## Sample Question Paper - 2 Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Basic)

### Time Allowed: 1 hour and 30 minutes

## **General Instructions:**

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

## Section A

## Attempt any 16 questions

|    | 1 / 1                                                                                                              |     |
|----|--------------------------------------------------------------------------------------------------------------------|-----|
| 1. | Let $\frac{p}{q}$ be a rational number. Then, the condition on q such that $\frac{p}{q}$ has a non-terminating but | [1] |
|    | repeating decimal expansion is:                                                                                    |     |

|    | a) q = 2 <sup>m</sup> × 5 <sup>n</sup> ; m, n are whole<br>numbers                                 | b) $q \neq 2^m \times 3^n$ ; m, n are whole numbers                       |     |
|----|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|
|    | c) q = 2 <sup>m</sup> × 3 <sup>n</sup> ; m, n are whole<br>numbers                                 | d) q $ eq$ 2 <sup>m</sup> $	imes$ 5 <sup>n</sup> ; m, n are whole numbers |     |
| 2. | The system of equations 2x + 3y - 7 = 0                                                            | and 6x + 5y - 11 = 0 has                                                  | [1] |
|    | a) unique solution                                                                                 | b) infinite many solutions                                                |     |
|    | c) no solution                                                                                     | d) non zero solution                                                      |     |
| 3. | If x - 2 is a factor of the polynomial 3x <sup>3</sup>                                             | $^3$ - 7x <sup>2</sup> + kx - 16, then the value of k is                  | [1] |
|    | a) -10                                                                                             | b) 10                                                                     |     |
|    | c) -2                                                                                              | d) 2                                                                      |     |
| 4. | If 4x + 6y = 3xy and 8x + 9y = 5xy then                                                            |                                                                           | [1] |
|    | a) x = 3, y = 4                                                                                    | b) x = 2, y = 3                                                           |     |
|    | c) x = 1, y = 2                                                                                    | d) x = 1, y = -1                                                          |     |
| 5. | If $4 \tan 	heta  =  3$ , then $rac{4 \sin 	heta - \cos 	heta}{4 \sin 	heta + \cos 	heta}$ is equ | ual to                                                                    | [1] |
|    | a) $\frac{2}{3}$                                                                                   | b) $\frac{3}{4}$                                                          |     |
|    | c) $\frac{1}{3}$                                                                                   | d) $\frac{1}{2}$                                                          |     |
| 6. | Which of the following is a pair of co-p                                                           | rimes?                                                                    | [1] |
|    | a) (14, 35)                                                                                        | b) (18, 25)                                                               |     |

**Maximum Marks: 40** 

|     | c) (32, 62)                                                                                                                                                 | d) (31, 93)                                            |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----|
| 7.  | A polynomial of degree n has                                                                                                                                |                                                        | [1] |
|     | a) one zero                                                                                                                                                 | b) n zeroes                                            |     |
|     | c) at most n zeroes                                                                                                                                         | d) at least n zeroes                                   |     |
| 8.  | If A(1, 3), B(-1, 2), C(2, 5) and D(x, 4) are the v                                                                                                         | vertices of a   gm ABCD then the value of x is         | [1] |
|     | a) 0                                                                                                                                                        | b) 3                                                   |     |
|     | c) $\frac{3}{2}$                                                                                                                                            | d) 4                                                   |     |
| 9.  | If one root of the polynomial $f(x) = 5x^2 + 13x^2$                                                                                                         | x + k is reciprocal of the other, then the value of k  | [1] |
|     | is                                                                                                                                                          |                                                        |     |
|     | a) 5                                                                                                                                                        | b) 0                                                   |     |
|     | c) $\frac{1}{6}$                                                                                                                                            | d) 6                                                   |     |
| 10. | The quadratic polynomial, the sum of whose                                                                                                                  | e zeroes is -5 and their product is 6, is:             | [1] |
|     | a) $x^2 + 5x + 6$                                                                                                                                           | b) $x^2 - 5x - 6$                                      |     |
|     | c) $_{-X}^2 + 5_X + 6$                                                                                                                                      | d) $x^2 - 5x + 6$                                      |     |
| 11. | A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is<br>double that of a red ball, then the number of blue balls is |                                                        |     |
|     | a) 8                                                                                                                                                        | b) 10                                                  |     |
|     | c) 5                                                                                                                                                        | d) 12                                                  |     |
| 12. | $x^2$ + 2x + 1 = 0 : Discriminant of the given eq                                                                                                           | uation is                                              | [1] |
|     | a) 1                                                                                                                                                        | b) 0                                                   |     |
|     | c) 2                                                                                                                                                        | d) 4                                                   |     |
| 13. | Two vertices of $	riangle ABC$ are A (-1, 4) and B(5, 2 of C are                                                                                            | 2) and its centroid is G(0, -3). Then, the coordinates | [1] |
|     | a) (4, 3)                                                                                                                                                   | b) (4, 15)                                             |     |
|     | c) (-4, -15)                                                                                                                                                | d) (-15, -4)                                           |     |
| 14. | The line segment joining points (-3, -4) and (                                                                                                              | 1, -2) is divided by y-axis in the ratio               | [1] |
|     | a) 1:3                                                                                                                                                      | b) 2:3                                                 |     |
|     | c) 3:2                                                                                                                                                      | d) 3:1                                                 |     |
| 15. | Given that one of the zeroes of the quadratic zero is                                                                                                       | c polynomial $ax^2 + bx + c$ is zero, then the other   | [1] |
|     | a) $\frac{-b}{a}$                                                                                                                                           | b) $\frac{c}{a}$                                       |     |
|     | c) $\frac{-c}{c}$                                                                                                                                           | d) $\frac{b}{a}$                                       |     |
| 16. | $(\sec\theta + \cos\theta)(\sec\theta - \cos\theta) =$                                                                                                      | u                                                      | [1] |
|     | a) $\tan^2\theta + \cos^2\theta$                                                                                                                            | b) $\tan^2\theta - \cos^2\theta$                       |     |

