mg.
c A dne,r 2
2xe,mgx’
Thus 7= —"ng- )

Differentiating Eqn. (5) with respect to time

2 e, m,
dq _-TEME . adx
29% 3%

According to the problem % = v = a/Vx (approach velocity is % )

12
so, (2"30m8x3) dg _ Suiomgsz
x

l dr Vx
‘/25
Hence, % - % a —EIO"E

Let us choose coordinate axes as shown in the
figure and fix three charges, q,, g, and g,

. 1ok - =P -
having position vectors r;, r, and ry
respectively.

Now, for the equilibrium of ¢,
—> - . —» —»
+q @3 (r-r3) g193(r-13)
= —;3 - =3
{ry-rsi fry-rsl

0
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q q
or, —= 2 = —» 2
fry-rsl tﬁ""s'
g — —
n-rn rh—n
because 5w -
[ry-rsl bry = rsl
or, Vo, (F-7) = Vg, (75-7)
or . V‘12F;+V¢11;;
¥ 3
Vf11+‘/32-

Also for the equilibrium of g,,

0 (3-11) a(r-1)

3t 3
|73=71] |ry =7yl

=0

-,

2
|71 75
jry=r|

or, =

Substituting the value of 7, we get,

~ 414

BT Vg Vg P

‘When the charge g, is placed at the centre of

the ring, the wire get stretched and the extra
tension, produced in the wire, will balance the
electric force due to the charge g, Let the

tension produced in the wire, after placing the
charge gy, be T. From Newton’s second law

in projection form F, = mw,,

Tdo - —L @(—‘ere)-(dm)o,

4mey p2 (207
94,
or, T ———
8 £, r
Sought field strength
Fe 1 9
dme, |7 ;0'|2

=45 kV/m on putting the values.

et vs fix the coordinate system by taking the point of intersection of the diagonals as

the origin and let k'be dirccted normally, emerging from the plane of figure.
Hence the sought field strength :
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E=—1 lis xk_ -q I(=i)+xk .
= 4:;50 (12+x2)3/2+ 4:1;80 (12+x2)3/2 +q(l,00) 'Hl y
P+xk (01,0)
g _lj+xk g l=j)sxk
4“50W dmey (124592 N 0

-1 piilag)
PETSEIEXZiiy il

—q (1,00)
al (0-1,0) -4 »
V2 me, (124 2)?

Thus E =

3.8 From the symmetry of the problem the sougbt field.

E=dex

where the projection of field strength along
x — axis due to an elemental charge is

dgcos® gRcos8d6
43'::50R2 43’12290R3

n'l

E= fcosGdB s
4?: g R :czeoR

3.9 From the symmetry of the condition, it is clear that, the field along the normal will be

dE, =

Hence

ZCro
ie. E,=0and E= E;
_dq
Now dE, = 75 -Cos B
4ne,(R°+17)
But dg = 2 4x and cos 0= _
Hence dy
2aR
dx A
- [ak- f fi
T ZaR qme,®P417)7 [ R
1 l z
= q iy
ork - dney (1Z+R2Y? 1 Z —“‘*\@.
and for [>> R, the ring behaves like a point >
charge, reducing the field to the value, 'dE
1 g

4neg, 17
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For E . we should have %; 0
SO,(12+32)3’2-%1(1%32)1’221- 0 or I?+R?>-31*=0

R q
Thus I= ——=and E,__ =
V2 max 6;3 EEORz

3.10 The etectric potential at a distance x from the given ring is given by,

g g
dmegx  4ae, (R2+x7)'7?

