
Chapter 5

File Management

files
Databases are stored on magnetic disks as fi les of records. 
Computer storage media form a storage hierarchy that includes 
two main categories.

Primary storage This category includes storage media that can be 
operated on, directly by CPU, such as the computer main memory 
and cache memory. Primary storage provides fast access but is of 
limited storage capacity.

Secondary storage This category includes magnetic disks, optical 
disks, and tapes. These devices usually have a larger capacity, less 
cost, and slower access to data. Data in secondary storage cannot 
be processed directly by the CPU, it must be copied into primary 
storage.

File Structure
Taxonomy of fi le structure 

Files
access methods 

RandomSequential

Sequential file
Index file Hashed file

Sequential fi le A sequential fi le is one in which records can only 
be accessed sequentially, one after another from beginning to end. 
Records are stored contiguously on the storage device. 

Index fi les These fi les are used to access a record in the fi le. The 
entire index fi le is loaded into main memory data and indexes are 
stored in the same fi le. The term ‘index fi le’ is used as a synonym 
for the term ‘database fi le’. The index fi le contains parameters that 
specify the name and location of fi le used to store DB.

Indexing Indexing mechanism is used to speed up access to 
desired data. An index fi le consists of records (called index entries) 
of the form.

Search-key Pointer 

Index fi les are typically much smaller than the original fi le.

Ordered indices In ordered index, index entries are stored, sorted 
on the search-key value. 
Example: Author catalogue in library. 

MeMorY HierarcHies
At the primary storage level, the memory hierarchy includes cache 
memory which is a static RAM. 

The next level of primary storage is DRAM (dynamic RAM) 
which provides the main work area for the CPU for keeping pro-
grams and data and is called the main memory. 

At the secondary storage level, the hierarchy includes magnetic 
disks, as well as mass storage in the form of CD-ROM (compact 
disk read-only memory) and tapes. Programs reside in DRAM and 
large permanent databases reside on secondary storage.

Another form of memory, fl ash memory, is non-volatile. 
Flash memories are high-density, high-performance memories 
using EEPROM (electrically erasable programmable read-only 

  Files

  Memory hierarchies 

  Description of disk devices

  File records

  Sorted fi les

  Hashing techniques

  Extendible hashing

  Index update

  Clustering index

  B -Trees

  B +Trees

  Over fl ow in internal node

LEARNING OBJECTIVES



Chapter 5  •  File Management  |  4.83

memory) technology. The advantage of flash memory is the 
fast access speed, the disadvantage is that an entire block 
must be erased and written over at a time. Finally, magnetic 
tapes are used for archiving and backup storage of data.

Description of Disk Devices
Magnetic disks are used for storing large amounts of data. 
The capacity of a disk is the number of bytes it can store. A 
disk is single sided if it stores information on only one of 
its surfaces and double sided if both surfaces are used. To 
increase storage capacity, disks are assembled into a disk 
pack, which may include many disks and hence many sur-
faces. Information is stored on a disk surface in concentric 
circles with small width, each having a distinct diameter. 
Each circle is called a track. For disk packs, the tracks with 
the same diameter on the various surfaces are called a cyl-
inder because of the shape they would form if connected in 
space.

A track usually contains a large amount of information; 
it is divided into smaller blocks (or) sectors. The division 
of track into equal-sized disk blocks (or pages) is set by the 
operating system during disk formatting.

Blocks are separated by fixed-size inter-block gaps, 
which include specially coded control information writ-
ten during disk initialization. This information is used 
to determine which block on the track follows each inter 
block gap. Transfer of data between main memory and 
disk takes place in units of disk blocks. The hardware 
address of a block is the combination of a cylinder num-
ber, track number and block number is supplied to the disk 
I/O hardware.

The actual hardware mechanism that reads or writes a 
block is the disk read/write head, which is part of a sys-
tem called a disk drive. A disk is mounted in the disk drive, 
which includes a motor that rotates the disk. To transfer a 
disk block, given its address, the disk controller must first 
mechanically position the read/write head on the correct 
track. The time required to do this is called the seek time. 
There is another delay called rotational delay or latency; the 
beginning of the desired block rotates into position under 
the read/write head. It depends on the RPM of the disk. 
Finally, some additional time is needed to transfer the data, 
which is called block-transfer time. Hence, the total time 
needed to locate and transfer an arbitrary block, given its 
address is the sum of the seek time, rotational delay and 
block transfer time. The seek time and rotational delay are 
usually much larger than the block transfer time.

File Records
Data is usually stored in the form of records. Each record 
consists of a collection of related data values or items where 
each value is of one or more bytes and corresponds to a 
particular field of the record. Records describe entities and 
their attributes.

Record type  A collection of field names and their correspond-
ing data types constitutes a record type (or) record format.

A file is a sequence of records. If every record in the 
file has exactly the same size (in bytes), the file is said to 
be made up of fixed-length records. If different records in 
the file have different sizes, the file is said to be made up of 
variable-length records.

Spanned Versus Unspanned Records
The records of a file must be allocated to disk blocks because 
a block is the unit of data transfer between disk and memory. 
When the block size is larger than the record size, each block 
will contain numerous records, although some files may 
have unusually large records that cannot fit in one block.

Suppose that the block size is B bytes. For a file of fixed-
length records of size R bytes, with B ≥ R, we can fit

bfr = ⎣B/R⎦ records per block

The value bfr is called the blocking factor for the file. Some 
times R may not divide B exactly, so we have some unused 
space in each block equal to B – (bfr * R) bytes. To uti-
lize this unused space, we can store part of a record on one 
block and the rest on another. A pointer at the end of the 
first block points to the block containing the remainder of 
the record in case it is not the next consecutive block on 
disk. This organization is called spanned, because records 
can span more than one block. Whenever a record is larger 
than a block, we must use a spanned organization. If records 
are not allowed to cross block boundaries, the organization 
is called unspanned. This is used with fixed-length records 
having B > R, because it makes each record start at a known 
location in the block. For variable-length records, either a 
spanned or an unspanned organization can be used.