|     | c) $\tan^2\theta + \sin^2\theta$                                             | d) $\tan^2\theta - \sin^2\theta$                              |     |
|-----|------------------------------------------------------------------------------|---------------------------------------------------------------|-----|
| 17. | In $\triangle ABC$ , if $\angle C = 3 \angle B = 2(\angle A + \angle B)$ , t | hen ∠C =                                                      | [1] |
|     | a) 90º                                                                       | b) <sub>150</sub> °                                           |     |
|     | c) <sub>120</sub> °                                                          | d) <sub>60</sub> 0                                            |     |
| 18. | A letter of English alphabets is chosen<br>consonant is                      | at random. The probability that the letter chosen is a        | [1] |
|     | a) $\frac{2}{26}$                                                            | b) $\frac{1}{26}$                                             |     |
|     | c) $\frac{21}{26}$                                                           | d) $\frac{5}{26}$                                             |     |
| 19. | The HCF of 135 and 225 is:                                                   |                                                               | [1] |
|     | a) 5                                                                         | b) 15                                                         |     |
|     | c) 45                                                                        | d) 75                                                         |     |
| 20. | The perimeter of the triangle formed l                                       | by the points (0, 0), (1, 0) and (0, 1) is                    | [1] |
|     | a) $2+\sqrt{2}$                                                              | b) 3                                                          |     |
|     | c) $\sqrt{2}+1$                                                              | d) $1\pm\sqrt{2}$                                             |     |
|     |                                                                              | Section B                                                     |     |
|     | Atte                                                                         | mpt any 16 questions                                          |     |
| 21. | If the system of equations<br>2x + 3y = 5,<br>4x + ky = 10                   |                                                               | [1] |
|     | has infinitely many solutions, then k =                                      |                                                               |     |
|     | a) 3                                                                         | b) 1                                                          |     |
|     | c) 6                                                                         | d) $\frac{1}{2}$                                              |     |
| 22. | The sum and product of the zeroes of value of k is                           | the polynomial $f(x) = 4x^2 - 27x + 3k^2$ are equal, then the | [1] |
|     | a) $\pm 3$                                                                   | b) 0                                                          |     |
|     | c) $\pm 1$                                                                   | d) $\pm 2$                                                    |     |
| 23. | The LCM of two numbers is 1200. Whi                                          | ch of the following cannot be their HCF?                      | [1] |
|     | a) 500                                                                       | b) 200                                                        |     |
|     | c) 600                                                                       | d) 400                                                        |     |
| 24. | The value of $\sqrt{rac{1+\cos	heta}{1-\cos	heta}}$ is                      |                                                               | [1] |
|     | a) $\csc^2 \theta + \cot^2 \theta$                                           | b) $\cot 	heta$ - $\csc 	heta$                                |     |
|     | c) cosec $\theta$ + cot $\theta$                                             | d) (cot $\theta$ + cosec $\theta$ ) <sup>2</sup>              |     |
| 25. | A system of linear equations is said to                                      | be inconsistent if it has                                     | [1] |
|     | a) one solution                                                              | b) at least one solution                                      |     |
|     | c) two solutions                                                             | d) no solution                                                |     |