Hence, the field strength along x-axis (which is the net field strength in ‘our case),

P {(x} =

Fae_%_ g9 1_ qx
¥ oodx dAmegx? dmey (RA+x7)7
R*Y32
q 3 (1+—2'] -1
dme, * *
X R+ Y
2 4
q 3R 3R
ane 1+2x2+8x4+...]
) LR+ 27
Neglecting the higher power of R/x, as x>>R.
2
E-= ._31_@._4.
8meyx

Noie : Instead of ¢ (x), we may write E (x) directly using 3.9

3.11 From the solution of 3.9, the clectric field strength due to ring at & point on its axis (say
x-axis) at distance x from the centre of the ring is given by :
qx
E(x)=
4me, (R 24 :cz)?'/2
—
And from symmetry £ at every point on the axis is directed along the x-axis (Fig.}).
Let us consider an element (<x) on thread which
carries the charge (A dx). The electric force
experienced by the element in the field of ring.

Agrdx

dF = AdX)E{X)= ————————

(R} £ (x) 4::80(R2+x2)3/2
Thus the sought interaction R >0

0 .
o | raxa s —
4me, (R2+x2)3/2 dx
0
M

On integrating we get, F = dne R
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3.12 (a) The given charge distribution is shown in Fig. The symmetry of this distribution

i
implies that vector E at the point O is directed to the right, and its magnitude is equal to
— —
the sum of the projection onto the direction of E of vectors dE from elementary charges
-— —
dq. The projection of vector dE onto vector E is

-1 dq
T dmey R?

where dg= ARdp= A, Rcospdq.

dE cos ¢ COs @,

Integrating (1) over ¢ between 0 and 2z we
find the magnitude of the vector E:
2n

o f 2 hy
E= ! = ——
4mey R cos“@d g 4e,R
0
It should be noted that this integral is evaluated
in the most simple way if we take into account

that <cos” @>=1/2. Then
Ix

fooschdqp- <coszq;>2:|:- 4
0

(b) Take an element .S at an azimuthal angle @ from the x-axis, the element subtending

an angle d @ at the centre.

The elementary field at P due to the element is
cos pd R

L‘—z"——z" along SP with components

dme, (x*+R°)

hocospdo R

———— x {cos 9 along OP,sin 0 along OS
4nsn(x2+R2) { & & )

x
where cos B =
(x2 +R2 )1/1
2x

The component along OP vanishes on integration asf cospde=10

0
The component alon OS can be broken into the parts along OX and QY with

MRIcospdy )
e 2R )3/2 x { cos ¢ along OX, sin¢ along OY }
On integration, the part along OY vanishes.
Finally
R’ :R —>
For x >> R E=E.- 430(x2+R2)3/2 . Z

S
¢ 0

E, = -mp——? where p= hqnuR?2 x©
dme,x
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313 (a) It is clear from symmetry considerations that vecior E must be directed as shown in
the figure. This shows the way of solving this problem : we must find the component
dE,_ of the field created by the element di of the rod, baving the charge dg and then

integrate the result over all the elements of the rod. In this case

dE, = dEcos o= ——cos a,

1
dme, p2

whereh = éq; is the linear charge density. Let us reduce this equation of the form convenient

for integration. Figure shows that dicosa= ryda and ry= ;
C

Consequently,
hrgda
dE, = 1 Z2hf2_ _*
ey rp dme,r

cos ood o

dl

I

This expression can be easily integrated

%
E= A 2fc0sada- A 2sinq '
dreyr dneyr [
0

where o is the maximum value of the angle o,

sin a, = a/Va2 P
q/2a a q

2 =
dmegr Valer? dmegrVa?, 2

Note that in this case also E ___9’___3 for r>>a as of the field of a point charge.

