Chapter 15 Transmission of Heat

Heat energy transfers from a body at higher temperature to a body at lower temperature. The transfer of heat from one body to another may take place by one of the following modes.

Conduction, Convection and Radiation

Conauction

The process of transmission of heat energy in which the heat is transferred from one particle to other particle without dislocation of the particle from their equilibrium position is called conduction.

(1) Heat flows from hot end to cold end. Particles of the medium simply oscillate but do not leave their place.

(2)Medium is necessary conduction

(3) It is a slow process

(4) The temperature of the medium increases through which heat flows

(5) Conduction is a process which is possible in all states of matter.

Fig. 15.1

(6) When liquid and gases are heated from the top, they conduct heat from top to bottom.

(7) In solids only conduction takes place

(8) In non-metallic solids and fluids the conduction takes place only due to vibrations of molecules, therefore they are poor conductors.

(9) In metallic solids free electrons carry the heat energy, therefore they are good conductor of heat.

Conduction in Metallic Rod

When one end of a metallic rod is heated, heat flows by conduction from the hot end to the cold end.

(1) Variable state : In this state is the state of every part of the rod increases

Heat received by each cross-section of the rod from hotter end used in three ways.

- (i) A part increases temperature of itself.
- (ii) Another part transferred to neighbouring cross-section.
- (iii) Remaining part radiates.

(2) Steady state : After sometime, a state is reached when the temperature of every cross-section of the rod becomes constant. In this state, no heat is absorbed by the rod. The heat that reaches any crosssection is transmitted to the next except that a small part of heat is lost to surrounding from the sides by convection & radiation. This state of the rod is called steady state.

(3) Isothermal surface : Any surface (within a conductor) having its all points at the same temperature, is called isothermal surface. The direction

Plane isothermal surfaces

UNIVERSAL

of flow of heat through a conductor at any point is perpendicular to the isothermal surface passing through that point.

(4) **Temperature gradient** $(if.G.)^4$: The rate of change of temperature with distance between two isothermal surfaces is called temperature gradient. Hence

(ii) The negative sign show that temperature θ decreases as the distance *x* increases in the direction of heat flow.

- (iii) For uniform temperature fall $\frac{\theta_1 \theta_2}{l} = \frac{\Delta \theta}{\Delta x}$
- (iv) Unit : K/m or $^{\circ}C/m$ (S.I.) and Dimensions $[L^{-1}\theta]$

(5) **Law of thermal conductivity :** Consider a rod of length *I* and area of cross-section *A* whose faces are maintained at temperature θ and θ respectively. The curved surface of rod is kept insulated from surrounding to avoid leakage of heat

(i) In steady state the amount of heat flowing from one face to the other face in time *t* is given by $Q = \frac{KA(\theta_1 - \theta_2)t}{r}$

where K is coefficient of thermal conductivity of material of rod.

(ii) Rate of flow of heat *i.e.* heat current
$$\frac{Q}{t} = H = \frac{KA(\theta_1 - \theta_2)}{l}$$

(iii) In case of non-steady state or variable cross-section, a more general equation can be used to solve problems.

$$\frac{dQ}{dt} = -KA \frac{d\theta}{dx}$$

(6) More about K: It is the measure of the ability of a substance to conduct heat through it.

(i) Units : *Callcm-sec* \cdot *C* (in C.G.S.), *kcallm-sec-K* (in M.K.S.) and *W*/*m-K* (in S.I.). Dimension : $[MLT^{-3}\theta^{-1}]$

(ii) The magnitude of *K* depends only on nature of the material.

(iii) Substances in which heat flows quickly and easily are known as good conductor of heat. They possesses large thermal conductivity due to large number of free electrons *e.g.* Silver, brass *etc.* For perfect conductors, $K = \infty$.

(iv) Substances which do not permit easy flow of heat are called bad conductors. They possess low thermal conductivity due to very few free electrons *e.g.* Glass, wood *etc.* and for perfect insulators, K = 0.

 $\left(\nu\right)$ The thermal conductivity of pure metals decreases with rise in temperature but for alloys thermal conductivity increases with increase of temperature.

(vi) Human body is a bad conductor of heat (but it is a good conductor of electricity).

 (vii) Decreasing order of conductivity : For some special cases it is as follows

- (a) $K_{Ag} > K_{Cu} > K_{Al}$
- (b) $K_{Solid} > K_{Liquid} > K_{Gas}$
- (c) $K_{Metals} > K_{Non-metals}$

Table 15.1 : Thermal conductivity of some material

Substance	Thermal conductivity	Substance	Thermal conductivity
	(<i>W/m-K</i>)		(<i>W/m-K</i>)
Aluminium	240	Concrete	0.9
Copper	400	Water	0.6
Gold	300	Glass wool	0.04
lron	80	Air	0.024
Lead	35	Helium	0.14
Glass	0.9	Hydrogen	0.17
Wood	0.1-0.2	Oxygen	0.024

(7) Relation between temperature gradient and thermal conductivity : In steady state, rate of flow of heat $\frac{dQ}{dt} = -KA \frac{d\theta}{dx} = -KA \times (T.G.) \Rightarrow$

(T.G.)
$$\propto \frac{1}{K} \left(\frac{dQ}{dt} = \text{constant} \right)$$

Temperature difference between the hot end and the cold end in steady state is inversely proportional to *K*, *i.e.* in case of good conductors temperature of the cold end will be very near to hot end.

In ideal conductor where $K = \infty$, temperature difference in steady state will be zero.

(8) Thermal resistance (R): The thermal resistance of a body is a measure of its opposition to the flow of heat through it.

It is defined as the ratio of temperature difference to the heat current (= Rate of flow of heat)

(i) Hence
$$R = \frac{\theta_1 - \theta_2}{H} = \frac{\theta_1 - \theta_2}{KA(\theta_1 - \theta_2)/l} = \frac{l}{KA}$$

(ii) **Unit** : ${}^{o}C \times s \ e \ d \ c \ a$ or $K \times sec \ / \ kcal$ and Dimension : $[M^{-1}L^{-2}T^{3}\theta]$

(9) **Wiedmann-Franz law :** At a given temperature *T*, the ratio of thermal conductivity to electrical conductivity is constant *i.e.*, $(K / \sigma T) =$ constant, *i.e.*, a substance which is a good conductor of heat (*e.g.*, silver) is also a good conductor of electricity. Mica is an exception to above law.

(10) Thermometric conductivity or diffusivity : It is a measure of rate of change of temperature (with time) when the body is not in steady state (*i.e.*, in variable state)

It is defined as the ratio of the coefficient of thermal conductivity to the thermal capacity per unit volume of the material. Thermal capacity per

unit volume =
$$\frac{mc}{V} = \rho c$$

(
$$\rho$$
 = density of substance) \Rightarrow Diffusivity (D) = $\frac{K}{\rho c}$

Unit : m/sec and Dimension : $[L^2T^{-1}]$

Table 15.2 : Electrical Analogy for Thermal Conduction

Electrical conduction	Thermal conduction
Electric charge flows from higher potential to lower potential	Heat flows from higher temperature to lower temperature
The rate of flow of charge is called the electric current,	The rate of flow of heat may be called as heat current
<i>i.e.</i> $I = \frac{dq}{dt}$	<i>i.e.</i> $H = \frac{dQ}{dt}$
The relation between the electric current and the potential difference is given by Ohm's law, that is $I = \frac{V_1 - V_2}{R}$	Similarly, the heat current may be related with the temperature difference as $H = \frac{\theta_1 - \theta_2}{R}$
where <i>R</i> is the electrical resistance of the conductor	where R is the thermal resistance of the conductor
The electrical resistance is defined as	The thermal resistance may be
$R = \frac{\rho l}{A} = \frac{l}{\sigma A}$	defined as $R = \frac{l}{KA}$
where $ ho$ = Resistivity and σ = Electrical conductivity	where <i>K</i> = Thermal conductivity of conductor
$\frac{dq}{dt} = I = \frac{V_1 - V_2}{R} = \frac{\sigma A}{l}(V_1 - V_2)$	$\frac{dQ}{dt} = H = \frac{\theta_1 - \theta_2}{R} = \frac{KA}{l}(\theta_1 - \theta_2)$

Applications of Conductivity in Daily Life

(1) Cooking utensils are provided with wooden handles, because wood

is a poor conductor of heat. The hot utensils can be easily handled from the wooden handles and our hands are saved from burning.

 $(2) \ \mbox{We feel warmer in a fur} \\ \mbox{coat. The air enclosed in the fur} \\$

coat being bad conductor heat does not allow the body heat to flow outside. Hence we feel warmer in a fur coat.

(3) Eskimos make double walled houses of the blocks of ice. Air enclosed in between the double

walls prevents transmission of heat from the house to the cold surroundings.

For exactly the same reason, two thin blankets are warmer than one blanket of their combined thickness. The layer of air enclosed in between the two blankets makes the difference.

(4) Wire gauze is placed over the flame of Bunsen burner while

heating the flask or a beaker so that the flame does not go beyond the gauze and hence there is no direct contact between the flame and the flask. The wire gauze being a good conductor of heat, absorb the heat of the flame and transmit it to the flask.

Davy's safety lamp has been designed on this principle. The gases in the mines burn inside the gauze

placed around the flame of the lamp. The temperature outside the gauze is not high, so the gases outside the gauze do not catch fire.