For variable-length records using spanned organization, 
each block may store a different number of records. In this 
case, the blocking factor bfr represents the average number 
of records per block for the file. We can use bfr to calculate 
the number of blocks ‘b’ needed for a file of ‘r’ records.

b = ⎡(r/bfr)⎤ blocks

Record 1 Record 2 Record 3

Record 4 Record 5

Block x

Block x + 1

Figure 1  Unspanned records

Record 1 Record 2 Record 3 Record 4

Record 4 Record 5 Record 6 Record 7

P

P

Block x

Block x + 1

Figure 2  Spanned

There are several standard techniques for allocating the 
blocks of a file on disk. In contiguous allocation, the file 
blocks are allocated to consecutive disk blocks. In linked 



4.84  |  Unit 4  •  Databases

allocation, each file block contains a pointer to the next 
file block. A combination of the two allocates clusters 
of consecutive disk blocks, and the clusters are linked. 
Clusters are sometimes called file segments (or) extents. 
Another possibility is to use indexed allocation, where 
one or more index blocks contain pointers to the actual 
file blocks.

Sorted Files (Ordered Records)
We can physically order the records of a file on disk based 
on the values of the one of their fields called the ordering 
field. This leads to an ordered or sequential file. If the order-
ing field is also a key field of the file, a field guaranteed to 
have a unique value in each record, then the field is called 
the ordering key for the file.

Advantages
	 1.	 Reading the records in order of the ordering key 

values becomes extremely efficient, because no 
sorting is required.

	 2.	 Finding the next record from the current one in order 
of the ordering key usually requires no additional block 
access, because the next record is in the same block as 
the current one.

	 3.	 Using a search condition based on the value of an 
ordering key field results in faster access when the 
binary search technique is used. This constitutes an 
improvement over linear searches, although it is not 
often used for disk files.

A binary search for disk files can be done on the blocks 
rather than on the records. Suppose that a file has ‘b’ blocks 
numbered 1, 2 ,…, b, the records are ordered by ascend-
ing value of their ordering key field and we are searching 
for a record whose ordering key field value is K. Assuming 
that disk addresses of the file blocks are available in the file 
header, the binary search usually accesses log

2
(b) blocks, 

whether the record is found (or) not, an improvement 
over linear searches, where, on the average, (b/2) blocks 
are accessed when the record is found and ‘b’ blocks are 
accessed when the record is not found.

Type of
Organization Access Method

Average Time to 
Access a Specific 

Record

Heap (unordered) Sequential scan 
(linear search)

b/2

Ordered Ordered scan b/2

Ordered Binary search log2b

Ordered files are rarely used in database applications 
unless an additional access path, called a primary index, 
is used; this results in an indexed sequential file. This fur-
ther improves the random access time on the ordering key 
field.

Hashing Techniques
The other type of primary file organization is based on 
hashing, which provides very fast access to records on cer-
tain search conditions. This organization is usually called a 
hash file. 

The search condition must be an equality condition on 
a single field, called the hash field of the file. If the hash 
is also a key field of the file, in which case it is called the 
hash key.

The idea behind hashing is to provide a function ‘h’, 
called a hash function or randomizing function, which is 
applied to the hash field value of a record and yields the 
address of the disk block in which the record is stored. We 
need only a single-block access to retrieve that record.
Example:

.

.

.

.

.

.

NAME RNO CLASS GRADE

0
1
2
3

m −2

m−1

Internal Hashing
For internal files, hashing is implemented as a hash table 
through the use of an array of records. Suppose that the 
array index range is from 0 to M – 1, then we have M 
slots whose addresses corresponds to the array indexes. 
We choose a hash function that transforms the hash field 
value into an integer between 0 and M – 1. One com-
mon hash function is the h(K) = K mod M function, which 
returns the remainder of an integer hash field value K 
after division by M; this value is then used for the record 
address.

Non-integer hash field values can be transformed into 
integers before the mod function is applied. For character 
strings, the numeric (ASCII) codes associated with charac-
ters can be used in the transformation.

A collision occurs when the hash field value of a record 
that is being inserted hashes to an address that already con-
tains a different record. In this situation, we must insert the 
new record in some other position, since its hash address is 
occupied. The process of finding another position is called 
collision resolution. There are different methods for colli-
sion resolution as follows:

Open addressing  Proceeding from the occupied position 
specified by the hash address, the program checks the sub-
sequent positions in order until an unused (empty) position 
is found.



Chapter 5  •  File Management  |  4.85

Chaining  For this method, various overflow locations 
are kept, usually by extending the array with a number of 
overflow positions. In addition, a pointer field is added to 
each record location. A collision is resolved by placing the 
new record in an unused overflow location and setting the 
pointer of the occupied hash address location to the address 
of that overflow location. A linked list of overflow records 
for each hash address is thus maintained.

Multiple hashing  The program applies a second hash 
function if the first results in a collision. If another collision 
results, the program uses open addressing or applies a third 
hash function and then uses open addressing if necessary.

If we expect to have ‘r’ records to store in the table, we 
should choose M locations for the address space such that 
(r/M) is between 0.7 and 0.9. It may also be useful to choose 
a prime number for M, since it has been demonstrated that 
this distributes the hash addresses better over the address 
space when the ‘mod’ hashing function is used. Other hash 
functions may require M to be a power of 2.

External Hashing
Hashing for disk files is called external hashing. To suit the 
characteristics of disk storage, the target address space is 
made of buckets, each of which holds multiple records. A 
bucket is either one disk block or a cluster of contiguous 

blocks. The hashing function maps a key into a relative 
bucket number, rather than assigning an absolute block 
address to the bucket. A table maintained in the file header 
converts the bucket number into the corresponding disk 
block address.

The collision problem is less severe with buckets, 
because as many records as will fit in a bucket can hash to 
the same bucket without causing problems. If the capacity 
of bucket exceeds, we can use a variation of chaining in 
which a pointer is maintained in each bucket to a linked 
list of overflow records for the bucket. The pointers in the 
linked list should be record pointers, which include both 
a block address and a relative record position within the 
block.

. 

. 

.

. 

. 

.

. 

. 

.
. 
. 
.

. 

. 

.

.     .    .    .     .

.     .    .    .     .

.     .    .    .     .