| 26. | If -2 and 3 are the zeros of the quadratic polynomial ${ m x}^2$ + (a + 1)x + b then           |                                                        | [1] |
|-----|------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----|
|     | a) a = 2, b = 6                                                                                | b) a = 2, b = -6                                       |     |
|     | c) a = -2, b = -6                                                                              | d) a = -2, b = 6                                       |     |
| 27. | In $	riangle ABC$ , AB = 6 $\sqrt{3}$ cm, AC = 12 cm and I                                     | BC = 6 cm. Then, $\angle B$ is                         | [1] |
|     | a) 120°                                                                                        | b) 45°                                                 |     |
|     | c) 90°                                                                                         | d) 60°                                                 |     |
| 28. | The coordinates of the circumcentre of th<br>B(0, b) are                                       | e triangle formed by the points O(0, 0) , A(a, 0) and  | [1] |
|     | a) $\left(\frac{b}{2}, \frac{a}{2}\right)$                                                     | b) $\left(\frac{a}{2}, \frac{b}{2}\right)$             |     |
|     | c) (b, a)                                                                                      | d) (a, b)                                              |     |
| 29. | If $	an 	heta = rac{a}{b}$ , then $rac{a\sin	heta + b\cos	heta}{a\sin	heta - b\cos	heta}$ is |                                                        | [1] |
|     | a) $\frac{a+b}{a-b}$                                                                           | b) $\frac{a^2 - b^2}{a^2 + b^2}$                       |     |
|     | c) $\frac{a-b}{a+b}$                                                                           | d) $\frac{a^2+b^2}{a^2-b^2}$                           |     |
| 30. | The graphic representation of the equatio                                                      | ons $x + 2y = 3$ and $2x + 4y + 7 = 0$ gives a pair of | [1] |
|     | a) parallel lines                                                                              | b) none of these                                       |     |
|     | c) coincident lines                                                                            | d) intersecting lines                                  |     |
| 31. | The LCM of $2^3	imes3^2$ and $2^2	imes3^3$                                                     |                                                        | [1] |
|     | a) $_{2} \times 3^{2}$                                                                         | b) $2^3 \times 3^3$                                    |     |
|     | c) $2^2 \times 3^2$                                                                            | d) $2^2 \times 3$                                      |     |
| 32. | In the given figure $PQ  BC$ . $rac{AP}{PB}=4,$ t                                             | hen the value of $\frac{AQ}{AC}$ is                    | [1] |
|     | B C C                                                                                          |                                                        |     |
|     | a) 5                                                                                           | b) $\frac{4}{5}$                                       |     |
|     | c) 4                                                                                           | d) $\frac{5}{4}$                                       |     |
| 33. | $rac{2 	an 30^{\circ}}{1 + 	an^2 30^{\circ}} =$                                               | 4                                                      | [1] |
|     | a) <sub>cos 60</sub> º                                                                         | b) <sub>sin 60</sub> °                                 |     |
|     | c) sin 30°                                                                                     | d) <sub>tan 60</sub> º                                 |     |
| 34. | The point on the x-axis which is equidista                                                     | nt from points (-1, 0) and (5, 0) is                   | [1] |
|     | a) (0, 3)                                                                                      | b) (2, 0)                                              |     |
|     | c) (3, 0)                                                                                      | d) (0, 2)                                              |     |
| 35. | A card is drawn at random from a pack of                                                       | f 52 cards. The probability that the card is drawn is  | [1] |

A card is drawn at random from a pack of 52 cards. The probability that the card is drawn is neither an ace nor a king is

|     | a) $\frac{11}{26}$                                                                                    | b) $\frac{11}{13}$                                                |     |
|-----|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|
|     | c) $\frac{1}{26}$                                                                                     | d) $\frac{4}{13}$                                                 |     |
| 36. | The value of k for which the system of equation                                                       | ons                                                               | [1] |
|     | 2x + 3y = 5 and                                                                                       |                                                                   |     |
|     | 4x + ky = 10                                                                                          |                                                                   |     |
|     | has infinite number of solutions, is                                                                  |                                                                   |     |
|     | a) 1                                                                                                  | b) 6                                                              |     |
|     | c) 0                                                                                                  | d) 3                                                              |     |
| 37. | HCF of (2 $^3$ $	imes$ 3 $^2$ $	imes$ 5), (2 $^2$ $	imes$ 3 $^3$ $	imes$ 5 $^2$ ) and (2 $^4$ $	imes$ | $\times$ 3 $\times$ 5 <sup>3</sup> $\times$ 7) is                 | [1] |
|     | a) 60                                                                                                 | b) 48                                                             |     |
|     | c) 30                                                                                                 | d) 105                                                            |     |
| 38. | The value of tan $1^\circ$ $tan$ $2^\circ tan$ $3^\circ \dots \dots$                                  | . $tan89^\circ$ is                                                | [1] |
|     | a) $\frac{1}{2}$                                                                                      | b) 1                                                              |     |
|     | c) None of these                                                                                      | d) 0                                                              |     |
| 39. | The probability of getting 2 heads, when two                                                          | coins are tossed, is                                              | [1] |
|     | a) $\frac{1}{4}$                                                                                      | b) 1                                                              |     |
|     | c) $\frac{1}{2}$                                                                                      | d) $\frac{3}{4}$                                                  |     |
| 40. | A circle drawn with origin as the centre passe                                                        | es through ( $\frac{13}{2}$ , 0). The point which does not lie in | [1] |
|     | the interior of the circle is                                                                         | 2                                                                 |     |

the interior of the circle is

|                      | Section C                      |
|----------------------|--------------------------------|
| c) $5, \frac{-1}{2}$ | d) $\left(-6,rac{5}{2} ight)$ |
| a) $\frac{-3}{4}, 1$ | b) $2, rac{7}{3}$             |

Attempt any 8 questions

# Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Shalini wants to make a toran for Diwali using some pieces of cardboard. She cut some cardboard pieces as shown below. If perimeter of  $\Delta$ ADE and  $\Delta$ BCE are in the ratio 2 : 3, then answer the following questions.