(5) Birds often swell their feathers in winter. By doing so, they enclose more air between their bodies and the feathers. The air, being bad conductor of heat prevents the out flow of their body heat. Thus, birds feel warmer in winter by swelling their feathers.

Combination of Metallic Rods

(1) **Series combination :** Let *n* slabs each of cross-sectional area *A*, lengths $l_1, l_2, l_3, \dots, l_n$ and conductivities $K_1, K_2, K_3, \dots, K_n$ respectively be connected in the series

(i) **Heat current :** Heat current is the same in all the conductors.*i.e.*,

$$\frac{Q}{t} = H_1 = H_2 = H_3 \dots = H_n$$

$$K_{t} A(\theta_{t} - \theta_{2}) \quad K_{2} A(\theta_{2} - \theta_{3})$$

$$\frac{K_1A(\theta_1-\theta_2)}{l_1} = \frac{K_2A(\theta_2-\theta_3)}{l_2} = \frac{K_nA(\theta_{n-1}-\theta_n)}{l_n}$$

(ii) Equivalent thermal resistance : $R = R_1 + R_2 + \dots R_n$

(iii) Equivalent thermal conductivity : It can be calculated as follows

From
$$R_S = R_1 + R_2 + R_3 + ...$$

$$\frac{l_1 + l_2 + \dots + l_n}{K_s} = \frac{l_1}{K_1 A} + \frac{l_2}{K_2 A} + \dots + \frac{l_n}{K_n A}$$
$$\implies K_s = \frac{l_1 + l_2 + \dots + l_n}{\frac{l_1}{K_1} + \frac{l_2}{K_2} + \dots + \frac{l_n}{K_n}}$$

(a) For *n* slabs of equal length $K_s = \frac{n}{\frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3} + \dots + \frac{1}{K_n}}$

(b) For two slabs of equal length, $K_s = \frac{2K_1K_2}{K_1 + K_2}$

Fig. 15.8

(iv) **Temperature of interface of composite bar** : Let the two bars are arranged in series as shown in the figure.

Then heat current is same in the two conductors.

i.e.,
$$\frac{Q}{t} = \frac{K_1 A(\theta_1 - \theta)}{l_1} = \frac{K_2 A(\theta - \theta_2)}{l_2}$$

By solving we get $\theta = \frac{\frac{K_1}{l_1} \theta_1 + \frac{K_2}{l_2} \theta_2}{\frac{K_1}{l_1} + \frac{K_2}{l_2}}$
(a) If $l = l$ then $\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$

(b) If
$$K = K$$
 and $I = I$ then $\theta = \frac{\theta_1 + \theta_2}{2}$

(2) **Parallel Combination :** Let *n* slabs each of length *l*, areas $A_1, A_2, A_3, \ldots, A_n$ and thermal conductivities $K_1, K_2, K_3, \ldots, K_n$ are connected in parallel then

(ii) Temperature gradient : Same across each slab.

(iii) **Heat current :** in each slab will be different. Net heat current will be the sum of heat currents through individual slabs. *i.e.*, $H = H_1 + H_2 + H_3 + \dots + H_n$

$$\frac{K(A_1 + A_2 + \dots + A_n)(\theta_1 - \theta_2)}{l}$$

$$= \frac{K_1 A_1(\theta_1 - \theta_2)}{l} + \frac{K_2 A_2(\theta_1 - \theta_2)}{l} + \dots + \frac{K_n A_n(\theta_1 - \theta_2)}{l}$$

$$\Rightarrow K = \frac{K_1 A_1 + K_2 A_2 + K_3 A_3 + \dots + K_n A_n}{A_1 + A_2 + A_3 + \dots + A_n}$$

$$K_r + K_2 + K_3 + \dots + K_n$$

(a) For *n* slabs of equal area $K = \frac{K_1 + K_2 + K_3 + \dots + K_n}{n}$

(b) For two slabs of equal area
$$K = \frac{K_1 + K_2}{2}$$

Ingen-Hauz Experiment

It is used to compare thermal conductivities of different materials. If l_1 , $l_2\,$ and l are the lengths _____ Hot

of wax melted on rods as

shown in the figure, then the ratio of thermal conductivities is $K_1: K_2: K_3 = l_1^2: l_2^2: l_3^2$

 \Rightarrow Thermal conductivity (*K*) \propto (Melted length *I*)⁴

Searle's Experiment

It is a method of determination of *K* of a metallic rod.

(1) In this Experiment a Figenfiperature difference $(\theta_1 - \theta_2)$ is maintained across a rod of length *I* and area of cross section A. If the thermal conductivity of the material of the rod is *K*, then the amount of heat transmitted by the rod from the hot end to the cold end in time *t* is $KA(\theta_1 - \theta_2) t$

given by,
$$Q = \frac{KA(\theta_1 - \theta_2)t}{l}$$
(i)

(2) In Searle's experiment, this heat reaching the other end is utilized to raise the temperature of certain amount of water flowing through pipes circulating around the other end of the rod. If temperature of the water at the inlet is θ_3 and at the outlet is θ_4 , then the amount of heat absorbed

by water is given by, $Q = mc(\theta_4 - \theta_3)$

(3) Where, m is the mass of the water which has absorbed this heat and temperature is raised and c is the specific heat of the water

Equating (i) and (ii), K can be determined *i.e.*,
$$K = \frac{mc(\theta_4 - \theta_3)l}{A(\theta_1 - \theta_2)t}$$

(4) In numericals we may have the situation where the amount of heat travelling to the other end may be required to do some other work e.g., it may be required to melt the given amount of ice. In that case equation (i) will have to be equated to *mL*.

i.e.
$$mL = \frac{KA(\theta_1 - \theta_2)t}{l}$$

Growth of Ice on Lake

(1) Water in a lake starts freezing if the atmospheric temperature drops below $0^{o} C$. Let y be the thickness of ice layer in the lake at any instant t and atmospheric temperature is $-\theta^{o}C$.

 $\left(2\right)$ The temperature of water in contact with lower surface of ice will be zero.

(3) If A is the area of lake, heat escaping through ice in time dt is

$$dQ_1 = \frac{KA[0 - (-\theta)]dt}{y}$$

(4) Suppose the thickness of ice layer increases by dy in time dt, due to escaping of above heat. Then $dQ_2 = mL = \rho(dy A)L$

Fig. 15.13

proportional to the surface area of body and excess temperature of body over its surroundings *i.e.*

(5) As
$$dQ_1 = dQ_2$$
, hence, rate of growth of ice will be $(dy/dt) = (K\theta/\rho Ly)$

So, the time taken by ice to grow to a thickness *y* is

$$t = \frac{\rho L}{K\theta} \int_0^y y \, dy = \frac{\rho L}{2K\theta} y^2$$

(6) If the thickness is increased from y_1 to y_2 then time taken

$$t = \frac{\rho L}{K\theta} \int_{y_1}^{y_2} y dy = \frac{\rho L}{2K\theta} (y_2^2 - y_1^2)$$

(7) Take care and do not apply a negative sign for putting values of temperature in formula and also do not convert it to absolute scale.

(8) Ice is a poor conductor of heat, therefore the rate of increase of thickness of ice on ponds decreases with time.

(9) It follows from the above equation that time taken to double and triple the thickness, will be in the ratio of

 $t_1: t_2: t_3:: 1^2: 2^2: 3^2$, *i.e.*, $t_1: t_2: t_3:: 1: 4: 9$

(10) The time intervals to change the thickness from 0 to y, from y to 2y and so on will be in the ratio

$$\Delta t_1 : \Delta t_2 : \Delta t_3 :: (1^2 - 0^2) : (2^2 - 1^2) : (3^2 : 2^2)$$

$$\Rightarrow \Delta t_1 : \Delta t_2 : \Delta t_3 :: 1 : 3 : 5$$

Convection

mode of cransfer of near of means of migration of material particles of medium is called convection. It is of two types.

Convection

current

(1) **Natural convection :** This arise due to difference of densities at two places and is a consequence of gravity because on account of gravity the hot

light particles rise up and cold heavy particles try setting down. It mostly occurs on heating a liquid/fluid.

(2) Forced convection : If a fluid is forced to move to take up heat from a hot body

then the convection process is called forced convection. In this case Newton's law of cooling holds good. According to which rate of loss of heat from a hot body due to moving fluid is directly

$$\frac{Q}{t} \propto A(T - T_0) \Longrightarrow \frac{Q}{t} = h A(T - T_0)$$

where h = Constant of proportionality called convection coefficient, T = Temperature of body and T = Temperature of surrounding

Convection coefficient (h) depends on properties of fluid such as density, viscosity, specific heat and thermal conductivity.

(3) Natural convection takes place from bottom to top while forced convection in any direction.

(4) In case of natural convection, convection currents move warm air upwards and cool air downwards. That is why heating is done from base, while cooling from the top.

(5) Natural convection plays an important role in ventilation, in changing climate and weather and in forming land and sea breezes and trade winds.

(6) Natural convection is not possible in a gravity free region such as a free falling lift or an orbiting satellite.

 $\left(7\right)$ The force of blood in our body by heart helps in keeping the temperature of body constant.

(8) If liquids and gases are heated from the top (so that convection is not possible) they transfer heat (from top to bottom) by conduction.

(9) Mercury though a liquid is heated by conduction and not by convection.

Radiation

(1) The process of the transfer of heat from one place to another place without heating the intervening

And the second s

Fig. 15.18

(2) Precisely it is electromagnetic energy transfer

medium is called radiation.

in the form of electromagnetic wave through any medium. It is possible even in vacuum *e.g.* the heat from the sun reaches the earth through radiation.