Thus, E=

dneyr
{b) Let, us consider the element of length df at a distance / from the centre of the rod,
as shown in the figure. dal
Then field at B due to this element. L 1 T — = >
hdl z P
-— S
4x Ey (r - I) IIJT 2 ‘;'I
if the element lies on the side, shown in the
diagram, and dE = Adl , if it lies on
dne,(r+)
other side.
1
Hence E-de-f hdl 2+f hd 3
dmey(r-1) dne,(r+1)
0 0

: H 1 - _q_. - '-“"‘——1 =
On integrating and putting A 2 Ve get, E ——‘1-—~4 e 02 a0y

q

For r>>a, FE
- 4::507
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-
3.14 The problem is reduced to finding £, and E, viz. the projections of £ in Fig, where it is

3.15

assumed that A > Q.
Let us start with E_. The contribution to E, from the charge element of the segment dx is
1 Ade
dE_=
¥ 4mey 2
Let us reduce this expression to the form convenient for integration. In our case,
dx = rdo/cos o, r= y/cosa. Then

sin o 1)

sin a d a.

T 4me,y

Integrating this expression over o between
@ and ®/2, we find

E = Madmeyy.
In order to find the projection E, it is
sufficient to recall that dE, differs from dE,
in that sina in (1) is simply replaced
by cos a.

This gives
dE, = (hcosada)/dne,y and E = h/dme,y.

We have obtained an interesting result :
E, = E, independently of y,

ie. E is oriented at the angle of 45° to the rod. The modulus of Eis

E= VE3+Ey2 = K\/E/4n£0y.
(a) Using the solution of 3.14, the net electric field strength at the point O due to straight

parts of the thread equals zero. For the curved part (arc) let us derive a general expression
i.e. let us calculate the ficld strength at the centre of arc of radins R and lincar charge

density & and which subtends angle 8 at the centre.
From the symmetry the sought field strength

al

will be directed along the bisector of the angle
0, and is given by ,
+8/2 ae

E=fMR—de)2COSB= A sin —~ ‘
4 E'OR ZJ'I:EUR 2
-0,2
In our problem 8, = #/2, thus the field strength -
due to the turned part at the poini ", E
2 A

E, = \/_— which is also the sought result. e

4rmegR

(b) Using the solution of 3.14 (a), net field strength at O due to stright parts equals

V2 V2 h = A and is directed vertically down. Now using the solution of 3.15
dme, R 2meyR
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(a), field strength due to the given curved part (semi-circle) at the point O becomes

Znt R and is directed vertically upward. Hence the sought net field strengh becomes
0

Zero.

Given charge distribution on the surface g = a7 is shown in the figure. Symmetry of

this distribution implies that the sought £ at the centre O of the spherc is opposite to a

dg=0xrsin6)rdo= (- F')an sin0d0=2nxar sin 0 cos 0d0

Agam from symmctty, field strength due to any ring element dE is also opposite to

a’ie. dE 1} a. Hence

o dgrcosB Sy
dE = —(Using the resuit of 3.9
4mE, (3"2 sin? 0 + 1% cos® 9)3/2 a & )

(2rarsinBcos0dB)rcosd (~a)
49‘:801'3 a

ar
sin 0 cos>d 0
2¢g,

Y

Thus

n
E’-de’- CODr [ nocostado
280
0

— —s
Integrating, we get E= _ar2z__ar
grating, we g 2¢e, 3 3¢,

We start from two charged spherical balls cach of radius R with equal and opposite charge

densities + p and - p. The centre of the balls are at + -g- and- 2 > respectively so the

) ) — g a a e
equation of their surfaces are |7 - 3l = Ror r- EcosB- Rand r + ECDSB. R, considering

a to be small. The distance between the two surfaces in the radial direction at angle 0 is
| acos® | and does not depend on the azimuthal angle. It is seen from the diagram that
the surface of the sphere has in effect a surface density o = oy cosd when

= pa.

Inside any uniformly charged spherical ball, the field is radial and has the magnitude given
by Gauss’s theorm

4m’E - 3 p/ €9

E =P

or
3e,

In vector notation, using the fact the V must
be measured from the centre of the ball, we
get, for the present case
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3.18

3.19

3.20

- g
=—pa/3g, = 5;52-?

]

When kis the unit vector along the polar axis from which 8 is measured.

