Trigonometry

Exercise - 8.1

Solution 1:

$$\begin{array}{l} \text{sinX} = \frac{\text{opposite side of the angle X}}{\text{hypotenuse}} = \frac{\text{YZ}}{\text{ZX}} \\ \\ \text{cosX} = \frac{\text{adjacent side of the angle X}}{\text{hypotenuse}} = \frac{\text{XY}}{\text{ZX}} \\ \\ \text{tanX} = \frac{\text{opposite side of the angle X}}{\text{adjacent side of the angle X}} = \frac{\text{YZ}}{\text{XY}} \\ \\ \text{cotX} = \frac{\text{adjacent side of the angle X}}{\text{opposite side of the angle X}} = \frac{\text{XY}}{\text{YZ}} \\ \\ \text{secX} = \frac{\text{hypotenuse}}{\text{adjacent side of the angle X}} = \frac{\text{ZX}}{\text{XY}} \\ \\ \text{cosecX} = \frac{\text{hypotenuse}}{\text{opposite side of the angle X}} = \frac{\text{ZX}}{\text{XY}} \\ \\ \text{Similarly, for angle Z,} \\ \\ \text{sinZ} = \frac{\text{XY}}{\text{ZX}}; \ \text{cosZ} = \frac{\text{YZ}}{\text{ZX}}; \ \text{tanZ} = \frac{\text{XY}}{\text{YZ}}; \ \text{cotZ} = \frac{\text{YZ}}{\text{XY}}; \\ \\ \text{secZ} = \frac{\text{ZX}}{\text{YZ}}; \ \text{cosecZ} = \frac{\text{ZX}}{\text{XY}}. \\ \\ \end{array}$$

Solution 2:

In
$$\triangle ABC$$
, $m \angle B = 90^{\circ}$, $\angle ACB = x$.
 $\angle BAC = 90 - x$.
In $\triangle ADC$, $m \angle D = 90^{\circ}$, $\angle ACD = y$.
 $\therefore m \angle DAC = 90^{\circ} - y$.
 $\tan x = \frac{AB}{BC}$;
 $\cot(90^{\circ} - y) = \cot \angle DAC = \frac{AD}{DC}$;
 $\sec y = \frac{AC}{CD}$;
 $\sin(90^{\circ} - x) = \frac{BC}{AC}$;
 $\cos(90^{\circ} - y) = \csc \angle BAC = \frac{AC}{DC}$;
 $\cos(90^{\circ} - x) = \cos \angle BAC = \frac{AB}{AC}$.

Solution 3:

In Δ LMT, m \angle T = 90° and m \angle M = 50°.

:. m∠MLT = 40°.

ML is the hypotenuse.

In \triangle LNT, m \angle T = 90°, m \angle TLN = 30°.

: m∠N = 60°.

LN is the hypotenuse.

$$tan50^{\circ} = \frac{LT}{MT}; \ sec40^{\circ} = \frac{LM}{LT}; \ sin50^{\circ} = \frac{LT}{LM};$$

$$cos60^{\circ} = \frac{TN}{LN}; \ cos60^{\circ} = \frac{TN}{LT}; \ cosec \ 40^{\circ} = \frac{LM}{MT};$$

$$cos30^{\circ} = \frac{LT}{LN}.$$

Solution 4:

ΔUVW is a right angled triangle.

.. By Pythagoras' Theorem,

$$UW^2 = UV^2 + VW^2$$

$$(8)^2 = (6)^2 + VW^2$$

$$: VW^2 = (8)^2 - (6)^2 = 64 - 36 = 28$$

$$\sin W = \frac{UV}{UW} = \frac{6}{8} = \frac{3}{4}$$

$$\cos W = \frac{VW}{UW} = \frac{2\sqrt{7}}{8} = \frac{\sqrt{7}}{4}$$

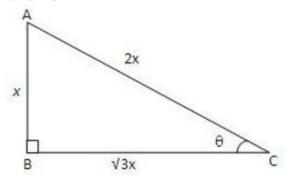
$$\tan W = \frac{UV}{VW} = \frac{6}{2\sqrt{7}} = \frac{3}{\sqrt{7}}$$

$$\cot W = \frac{VW}{UV} = \frac{2\sqrt{7}}{6} = \frac{\sqrt{7}}{3}$$

$$\sec W = \frac{UW}{VW} = \frac{8}{2\sqrt{7}} = \frac{4}{\sqrt{7}}$$

$$cosec W = \frac{UW}{UV} = \frac{8}{6} = \frac{4}{3}$$

Solution 5:



In the figure, AABC,

$$m\angle B = 90^{\circ}, \angle C = \theta$$

$$\cos\theta = \frac{\sqrt{3}}{2}$$

...(Given)

From the figure, $\cos \theta = \frac{BC}{AC}$.