(3) The wavelength of thermal radiations ranges from $7.8 \times 10^{-7} m$

to $4 \times 10^{-4} m$. They belong to *infra-red* region of the electromagnetic spectrum. That is why thermal radiations are also called *infra-red* radiations.

(4) Medium is not required for the propagation of these radiations.

(5) They produce sensation of warmth in us but we can't see them.

 $\left(6\right)$ Every body whose temperature is above zero Kelvin emits thermal radiation.

(7) Their speed is equal to that of light *i.e.* $(= 3 \times 10^8 m/s)$.

(8) Their intensity is inversely proportional to the square of distance of point of observation from the source (*i.e.* $I \propto 1/d^2$).

(9) Just as light waves, they follow laws of reflection, refraction, interference, diffraction and polarisation.

(10) When these radiations fall on a surface then exert pressure on that surface which is known as radiation pressure.

UNIVERSAL

700 Transmission of Heat

 $({\rm II})$ While travelling these radiations travel just like photons of other electromagnetic waves. They manifest themselves as heat only when they are absorbed by a substance.

(12) Spectrum of these radiations can not be obtained with the help of glass prism because it absorbs heat radiations. It is obtained by quartz or rock salt prism because these materials do not have free electrons and interatomic vibrational frequency is greater than the radiation frequency, hence they do not absorb heat radiations.

(13) **Diathermanous Medium :** A medium which allows heat radiations to pass through it without absorbing them is called diathermanous medium. Thus the temperature of a diathermanous medium does not increase irrespective of the amount of the thermal radiations passing through it *e.g.*, dry air, SO_2 , rock salt (*NaCl*).

(i) Dry air does not get heated in summers by absorbing heat radiations from sun. It gets heated through convection by receiving heat from the surface of earth.

(ii) In winters heat from sun is directly absorbed by human flesh while the surrounding air being diathermanous is still cool. This is the reason that sun's warmth in winter season appears very satisfying to us.

(14) Athermanous medium : A medium which partly absorbs heat rays is called a thermous medium As a result temperature of an athermanous medium increases when heat radiations pass through it *e.g.*, wood, metal, moist air, simple glass, human flesh *etc*.

Colour of Heated Object

When a body is heated, all radiations having wavelengths from zero to infinity are emitted.

 $\left(l\right)$ Radiations of longer wavelengths are predominant at lower temperature.

(2) The wavelength corresponding to maximum emission of radiations shifts from longer wavelength to shorter wavelength as the temperature increases. Due to this the colour of a body appears to be changing.

(3) A blue flame is at a higher temperature than a yellow flame

Table 15.3 : Variation of colour of a body on heating

Temperature	Colour
525° <i>C</i>	Dull red
900° <i>C</i>	Cherry red
1100° <i>C</i>	Orange red
1200° <i>C</i>	Yellow
1600° <i>C</i>	White

Interaction of Radiation with Matter

When thermal radiations (Q) fall on a body, they are partly reflected, partly absorbed and partly transmitted.

(4) r, a and t all are the pure ratios so they have no unit and dimension.

(5) Different bodies

(i) If a = t = 0 and $r = 1 \rightarrow$ body is perfect reflector

(ii) If
$$r = t = 0$$
 and $a = 1 \rightarrow$ body is perfectly black body

(iii) If, a = r = 0 and $t = 1 \rightarrow$ body is perfect transmitter

(iv) If $t = 0 \implies r + a = 1$ or a = 1 - r *i.e.* good reflectors are bad absorbers.

Emissive Power, Absorptive Power and Emissivity

If temperature of a body is more than it's surrounding then body emits thermal radiation

(1) Monochromatic Emittance or Spectral emissive power (e_{λ}) : For a given surface it is defined as the radiant energy emitted per sec per unit area of the surface with in a unit wavelength around λ *i.e.* lying between

$$\left(\lambda - \frac{1}{2}\right)$$
 to $\left(\lambda + \frac{1}{2}\right)$

Spectral emissive power $(e_{\lambda}) = \frac{\text{Energy}}{\text{Area} \times \text{time} \times \text{wavelength}}$

Unit :
$$\frac{Joule}{m^2 \times sec \times \mathring{A}}$$
 and Dimension : $[ML^{-1}T^{-3}]$

(2) **Total emittance or total emissive power (***e***) :** It is defined as the total amount of thermal energy emitted per unit time, per unit area of the body for all possible wavelengths.

$$e = \int_{0}^{\infty} e_{\lambda} d\lambda$$

Unit : $\frac{Joule}{m^{2} \times \sec}$ or $\frac{Watt}{m^{2}}$ and Dimension : $[MT^{-3}]$

(3) Monochromatic absorptance or spectral absorptive power (a_{λ}) : It is defined as the ratio of the amount of the energy absorbed in a certain time to the total heat energy incident upon it in the same time, both in the unit wavelength interval. It is dimensionless and unit less quantity. It is represented by a_{λ} .

(4) **Total absorptance or total absorpting power (***a***):** It is defined as the total amount of thermal energy absorbed per unit time, per unit area of the body for all possible wavelengths.

$$a = \int_0^\infty a_\lambda d\lambda$$

(5) **Emissivity (** \mathcal{E} **)** : Emissivity of a body at a given temperature is defined as the ratio of the total emissive power of the body (e) to the total emissive power of a perfect black body (E) at that temperature *i.e.* $\mathcal{E} = \frac{e}{E}$

 $(\mathcal{E} \rightarrow \text{read as epsilon})$

(i) For perfectly black body $\mathcal{E} = 1$

(ii) For highly polished body $\mathcal{E} = 0$

(iii) But for practical bodies emissivity (${\cal E})$ lies between zero and one (0 < ${\cal E}$ < 1).

Perfectly Black Body

 (\mathfrak{l}) A perfectly black body is that which absorbs completely the radiations of all wavelengths incident on it.

(2) As a perfectly black body neither reflects nor transmits any radiation, therefore the absorptance of a perfectly black body is unity *i.e.* t = 0 and $r = 0 \implies a = 1$.

(3) We know that the colour of an opaque body is the colour (wavelength) of radiation reflected by it. As a black body reflects no wavelength so, it appears black, whatever be the colour of radiations incident on it.

(4) When perfectly black body is heated to a suitable high temperature, it emits radiation of all possible wavelengths. For example, temperature of the sun is very high (6000 K approx.) it emits all possible radiation so it is an example of black body.

(5) **Ferry's black body :** A perfectly black body can't be realised in practice. The nearest example of an ideal black body is the Ferry's black body. It is a doubled walled evacuated spherical cavity whose inner wall is blackened. The space between the wall is evacuated to prevent the loss of heat by conduction and radiation. There is a fine hole in it. All the radiations incident upon this hole are absorbed by this black body. If this black body is heated to high temperature then it emits radiations of all wavelengths. It is the hole which is to be regarded as a black body and not the total enclosure

(6) A perfectly black body like Platinum black or Lamp black come close to being ideal black bodies. Such materials absorbs 96% to 85**#38**/**5#**0 incident radiations.

Prevost Theory of Heat Exchange

(1) Every body emits heat radiations at all finite temperature (Except 0 *K*) as well as it absorbs radiations from the surroundings.

(2) Exchange of energy along various bodies takes place via radiation.

(3) The process of heat exchange among various bodies is a continuous phenomenon.

(4) At absolute zero temperature (0 K or $-273^\circ C)$ this law is not applicable because at this temperature the heat exchange among various bodies ceases.

(5) If $Q_{-} > Q_{absorbed} \rightarrow$ temperature of body decreases and consequently the body appears colder.

If $Q_{_} < Q_{absorbed} \rightarrow$ temperature of body increases and it appears hotter.

If $Q_{--} = Q_{absorbed} \rightarrow$ temperature of body remains constant (thermal equilibrium)

Kirchoff's Law

According to this law the ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal to the emissive power of a perfectly black body at that temperature. Hence

$$\frac{e_1}{a_1} = \frac{e_2}{a_2} = \dots \left(\frac{E}{A}\right)_{\text{Perfectly black body}}$$

But for perfectly black body A = 1 *i.e.* $\frac{e}{a} = E$

If emissive and absorptive powers are considered for a particular

wavelength
$$\lambda$$
, $\left(\frac{e_{\lambda}}{a_{\lambda}}\right) = (E_{\lambda})_{\text{black}}$

Now since $(E_{\lambda})_{\ldots}$ is constant at a given temperature, according to this law if a surface is a good absorber of a particular wavelength it is also a good emitter of that wavelength.

This in turn implies that a good absorber is a good emitter (or radiator) $% \left({\left[{{{\left[{{{\left[{{{c}} \right]}} \right]}_{c}}} \right]_{c}}} \right)$

Applications of Kirchoff's Law

(1) Sand is rough black, so it is a good absorber and hence in deserts, days (when radiation from the sun is incident on sand) will be very hot. Now in accordance with Kirchoff's law, good absorber is a good emitter so nights (when sand emits radiation) will be cold. This is why days are hot and nights are cold in desert.

(2) Sodium vapours, on heating, emit two bright yellow lines. These are called D, D lines of sodium. When continuos white light from an arc lamp is made to pass through sodium vapours at low temperature, the continuous spectrum is intercepted by two dark lines exactly in the same places as D and D lines. Hence sodium vapours when cold, absorbs the same wavelength, as they emit while hot. This is in accordance with Kirchoff's law.