Let us consider an elemental spherical shell of thickness dr. Thus surface charge density
of the shell 6= pdr= (a-7 ) dr.
Thus using the solution of 3.16, field strength due to this sperical sheil
d[:—j, = - -;—Er—dr
0
Hence the sought field strength

R
—» a 2
E= —-_a frdr‘—‘m-
3¢, 6gg
0

From the solution of 3.14 field strength at a perpendicular distance r < R from its left end

A rad A
4Jt£0r(_l) (e)

El
(r)= +4:rteor

A
Here e, is a unit vector along radial direction.

Let us consider an elemental surface, dS = dydz= dz(rd6) a figure. Thus

o —g
flux of E (r) over the element dS is given by

—» — — A A L
= . = - A de
dd=FE-dS [4n£0r( 1)+4nsor(er)] dr(rdo)i
—» e 6 -
- drdG(ase,J.:) LAY
4 ey |
R oo
The sought flux, ® = - Lt fdrfde= _2“-5-_
4me, 2 g,
0 0
= - AR
If we have taken dS 11 (-7 ), then @ were e
0
AR pa
Hence I¢I=§—é;

Let us consider an elemental surface area as shown in the figure. Then flux of the vector

E through the elemental area,
d®<E-dS= EdS= 2E, cospdS (as E 11dS)

2q ! 2ql r dr 40
- d0)dr=
4n80(12+r2)(12+r2)1/2(r )dr PP ILICE
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where E, = is magnitude of

dmey(I*+1r%)
field strength due to any point charge at the

point of location of considered elemental area.
R 2x

B 2qlf rdr f
Thus @ = dne, (r2+1’2)3/2 o
0

0
R

_2qlx2:tf rdr -4l i

TN (FP+ 1572 g V2, R?
o

It can also be solved by considering a ring element or by using solid angle.

Let us consider a ring element of radius x and thickness dx, as shown in the figure. Now,
flux over the considered element,

- —
d®=FE-dS=E dScos8

But E = PP from Gauss’s theorem,
3g,

r
and dS=2mxdr, cosO= TU

r r
Thus d¢-—£2ﬂxdx—0=p—°—2:txdx
e, ro 3g
Hence sought flux
2_ 2
R =ry .
Zﬂprﬂf 2nprg(R°-ry) mpry . o
3g, o 3g, 2 35, & -70)

0

A
2me, (7 +17/4)

The field at P due to the threads at A and B are both of magnitude

172

and directed along AP and BP. The resultant is along OF with
_ 2Acos 6 Ax
2 mey( ARl L £y (o +17/4)

A

1 !
neg | x4 =2-——Vx +1

A

mf,“«;-zj/;)z H}

This is maximum when x = /2 and then E= £ =

A

eyl
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3.23 Take a section of the cylinder perpendicular to its axis through the point where the electric

3.24

3.25

field is to be calculated. (All points on the axis are equivalent.) Consider an element §
with azimuthal angle . The length of the element is Rdg, R being the radius of cross
section of the cylinder. The element itself is a section of an infinite strip. The electric field
at @ due to this strip is

a
coeosy Rdg) Rdg
2meyR along y' R
This can be resolved into 0 @ x
ogcos pd @ cos @ along OX towards O >
2meg sin @ along YO SO
On integration the component along YO dE
vanishes, What remains is

2

2

gy cos” @ d g

TR VR_ % along XO i.e. along the direction ¢ = n.
2me, 2g,

0

Since the field is axisymmetric (as the field -
f % oy theirped Diamen), we condlude
that the flux through the sphere of radius R is
equal to the flux through the lateral surface of
a cylinder having the same radius and the height
& R

2R, as arranged in the figure.