∴ BC= $\sqrt{3}$ x and AC = 2x(x is a constant, x > 0)

In the right angled ΔABC, by Pythagoras' Theorem,

$$AC^2 = AB^2 + BC^2$$

$$(2x)^2 = AB^2 + (\sqrt{3}x)^2$$

:
$$AB^2 = (2x)^2 - (\sqrt{3}x)^2$$

$$AB^2 = x^2$$

$$\therefore AB = x$$

$$\sin\theta = \frac{AB}{AC} = \frac{x}{2x} = \frac{1}{2}$$

$$\cos\theta = \frac{BC}{AC} = \frac{\sqrt{3}x}{2x} = \frac{\sqrt{3}}{2}$$

$$\tan \theta = \frac{AB}{BC} = \frac{x}{\sqrt{3}x} = \frac{1}{\sqrt{3}}$$

$$\cot\theta = \frac{BC}{AB} = \frac{\sqrt{3}x}{x} = \sqrt{3}$$

$$\sec\theta = \frac{AC}{BC} = \frac{2x}{\sqrt{3}x} = \frac{2}{\sqrt{3}}$$

$$\csc\theta = \frac{AC}{AB} = \frac{2x}{x} = 2$$

Solution 6:

$$\therefore \frac{2}{7} \times \csc\theta = 1$$

$$\therefore \csc\theta = 1 \times \frac{7}{2} = \frac{7}{2}$$

$$\therefore \frac{2}{5} \times \cot \theta = 1$$

$$\therefore \cot \theta = 1 \times \frac{5}{2} = \frac{5}{2}$$

Solution 7(i):

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\therefore \tan \theta = \frac{\frac{\sqrt{2}}{3}}{\frac{1}{3}} = \sqrt{2} \qquad(1)$$

Now, $\tan \theta \times \cot \theta = 1$

$$\therefore \sqrt{2} \times \cot \theta = 1 \qquad \qquad \dots [From(1)]$$

$$\therefore \cot \theta = \frac{1}{\sqrt{2}}.$$

$$\cos\theta \times \sec\theta = 1$$

$$\therefore \frac{1}{3} \times \sec \theta = 1$$

$$\therefore \sec \theta = 3$$

$$\sin\theta \times \csc\theta = 1$$

$$\therefore \frac{\sqrt{2}}{3} \times \csc\theta = 1$$

$$\therefore \csc\theta = \frac{3}{\sqrt{2}}$$

Hence,

$$\tan \theta = \sqrt{2}$$
; $\cot \theta = \frac{1}{\sqrt{2}}$; $\sec \theta = 3$; $\csc \theta = \frac{3}{\sqrt{2}}$

Solution 7(ii):

$$\frac{\sin\theta}{\cos\theta} = \tan\theta$$

$$\therefore \sin \theta = \tan \theta \times \cos \theta = \frac{\sqrt{7}}{2} \times \frac{2}{\sqrt{11}}$$

$$\therefore \sin \theta = \frac{\sqrt{7}}{\sqrt{11}}$$

Exercise - 8.2

Solution 1:

i
$$\tan 45^\circ = 1$$
, $\cos 30^\circ = \frac{\sqrt{3}}{2}$ and $\sin 60^\circ = \frac{\sqrt{3}}{2}$
 $\therefore 2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$
 $= 2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2$
 $= 2$

ii
$$\cot 45^\circ = 1$$
, $\sec 60^\circ = 2$, $\csc 30^\circ = 2$ and $\cot 90^\circ = 0$
 $\therefore 4\cot^2 45^\circ - \sec^2 60^\circ + \csc^2 30^\circ + \cot 90^\circ$
 $= 4(1)^2 - (2)^2 + (2)^2 + 0$
 $= 4$

Solution 2:

L.H.S. =
$$\sin 90^{\circ} = 1$$

R.H.S. = $2\cos 45^{\circ} \times \sin 45^{\circ}$
= $2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$
= 1.
L.H.S. = R.H.S.
 $\sin 90^{\circ} = 2\cos 45^{\circ} \times \sin 45^{\circ}$.