 

Block
address
on disk

0
1
2

n−2
n−1

Bucket
number

Bucket 0

Bucket 1

Bucket 2

62

74

81

32

62

22

86

25

31

Record pointer

Record pointer

Record pointer

NULL

Overflow 

Record pointer

Record pointer

Record pointer

Record pointer

Record pointer

Record pointer

57

The hash function is h(k) = k mod 10 and the hashing 
scheme described above is called static hashing because a 
fixed number of buckets M is allocated. It can be a draw-
back for dynamic files. Suppose that we allocate M buckets 
for the address space and let ‘m’ be the maximum number 
of records that can fit in one bucket, then at most (m * M) 

records will fit in the allocated space. If the number of 
records turns out to be substantially fewer than (m * M), we 
are left with a lot of unused space.

If the number of records increases to substantially more 
than (m * M), numerous collisions will result and retrieval 
will be slowed down because of the long lists of overflow 



4.86  |  Unit 4  •  Databases

records. In either case, we may have to change the number 
of blocks M allocated and then use a new hashing function 
(based on the new value of M) to redistribute the records. 
These organizations can be quite time consuming for large 
files. Newer dynamic file organizations based on hashing 
allows the number of buckets to vary dynamically with only 
localized reorganization.

Hashing Techniques with Dynamic 
File Expansion
The disadvantage of static hashing is that the hash address 
space is fixed. Hence, it is difficult to expand or shrink the 
file dynamically. The first scheme is extendible hashing, It 
stores an access structure in addition to the file hence it is 
similar to indexing. The main difference is that the access 
structure is based on the values that result after applica-
tion of the hash function to the search field. In indexing, 
the access structure based on the values of the search field 
itself. The second technique, called linear hashing, does not 
require additional access structure.

These hashing schemes take advantage of the fact that 
the result of applying a hashing function is a non-negative 
integer and hence can be represented as a binary number. 
The access structure is built on the binary representation 
of the hashing function result, which is a string of bits. We 
call this the hash value of a record. Records are distributed 
among buckets based on the values of the leading bits in 
their hash values.

Extendible Hashing
In extendible hashing, a type of directory, an array of 2d 
bucket addresses is maintained, where d is called the global 
depth of the directory. The integer value corresponding to 
the first (high-order) d bits of a hash value is used as an 
index to the array to determine a directory entry, and the 
address in that determines the bucket in which the corre-
sponding records are stored. Several directory locations 
with the same first d′ bits for their hash values may contain 
the same bucket address if all the records that hash to these 
locations fit in a single bucket. A local depth d′ is stored 
with each bucket specifies the number of bits on which the 
bucket contents are based.

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

3

2

2

3

000

001

010

011

100

101

110

111

Bucket A

Bucket B

Bucket C

Bucket D

The value of d can be increased and decreased by one at a 
time, thus doubling or halving the number of entries in the 
directory array. Doubling is needed if a bucket, whose local 
depth d′ is equal to the global depth d, overflows. Halving 
occurs if d > d′ for all the buckets after some locations 
occur. Most record retrievals require two block accesses: 
one to the directory and the other to the bucket.

The main advantage of extendible hashing is the per-
formance of the file does not degrade as the file grows, 
as opposed to static external hashing where collisions 
increases and the corresponding chaining causes addi-
tional accesses. No space is allowed in extendible hashing 
for future growth, but additional buckets can be allocated 
dynamically as needed. The space overhead for the direc-
tory table is negligible.

Another advantage is that splitting causes minor reorgan-
ization in most cases, since only the records in one bucket 
are redistributed to the two new buckets. The only time a 
reorganization is more expensive is when the directory has 
to be doubled (or) halved.

A disadvantage is that the directory must be searched 
before accessing the buckets themselves, resulting in two 
block accesses instead of one in static hashing.

Indexing
Indexes are auxiliary access structures, which are used to 
speed up the retrieval of records in response to certain search 
conditions. The index structure typically provides secondary 
access paths, which provide alternative ways of accessing the 
records without affecting the physical placement of records 
on disk. They enable efficient access to records based on the 
indexing fields that are used to construct the index.

Any field of the file can be used to create an index and 
multiple indexes on different fields can be constructed on the 
same file. To find a record or records in the file based on a cer-
tain selection criterion on an indexing field, one has to initially 
access the index, which points to one or more blocks in the 
file where the required records are located. The most preva-
lent types of indexes are based on ordered files (single-level 
indexes) and tree data structures (multilevel indexes, B+  trees).

Dense Index files: Index record appears for every search-
key value in the file. 

Brighton A-217 Brighton 750

Downtown A-101 Downtown 600

Mianus A-110 Downtown 300

Perryridge A-215 Mianus 400
A102 Perryridge 800

Figure 3  Dense index file. 

Sparse index files  These files contain index records for 
only some search-key values. Applicable when records are 
sequentially ordered on search key. 



Chapter 5  •  File Management  |  4.87

Brighton A-217 Brighton 700

Mianus A-101 Downtown 710

Red wood A-110 Downtown 800
A-215 Mianus 600
A102 Perryridge 680
A-201 Perryridge 700
A-601 Red wood 700

Figure 4  Sparse index file. 

Compared to dense index, sparse index takes less space and 
less maintenance over head for insertions and deletions. It is 
slower than dense index for locating records.

Index Update
Record deletion  If delete key was the only record in the 
file with its particular search-key value, the search key is 
deleted from the index also. 

In dense index, delete the search key.
In spare index, if deleted key value exists in the index, 

the value is replaced by next search-key value in the file. 
If the next search-key value already has an index entry, the 
entry is deleted instead of being replaced. 

Record insertion  In dense index, if the search-key value 
doesn’t appear in the index insert it. 

If index stores an entry for each block of the file, no 
change needs to be made to the index unless a new block 
is created. If a new block is created, the first search-key 
value appearing in the new block is inserted into the 
index. 

 
350 750

500400

500

600

700

750

900

A-217

A-101

A-110

A-215

A-102

A-201

A-218

A-222

A-305

Brighton

Downtow

Downtown

Mianus

Perryridge

Perryridge

Perryridge

Redwoo

Red will

600

700

400

900

700

700

350

Figure 5  Secondary index.