— —
Now, ¢-§ E-dS=E,S

But E =

Thus &= %S= %ZnR-ZRs dmaR

(a) Let us consider a sphere of radius » < R then charge, inclosed by the considered sphere,

r r
2 2 r
‘h,.c.'md=f4ﬂr drp=f4rzr po(l—R)dr 1
0 0
Now, applying Gauss’ theorem,
Ed4nr= M, (where E_ is the projection of electric field along the radial line.)
¥ ED r

p 37
or, E-—O[i;——]
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And for a point. outside the sphere » > R.
R

9, et ™ f dmr drpg (1 - I;—](as there is no charge outside the ball)
o
Again from Gauss’ theorem,

R
r
4n:r2drp0(l"§)
E,4ﬂ:r2=
€g
0
bo [R R'] PR
or, Er= — I\ T35l ==
rre |3 4R 12r%¢

{b) As-magnitude of electric field decreases with increasing r for r> R, field will be
maximum for r < R. Now, for E, to be maximum,

d 37 3r 2R
a'r(r_4R)=O or 1--“-:5=0 or r=r,=

_ PR

HCI\Oﬁ Emu—-g—sz]—

Let the charge carried by the sphere be g, then using Gauss’ theorem for a spherical surface
having radius r > R, we can write.

r

Edxr= Ginclosed _ -i+—1—fg4nr2dr
€y tg Egdd T

On integrating we get,

-2naRYd 4nar
E4dnr= g ) +
£ 2,
The intensity £ does not depend on » when
the experession in the parentheses is equal to

zero. Hence

2 a
q= 2AaR and E= 2_80
Let us consider a spherical layer of radius r and thickness dr, having its centre coinciding
with the centre of the system. Then using Gauss’ theorem for this surface,
r
qim:m
Fanys Gt 22V

€ Eg
0

;
3
- -—1~f ppe  anmrtdr
€~
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3.28

3.29

After integration

Er4nr2= m[l—e'“”]
Jga

Po -ar
or, = ——[1-¢
380!’2[ ]
r
Now when ar3<<1, E m Bo”
. 3¢,
Po

And when (x.r3>>1, E = ¥
Jgpar

Using Gauss theorem we can easily show that the electric field strength within a uniformly
charged sphere is £ = ( )r
3g

The cavity, in our problem, may be considered
as the superposition of two balls, one with the
charge density p and the other with - p.

Let P be a point inside the cavity such that its
position vector with respect to the centre of
cavity be 7. and with respect to the centre of
the ball r,. Then from the principle of

superposition, field inside the cavity, at an

arbitrary point P,

—

E-E +E.
P P
350(r+ r-) 3£°a

—
Note : Obtained expression for E shows that it is valid regardless of the ratio between
the radii of the sphere and the distance between their cenires.

Let us consider a cylinderical Gaussian surface of radius r and beight /i inside an infinitely
long charged cylinder with charge density p. Now from Gauss theorem :

El2nrh= Tinclosed .
£o
(where E, is the field inside the cylinder at a <T>

distance r from its axis.) P 1
2 Y

RIF

or, E,,il:rnrh=P—j£r—E or E = i ?IL\%

€, 2¢g, - %
I

Now, using the method of 3.28 field at a point
P, inside the cavity, is

B+ P (omy. g '
E=E +E = 280(r+ rl) 2£0a -

1—-1’—~a1

/)
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3.31

332

281

The arrangement of the rings are as shown in the figure. Now, potential at the point 1,
¢, = potential at 1 due to the ring 1 + potential at 1 due to the ring 2.

-, -q
dmeg R ame,(R®+aD)Y?
Similarly, the potential at point 2,
- 3 %
@, = q q
2 4"50R 4me, (R*+a)"? R a R
Hence, the sought potential difference, 1‘ 2

g9 ., -4
4megR  4mey (R®+ a5

G- = Ap =2

q 1

= 1 —_
27e R
% V1+ @Ry

We know from Gauss theorem that the electric field due 1o an infinietly long straight wire,

at a perpendicular distance r from it equals, E_= So, the work done is

2:'1:80!'