Solution 3(i):

$$\sin 30^{\circ} = \frac{1}{2}$$

 $\cos (40^{\circ} + x) = \sin 30^{\circ}$

$$\cos (40^{\circ} + x) = \frac{1}{2}$$

But
$$\cos 60^\circ = \frac{1}{2}$$

$$\cos(40^\circ + x) = \cos 60^\circ$$

$$\therefore \times = 60^{\circ} - 40^{\circ} = 20^{\circ}$$

$$x = 20^{\circ}$$

Solution 3(ii):

tan y =
$$\sin 45^{\circ} \times \cos 45^{\circ} + \sin 30^{\circ}$$

= $\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2}$
= $\frac{1}{2} + \frac{1}{2} = 1$

$$\therefore \tan y = 1$$

$$\therefore \tan y = \tan 45^{\circ}$$

$$y = 45^{\circ}$$

Solution 4:

 $\therefore \sin A = \sqrt{\frac{1 - \cos 2A}{2}}$

L.H.S. =
$$\sin A = \sin 30^{\circ} = \frac{1}{2}$$

R.H.S. = $\sqrt{\frac{1 - \cos 2A}{2}}$
= $\sqrt{\frac{1 - \cos 60^{\circ}}{2}}$... ($\angle A = 30^{\circ}$:: $2A = 60^{\circ}$)
= $\sqrt{\frac{1 - \frac{1}{2}}{2}}$
= $\sqrt{\frac{1}{2}}$
= $\sqrt{\frac{1}{4}}$
= $\frac{1}{2}$
:: L.H.S. = R.H.S.

Solution 5:

$$sinB = \frac{1}{2}$$
 ...(Given)

but
$$\sin 30^\circ = \frac{1}{2}$$

$$\sin(A + B) = \frac{\sqrt{3}}{2} \qquad \dots \text{(Given)}$$

but
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$A + 30^{\circ} = 60^{\circ}$$
 ...[From(1)]

Exercise - 8.3

Solution 1(i):

Solution 1(ii):

$$\frac{\cos 80^{\circ}}{\sin 10^{\circ}} + \cos 59^{\circ} \times \csc 31^{\circ}$$

$$= \frac{\cos 80^{\circ}}{\cos (90^{\circ} - 10^{\circ})} + \sin (90^{\circ} - 59^{\circ}) \times \frac{1}{\sin 31^{\circ}}$$

$$= \frac{\cos 80^{\circ}}{\cos 80^{\circ}} + \sin 31^{\circ} \times \frac{1}{\sin 31^{\circ}}$$

$$= 1 + 1$$

$$= 2$$

Solution 1(iii):

$$\frac{2 \tan 53^{\circ}}{\cot 37^{\circ}} - \frac{\cot 80^{\circ}}{\tan 10^{\circ}}$$

$$= \frac{2 \tan 53^{\circ}}{\tan (90^{\circ} - 37^{\circ})} - \frac{\tan (90^{\circ} - 80^{\circ})}{\tan 10^{\circ}}$$

$$= \frac{2 \tan 53^{\circ}}{\tan 53^{\circ}} - \frac{\tan 10^{\circ}}{\tan 10^{\circ}}$$

$$= 2 - 1$$

$$= 1$$

Solution 2:

$$tan 2A = cot(A - 18^{\circ})$$

 $: cot(90^{\circ} - 2A) = cot(A - 18^{\circ})$
 $: 90^{\circ} - 2A = A - 18^{\circ}$
 $: 3A = 108^{\circ}$
 $: A = 36^{\circ}$
 $: 2A = 72^{\circ}$
 $: (A - 18^{\circ}) = 36^{\circ} - 18^{\circ} = 18^{\circ}$

Solution 3:

$$\sin 3\theta = \cos (\theta - 6^\circ)$$

$$\cos (90^{\circ} - 3\theta) = \cos (\theta - 6^{\circ})$$

$$(\theta - 6) = 24^{\circ} - 6^{\circ} = 18^{\circ}$$

Solution 4:

$$\sin A = \cos B$$

$$\therefore \sin A = \sin(90^\circ - B)$$

$$A = 90^{\circ} - B$$

$$A + B = 90^{\circ}$$