41. If the two triangles here are similar by SAS similarity rule, then their corresponding proportional sides are

[1]

a)  $\frac{BE}{AE} = \frac{CE}{DE}$ 

b) None of these

|     | c) $\frac{AD}{CE} = \frac{BE}{DE}$    | d) $\frac{AE}{CE} = \frac{DE}{BE}$ |     |
|-----|---------------------------------------|------------------------------------|-----|
| 42. | Length of BC =                        |                                    | [1] |
|     | a) None of these                      | b) 5 cm                            |     |
|     | c) 4 cm                               | d) 2 cm                            |     |
| 43. | Length of AD =                        |                                    | [1] |
|     | a) $\frac{10}{3}$ cm                  | b) $\frac{9}{4}$ cm                |     |
|     | c) $\frac{5}{3}$ cm                   | d) $\frac{4}{3}$ cm                |     |
| 44. | Length of ED =                        |                                    | [1] |
|     | a) Can't be determined                | b) $\frac{4}{3}$ cm                |     |
|     | c) $\frac{8}{3}$ cm                   | d) $\frac{7}{3}$ cm                |     |
| 45. | Length of AE =                        |                                    | [1] |
|     | a) $rac{2}{3}	imes \sqrt{BC^2-CE^2}$ | b) $\sqrt{AD^2 - DE^2}$            |     |
|     | c) $\frac{2}{3} \times BE$            | d) All of these                    |     |

# Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

Makar Sankranti is a fun and delightful occasion. Like many other festivals, the kite flying competition also has a historical and cultural significance attached to it. The following figure shows a kite in which BCD is the shape of quadrant of a circle of radius 42 cm, ABCD is a square and ACEF is an isosceles right angled triangle whose equal sides are 7 cm long.



## 46. Area of the shaded portion is

47.

48.

|    | a) 1390 cm <sup>2</sup>        | b) 1400 cm <sup>2</sup>            |
|----|--------------------------------|------------------------------------|
|    | c) 1410.5 cm <sup>2</sup>      | d) <sub>1377</sub> cm <sup>2</sup> |
| A  | rea of the unshaded portion is |                                    |
|    | a) 380 cm <sup>2</sup>         | b) 378 cm <sup>2</sup>             |
|    | c) 384 cm <sup>2</sup>         | d) 370 cm <sup>2</sup>             |
| Fi | nd the area of the square.     |                                    |
|    | a) 1864 cm <sup>2</sup>        | b) 1700 cm <sup>2</sup>            |
|    | c) 1764 cm <sup>2</sup>        | d) 1800 cm <sup>2</sup>            |
|    |                                |                                    |

[1]

[1]

[1]

| 49. | Area of quadrant BCD is |                                   | [1] |
|-----|-------------------------|-----------------------------------|-----|
|     | a) 1386 cm <sup>2</sup> | b) <sub>1390 cm<sup>2</sup></sub> |     |
|     | c) 1290 cm <sup>2</sup> | d) 1380 cm <sup>2</sup>           |     |
| 50. | Find the area of ACEF.  |                                   | [1] |
|     | a) $25.5 \text{ cm}^2$  | b) <sub>26 cm<sup>2</sup></sub>   |     |
|     | c) 24.5 cm <sup>2</sup> | d) <sub>25 cm<sup>2</sup></sub>   |     |

# Solution

## Section A

1. **(d)**  $q \neq 2^m \times 5^n$ ; m, n are whole numbers

**Explanation:**  $\frac{p}{q}$  has a non-terminating but repeating decimal expansion if  $q \neq 2^m \times 5^n$ ; m, n are whole numbers

2. (a) unique solution

Explanation: 2x + 3y - 7 = 0 6x + 5y - 11 = 0By Comparing with  $a_1x + b_1y + c = 0$  and  $a_2x + b_2y + c = 0$ , Here,  $a_1 = 2$ ,  $b_1 = 3$ ,  $c_1 = -7$ , and  $a_2 = 6$ ,  $b_2 = 5$ ,  $c_2 = -11$   $\frac{a_1}{a_2} = \frac{2}{6} = \frac{1}{3}$   $\frac{b_1}{b_2} = \frac{3}{5}$ Since  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 

Therefore, the system of equations has a unique solution.

3. **(b)** 10

**Explanation:** If the polynomial  $3x^3 - 7x^2 + kx - 16$  is exactly divisible by x - 2, then p(2) = 0

 $\Rightarrow 3(2)^3 - 7(2)^2 + k \times 2 - 16$  $\Rightarrow 24 - 28 + 2k - 16 = 0$  $\Rightarrow -20 + 2k = 0$  $\Rightarrow k = 10$ 

4. **(a)** x = 3, y = 4

**Explanation:** Divide throughout by xy and put  $\frac{1}{x} = u$  and  $\frac{1}{y} = v$  to get

4v + 6u = 3 .....(i) and 8v + 9u = 5 .....(ii) This gives  $u = \frac{1}{3}$  and  $v = \frac{1}{4}$ . Hence, x = 3 and y = 4.