(3) When a shining metal ball having some black spots on its surface is heated to a high temperature and is seen in dark, the black spots shine brightly and the shining ball becomes dull or invisible. The reason is that the black spots on heating absorb radiation and so emit these in dark while the polished shining part reflects radiations and absorb nothing and so does not emit radiations and becomes invisible in the dark.

(4) When a green glass is heated in furnace and taken out, it is found to glow with red light. This is because red and green are complimentary colours. At ordinary temperatures, a green glass appears green, because it transmits green colour and absorb red colour strongly. According to Kirchoff's law, this green glass, on heating must emit the red colour, which is absorbed strongly. Similarly when a red glass is heated to a high temperature it will glow with green light.

(5) A person with black skin experiences more heat and more cold as compared to a person of white skin because when the outside temperature is greater, the person with black skin absorbs more heat and when the outside temperature is less the person with black skin radiates more energy.

(6) Kirchoff law also explains the Fraunhoffer lines :

(i) Sun's inner most part (photosphere) emits radiation of all wavelength at high temperature.

(ii) When these radiation enters in outer part (chromosphere) of sun, few wavelength are absorbed by some terrestrial elements (present in vapour form at lower temperature)

(iii) These absorbed wavelengths, which are missing appear as dark lines in the spectrum of the sun called **Fraunhoffer lines**.

(iv) During total solar eclipse **Fig.52** lines appear bright because the gases and vapour present in the chromosphere start emitting those radiation which they had absorbed.

Stefan's Law

According to it the radiant energy emitted by a perfectly black body per unit area per sec (*i.e.* emissive power of black body) is directly proportional to the fourth power of its absolute temperature, *i.e.* $E \propto T^4$ $\Rightarrow E = \sigma T^2$

where σ is a constant called Stefan's constant having dimension $[MT^{-3}\theta^{-4}]$ and value $5.67 \times 10^{-8} W/m^2 K^4$.

(i) For ordinary body : $e = \mathcal{E}E = \mathcal{E}\sigma T^4$

(ii) Radiant energy : If Q is the total energy radiated by the ordinary

body then
$$e = \frac{Q}{A \times t} = \varepsilon \sigma T^4 \implies Q = A \varepsilon \sigma T^4 t$$

(iii) Radiant power $({\it P})$: It is defined as energy radiated per unit area

i.e.
$$P = \frac{Q}{t} = A \, \varepsilon \sigma T^4$$
.

(iv) If an ordinary body at temperature T is surrounded by a body at temperature T, then Stefan's law may be put as

$$e = \varepsilon \, \sigma (T^4 - T_0^4)$$

Rate of Loss of Heat (R_H) and Rate of Cooling (R_C)

(1) **Rate of loss of heat (or initial rate of loss of heat) :** If an ordinary body at temperature T is placed in an environment of temperature $T_{-}(T < T)$ then heat loss by radiation is given by

$$\Delta Q = Q_{\text{emission}} - Q_{\text{absorption}} = A \varepsilon \, \sigma (T^4 - T_0^4)$$

(2) Rate of loss of heat
$$(R_H) = \frac{dQ}{dt} = A\varepsilon \sigma (T^4 - T_0^4)$$

 $(i) \quad \mbox{If two bodies are made of same material, have same surface finish}$

and are at the same initial temperature then $\frac{dQ}{dt} \propto A \Rightarrow \frac{\left(\frac{dQ}{dt}\right)_1}{\left(\frac{dQ}{dt}\right)_2} = \frac{A_1}{A_2}$

(3) Initial rate of fall in temperature (Rate of cooling): If m is the body and c is the specific heat then

$$\frac{dQ}{dt} = mc.\frac{dT}{dt} = mc\frac{d\theta}{dt} \quad (\because Q = mc\Delta T \text{ and } dT = d\theta)$$

(i) Rate of cooling
$$(R_c) = \frac{d\theta}{dt} = \frac{(dQ/dt)}{mc} = \frac{A\varepsilon\sigma}{mc}(T^4 - T_0^4)$$

$$= \frac{A \varepsilon \sigma}{V \rho c} (T^4 - T_0^4); \text{ where } m = \text{ density } (\rho) \times \text{ volume } (V)$$

(ii) for two bodies of the same material under identical environments, the ratio of their rate of cooling is $\frac{(R_c)_1}{(R_c)_2} = \frac{A_1}{A_2} \cdot \frac{V_2}{V_1}$

(4) **Dependence of rate of cooling :** When a body cools by radiation the rate of cooling depends on

(i) Nature of radiating surface $\emph{i.e.}$ greater the emissivity, faster will be the cooling.

(ii) Area of radiating surface, *i.e.* greater the area of radiating surface, faster will be the cooling.

(iii) Mass of radiating body *i.e.* greater the mass of radiating body slower will be the cooling.

(iv) Specific heat of radiating body *i.e.* greater the specific heat of radiating body slower will be cooling.

 (v) Temperature of radiating body i.e. greater the temperature of body faster will be cooling.

(vi) Temperature of surrounding *i.e.* greater the temperature of surrounding slower will be cooling.

Table 15.4 : C	Comparison of	rate of he	at loss (<i>R</i>	?) and	rate of	cooling	(R)	for
	-	differer	t bodies	-		•		

Body	Condition	Rate of heat loss	Rate of cooling
		$R_H = \frac{dQ}{dt}$	$R_c = \frac{dT}{dt}$ or
			$\frac{d\theta}{dt}$
Two solid sphere	<i>Τ, Τ_ο , c, ρ</i> are same	$R_H \propto A \propto r^2$	$R_c \propto rac{A}{V} \propto$
		$\Rightarrow \frac{(R_H)_1}{(R_H)_2} = \frac{r_1^2}{r_2^2}$	$\propto \frac{r^2}{r^3} \propto \frac{1}{r}$
Two solid sphere of diff. material	T , T_o – same	$R_H \propto A \propto r^2$	$R_c \propto \frac{A}{V \rho c}$
			$\propto \frac{1}{r\rho c}$
Different shape bodies	<i>T</i> , $T_{o'}$ <i>c</i> , ρ - same	$R_H \propto A$	$R_c \propto \frac{A}{V}$
like cube, sphere plate		$A_{\max} \rightarrow Plate$	V
		$A_{\min} \rightarrow \text{ sphere}$	
Bodies of different materials	$T, T_{o}, m, A \text{ are same but } c \text{ diff.}$	$R_{_H} \rightarrow$ same for all. bodies	$R_c \propto \frac{1}{c}$

Newton's Law of Cooling

 $(\theta - \theta_0)$

When the temperature difference between the body and its surrounding is not very large *i.e.* $T - T_{.} = \Delta T$ then $T^4 - T_0^4$ may be approximated as $4T_0^3 \Delta T$

By Stefan's law,
$$\frac{dT}{dt} = \frac{A \, \epsilon \sigma}{mc} [T^4 - T_0^4]$$

Hence $\frac{dT}{dt} = \frac{A \, \epsilon \sigma}{mc} 4 T_0^3 \Delta T \Rightarrow \frac{dT}{dt} \propto \Delta T$ or $\frac{d\theta}{dt} \propto \theta - \theta_0$

i.e., if the temperature of body is not very different from surrounding, **rate of cooling is proportional to temperature difference** between the body and its surrounding. This law is called Newton's law of cooling.

 $({\bf l})$ Greater the temperature difference between body and its surrounding greater will be the rate of cooling.

(2) If $\theta = \theta_0$, $\frac{d\theta}{dt} = 0$ *i.e.* a body can never be cooled to a

temperature lesser than its surrounding by radiation.

(3) If a body cools by radiation from $\theta_1^o C$ to $\theta_2^o C$ in time *t*, then $\frac{d\theta}{dt} = \frac{\theta_1 - \theta_2}{t}$ and $\theta = \theta_{av} = \frac{\theta_1 + \theta_2}{2}$. The Newton's law of cooling becomes $\left[\frac{\theta_1 - \theta_2}{t}\right] = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0\right]$.

This form of law helps in solving numericals.

(4) Practical examples

 $(i)\ Hot\ water\ loses\ heat\ in\ smaller\ duration\ as\ compared\ to\ moderate\ warm\ water.$

(ii) Adding milk in hot tea reduces the rate of cooling.

Cooling Curves

(1) Curve between $\log(\theta - \theta)$ and time

As
$$\frac{d\theta}{dt} \propto -(\theta - \theta_0) \Rightarrow \frac{d\theta}{(\theta - \theta_0)} = -Kdt$$

Integrating $\log_e(\theta - \theta_0) = -Kt + C$
 $\log_e(\theta - \theta_0) = -Kt + \log_e A$
This is a straight line with negative slope
Fig. 15.22

(2) Curve between temperature of body and time

As
$$\log_e(\theta - \theta_0) = -Kt + \log_e A \Rightarrow \log_e \frac{\theta - \theta_0}{A} = -Kt$$

$$\Rightarrow \theta - \theta_0 = A e^{-kt}$$

which indicates temperature

decreases exponentially with

increasing time.

- (3) Curve between the rate of cooling $% \left(\left({{{\mathbf{x}}_{i}}} \right) \right)$
- (*R*) and body temperature (θ).

$$R = K(\theta - \theta_0) = K\theta - K\theta_0$$

R-axis at
$$-K\theta_0$$

(4) **Curve between rate of cooling (***R***)** and temperature difference between

body (θ) and surrounding (θ)

 $R \propto (heta - heta_0)$. This is a straight line

passing through origin.