E dr=

(where x is perpendicular distance from the thread by which point 1 is removed from it.)
A
2ne,
Let us consider a ring element as shown in the figure. Then the charge, carried by the

clement, dg= (ZxRsin6)Rd0 g,
Hence, the potential due to the considered element at the centre of the hemisphere,

1 g’q_ 2:\:0Rsin9d6 oR sin6d6
4rxe, R dne, 280 1'-16{

Hence A= Inm
0

dp=
So potential due to the whole hemisphere

p= --—-fm 0do= 2—0

Now [rom the symmetry ‘of the probiem, net

electric field of the hemisphere is directed Y o
towards the negative y—axis. We have
dE, = —— 9958 9 ;6005040 0 R x
Y 4mey, R 2,
~2 w2

o a o
= U i = — i = — YO
Thus E = E, 26 f sinBcos 040 de, f sin20d40 dey’ along
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3.33 Letus consider an elementary ring of thickness “dy,

e R )

dy and radius y as shown in the figure. Then

potential at a peint P, at distance [ from the ! [ D Z
centre of the disc, is ! h T 3
o2nydy W et ! »P
dop= \ !
? 43'580()’21-12)1/2 ) /"
Hence potential due to the whole disc,
R
(p_f 02:rtydym ol (1/1 (R/1)* )
dne, (P +1%) 2¢,
From symmetry
-E - %2
E=E il
oo 2 ). eof 1
2% e 2 =2€o _..‘/
2VR +! 1+ (R/[)z
when [ =0, pm ﬂ, E= =2 and when I>>R,
2g, 2g,
¢ o R? o R*
degl’ T 4gyl”
By definition, the potential in the case of a surface charge distnbution is defined by integral

P = f —— In order to simplify integration, we shall choose the area element dS

e,
in the form of a part of the ring of radius r and width dr in (Fig.). Then dS = 20 rdr,
r= 2R cos O and dr= — 2R sin 0 4 0. After substituting these expressions into integral

Q= —1——‘[(—’;@ we obtain the expression for ¢ at the point O:

4me,
0
G dr
= 8 «

') n:sof sin 6 d 6. -
/

We integrate by parts,

derioting O = u and sin0 40 = dv: /

fosin0d6= ~0cos B 0 0

+fcosGdB=—BcosB+sin9 o

which gives -1 after substituting the limits of
integration. As a result, we obtain

¢ = aR/n e,
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3.35 In accordance with the problem ¢ =
Thus from the equation : E= - '?tp

= d el — g T —
E=- -a:(a,x)t+3;(ayy);+5:(azz)q= -l itaj+ k)= -a

336 (a) Given, o= a - yi).

= T
So, E=-Vp=-2a(xi-yj)
The sought shape of field lines is as shown in the figure (a) of answersheet assuming
a>0:
{b) Since ¢ = axy - . - -
So, =-Vop= —gyi-axj

Plot as shown in the figure (b) of answersheet.

337 Given, 9= a(x* + yz) + b7

— —» — e -—p

So, E= -Vp=-[2axi+2ayj+2bzk]
- 2

Hence |E|= 2 @ (F+y)) + b7

Shape of the equipotential surface :

P — - 2 2 2

ut p=Xt+y} or p =x"+Yy

Then the equipotential surface has the equation

a p2 +b 7 = constant = P
If a>0, b>0 then ¢ >0 and the equation of the equipotential surface is

which is an ellipse in p, z coordinates. In three dimensions the surface is an ellipsoid of
revolution with semi- axis Vo/a , Yo/a , Vo/b.