Secondary index example:

	 1.	 Index record points to a bucket that contains pointers 
to all the actual records with that particular search – 
key value 

	 2.	 secondary index have to be dense 

Single-level Ordered Indexes
A file with a given record structure consisting of several 
fields (or attributes), an index access structure is usually 
defined on a single field of a file is called an indexing field 
or indexing attribute. The index typically stores each value 
of the index field along with a list of pointers to all disk 
blocks that contain records with that field value. The values 
in the index are ordered so that we can do a binary search 
on the index.

The index file is much smaller than the data file, so 
searching the index using a binary search is reasonably effi-
cient. Multilevel indexing does away the need for a binary 
search at the expense of creating indexes to the index itself.

Types of Ordered Indexes
	 1.	 Primary index
	 2.	 Clustering index
	 3.	 Secondary index

Primary index  A primary index is an ordered file whose 
records are of fixed length with two fields. The first field is 
of the same data type as the ordering key field called the pri-
mary key of the data file, and the second field is a pointer to 
a disk block (block address). There is one index entry (index 
record) in the index file for each block in the data file. Each 
index entry has the value of the primary key field for the 
record in a block and a pointer to that block as its two field 
values. The two field values of index entry i is <k(i), p(i)>.
Example:

NAME RNO DOB GRADE AGE

Abhi

AgarkarBlock 1

Block 2

Akash

Akram

Watson

Williams

Block n-1

Zaheer

Zakir

ZamalBlock n

To create a primary index on the ordered file shown in 
the above figure, we use the NAME field as primary key, 
because that the ordering key field on the file (assuming that 
each value of NAME is unique). Each entry in the index has 
a NAME value and a pointer. Some sample index entries 
are as follows:



4.88  |  Unit 4  •  Databases

< k(1) = (Abhi), p(1) = address of block 1 >
< k(2) = (Akram), p(2) = address of block 2 >
< k(3) = (Brat), p(3) = address of block 3 >

The below figure illustrates this primary index. The total number 
of entries in the index is the same as the number of disk blocks 
in the ordered data file. The first record in each block of the data 
file is called the anchor record of the block (or) block anchor.

 
….
….
….

….
….
….

DATA FILE

(PRIMARY KEY FIELD)

NAME RNO DOB GRADE AGE

Abhi

Agarkar

Akash

Akram

Watson

Williams

Zaheer

Zakir

Zamal

(<k (i ), p (i )> entries) 
INDEX FILE

BLOCK
ANCHOR
PRIMARY

KEY VALUE

Abhi

Akram

Watson

Zakir

BLOCK
POINTER

Figure 6  Primary index on the ordering key field of the file.

Indexes can also be characterized as dense or sparse. A 
dense index has an index entry for every search-key value 
(every record) in the data file. A sparse (non-dense) index 
has index entries only for some of the search values. A pri-
mary index is non-dense (sparse) index, since it includes an 
entry for each disk block of the data file and the keys of its 
anchor record rather than for every search value.

The index file for primary index needs fewer blocks than 
does the data file, for two reasons as follows:
	 1.	 There are fewer index entries than there are records in 

the data file.
	 2.	 Each index entry is typically smaller in size than a 

data record because it has only two fields. So more 
index entries than data records can fit in one block.

A binary search on the index file requires fewer block 
accesses than a binary search on the data file. The binary 
search for an ordered data file required log

2
b block accesses. 

But if the primary index file contains b
i
 blocks, then to 

locate a record with a search-key value requires a binary 
search of that index and access to the block containing that 
record, a total of log

2
b
i
 + 1 accesses.

A record whose primary key value is k lies in the block 
whose address is p(i), where k(i) ≤ k ≤ k(i + 1). The ith 
block in the data file contains all such records because of 
the physical ordering of the file records on the primary key 
field. To retrieve a record, given the value k of its primary 
key field, we do a binary search on the index file to find 
the appropriate index entry i, and then retrieve the data file 
block whose address is p(i).

The following example illustrates the saving in block 
accesses that is attainable when a primary index is used to 
search for a record.

Example:  Suppose that we have an ordered file with r = 
24,000 records stored on a disk with block size B = 512 
bytes. File records are of fixed size and are unspanned, with 
record length R = 120 bytes.

The blocking factor for the file would be bfr = B/R

= 





=   =512

120
4 26 4.  records per block

The number of blocks needed for the file is 

b
r

bfr
=



















 = 





=24 000

42
6000

,
 blocks

A binary search on the data file would need

log2
b = log2

6000 = 13 block accesses

Example:  For the above data, suppose that the ordering 
key field of the file is V = 7 bytes long, a block pointer, P = 
5 bytes long, and we have constructed a primary index for 
the file.

The size of each index entry is R
i
 = (7 + 5) = 12 bytes, so 

the blocking factor for the index is bfr
i
 = (B/R

i
)

512/12 = 42.66 = 42 entries per block.
The total number of index entries r

i
 is equal to number of 

blocks in the data file, which is 6000. The number of index 
blocks is hence 

b
i
 = (r

i
/bfr

i
) = 6000/42 = 142 blocks

To perform a binary search on the index file would need 
log2bi

 = log2142 = 8 block accesses. To search for a 
record using the index, we need one additional block access 
to the data file for a total of ‘9’ block accesses.

Disadvantage:  A major problem with a primary index is 
insertion and deletion of records. If we attempt to insert a 
record in its correct position in the data file, we have to not 
only move records to make space for the new record but also 
change some index entries.

Clustering Index  If records of a file are physically ordered 
on a non-key field, which does not have a distinct value for 
each record, that field is called the clustering field. We can 
create a different type of index called clustering index to 



Chapter 5  •  File Management  |  4.89

speed up the retrieval of records that have the same value 
for the clustering field.

A clustering index is also an ordered file with two fields, 
the first field is of the same type as the clustering field of the 
data file, and the second field is a block pointer.

There is one entry in the clustering index for each dis-
tinct value of the clustering field, containing the value and 
a pointer to the first block in the data file that has a record 
with that value for its clustering field.

The record insertion and deletion still cause problems, 
because the data records are physically ordered. To alleviate 
the problem of insertion, reserve a whole block (or a cluster 
of contiguous blocks) for each value of the clustering field, 
all records with that value are placed in the block (or block 
cluster). A clustering index is an example of a non-dense 
index, because it has an entry for every distinct value of the 
indexing field which is a non-key.