5. (d)  $\frac{1}{2}$ 

**Explanation:** Given"  $4 \tan \theta = 3$ Dividing all terms of  $\frac{4 \sin \theta - \cos \theta}{4 \sin \theta + \cos \theta}$  by  $\cos \theta$ ,  $= \frac{4 \tan \theta - 1}{4 \tan \theta + 1} = \frac{3-1}{3+1} = \frac{2}{4} = \frac{1}{2}$ 

6. **(b)** (18, 25)

**Explanation:** The numbers that do not share any common factor other than 1 are called co-primes. factors of 18 are: 1, 2, 3, 6, 9 and 18 factors of 25 are: 1, 5, 25 The two numbers do not share any common factor other than 1.

They are co-primes to each other.

7. (c) at most n zeroes

**Explanation:** A polynomial of degree n has at most n zeroes because the degree of a polynomial is equal to the zeroes of that polynomial only.

8. **(d)** 4

**Explanation**:

A (1, 3) D (x, 4)

B (-1, 2)C (2, 5)Since ABCD is a ||gm, the diagonals bisect eachother. soM is the mid- point of BD as well as AC.

 $rac{1+2}{2} = rac{x-1}{2}$ 1+2=x-1 x=4

9. **(a)** 5

**Explanation:** The Given polynomial is  $f(x) = 5x^2 + 13x + k$ . Product of roots = k/5  $1 = rac{k}{5}$ 

 $\Rightarrow$  k = 5

10. **(a)**  $x^2 + 5x + 6$ 

**Explanation:** The quadratic polynomial when the sum of zeros and product of zeros is given:

= $x^2$  - (sum of zeros)x + product of zeros =  $x^2$  - (-5)x + 6

 $=x^{2} + 5x + 6$ 

11. **(b)** 10

**Explanation:** Let the number of blue balls be x.

... Number of total outcomes = 5 + x Now, P (getting the red ball) =  $\frac{5}{5+x}$ ... P (getting blue ball) =  $2\left(\frac{5}{5+x}\right)$ Also P (getting the blue ball) =  $\frac{x}{x+5}$ 

$$\therefore 2\left(\frac{5}{x+5}\right) = \frac{x}{x+5}$$
$$\Rightarrow x = 10$$

12. **(b)** 0

**Explanation:** D = b<sup>2</sup> - 4ac

 $D = 2^2 - 4 \times 1 \times 1$ D = 4 - 4D = 0

13. **(c)** (-4, -15)

**Explanation:** Let the vertex C be C (x,y). Then  $\frac{-1+5+x}{1} = 0 \text{ and } \frac{4+2+y}{3} = -3 \Rightarrow x+4 = 0 \text{ and } 6+y = -9$   $\therefore \quad x = -4 \text{ and } y = -15$ so, the coordinates of C are (-4, -15).

14. **(d)** 3:1

**Explanation:** The point lies on y-axis Its abscissa will be zero Let the point divides the line segment joining the points (-3, -4) and (1, -2) in the ratio m:n  $\therefore 0 = \frac{mx_2+nx_1}{m+n} \Rightarrow 0 = \frac{m \times 1+n \times (-3)}{m+n}$ 

$$\Rightarrow rac{m-3n}{m+n} = 0 \Rightarrow m-3n = 0$$

 $\Rightarrow m = 3n \Rightarrow rac{m}{n} = rac{3}{1}$ : Ratio = 3:1 (a)  $\frac{-b}{a}$ 15. **Explanation:** Let  $\alpha$ ,  $\beta$  are the zeroes of the given polynomial. Given:  $\alpha = 0$  :  $\alpha + \beta = \frac{-b}{a} \Rightarrow 0 + \beta = \frac{-b}{a} \Rightarrow \beta = \frac{-b}{a}$ Therefore the other zero is  $\frac{-b}{a}$ . (c)  $\tan^2\theta + \sin^2\theta$ 16. **Explanation:** Given:  $(\sec\theta + \cos\theta)(\sec\theta - \cos\theta)$ = (sec<sup>2</sup> $\theta$  - cos<sup>2</sup> $\theta$ ) =  $(1 + \tan^2\theta - 1 + \sin^2\theta)$ =  $(\tan^2\theta + \sin^2\theta)$ (c) 120<sup>o</sup> 17. **Explanation:** Since  $\angle A + \angle B + \angle C = 180^{\circ}$  ... (i)  $\angle C = 3 \angle B = 2(\angle A + \angle B)$  $3\angle B = 2(\angle A + \angle B)$  $3\angle B - 2\angle B = 2\angle A$  $\angle B = 2 \angle A$  $\angle A = \angle \frac{B}{2}$ from (i),  $\angle \frac{B}{2} + \angle B + 3 \angle B = 180^{\circ}$  $9 \angle \frac{B}{2} = 180^{\circ}$  $\angle B = 40^{\circ}$  $\angle C = 3 \angle B$  $\angle C$  = 3  $\times$  40 = 120<sup>o</sup> (c)  $\frac{21}{26}$ 18. Explanation: We have, Number of vowels = 5 ( a, e, i, o, u) Number of consonants = 21 (26 - 5 = 21)Number of possible outcomes = 21 Number of total outcomes = 26  $\therefore$  Required Probability =  $\frac{21}{26}$ 19. (c) 45 Explanation: We have, 135 =  $3 \times 45$  $= 3 \times 3 \times 15$ =  $3 \times 3 \times 3 \times 5$  $= 3^3 \times 5$ Now, for 225 will be  $225 = 3 \times 75$  $= 3 \times 3 \times 5 \times 5$  $= 3^2 \times 5^2$ The HCF will be  $3^2 \times 5 = 45$ (a)  $2 + \sqrt{2}$ 20. **Explanation:** Let the vertices of  $\triangle ABC$  be A(0, 0), B(1, 0) and C(0, 1) Now length of AB  $=\sqrt{(1-0)^2+(0-0)^2}$  $1=\sqrt{(1)^2+0^2}=\sqrt{1^2}=1$ 