Determination of Specific Heat of Liquid

If volume, radiating surface area, nature of surface, initial temperature and surrounding of water and given liquid are equal and they are allowed to cool down (by radiation) then rate of loss of heat and fall in temperature of both will be same.

W = mc = Water equivalent of calorimeter, where m and c are mass and specific heat of calorimeter.

If density of water and liquid is ρ and ρ' respectively then $m_W = V \rho_W$ and $m_l = V \rho_l$

Specific heat of liquid
$$c_l = \frac{1}{m_l} \left[\frac{t_l}{t_W} (m_W c_W + W) - W \right]$$

Distribution of Energy in the Spectrum of Black Body

A perfectly black body emits radiation of all possible wavelength.

Langley and later on Lummer and Pringsheim investigated the distribution of energy amongst the different wavelengths in the thermal spectrum of a black body radiation. The results obtained are shown in figure. From these curves it is clear that

 $({\bf l})$ At a given temperature energy is not uniformly distributed among different wavelengths.

(2) At a given temperature intensity of heat radiation increases with wavelength, reaches a maximum at a particular wavelength and with further increase in wavelength it decreases.

TSTORER 704 Transmission of Heat

(3) For all wavelengths an increase in temperature causes an increase in intensity.

(4) The area under the curve will represent the total intensity of radiation at a particular temperature *i.e.* Area = $E = \int E_{\lambda} d\lambda$

From Stefan's law $E = \sigma T \Longrightarrow$ Area under $E_{\lambda} - \lambda$ curve $(A) \propto T$

(5) The energy (E) emitted corresponding to the wavelength of maximum emission (λ) increases with fifth power of the absolute temperature of the black body *i.e.*, $E_{\rm max} \propto T^5$

Wien's Displacement Law

According to Wien's law the product of wavelength corresponding to maximum intensity of radiation and temperature of body (in Kelvin) is constant, *i.e.* $\lambda_m T = b = \text{constant}$

where *b* is Wien's constant and has value $2.89 \times 10^{-3} m$ - *K*.

As the temperature of the body increases, the wavelength at which the spectral intensity (E_{λ}) is maximum shifts towards left. Therefore it is also called Wien's displacement law.

This law is of great Fights that in 'Astrophysics' as through the analysis of radiations coming from a distant star, by finding λ_m the temperature of the star $T(=b / \lambda_m)$ is determined.

Law of Distribution of Energy (Plank's Hypothesis)

 $\left(l\right)$ The theoretical explanation of black body radiation was done by Planck.

(2) According to Plank's atoms of the walls of a uniform temperature enclosure behave as oscillators, each with a characteristic frequency of oscillation.

(3) These oscillations emits electromagnetic radiations in the form of photons (The radiation coming out from a small hole in the enclosure are called black body radiation). The energy of each photon is hv. Where v is the frequency of oscillator and h is the Plank's constant. Thus emitted energies may be hv, 2hv, $3hv \dots nhv$ but not in between.

According to Planck's law
$$E_{\lambda} d\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{[e^{hc/\lambda KT} - 1]} d\lambda$$

where c = speed of light and k = Boltzmann's constant. This equation is known as Plank's radiation law. It is correct and complete law of radiation

 $\left(4\right)$ This law is valid for radiations of all wavelengths ranging from zero to infinite.

(5) For radiations of short wavelength
$$\left(\lambda << \frac{hc}{KT}\right)$$
 Planck's law

reduces to Wien's energy distribution law $E_{\lambda}d\lambda = \frac{A}{\lambda^5}e^{-B/\lambda T}d\lambda$

(6) For radiations of long wavelength
$$\left(\lambda >> \frac{hc}{KT}\right)$$
 Planck's law

reduces to Rayleigh-Jeans energy distribution law $E_{\lambda}d\lambda = \frac{8\pi KT}{2^4}d\lambda$

Temperature of the Sun and Solar Constant

If R is the radius of the sun and T its temperature, then the energy emitted by the sun per sec through radiation in accordance with Stefan's law will be given by

$$P = A \sigma T^4 = 4 \pi R^2 \sigma T^4$$

In reaching earth this energy will spread over a sphere of radius r (= average distance between sun and earth); so the intensity of solar radiation at the surface of earth (called solar constant *S*) will be given by

As
$$r = 1.5 \times 10^8$$
 km, $R = 7 \times 10^5$ km,

$$S = 2 \frac{cal}{cm^2 min} = 1.4 \frac{kW}{m^2}$$
 and $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

This result is in good agreement with the experimental value of temperature of sun, *i.e.*, 6000 K.

 \mathcal{L} Glass and water vapours transmit shorter wavelengths through them but reflects longer wavelengths. This concept is utilised in Green house effect. Glass transmits those waves which are emitted by a source at a temperature greater than 100°*C*. So, heat rays emitted from sun are able to enter through glass enclosure but heat emitted by small plants growing in the nursery gets trapped inside the enclosure.

 \mathcal{L} Suppose two metallic rods are first connected in series then in parallel.

$$\theta_1$$
 Series θ_2 θ_1 Parallel θ_2

If Q_s heat flows in time t_s in series combination and Q_p heat flows

in time
$$t_p$$
 in parallel combine, then $\frac{Q_p}{Q_s} = \frac{t_p}{t_s} \times \frac{R_s}{R_p}$

If Rods are identical then
$$R_s = \frac{R}{2}$$
 and $R_p = 2R \Rightarrow \frac{Q_p}{Q_s} = 4\left(\frac{t_p}{t_s}\right)$

\mathscr{L} If temperature of a body becomes θ to θ in *t* time and it becomes θ to θ in next time then use

$$\frac{\theta_2 - \theta_0}{\theta_1 - \theta_0} = \frac{\theta_3 - \theta_0}{\theta_2 - \theta_0} \quad (\theta = \text{temperature of environment})$$

 ${\mathscr K}$ Newton's law of cooling can be used to compare the specific heat of the two liquids.

If equal masses of two liquids having same surface are and finish cools from same initial temperature to same final temperature with same

surrounding then $\frac{t_1}{t_2} = \frac{K_2}{K_1} = \frac{C_1}{C_2}$

🗷 Radiations from sun take 8 *min* and 20 *sec* to reach earth.

\mathscr{E} Suppose temperature of a body decreases $\theta^{\circ}C$ to $\theta^{\circ}C$ in time *t* and $\theta^{\circ}C$ to $\theta^{\circ}C$ in time *t* in the same invirment

If $(\theta_1 - \theta_2) \ge (\theta_1 - \theta_2)$ then $t_1 > t_2$

 Green glass is a good absorber of red light and a good reflector of green light. Consequently at lower temperature it is a good emitter of red light.

> Hence Green Red Also Yellow Blue

 $\boldsymbol{\mathscr{L}}$. While solving the problems of heat flow, remember the following equation

e.g. If we are interested in finding the mass of ice which transfoms into water in unit time. For this we will take

& Confusion

The rate of cooling has been used in many books, with double meanings. At some places. Rate of cooling $= \frac{dQ}{dt}$ and at other places, rate of cooling $= \frac{d\theta}{dt}$. Our suggestion is that look for the units, if the rate of cooling is in *cal/m* in or *J/sec etc.*, then it is $\frac{dQ}{dt}$. But if rate of cooling is in °*C/min* it means $\frac{d\theta}{dt}$.

Ordinary Thinking Objective Questions

Conduction

- 1. In which case the thermal conductivity increases from left to right[NCERT 1974
 - (a) Al, Cu, Ag (b) Ag, Cu, Al
 - (c) Cu, Ag, Al (d) Al, Ag, Cu

2. Which of the following cylindrical rods will conduct most heat, when their ends are maintained at the same steady temperature [CPMT 1981; NCERT 19

MP PMT 1987; CBSE PMT 1995]

- (a) Length 1 *m*; radius 1 *cm*
- (b) Length 2 *m*; radius 1 *cm*
- (c) Length 2 *m*; radius 2 *cm*
- (d) Length 1 *m*; radius 2 *cm*
- The heat is flowing through two cylindrical rods of same material. The diameters of the rods are in the ratio 1 : 2 and their lengths are in the ratio 2 : 1. If the temperature difference between their ends is the same, the ratio of rate of flow of heat through them will be

[NCERT 1982; CBSE PMT 1995; EAMCET 1997]

- (a) 1:1 (b) 2:1 (c) 1:4 (d) 1:8
- (c) 1:4(d) 1:8Two identical square rods of metal are welded end to end as shown

3.

in figure (i), 20 calories of heat flows through it in 4 minutes. If the

rods are welded as shown in figure (ii), the same amount of heat

(c) 4 minutes (d) 16 minutes

5. For cooking the food, which of the following type of utensil is most suitable

[MNR 1986; MP PET 1990; CPMT 1991;

SCRA 1998; MP PMT/PET 1998, 2000; RPET 2001]

- (a) High specific heat and low conductivity
- (b) High specific heat and high conductivity
- (c) Low specific heat and low conductivity
- (d) Low specific heat and high conductivity

- 6. Under steady state, the temperature of a body [CPMT 1978]
 - (a) Increases with time
 - (b) Decreases with time
 - (c) Does not change with time and is same at all the points of the body
 - $\left(d\right) \;\;$ Does not change with time but is different at different points of the body
- 7. The coefficient of thermal conductivity depends upon

[MP PET/PMT 1984; AFMC 1996; Orissa JEE 2005]

- (a) Temperature difference of two surfaces
- (b) Area of the plate
- (c) Thickness of the plate
- (d) Material of the plate
- **8.** When two ends of a rod wrapped with cotton are maintained at different temperatures and after some time every point of the rod attains a constant temperature, then

[MP PET/PMT 1988]

14.