Secondary Index  A secondary index provides a secondary 
means of accessing a file for which some primary access 
already exists. The secondary index may be on a field which 
is a candidate key and has a unique value in every record, or 
a non-key with duplicate values. The index is an ordered file 
with two fields. The second field is either a block pointer or 
a record pointer. There can be many secondary indexes for 
the same file.

First consider a secondary index access structure on a 
key field that has a distinct value for every record such a 
field is some times called a secondary key.

The records of the data file are not physically ordered 
by values of the secondary key field, we cannot use block 
anchors. That is why an index entry is created for each 
record in the data file, rather than for each block, as in the 
case of a primary index.

B- Trees
	 1.	 A commonly used index structure 
	 2.	 Non-sequential, ‘balanced’ 
	 3.	 Adapts well to insertions and deletions 
	 4.	 Consists of blocks holding at most n keys and n + 1 

pointers. 
	 5.	 We consider a variation actually called a B+ tree

B+ Trees
B+ trees are a variant of B– trees. In B+ trees data stored only 
in leaves, leaves form a sorted linked list.

Parameter – n
Branching factor – n + 1

30 120 240

Keys 240 ≤ k

Keys 30 ≤ k ≤ 120

Keys 120 ≤ k < 240Keys k < 30

Each node (except root) has at least n/2 keys. B– tree stands 
for balanced tree. All the paths through a B– tree from root 

to different leaf nodes are of the same length (balanced path 
length). All leaf nodes are at the same depth level. 

This ensures that number of disk accesses required for 
all the searches are same. The lesser the depth (level) of an 
index tree, the faster the search.

Insertion into B+ tree
Given nodes 8 5 1 7 3 12 Initially start with root node (has 
no children)

5 8

5

51 8

Insert 1 (overflow)

Insert 7

Overflow in Leaf Node
Split the leaf node First, j = ceiling ((p

leaf 
+ 1)/2) entries are 

kept in the original node and the remaining moved to the 
new leaf. 

	 1.	 Create a new internal node, and jth index value is 
replicated in the parent internal node. 

	 2.	 A pointer is added to the newly formed leaf node.

5

5 7 81

Insert 3 → overflow 

3 5

1 3 5 7 8

Insert 12 (overflow, split propagates, new level)

5

3

531

7 8

1287

Overflow in Internal Node
Split the internal node, the entries up to P

j
 where j = floor ((p 

+ 1)/2) are kept in the original node and remaining moved to 
the new internal node 

	 1.	 Create a new internal node and the jth index value 
is moved to the parent internal node (without 
replication)

	 2.	 Pointers are added to the newly formed nodes. 



4.90  |  Unit 4  •  Databases

	 3.	 B+ tree ensures some space always left in nodes for 
new entries. Also makes sure all nodes are at least 
half full. 

Deletion in B+ Trees
Delete 5,12,9 from the below B+ tree:

7

61

1 5 6 7 8 9 12

9

Delete 5:

7

1 6 9

1298761

Delete 12:
Under flow has occurred, so redistribute. 

7

6

6 7 8 9

81

1

Delete 9: Underflow (merge with left) redistribute. 

6
1

1 6 7 8

7

Advantages
	 1.	 B– Trees and B+ trees: B– tree is a data structure used 

for external memory.
	 2.	 B– trees are better than binary search trees if data is 

stored in external memory.

	 3.	 Each node in a tree should correspond to a block of 
data.

	 4.	 Each node can store many data items and has many 
successors.

	 5.	 The B– tree has fewer levels but search for an item 
takes more comparisons at each level.

	 6.	 If a B– tree has order ‘d’, then each node (except root) 
has at least d/2 children, then the depth of the tree is 
at most log 

d/2
 (size) + 1.

	 7.	 In the worst case, we need (d - 1) comparisons in 
each node (using linear search)

	 8.	 Fewer disk accesses are required compared to binary 
Tree.

	 9.	 The usual data structure for an index is the B+ tree.
	 10.	 Every modern DBMS contains some variant of B–

trees in addition with other index structures depending 
on the application.

	 11.	 B– trees and B+ trees are one and the same. They differ 
from B– trees in having all data in the leaf blocks.

	 12.	 Compared to binary trees, B– trees will have higher 
branching factor.

	 13.	 Binary trees can degenerate to a linear list, 
		  B– trees are balanced, so this is not possible.
	 14.	 In B+ tree, the values in inner nodes are repeated in 

the leaf nodes.
	 15.	 The height of the tree might decrease, because the 

data pointer is needed only in the leaf nodes, we can 
also get a sorted sequence.

	 16.	 In B– trees, all leaves have the same distance from 
root hence B– trees are balanced. This ensures that the 
chain of links followed to access a leaf node is never 
too long.

	 17.	 The time complexity of search operation in B– tree 
(tree height) is O(log n), where ‘n’ is the number of 
entries.

	 18.	 Advantage of B+ tree automatically reorganizes itself 
with small and local changes while doing insertions 
and deletions, reorganization of entire file is not 
required to maintain performance.

	 19.	 Disadvantage of B+ tree, extra Insertion and deletion 
overhead, space overhead.

	 20.	 B+ trees can be used as dynamic multilevel Indexes.

Exercises

Practice Problems 1
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.

	 1.	 Consider the following specifications of a disk. Block 
size of a disk is 512 bytes, inter-block gap size is 128 
bytes  Number of blocks per track is 20 and number of 
tracks per surface is 400.

		  (i)	� What is the capacity of disk including Inter block 
gap?

	 (A)	 124000	 (B)	 1260000
	 (C)	 5120000	 (D)	 512000

		  (ii)	� What is the capacity of disk excluding Inter block 
gap?

	 (A)	 25400	 (B)	 25600
	 (C)	 25800	 (D)	 25900

	 2.	 Consider the following specifications of a disk. Block 
size of disk is 512 bytes, 2000 tracks per surface, 50 
sectors per track and 5 double sided platters.