Length of AC = 
$$\sqrt{(0-0)^2 + (1-0)^2} = \sqrt{0^2 + (1)^2}$$
  
=  $\sqrt{1^2} = 1$   
and length of BC =  $\sqrt{(0-1)^2 + (1-0)^2}$   
=  $\sqrt{(1)^2 + (1)^2} = \sqrt{1+1} = \sqrt{2}$   
Perimeter of  $\triangle ABC$  = Sum of sides  
=  $1 + 1 + \sqrt{2} = 2 + \sqrt{2}$ 

Section **B** 

#### 21. **(c)** 6

**Explanation:** The given system of equations 2x + 3y = 5 4x + ky = 10  $\frac{a_1}{a_2} = \frac{2}{4}, \frac{b_1}{b_2} = \frac{3}{k}, \frac{c_1}{c_2} = \frac{5}{10}$ For the equations to have infinite number of solutions  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$   $i \cdot e, \frac{2}{4} = \frac{3}{k} = \frac{5}{10}$ If we take  $\frac{2}{4} = \frac{3}{k}$   $\Rightarrow 2k = 12$  $\Rightarrow k = \frac{12}{2}$ 

22. **(a)** ±3

 $\Rightarrow$  k = 6

**Explanation:** Let  $\alpha$ ,  $\beta$  are the zeroes of the given polynomial.

Given:  $\alpha + \beta = \alpha \beta$   $\Rightarrow \frac{-b}{a} = \frac{c}{a}$   $\Rightarrow -b = -c$   $\Rightarrow -(-27) = 3k^2$   $\Rightarrow k^2 = 9$  $\Rightarrow k = \pm 3$ 

#### 23. **(a)** 500

**Explanation:** It is given that the LCM of two numbers is 1200 . We know that the HCF of two numbers is always the factor of LCM. 500 is not the factor of 1200. So this cannot be the HCF.

24. **(c)**  $\operatorname{cosec} \theta + \cot \theta$ 

Explanation: 
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \sqrt{\frac{(1+\cos\theta)(1+\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}}$$
  
=  $\sqrt{\frac{(1+\cos\theta)^2}{1-\cos^2\theta}} = \sqrt{\frac{(1+\cos\theta)^2}{\sin^2\theta}}$   
=  $\frac{1+\cos\theta}{\sin\theta} = \csc \theta + \cot \theta$ 

25. **(d)** no solution

**Explanation:** A system of linear equations is said to be inconsistent if it has no solution means two lines are running parallel and not cutting each other at any point.

26. (c) a = -2, b = -6Explanation:  $\alpha + \beta = 3 + (-2) = 1$  and  $\alpha\beta = 3 \times (-2) = -6$   $\therefore -(a + 1) = 1$   $\Rightarrow a + 1 = -1 \Rightarrow a = -2$ Also, b = -6 27. **(c)** 90°

**Explanation**:

In  $\triangle$ ABC, AB = 6 cm, AC = 12 cm and BC = 6 cm.



Longest side  $(AC)^2 = (12)^2 = 144$   $AB^2 + BC^2 = (6\sqrt{3})^2 + (6)^2 = 108 + 36 = 144$   $AC^2 = AB^2 + BC^2$  (Converse of Pythagoras Theorem)  $\angle B = 90^\circ$ 

28. **(b)**  $\left(\frac{a}{2}, \frac{b}{2}\right)$ 

**Explanation:** Let co-ordinates of C be (x, y) which is the centre of the circumcircle of  $\triangle$ OAB Radius of a circle are equal



$$\therefore \text{ OC} = \text{CA} = \text{CB} \Rightarrow \text{OC}^2 = \text{CA}^2 = \text{CB}^2$$
  
$$\therefore (\mathbf{x} - 0)^2 + (\mathbf{y} - 0)^2 = (\mathbf{x} - \mathbf{a})^2 + (\mathbf{y} - 0)^2$$
  
$$\Rightarrow \mathbf{x}^2 + \mathbf{y}^2 = (\mathbf{x} - \mathbf{a})^2 + \mathbf{y}^2$$
  
$$\Rightarrow \mathbf{x}^2 = (\mathbf{x} - \mathbf{a})^2 \Rightarrow \mathbf{x}^2 = \mathbf{x}^2 + \mathbf{a}^2 - 2\mathbf{a}\mathbf{x}$$
  
$$\mathbf{a}^2 - 2\mathbf{a}\mathbf{x} = 0 \Rightarrow \mathbf{a}(\mathbf{a} - 2\mathbf{x}) = 0$$
  