17.

- (a) Conduction of heat at different points of the rod stops because the temperature is not increasing
- (b) Rod is bad conductor of heat
- $(c) \quad \mbox{Heat is being radiated from each point of the rod}$
- (d) Each point of the rod is giving heat to its neighbour at the same rate at which it is receiving heat
- **9.** The length of the two rods made up of the same metal and having the same area of cross-section are 0.6 *m* and 0.8 *m* respectively. The temperature between the ends of first rod is $90^{\circ}C$ and $60^{\circ}C$ and that for the other rod is 150 and $110^{\circ}C$. For which rod the rate of conduction will be greater

(a)	First	(b)) Second
- /		(=)	

- (c) Same for both (d) None of the above
- **10.** The ratio of thermal conductivity of two rods of different material is 5 : 4. The two rods of same area of cross-section and same thermal resistance will have the lengths in the ratio

(a)	4:5	(b)	9:1
(c)	1:9	(d)	5:4

- The thermal conductivity of a material in CGS system is 0.4. In steady state, the rate of flow of heat 10 *cal/sec-cm*, then the thermal gradient will be [MP PMT 1989]
 - (a) $10^{\circ}C/cm$ (b) $12^{\circ}C/cm$
 - (c) $25^{\circ}C/cm$ (d) $20^{\circ}C/cm$
- **12.** Two rectangular blocks *A* and *B* of different metals have same length and same area of cross-section. They are kept in such a way that their cross-sectional area touch each other. The temperature at one end of *A* is $100^{\circ}C$ and that of *B* at the other end is $0^{\circ}C$. If the ratio of their thermal conductivity is 1 : 3, then under steady state, the temperature of the junction in contact will be
 - (a) $25^{\circ}C$ (b) $50^{\circ}C$
 - (c) $75^{\circ}C$ (d) $100^{\circ}C$
- 13. Two vessels of different materials are similar in size in every respect. The same quantity of ice filled in them gets melted in 20 minutes and 30 minutes. The ratio of their thermal conductivities will be [MP PMT 1989;
 - (a) 1.5 (b) 1
 - (c) 2/3 (d) 4

Two rods A and B are of equal lengths. Their ends are kept between the same temperature and their area of cross-sections are A_1 and A_2 and thermal conductivities K_1 and K_2 . The rate of heat transmission in the two rods will be equal, if [MP PMT 1991; CBSE PMT 2002]

(a)
$$K_1 A_2 = K_2 A_1$$
 (b) $K_1 A_1 = K_2 A_1$

(c)
$$K_1 = K_2$$
 (d) $K_1 A_1^2 = K_2 A_2^2$

15. In variable state, the rate of flow of heat is controlled by

- (a) Density of material (b) Specific heat
- (c) Thermal conductivity (d) All the above factors
- 16. If the ratio of coefficient of thermal conductivity of silver and copper is 10 : 9, then the ratio of the lengths upto which wax will melt in Ingen Hausz experiment will be

[DPMT 2001]

- (a) 6:10 (b) $\sqrt{10}:3$ (c) 100:81 (d) 81:100
- The thickness of a metallic plate is 0.4 cm. The temperature between its two surfaces is $20^{\,o}\,C$. The quantity of heat flowing
- per second is 50 calories from $5cm^2$ area. In CGS system, the coefficient of thermal conductivity will be
- (a) 0.4 (b) 0.6
- (c) 0.2 (d) 0.5
- In Searle's method for finding conductivity of metals, the temperature gradient along the bar [MP PMT 1984]
 - (a) Is greater nearer the hot end
 - (b) Is greater nearer to the cold end
 - (c) Is the same at all points along the bar
 - (d) Increases as we go from hot end to cold end
- 19. The dimensions of thermal resistance are [MP PET 1984; BVP 2003]

(a)
$$M^{-1}L^{-2}T^{3}K$$
 (b) $ML^{2}T^{-2}K^{-1}$

(c)
$$ML^2T^{-3}K$$
 (d) $ML^2T^{-2}K^{-2}$

- A piece of glass is heated to a high temperature and then allowed to cool. If it cracks, a probable reason for this is the following property of glass
 [CPMT 1985]
 - (a) Low thermal conductivity
 - (b) High thermal conductivity
 - (c) High specific heat
 - (d) High melting point
- Two walls of thicknesses d and d and thermal conductivities k and k are in contact. In the steady state, if the temperatures at the outer [MPSPMTctg8gite T₁ and T₂, the temperature at the common wall is

[MP PMT 1990; CBSE PMT 1999]

(a)
$$\frac{k_1T_1d_2 + k_2T_2d_1}{k_1d_2 + k_2d_1}$$
 (b) $\frac{k_1T_1 + k_2d_2}{d_1 + d_2}$

$$\begin{array}{c} \text{CMEET} \quad \begin{array}{c} \text{Bihar}_{k_{1}} d_{1}^{995} k_{2} d_{2} \\ \text{(c)} \end{array} \begin{pmatrix} k_{1} d_{1} T_{1} + k_{2} d_{2} T_{2} \\ T_{1} + T_{2} \end{pmatrix} T_{1} T_{2} \\ \text{(d)} \quad \begin{array}{c} k_{1} d_{1} T_{1} + k_{2} d_{2} T_{2} \\ k_{1} d_{1} + k_{2} d_{2} \end{array} \\ \end{array}$$

22. A slab consists of two parallel layers of copper and brass of the same thickness and having thermal conductivities in the ratio 1 : 4. If

SELF SCORER 708 Transmission of Heat

the free face of brass is at $100^{\it o}\,C$ and that of copper at $0^{\it o}\,C$, the temperature of interface is

			[11T 1981; MP PMT 1987, 2001]
(a)	80° <i>C</i>	(b)	20° <i>C</i>

- (c) $60^{\circ}C$ (d) $40^{\circ}C$
- **23.** The temperature gradient in a rod of 0.5 *m* long is $80^{\circ}C/m$. If the temperature of hotter end of the rod is $30^{\circ}C$, then the temperature of the cooler end is

(a)	$40^{\circ}C$	(b)	$-10^{\circ} C$
-----	---------------	-----	-----------------

- (c) $10^{\circ} C$ (d) $0^{\circ} C$
- **24.** On heating one end of a rod, the temperature of whole rod will be uniform when
 - (a) K = 1 (b) K = 0
 - (c) K = 100 (d) $K = \infty$
- 25. Snow is more heat insulating than ice, because
 - (a) Air is filled in porous of snow
 - $(b) \quad \text{lce is more bad conductor than snow} \\$
 - (c) Air is filled in porous of ice
 - (d) Density of ice is more
- **26.** Two thin blankets keep more hotness than one blanket of thickness equal to these two. The reason is
 - (a) Their surface area increases
 - (b) A layer of air is formed between these two blankets, which is bad conductor
 - (c) These have more wool
 - (d) They absorb more heat from outside
- 27. Ice formed over lakes has
 - (a) Very high thermal conductivity and helps in further ice formation
 - (b) Very low conductivity and retards further formation of ice
 - (c) It permits quick convection and retards further formation of ice
 - (d) It is very good radiator
- **28.** Two rods of same length and material transfer a given amount of heat in 12 seconds, when they are joined end to end. But when they are joined lengthwise, then they will transfer same heat in same conditions in

			[BHU 1998; UPSEAT 2002]
(a)	24 <i>s</i>	(b)	3 <i>s</i>
(c)	1.5 <i>s</i>	(d)	48 <i>s</i>

29. Wires *A* and *B* have identical lengths and have circular crosssections. The radius of *A* is twice the radius of *B i.e.* $r_A = 2r_B$. For a given temperature difference between the two ends, both wires conduct heat at the same rate. The relation between the thermal conductivities is given by

(a)
$$K_A = 4K_B$$
 (b) $K_A = 2K_B$
(c) $K_A = K_B / 2$ (d) $K_A = K_B / 4$

30. Two identical plates of different metals are joined to form a single plate whose thickness is double the thickness of each plate. If the coefficients of conductivity of each plate are 2 and 3 respectively, then the conductivity of composite plate will be

- (b) 2.4
- (c) 1.5 (d) 1.2

(a) 5

- **31.** If the radius and length of a copper rod are both doubled, the rate of flow of heat along the rod increases
 - (a) 4 times (b) 2 times
 - (c) 8 times (d) 16 times
- **32.** The coefficients of thermal conductivity of copper, mercury and glass are respectively *K*, *K* and *K* such that *K* > *K* > *K*. If the same quantity of heat is to flow per second per unit area of each and corresponding temperature gradients are *X*, *X* and *X*, then

(a)
$$X_c = X_m = X_g$$
 (b) $X_c > X_m > X_g$

(c)
$$X_c < X_m < X_g$$
 (d) $X_m < X_c < X_g$

33. If two metallic plates of equal thicknesses and thermal conductivities K_1 and K_2 are put together face to face and a common plate is constructed, then the equivalent thermal conductivity of this plate will be [MP PMT 1991]

K

(a)
$$\frac{K_1 K_2}{K_1 + K_2}$$
 (b) $\frac{2K_1 K_2}{K_1 + K_2}$
(c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ (d) $\frac{(K_1^2 + K_2^2)^{3/2}}{2K_1 K_2}$

34. The quantity of heat which crosses unit area of a metal plate during conduction depends upon

[MP PMT 1992; JIPMER 1997]

- (a) The density of the metal
- (b) The temperature gradient perpendicular to the area
- (c) The temperature to which the metal is heated
- (d) The area of the metal plate
- **35.** The ends of two rods of different materials with their thermal conductivities, radii of cross-sections and lengths all are in the ratio 1 : 2 are maintained at the same temperature difference. If the rate of flow of heat in the larger rod is 4 4 *cal*/sec , that in the shorter rod in *cal*/sec will be

[EAMCET 1986]

(a)	1	(b)	2
(c)	8	(d)	16

- **36.** Two spheres of different materials one with double the radius and one-fourth wall thickness of the other, are filled with ice. If the time taken for complete melting ice in the large radius one is 25 *minutes* and that for smaller one is 16 *minutes*, the ratio of thermal conductivities of the materials of larger sphere to the smaller sphere is **[EAMCET 1991]**
 - (a) 4:5 (b) 5:4
 - (c) 25:1 (d) 1:25

37.