Ifa>0, b<0 then ¢ can be 20. If ¢ > 0 then the equation is

£z
p/a  @/|b]

This is a single cavity hyperboloid of revolution about z axis. If ¢ = 0 then
ap’ - jp| 2= 0

or Zm t'\/i p
lb|

is the equation of a right circular cone.
If @ <0 then the equation can be written as

bl - a p* = [gl
2
2 o
lol /16l lel /a
This is a two cavity hyperboloid of revolution about z-axis.

or
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3.38 From Gauss’ theorem intensity at a point, inside the sphere at a distance r from the centre

q

.. pr TN
b - _— = .
is given by, E, 3eg and ouiside it, is given by E, ol

(a) Potential at the centre of the sphere,

%"f E-d?’;f-j‘%-dr+ F—q—drs—& +—1
o
0

4n80,2 3¢ 2 4:rsDR
R
.9 q _ _3q __3q
as SnsoR+4n50R 8meyR (asp 4,;R3)

{b) Now, potential at any point, inside the sphere, at a distance r from it s centre.

L, _q dr
)= f 4n€o 2

. . 3q 2]
On integration : ¢ (¥) = 1-
gr ‘P() SJ'[EOR [ 3RJ [ 3R2

3.39 Let two charges +g and -q be separated by a distance I Then electric potential at a point

at distance r > > ! from this dipole,

o= —94 1 . 49 (r_—r;]' 1)

dneyr, 4mer. 4mg,

But r_-r+-lt3059imdr+r'_n|rr2 én
From Eqgs. (1) and (2),
glcos® pcos® —— p-r

r= 2
v 4n£0r2 éljrteorI 41!801’3 +
where p is magnitude of eleciric moment vector.
Now, E = %9, Zpcos® cosg T
o  dnmeyr !
dp psinf l
and E,= - =
rd0  dmeyr -9
So EZ-H':"2 —‘L 4 cos® 0 +sin’ 6
4 '50
3.40 From the results, obtained in the previous problem,
2pcosB psin B
E =-""——and E;=
T 4Ameyr ®" 4n €g 7

From the given figure, it is clear that,

E,= E, cos 0 - Eesmﬁs—P—(Bcos 0-1)
J'IISDI'
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and EJ_-Esin9+Eucose=3is_]_nﬁ’gs_B
4meyr
When EJ'P lE!'E and E, = 0
1
S 3cos’B=1 and cos 8= —=
V3

.
Thus E| P at the points located on the lateral surface of the cone, having its axis, coinciding
wilh the direction of z-axis and semi vertex angle 8= cos ™11/ V3,

Let us assume that the dipole is at the centre of the one equipotential surface which is

spherical (Fig.). On an equipotential surface the net electric field strength along the tangent
of it becomes zero. Thus

P sin O

—E;sinQ+Ey=0 or -E,sinB+
4n£0r

173

Hence r= (—P—)

dneyE,
Alternate : Potential at the point, near the dipole is given by,

P= —L E0 7% constant,
41:60 /\

(—P— E, ] cos 0 + Const

4:rt£0r
For ¢ to be constant, £ / t \. E'r'

—Ff __E,=00, £ _<E,

FETN 47:50r3-
173
Thus r (—L—4u80E0)
Let P be a point, at distace rfland at an anglg to 8 the vector [ (Fig.).
=L ~ L
g A 2 A 2
Thus EatPnsZJ“_:0 _.[_'2_2“50-_. T
r+5 r—‘z—l P
—_ T —_ T
A r+i/2 r-1/2
2ne 2 N 2 o
0 r2+£—+rlcos6 r2+l— ricos® n
. r— I'T.oose -7 0 \"6
BT I A . |B
A —A
Hence E= |E|= 5, r>>1
2me,r
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3.43

3.4

A —_ T A P ]
Also, = Tne, 1n|r+l/2]-2x€oln|r-—l/2]

A, Parlcos®+FP/4 Nicos@

= n - ’r)>l
Axey, P _rlcos0+1%/4 2meyr

The potential can be calculated by superposition. Choose the plane of the upper ring as
x = 1/2 and that of the lower ring as x = - I/2.