$$\Rightarrow \mathbf{a} = 2\mathbf{x} \Rightarrow \mathbf{x} = \frac{a}{2}$$
  
and  $(\mathbf{x} - 0)^2 + (\mathbf{y} - 0)^2 = (\mathbf{x} - 0)^2 + (\mathbf{y} - \mathbf{b})^2$   
$$\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{x}^2 + \mathbf{y}^2 - 2\mathbf{b}\mathbf{y} + \mathbf{b}^2$$
  
$$\Rightarrow 2\mathbf{b}\mathbf{y} = \mathbf{b}^2 \Rightarrow \mathbf{y} = \frac{b}{2}$$
  
$$\therefore \text{ Co-ordinates of circumcentre are } \left(\frac{a}{2}, \frac{b}{2}\right)$$

29. **(d)** 
$$\frac{a^2+b^2}{a^2-b^2}$$

**Explanation:**  $\tan \theta = \frac{a}{b}$ 

$$\frac{a\sin\theta + b\cos\theta}{a\sin\theta - b\cos\theta} = \frac{a\frac{\cos\theta}{\cos\theta} + b\frac{\cos\theta}{\cos\theta}}{a\frac{\sin\theta}{\cos\theta} - b\frac{\cos\theta}{\cos\theta}} \text{ (Dividing by } \cos\theta \text{)}$$

$$= \frac{a\tan\theta + b}{a\tan\theta - b} = \frac{a \times \frac{a}{b} + b}{a \times \frac{a}{b} - b}$$

$$= \frac{\frac{a^2}{b} + b}{\frac{a^2}{b} - b} = \frac{\frac{a^2 + b^2}{b}}{\frac{a^2 - b^2}{b}}$$

$$= \frac{a^2 + b^2}{b} \times \frac{b}{a^2 - b^2}$$

30. (a) parallel lines Explanation: Given: Two equations, x + 2y = 3  $\Rightarrow$  x + 2y - 3 = 0 .... (i)

2x + 4y + 7 = 0 .... (ii)

We know that the general form for a pair of linear equations in 2 variables x and y is  $a_1x + b_1y + c_1 = 0$  and

 $a_2x + b_2y + c_2 = 0.$ 

Comparing with above equations,

we have  $a_1 = 1$ ,  $b_1 = 2$ ,  $c_1 = -3$ ;  $a_2 = 2$ ,  $b_2 = 4$ ,  $c_2 = 7$  $\frac{a_1}{a_2} = \frac{1}{2}; \frac{b_1}{b_2} = \frac{2}{4} = \frac{1}{2}; \frac{c_1}{c_2} = \frac{-3}{7}$ Since  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 

...Both lines are parallel to each other.

**(b)**  $2^3 \times 3^3$ 31.

> **Explanation:** L.C.M. of  $2^3 \times 3^2$  and  $2^2 \times 3^3$  is the product of all prime numbers with the greatest power of every given number, hence it will be  $2^3 \times 3^3$

**(b)**  $\frac{4}{5}$ 32.

> **Explanation:** Given:  $\frac{AP}{PB} = \frac{4}{1}$ Let AP = 4x and PB = x, then AB = AP + PB = 4x + x = 5xSince PQ BC, then  $\frac{\frac{AP}{AB}}{\frac{AQ}{AC}} = \frac{\dot{A}\dot{Q}}{AC} \text{ [Using Thales theorem]}$  $\therefore \frac{AQ}{AC} = \frac{AP}{AB} = \frac{4x}{5x} = \frac{4}{5}$

**(b)** sin 60<sup>o</sup> 33.

Explanation: 
$$\frac{2tan30^{\circ}}{1+tan^230^{\circ}} = \frac{2 \times \frac{1}{\sqrt{3}}}{1+(\frac{1}{\sqrt{3}})^2}$$
  
 $\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} = \frac{2}{\sqrt{3}} \times \frac{3}{4} = \frac{\sqrt{3}}{2}$   
= sin60<sup>0</sup>

34. **(b)** (2, 0)

> **Explanation:** Let the required point be P(x, 0). Then,  $PA^2 = PB^2 \Rightarrow (x+1)^2 = (x-5)^2$  $\Rightarrow x^2+2x+1=x^2-10x+25$  $\Rightarrow 12x = 24 \Rightarrow x = 2$ So, the required point is P(2, 0).