- The ratio of the diameters of two metallic rods of the same material is 2 : 1 and their lengths are in the ratio 1 : 4. If the temperature difference between their ends are equal, the rate of flow of heat in them will be in the ratio [MP PET 1994]
 - $(a) \quad 2:1 \\ (b) \quad 4:1 \\$
 - (c) 8:1 (d) 16:1

- Two cylinders P and Q have the same length and diameter and are 38. made of different materials having thermal conductivities in the ratio 2 : 3. These two cylinders are combined to make a cylinder. One end of *P* is kept at $100^{\circ}C$ and another end of *Q* at $0^{\circ}C$. The temperature at the interface of P and Q is [MP PMT 1994; EAMCET 2000]
 - $30^{\circ}C$ $40^{o} C$ (a)
 - $50^{\circ}C$ (d) $60^{\circ} C$ (c)
- 39. Two identical rods of copper and iron are coated with wax uniformly. When one end of each is kept at temperature of boiling water, the length upto which wax melts are 8.4cm and 4.2cm respectively. If thermal conductivity of copper is 0.92, then thermal conductivity of iron is [MP PET 1995]
 - (a) 0.23 (b) 0.46
 - (c) 0.115 (d) 0.69
- 47. Mud houses are cooler in summer and warmer in winter because[BVP 2003] 40.
 - (a) Mud is superconductor of heat
 - (b) Mud is good conductor of heat
 - (c) Mud is bad conductor of heat
 - (d) None of these
- The temperature of hot and cold end of a 20cm long rod in 41. thermal steady state are at $100^{\circ}C$ and $20^{\circ}C$ respectively. Temperature at the centre of the rod is[MP PMT 1996]
 - (a) $50^{\circ}C$ (b) $60^{\circ} C$
 - $40^{o} C$ (d) $30^{\circ} C$ (c)
- 42. Two bars of thermal conductivities K and 3K and lengths 1cm and 2cm respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is $0^{\circ}C$ and $100^{\circ}C$ respectively (see figure), then the temperature ϕ of the interface is

$$(a) 50^{\circ}C \qquad (b) \frac{100^{\circ}C}{3} \circ C$$

$$(c) 60^{\circ}C \qquad (d) \frac{200}{2} \circ C$$

3 A heat flux of 4000 J/s is to be passed through a copper rod of 43. length $10 \ cm$ and area of cross-section $100 \ cm^2$. The thermal

conductivity of copper is $400 W/m^{o}C$. The two ends of this rod must be kept at a temperature difference of

- (a) $1^{o} C$ (b) $10^{\circ} C$
- (c) $100^{\circ} C$ (d) $1000^{\circ} C$
- On a cold morning, a metal surface will feel colder to touch than a 44. wooden surface because [AIIMS 1998]
 - (a) Metal has high specific heat
 - Metal has high thermal conductivity (b)
 - Metal has low specific heat (c)

- (d) Metal has low thermal conductivity
- In order that the heat flows from one part of a solid to another part, 45. what is required

[Pb. PMT 1999; EAMCET 1998]

- (a) Uniform density (b) Density gradient
- (c) Temperature gradient (d) Uniform temperature
- 46 At a common temperature, a block of wood and a block of metal feel equally cold or hot. The temperatures of block of wood and block of metal are [AllMS 1999]
 - (a) Equal to temperature of the body
 - (b) Less than the temperature of the body
 - Greater than temperature of the body (c)
 - (d) Either (b) or (c)

According to the experiment of Ingen Hausz the relation between the thermal conductivity of a metal rod is K and the length of the rod whenever the wax melts is

[UPSEAT 1999]

- (b) $K^2 / l = \text{constant}$ (a) K/l = constant
- (c) $K/l^2 = \text{constant}$ (d) *Kl* = constant
- Temperature of water at the surface of lake is $-20^{\circ}C$. Then 48. temperature of water just below the lower surface of ice layer is

(a)
$$-4^{\circ}C$$
 (b) $0^{\circ}C$
(c) $4^{\circ}C$ (d) $-20^{\circ}C$

One end of a metal rod of length 1.0 *m* and area of cross section 49 $100 cm^2$ is maintained at $100^{\circ} C$. If the other end of the rod is maintained at $0^{\circ} C$, the quantity of heat transmitted through the rod per minute is (Coefficient of thermal conductivity of material of rod = 100 W/m-K

[EAMCET (Engg.) 2000]

- (b) $6 \times 10^3 J$ (a) $3 \times 10^3 J$
- (c) $9 \times 10^3 J$ (d) $12 \times 10^3 J$
- The coefficient of thermal conductivity of copper is nine times that 50. of steel. In the composite cylindrical bar shown in the figure. What will be the temperature at the junction of copper and steel

(a)	75° C	10	0° <i>C</i>	0° <i>C</i>
(b)	67° C	(Copper	Steel
(c)	33° C	H	<u> </u>	
(d)	25° C		18 <i>cm</i>	6 <i>cm</i>

51. The lengths and radii of two rods made of same material are in the ratios [MP2PMITd999] 3 respectively. If the temperature difference between the ends for the two rods be the same, then in the steady state, the amount of heat flowing per second through them will be in the ratio [MP PET 2000]

(a)	1: 3	(b)	4:3	
(c)	8:9	(d)	3:2	

52. A slab consists of two parallel layers of two different materials of same thickness having thermal conductivities K and K. The equivalent conductivity of the combination is

[BHU 2001]

1			
(a)	$K_1 + K_2$	(b)	$\frac{K_1 + K_2}{2}$
(c)	$\frac{2K_1K_2}{K_1+K_2}$	(d)	$\frac{K_1 + K_2}{2K_1K_2}$

53. There are two identical vessels filled with equal amounts of ice. The vessels are of different metals., If the ice melts in the two vessels in 20 and 35 minutes respectively, the ratio of the coefficients of thermal conductivity of the two metals is

[AFMC 1998; MP PET 2001]

61.

63.

(a)	4:7	(b)	7:4
(c)	16 :49	(d)	49 : 16

- 54. Surface of the lake is at 2°C. Find the temperature of the bottom of the lake [Orissa JEE 2002]
 - (a) $2^{o} C$ (b) $3^{o} C$
 - (c) $4^{o}C$ (d) $1^{o}C$
- **55.** The heat is flowing through a rod of length 50 cm and area of cross-section $5cm^2$. Its ends are respectively at $25^{\circ}C$ and $125^{\circ}C$. The coefficient of thermal conductivity of the material of the rod is 0.092 *kcal*/*m*×*s*×*C*. The temperature gradient in the rod is [MP PET 2002]
 - (a) $2^{\circ} C / cm$ (b) $2^{\circ} C / m$
 - (c) $20^{\circ} C/cm$ (d) $20^{\circ} C/m$
- **56.** In the Ingen Hauz's experiment the wax melts up to lengths 10 and 25 *cm* on two identical rods of different materials. The ratio of thermal conductivities of the two materials is

[MP PET 2002]

(a) 1:6.25 (b) 6.25:1

(c)
$$1:\sqrt{2.5}$$
 (d) $1:2.5$

- Heat current is maximum in which of the following (rods are of identical dimension) [Orissa JEE 2003]
 - (a) Copper (b) Copper Steel (c) Steel Copper (d) Steel
- **58.** Two rods of same length and cross section are joined along the length. Thermal conductivities of first and second rod are K_1 and K_2 . The temperature of the free ends of the first and second rods are maintained at θ_1 and θ_2 respectively. The temperature of the common junction is

[MP PET 2003]

(a)
$$\frac{\theta_1 + \theta_2}{2}$$
 (b) $\frac{K_2 K_2}{K_1 + K_2} (\theta_1 + \theta_2)$

(c)
$$\frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$$
 (d) $\frac{K_2\theta_1 + K_1\theta_2}{K_1 + K_2}$

59. Consider a compound slab consisting of two different materials having equal thickness and thermal conductivities K and 2K respectively. The equivalent thermal conductivity of the slab is

a)	$\sqrt{2K}$	(b)	3 <i>K</i>

- (c) $\frac{4}{3}K$ (d) $\frac{2}{3}K$
- **60.** Two rods having thermal conductivity in the ratio of 5:3 having equal lengths and equal cross-sectional area are joined by face to face. If the temperature of the free end of the first rod is 100[°]C and

free end of the second rod is 20 C. Then temperature of the junction is

[CPMT 1996; DPMT 1997, 03; BVP 2004]