Chapter 5  •  File Management  |  4.91

		  (i)	 What is the capacity of track in bytes?
	 (A)	 4096000	 (B)	 4086000
	 (C)	 4076000	 (D)	 4066000

	 	 (ii)	 What is the capacity of surface in bytes?
	 (A)	 25600000	 (B)	 512000
	 (C)	 5120000	 (D)	 51200000

	 	 (iii)	What is the capacity of disk in bytes?
	 (A)	 512*10^4	 (B)	 512*10^5
	 (C)	 512*10^6	 (D)	 512*10^7

	 	 (iv)	 How many cylinders does it have?
	 (A)	 512	 (B)	 1000
	 (C)	 2000	 (D)	 2048

		  (v)	 Identify the In valid disk block size from below:
	 (A)	 2048	 (B)	 51200
	 (C)	 4098	 (D)	 4096

	 3.	 What is the order of internal node of B+ tree suppose 
that a child pointer takes 6 bytes, the search field value 
takes 14 bytes and the block size is 512 bytes?

	 (A)	 23	 (B)	 24
	 (C)	 25	 (D)	 26

	 4.	 The order of a leaf node in a B+ tree is the maximum 
number of (value, data, record pointer) pairs it can 
hold. Given that block size is 1 k bytes (1024 bytes), 
data record pointer is 7 bytes long, the value field is ‘9’ 
bytes long and block pointer is 6 bytes.

	 (A)	 63	 (B)	 64
	 (C)	 65	 (D)	 66

	 5.	 The following key values are inserted into a B+ tree 
in which order of the internal nodes is 3, and that of 
the leaf nodes is 2, in the sequence given below. The 
order of internal nodes is the maximum number of tree 
pointers in each node, and the order of leaf nodes is the 
maximum number of data items that can be stored in it. 
The B+ tree is initially empty. 10, 3, 6, 8, 4, 2, 1. What 
is the maximum number of times leaf nodes would get 
split up as a result of these insertions?

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

	 6.	 For the same key values given in the above question, sup-
pose the key values are inserted into a B– tree in which 
order of the internal nodes is 3 and that of leaf nodes is 2. 
The order of internal nodes is the maximum number of 
tree pointers in each node and the order of leaf nodes is 
the maximum number of data items that can be stored 
in it. The B– tree is initially empty. What is the maxi-
mum number of times leaf nodes would get split up as 
a result of these insertions?

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

	 7.	 Suppose that we have an ordered file with 45,000 
records stored on a disk with block size 2048 bytes. 
File records are of fixed size and are unspanned with 
record length 120 bytes.

		  (i)	 What is the blocking factor?
	 (A)	 16	 (B)	 17
	 (C)	 18	 (D)	 19

		  (ii)	 What is the number of blocks needed for the file?
	 (A)	 2642	 (B)	 2644
	 (C)	 2646	 (D)	 2648

		  (iii)	How many block accesses are required to search 
for a particular data file using binary search?

	 (A)	 10	 (B)	 11
	 (C)	 12	 (D)	 13

	 8.	 Suppose that the ordering key field of the file is 12 
bytes long, a block pointer is 8 bytes long, and we have 
constructed a primary index for the file. Consider the 
file specifications given in the above questions.

		  (i)	 What is the size of each index entry?
	 (A)	 16	 (B)	 18
	 (C)	 20	 (D)	 22

	 	 (ii)	 What is the blocking factor for the index?
	 (A)	 101	 (B)	 102
	 (C)	 103	 (D)	 104

		  (iii)	What is the total number of index entries?
	 (A)	 2642	 (B)	 2644
	 (C)	 2646	 (D)	 2648

		  (iv)	 What is the number of index blocks?
	 (A)	 22	 (B)	 24
	 (C)	 26	 (D)	 28

		  (v)	 How many block accesses are required, if binary 
search is used?

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

	 9.	 For the file specifications given in Q. No. 7, if we con-
struct secondary index on a non-ordering key field of 
the file that is 12 bytes long, a block-pointer of size 8 
bytes, each index entry is 20 bytes long and the block-
ing factor is 102 entries per block.

		  (i)	 What is the total number of index blocks?
	 (A)	 422	 (B)	 424
	 (C)	 442	 (D)	 444

		  (ii)	 How many block accesses are required to access 
the secondary index using binary search?

	 (A)	 6	 (B)	 7
	 (C)	 8	 (D)	 9

	10.	 For the file specifications given in Q. No. 8, if we construct 
a multilevel index, number of 1st-level blocks are 442, 
blocking factor is 102, each index entry is 20 bytes long.

		  (i)	 What is the number of 2nd-level blocks?
	 (A)	 4	 (B)	 5
	 (C)	 6	 (D)	 7

	 	 (ii)	 What is the number of 3rd-level blocks?
	 (A)	 0	 (B)	 1
	 (C)	 2	 (D)	 3



4.92  |  Unit 4  •  Databases

	11.	 Construct a B+ tree for (1,4,7,10,17,21,31) with n = 4, 
which nodes will appear two times in a final B+ tree?

	 (A)	 17,7,20	 (B)	 17,7,20,25
	 (C)	 17,20,25	 (D)	 7,17.25

	12.	 Suppose the hash function is h(x) = xmod 8 and each 
bucket can hold at most two records. The extendable 
hash structure after inserting 1, 4, 5 ,7, 8, 2, 20, what is 
the local depth of ‘4’?

	 (A)	 0	 (B)	 1
	 (C)	 2	 (D)	 3

	13.	 Consider the given B+ tree, insert 19 into the tree, what 
would be the new element in level 2?

 

 13

5 10 20 40 50

7060454138302920181312119541

30

	 (A)	 13	 (B)	 18
	 (C)	 20	 (D)	 29

	14.	 Consider the given B+ tree, delete 70 and 25 from the 
tree, what are the elements present in level 2? (∴ root 
is at level 1)

95908580

706560555030282520

25 50 75

60

85

15105

75

	 (A)	 25, 50, 75	 (B)	 25, 50,75, 85
	 (C)	 28, 50, 75, 85	 (D)	 28, 50, 65, 75

	15.	 Delete 60 from the above given tree (Q. No. 14). After 
deletion, what is the total number of nodes present in 
the tree?