**(b)**  $\frac{11}{13}$ 35.

Explanation: Total number of outcomes = 52 Favourable outcomes in this case =  $52 - \{4 + 4\} = 44 [52 - \{4 aces + 4 kings\}]$  $\therefore$  P(neither an ace nor a king) =  $\frac{Favourable outcomes}{Total outcomes} = \frac{44}{52} = \frac{11}{13}$ 

36. **(b)** 6

Explanation: The given system of equations are 2x + 3y = 54x + ky = 10For the equations to have infinite number of solutions,  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Here, we must have  $\frac{5}{10}$ 

Therefore 
$$\frac{2}{4} = \frac{3}{k} = -\frac{3}{k}$$
  
 $\Rightarrow \frac{2}{4} = \frac{3}{k}$   
 $\Rightarrow 2k = 12$   
 $\Rightarrow k = \frac{12}{2}$   
 $\Rightarrow k = 6$ 

37. **(a)** 60

**Explanation:** HCF =  $(2^3 \times 3^2 \times 5, 2^2 \times 3^3 \times 5^2, 2^4 \times 3 \times 5^3 \times 7)$ HCF = Product of smallest power of each common prime factor in the numbers =  $2^2 \times 3 \times 5 = 60$ 

38. **(b)** 1

**Explanation:**  $tan 1^{\circ}tan 2^{\circ}tan 3^{\circ} \dots tan 89^{\circ}$ =  $tan(90^{\circ} - 89^{\circ})tan(90^{\circ} - 88^{\circ})tan(90^{\circ} - 87^{\circ})\dots tan 87^{\circ}tan 88^{\circ}tan 89^{\circ}$ =  $cot 89^{\circ} cot 88^{\circ} cot 87^{\circ} \dots tan 87^{\circ} tan 88^{\circ} tan 89^{\circ}$ =  $(cot 89^{\circ} tan 89^{\circ})(cot 88^{\circ} tan 88^{\circ})(cot 87^{\circ} tan 87^{\circ})\dots (cot 44^{\circ} tan 44^{\circ})tan 45^{\circ}$ =  $1 \times 1 \times 1 \times 1 \times 1 \dots 1$  = 1

39. (a)  $\frac{1}{4}$ 

**Explanation:** All possible outcomes are HH, HT, TH, TT. Their number is 4. Getting 2 heads, means getting HH. Its number is 1.

 $\therefore$  P(getting 2 heads) =  $\frac{1}{4}$ 

40. **(d)**  $\left(-6, \frac{5}{2}\right)$ 

**Explanation:** Distance between (0, 0) and  $\left(-6, \frac{5}{2}\right)$ 

$$d = \sqrt{(-6-0)^2 + (\frac{5}{2}-0)^2}$$
  
=  $\sqrt{36 + \frac{25}{4}}$   
=  $\sqrt{\frac{144+25}{4}}$   
=  $\sqrt{\frac{169}{4}} = \frac{13}{2} = 6.5$ 

So, the point  $\left(-6, \frac{5}{2}\right)$  does not lie in the circle.

#### Section C

41. (a)  $\frac{BE}{AE} = \frac{CE}{DE}$ 

**Explanation:** If  $\triangle$ AED and  $\triangle$ BEC, are similar by SAS similarity rule, then their corresponding proportional sides are  $\frac{BE}{AE} = \frac{CE}{DE}$ 

42. **(b)** 5 cm

**Explanation:** By Pythagoras theorem, we have BC =  $\sqrt{CE^2 + EB^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9}$  =  $\sqrt{25}$  = 5 cm

43. **(a)**  $\frac{10}{3}$  cm

**Explanation:** Since  $\triangle ADE$  and  $\triangle BCE$  are similar.

$$\therefore \frac{\text{Perimeter of } \Delta ADE}{\text{Perimeter of } \Delta BCE} = \frac{AD}{BC}$$
$$\Rightarrow \frac{2}{3} = \frac{AD}{5} \Rightarrow AD = \frac{5 \times 2}{3} = \frac{10}{3} \text{ cm}$$

44. (c) 
$$\frac{8}{3}$$
 cm

**Explanation:** 
$$\frac{\text{Perimeter of } \triangle ADE}{\text{Perimeter of } \triangle BCE} = \frac{ED}{CE}$$
  
 $\Rightarrow \frac{2}{3} = \frac{ED}{4} \Rightarrow ED = \frac{4 \times 2}{3} = \frac{8}{3} \text{ cm}$ 

- 45. **(d)** All of these **Explanation:**  $\frac{\text{Perimeter of } \triangle ADE}{\text{Perimeter of } \triangle BCE} = \frac{AE}{BE} \Rightarrow \frac{2}{3}BE = AE$   $\Rightarrow AE = \frac{2}{3}\sqrt{BC^2 - CE^2}$ Also, in  $\triangle AED$ ,  $AE = \sqrt{AD^2 - DE^2}$
- 46. **(c)** 1410.5 cm<sup>2</sup>

**Explanation:** 1410.5 cm<sup>2</sup>

- 47. (b) 378 cm<sup>2</sup>
  Explanation: rea of the unshaded region = Area of square ABCD Area of quadrant BCD = 1764 1386 = 378 cm<sup>2</sup>
- 48. (c) 1764 cm<sup>2</sup> Explanation: Area of square ABCD =  $42 \times 42 = 1764$  cm<sup>2</sup>
- 49. **(a)** 1386 cm<sup>2</sup> **Explanation:** Area of quadrant BCD  $= \frac{1}{4} \times \frac{22}{7} \times 42 \times 42 = 1386 \text{ cm}^2$
- 50. (c) 24.5 cm<sup>2</sup> Explanation: Area of  $\triangle$  CEF =  $\frac{1}{2} \times CE \times CF$ =  $\frac{1}{2} \times 7 \times 7$  = 24.5 cm<sup>2</sup>