. q _ q
dmeg[RP+ (- 172717 dney[R+(x+1/27 1"

Then P

. q _ q
Anme [RP+x° -] dme [RP+X + ]2
- 92 14— - g 1-—E&
dneg(RP+A?| 282+ dne,R2+A)V| 2R +5H
4neo(R1+?)3:7

For |x|>>R, pm 4—q—ij
n

The electric field is £ = — %;R

_ gl W3 gl e ql(2x*-RY
4ne, R +xY” 2R+ ) dne, dme, (RE+x*

For jx|>>R, Em —?ij— The plot is as given in the book.
2meyx
The field of a pair of oppositely charged sheets with holes can by superposition be reduced
to that of a pair of unifosm opposite charged sheets and discs with opposite charges. Now
the charged sheets do not contribute any field outside them. Thus using the result of the
previous problem
R

pe (- 2nrdrx
4meg (J"2 -c-,vcz)?'/2
0

2 2
R +x

- sw_ﬂf_c_fx oxl .
fo 2 y 2g, VR 4+ 4* te

1 X . ___OIR
.2 B4 260 (R + x°)%
R+x 0

The plot is as shown in the answersheet.

E = 99 ol

=T T —220
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345 For x>0 we can use the result as given above and write

pm s 2L 14
2 E'O (R2 +12)1/2
for the solution that vanishes at a. Therc is a discontinuity in potential for | x| = 0. The
solution for negative x is obtained by o — — o. Thus

ol

—————— + constant
2e,(R+ 1:2)1/2

w -
Hence ignoring the jump
¥ _ ol R?

o 2e, (R* + x4

for large ] pm~= —L and E = —L— (where p= xR o))

dmey 2me,|x
A OF
—»
3.“ - = L - —_—
Here E, erur’Ea E,=0 and F Py

(a) p’along the thread.
—
E does not change as the point of observation is moved along the thread.
F=10
— —
(b) p along r,
—»

F=F ¢ =— e = — On using —e, = 0
T 2meyrt T 2mey s & ar )

(c) palong &;

P de, ph DA
"‘_‘A"Iz = 7€ ™= 7

nEyT a0 2reyr 2aeyr

3.47 Force on a dipole of moment p is given b);:

oE
F= IQJE;

In our problem, field, due to a dipole at a distance I, where a dipole is placed,

348 -dg= E-d= al{yde+xdy) = ad(xy)
On integrating, p=—-axy+C
39 _dg=E-dF= [2axyi+2( -] ] [dxivdyj}
ot, dyps= 2axydx+a(x2-—y2)dy-ad(_xgy)—ayzdy



288

On integrating, we get,
2
¢= ay(%-—xz]-n-c
3.50 Given, again
- — — —_ —n — —
—do=E-dr= (ayi+(ax+b2)j+byk) - (dei+dyj+dxk)
=a(yde+axdy)+b(zdy+ydz)= ad (xy} + bd (yz)
On integrating,

p=~flaxy+by)+C
3.51 Field intensity along x-axis.

Ex-—-g%-liaxz (1)
Then using Gauss’s theorem in differential from
aEx P (xl
ro % so, p(x) = 6aeyx.
3.52 In the space between the plates we have the Poisson equation
Fo_ P
ax g
or, Q= —&x2+Ax+B
2¢g,
where p, is the constant space charge density between the plates.
We can choose 9(0)=0s0 8=10
Po & Ap Po d
Then (P(d)uA(p-Ad—Téo— or, A—“'aﬂ'.'i"g;
Now Es—a—q)s ﬂx-—A-O for x= 0
dx g
d
if A=22,0%
d 2¢
2g,A
then Po= - ;2 e
d
Also E{d)= pu—.
&g
3.53 Field intensity is along radial line and is
d
Er-—fs -2ar (1)
From the Gauss’ theorem,
anrt E, = f Qq_
Eq,

where dg is the charge contained between the sphere of radii r and r + dr.
r
Hence 47 rzEr =dnr x (-2ar) = i—n fr’z p(rydr @
09

Differentiating (2) p= -6¢54