 

95908585

706560

75

60

85

503028255 10 15 20

5025

55

75

	 (A)	 5	 (B)	 6
	 (C)	 7	 (D)	 8

	16.	 What will be the number of index records/block?
	 (A)	 68	 (B)	 65	
	 (C)	 69	 (D)	 None

	17.	 What will be the number of index blocks?
	 (A)	 442	 (B)	 440
	 (C)	 400	 (D)	 None

	18.	 Consider the following:

		  Block size = 1025 bytes

		  Record length in data file = 100 bytes

		  Total number of records = 30000

		  Search key = 9 bytes

		  Pointer = 6 bytes
		  What is the number of index blocks?
	 (A)	 44	 (B)	 45
	 (C)	 46	 (D)	 None

	19.	 Which of the following is maximum search time t
max

 in 
B– trees? 

	 (A)	 t a
N a d

m

bm

m
cmax log

log log
= 





+ + +








2

2 22

	 (B)	 t a
N a d

m

bm

m
cmax log

log log
= 





+ + +








2

2 22

	 (C)	 t a N
a d

m

bm

m
cmax log

log log
= + + +









2

2 2

	 (D)	 t a N
a

m

bm

m
cmax log ( )

log log
= + +









2

2 2

	20.	 Consider a B+ tree. A child pointer takes 3 bytes, the 
search field value takes 7 bytes, and the block size is 
256 bytes. What is the order of the internal node?

	 (A)	 63	 (B)	 64
	 (C)	 65	 (D)	 66



Chapter 5  •  File Management  |  4.93

Practice Problems 2
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.

	 1.	 Which of the following is true?
	 (A)	 Every conflict serializable is view serializable
	 (B)	 Every view serializable is conflict serializable
	 (C)	 Both A and B
	 (D)	� A schedule can be either only conflict serializable 

or only view-serializable.

	 2.	 Which one is the 2-phase locking rule?
	 (A)	 Two transactions cannot have conflicting locks
	 (B)	� No unlock operation can precede a lock operation 

in the same transaction.
	 (C)	� No data is/are affected until all locks are obtained 

and until the transaction is in its locked point.
	 (D)	 All of the above

	 3.	 If Transaction T
i
 has obtained an exclusive mode lock 

on item Q, then
	 (A)	 T

i
 can read Q

	 (B)	 T
i
 can write Q

	 (C)	 T
i
 can read and write

	 (D)	 Neither read nor write

	 4.	 Phantom phenomenon is 
	 (A)	� A transaction retrieves a collection of objects but 

sees same result.
	 (B)	� A transaction retrieves a collection of objects but 

sees different results.
	 (C)	 Transaction T

1
 waits for T

2
 and T

2
 waits for T

1

	 (D)	� This problem arises when the transaction has not 
locked all the objects.

	 5.	 We can avoid the starvation of transactions by granting 
locks by following manner:

		  When a transaction T
i
 requests a lock on a data item Q 

in a particular mode M, the concurrency control man-
ager grants the lock provided that

	 (A)	� There is no other transaction holding a lock on Q 
in a mode that conflicts with M.

	 (B)	� There is no other transaction that is waiting for a 
lock on Q, 

	 (C)	 (A) and (B) 
	 (D)	 None

	 6.	 Which one is correct?
	 (A)	 Upgrading can take place only in shrinking phase
	 (B)	� Upgrading can take place only in growing 

phase.
	 (C)	� Downgrading can take place only in growing 

phase
	 (D)	 (A) and (C) both

	 7.	 A simple but widely used scheme automatically gen-
erates the appropriate lock and unlock instructions for 
a transaction, on the basis of read and write requests 
from the transaction:

	 (A)	� When a transaction T
i
 issues a read (Q) operation, the 

system issues a lock s(Q) instruction followed by the 
read instruction.

	 (B)	� When T
i
 issues a write Q operation, the system 

checks to see whether T
i
 already holds a shared 

lock on Q. If it does, then the system issues an 
upgrade Q instruction followed by the write Q 
instruction, otherwise the system issues a lock 
-X(Q) instruction, followed by the write Q 
instruction.

	 (C)	� All locks obtained by a transaction are unlocked 
after that transaction commits or aborts.

	 (D)	 All of the above

	 8.	 Which one is correct?
	 (A)	� A lock manager can be implemented as a process 

that receives messages from transactions and sends 
messages in reply.

	 (B)	 It uses linked list of records.
	 (C)	 It uses hash table called lock table.
	 (D)	 All of the above

Common data questions 9 and 10:  Transaction T
1
 has 5 

instructions. Transaction T
2
 has 3 instructions.

	 9.	 The number of non-serial transactions will be
	 (A)	 15	 (B)	 8
	 (C)	 2	 (D)	 56

	10.	 The number of serial transaction schedules will be
	 (A)	 15	 (B)	 8
	 (C)	 2	 (D)	 56

	11.	 In a heap file system, which of the following function 
finds ‘average number of blocks to be read’?

	 (A)	
i

n
n

n= + =1

2
1

2
( )

	 (B)	
i

n
n

n
i

n = + =
=∑ 1

2
1

21
( )

 	 (C)	
i

n
n

n
i

n

=

−∑ = + =
0

1 1

2
1

2
( )

	 (D)	 All of the above

	12.	 What is the disadvantage in one directory per user? 
	 (A)	� Different applications can be divided into separate 

groups.
	 (B)	� Different applications cannot be divided into sepa-

rate groups 
	 (C)	 All files are in a single group
	 (D)	 All of the above

	13.	 What are the possible violations if an application pro-
gram uses isolation-level ‘Read uncommitted’?

	 (A)	 Dirty read problem
	 (B)	 Non-repeatable read problem
	 (C)	 Phantom phenomenon
	 (D)	 All of the above



4.94  |  Unit 4  •  Databases

	14.	 The two-phase locking protocol
	 (A)	 ensures serializability	
	 (B)	 issues locks in two phases
	 (C)	 unlocks in two phases
	 (D)	 All of the above

	15.	 The point in the schedule where the transaction has obtained 
its final lock (the end of its growing phase) is called the 

	 (A)	 block point	 (B)	 critical section
	 (C)	 growing point	 (D)	 lock point

	16.	 Which of the following is not a problem of file manage-
ment system?

	 (A)	 Data redundancy 
	 (B)	 Lack of data independence 
	 (C)	 Program dependence 
	 (D)	 All of the above 

	17.	 Which of the following is/are true about master list of 
an index file? 

		  (i)	 Is sorted in ascending order

		  (ii)	 A number is assigned to each record. 
	 (A)	 Only (i)	 (B)	 Only (ii)
	 (C)	 Both (i) and (ii)	 (D)	 None of the above

	18.	 To have a file, holding a list is necessary to 

		  (i)	 Identify the records in the list 

		  (ii)	� Identify the name, and type of the fields of each 
record. 

		  (iii)	�Decide which fields will be used as sort of index 
keys. 

	 (A)	 Only (i) and (ii)
	 (B)	 Only (i) and (iii)
	 (C)	 Only (ii) and (iii)
	 (D)	 All of the above

	19.	 Two files may be joined into a third file, if the following 
is true: 

	 (A)	 if they have row in common 
	 (B)	 if they have a field in common 
	 (C)	 Both (A) and (B) 
	 (D)	 None 

	20.	 The minimum number of record movements required to 
merge four files w(with 10 records), x(with 20 records), 
y(with 15 records) and z(with 5 records) is: 

	 (A)	 50	 (B)	 40
	 (C)	 30	 (D)	 35

Previous Years’ Questions

	 1.	 A clustering index is defined on the fields which are 
of type� [2008]

	 (A)	 non-key and ordering
	 (B)	 non-key and non-ordering
	 (C)	 key and ordering
	 (D)	 key and non-ordering

	 2.	 A B– tree of order 4 is built from scratch by 10 succes-
sive insertions. What is the maximum number of node 
splitting operations that may take place?� [2008]

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

	 3.	 Consider a file of 16384 records. Each record is 32 
bytes long and its key field is of size 6 bytes. The file 
is ordered on a non-key field, and the file organization 
is unspanned. The file is stored in a file system with 
block size 1024 bytes, and the size of a block pointer 
is 10 bytes. If the secondary index is built on the key 
field of the file, and a multilevel index scheme is used 
to store the secondary index, the number of first-level 
and second-level blocks in the multilevel index are 
respectively� [2008]

	 (A)	 8 and 0	 (B)	 128 and 6
	 (C)	 256 and 4	 (D)	 512 and 5

	 4.	 The following key values are inserted into a B+ tree 
in which order of the internal node s is 3, and that 
of the leaf nodes is 2, in the sequence given below. 
The order of internal nodes is the maximum number 

of tree pointers in each node, and the order of leaf 
nodes is the maximum number of data items that can 
be stored in it. The B+ tree is initially empty.

		  10, 3, 6, 8, 4, 2, 1

		  The maximum number of times leaf nodes would get 
split up as a result of these insertions is� [2009]

	 (A)	 2	 (B)	 3
	 (C)	 4	 (D)	 5

	 5.	 Consider a B+ tree in which the maximum number of 
keys in a node is 5. What is the minimum number of 
keys in any non-root node?� [2010]

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

	 6.	 An index is clustered, if� [2013]
	 (A)	 it is on a set of fields that form a candidate key.
	 (B)	� it is on a set of fields that include the primary 

key.
	 (C)	� the data records of the file are organized in the 

same order as the data entries of the index.
	 (D)	� the data records of the file are organized not in 

the same order as the data entries of the index.

	 7.	 A file is organized so that the ordering of data records 
is the same as or close to the ordering of data entries 
in some index. Then that index is called� [2015]

	 (A)	 Dense	 (B)	 Sparse
	 (C)	 Clustered	 (D)	 Unclustered



Chapter 5  •  File Management  |  4.95

	 8.	 With reference to the B+ tree index of order 1 shown 
below, the minimum number of nodes (including the 
Root node) that must be fetched in order to satisfy the 
following query: “Get all records with a search key 
greater than or equal to 7 and less than 15” is _______

� [2015]

9

97

5

531

13

1311 15

17

17

	 9.	 Consider a B+ tree in which the search key is 12 bytes 
long, block size is 1024 bytes, record pointer is 10 
bytes long and block pointer is 8 bytes long. The max-
imum number of keys that can be accommodated in 

each non-leaf node of the tree is ________.� [2015]

	10.	 B+ Trees are considered BALANCED because
� [2016]
	 (A)	� The lengths of the paths from the root to all leaf 

nodes are all equal.
	 (B)	� The lengths of the paths from the root to all leaf 

nodes differ from each other by at most 1.
	 (C)	� The number of children of any two non - leaf sib-

ling nodes differ by at most 1.
	 (D)	� The number of records in any two leaf nodes dif-

fer by at most 1.

	11.	 In a B+ tree, if the search-key value is 8 bytes long, 
the block size is 512 bytes and the block pointer size 
is 2 bytes, then the maximum order of the B+ tree is 
__________.� [2017]

Answer Keys

Exercises

Practice Problems 1
	 1.  (i)  C  (ii)  A	 2.  (i)  B  (ii)  D  (iii)  C  (iv)  C  (v)  C	 3.  C	 4.  A	 5.  C	 6.  B
	 7.  (i)  B  (ii)  D  (iii)  C	8.  (i)  C  (ii)  B  (iii)  D  (iv)  C	  (v)  C	 9.  (i)  C  (ii)  D
	10.  (i)  B  (ii)  B	 11.  B	 12.  D	 13.  B	 14.  C	 15.  B	 16.  A	 17.  A	 18.  B
	19.  A	 20.  C
Practice Problems 2
	 1.  A	 2.  D	 3.  C	 4.  B	 5.  C	 6.  B	 7.  D	 8.  D	 9.  D	 10.  C
	11.  B	 12.  B	 13.  D	 14.  D	 15.  D	 16.  D	 17.  B	 18.  D	 19.  B	 20.  B

Previous Years’ Questions
	 1.  A	 2.  C	 3.  C	 4.  C	 5.  B	 6.  C	 7.  C	 8.  5	 9.  50	 10.  A
	10.  52


	Unit 4: Databases
	Chapter 5: File Management
	Files
	Memory Hierarchies
	Description of Disk Devices
	File Records
	Sorted Files (Ordered Records)
	Hashing Techniques
	Indexing
	Exercises
	Previous Years’ Questions
	Answer Keys