(a) $70^{\circ} C$ (b) $50^{\circ} C$

(c) $50 \cdot C$ (d) $90 \cdot C$

Woollen clothes are used in winter season because woolen clothes[EAMCET 197

- (a) Are good sources for producing heat
- (b) Absorb heat from surroundings
- (c) Are bad conductors of heat
- (d) Provide heat to body continuously
- **62.** Two metal cubes *A* and *B* of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of *A* and *B* are $300 W/m^{o}C$ and $200 W/m^{o}C$, respectively. After steady state is reached, the temperature of the interface will be [**IIT 1996**]

A cylindrical rod having temperature T_1 and T_2 at its ends. The rate of flow of heat is Q_1 *cal/sec*. If all the linear dimensions are doubled keeping temperature constant then rate of flow of heat Q_2 will be [CBSE PMT 2001]

(a)
$$4Q_1$$
 (b) $2Q_1$
(c) $\frac{Q_1}{4}$ (d) $\frac{Q_1}{2}$

64. A body of length 1*m* having cross sectional area 0.75*m* has heat flow through it at the rate of 6000 *Joule/sec*. Then find the temperature difference if $K = 200 Jm^{-1}K^{-1}$

(a) $20^{\circ}C$ (b) $40^{\circ}C$ (c) $80^{\circ}C$ (d) $100^{\circ}C$

- **65.** A wall has two layers *A* and *B* made of different materials. The thickness of both the layers is the same. The thermal conductivity of *A* and *B* are *K* and *K* such that K = 3K. The temperature across the wall is $20^{\circ}C$. In thermal equilibrium
 - (a) The temperature difference across $A = 15^{\circ}C$
 - (b) The temperature difference across $A = 5^{\circ}C$
 - (c) The temperature difference across A is $10^{\circ}C$
 - (d) The rate of transfer of heat through A is more than that through B.
- **66.** A metal rod of length 2m has cross sectional areas 2A and A as shown in figure. The ends are maintained at temperatures $100^{\circ}C$ and $70^{\circ}C$. The temperature at middle point C is

67. The ratio of the coefficient of thermal conductivity of two different materials is 5 : 3. If the thermal resistance of the rod of same

UNIVERSAL

710 Transmission of Heat

thickness resistance of the rods of same thickness of these materials is same, then the ratio of the length of these rods will be

((a)	3	:	5	(b)	5	: :	3

(c) 3:4(d) 3:2

68. Which of the following circular rods. (given radius r and length l) each made of the same material as whose ends are maintained at the same temperature will conduct most heat

[CBSE PMT 2005]

8.

9.

11.

(a)
$$r = 2r_0; l = 2l_0$$
 (b) $r = 2r_0; l = l_0$

(c) $r = r_0; l = l_0$ (d) $r = r_0; l = 2l_0$

Convection

It is hotter for the same distance over the top of a fire than it is in 1. the side of it, mainly because

[NCERT 1976, 79, 80; AIIMS 2000]

- (a) Air conducts heat upwards
- (b) Heat is radiated upwards
- (c) Convection takes more heat upwards
- Convection, conduction and radiation (d) all contribute significantly transferring heat upwards
- 2. One likes to sit under sunshine in winter season, because
 - (a) The air surrounding the body is hot by which body gets heat
 - (b) We get energy by sun
 - (c) We get heat by conduction by sun
 - (d) None of the above
- Air is bad conductor of heat or partly conducts heat, still vacuum is 3. to be placed between the walls of the thermos flask because
 - (a) It is difficult to fill the air between the walls of thermos flask
 - (b) Due to more pressure of air, the thermos can get crack
 - By convection, heat can flow through air (c)
 - (d) On filling the air, there is no advantage
- While measuring the thermal conductivity of a liquid, we keep the 4. upper part hot and lower part cool, so that

[CPMT 1985; MP PMT/PET 1988]

- (a) Convection may be stopped
- Radiation may be stopped (b)
- (c) Heat conduction is easier downwards
- (d) It is easier and more convenient to do so
- 5. For proper ventilation of building, windows must be open near the bottom and top of the walls so as to let pass
 - In more air (a)
 - In cool air near the bottom and hot air out near the roof (b)
 - (c) In hot air near the roof and cool air out near the bottom
 - (d) Out hot air near the roof
- The layers of atmosphere are heated through 6.
 - Convection (b) Conduction (a)
 - (d) (b) and (c) both (c) Radiation
- Mode of transmission of heat, in which heat is carried by the 7. moving particles, is [KCET 1999]
 - (a) Radiation (b) Conduction

Transmission of Heat 711

Convection (d) Wave motion (c) In a closed 43999, heat transfer takes place by [BHU 2001] (a) Conduction (b) Convection (c) Radiation (d) All of these

In heat transfer, which method is based on gravitation

- [CBSE PMT 2000]
- (a) Natural convection (b) Conduction
- (c) Radiation (d) Stirring of liquids
- 10. When fluids are heated from the bottom, convection currents are produced because [UPSEAT 2000]
 - (a) Molecular motion of fluid becomes aligned
 - (b) Molecular collisions take place within the fluid
 - Heated fluid becomes more dense than the cold fluid above it (c)
 - (d) Heated fluid becomes less dense than the cold fluid above it
 - If a liquid is heated in weightlessness, the heat is transmitted through [RPMT1996]
 - Conduction (a)
 - Convection (b)
 - (c) Radiation
 - (d) Neither, because the liquid cannot be heated in weightlessness
- The rate of loss of heat from a body cooling under conditions of 12. forced convection is proportional to its (A) heat capacity (B)surface area (C) absolute temperature (D) excess of temperature over that of surrounding : state if

[NCERT 1982]

- (a) A, B, C are correct (b) Only *A* and *C* are correct
- (c) Only *B* and *D* are correct (d)Only *D* is correct
- In which of the following process, convection does not take place 13. primarily [IIT-JEE (Screening) 2005]
 - (a) Sea and land breeze

Radiation (General, Kirchoff's law, Black body)

- 1. On a clear sunny day, an object at temperature T is placed on the top of a high mountain. An identical object at the same temperature is placed at the foot of mountain. If both the objects are exposed to sun-rays for two hours in an identical manner, the object at the top of the mountain will register a temperature
 - (a) Higher than the object at the foot
 - (b) Lower than the object at the foot
 - (c) Equal to the object at the foot
 - (d) None of the above
- The velocity of heat radiation in vacuum is 2.

[EAMCET 1982: KCET 1998]

- (a) Equal to that of light (b) Less than that of light
- (c) Greater than that of light (d) Equal to that of sound
- In which process, the rate of transfer of heat is maximum

[EAMCET 1977; MP PMT 1994; MH CET 2001]

- (a) Conduction
- (b) Convection
- Radiation (c)

3.

[MP PET 1986]

(d) In all these, heat is transferred with the same velocity

- (b) Boiling of water
- (c) Warming of glass of bulb due to filament
- (d) Heating air around a furnace

	712 Transmission of Heat			
4.	Which of the following is the correct device for the detection of		(a) Poor emitters	(b) Non-emitters
	thermal radiation [Manipal MEE 1995, UPSEAT 2000]		(c) Good emitters	(d) Highly polished
	(a) Constant volume thermometer	14.	For a perfectly black body, it	s absorptive power is
	(b) Liquid-in-glass thermometer		[MP PMT 194	89, 92; RPMT 2001; RPET 2001, 03; AFMC 2003
	(c) Six's maximum and minimum thermometer		(a) 1	(b) 0.5
	(d) Thermopile		(c) 0	(d) Infinity
5.	A thermos flask is polished well [AFMC 1996]	15.	Certain substance emits only	y the wavelengths $\lambda_1, \lambda_2, \lambda_3$ and λ_4
	(a) To make attractive		when it is at a high tempera temperature, it will absorb o	ture. When this substance is at a colder nly the following wavelengths
	(c) To absorb all radiations from outside		(a) λ_1	(b) λ_2
	(d) To reflect all radiations from outside		(a) 1 and 1	(d) 2 2 2 and 2
c		_	(c) λ_1 and λ_2	(d) $\lambda_1, \lambda_2, \lambda_3$ and λ_4
0.	(a) Conduction (b) Convection	16.	As compared to the person skin will experience	with white skin, the person with black [CPMT 1988]
	(a) Padiation (d) Path (a) and (h)		(a) Less heat and more cold	d (b) More heat and more cold
_			(c) More heat and less cold	(d) Less heat and less cold
7.	down to the temperature of its surroundings, but it will not cool further because [CPMT 200]	17.	Relation between emissivity black body)	e and absorptive power a is (for
	(a) Supply is cut off		(a) a = a	(b) $a = \frac{1}{2}$
	(b) It is made of metal		(a) $c = u$	$(b) e^{-a}$
	(c) Surroundings are radiating		(c) $e = a^2$	(d) $a = e^{2}$
	(d) Element & surroundings have same temp.	18.	Which of the following state	ments is wrong [BCECE 2001
8.	We consider the radiation emitted by the human body. Which of the		(a) Rough surfaces are bett	er radiators than smooth surface
	following statements is true [CBSE PMT 2003]		(b) Highly polished mirror	like surfaces are very good radiators
	(a) The radiation is emitted only during the day		(c) Black surfaces are bette	r absorbers than white ones
	(b) The radiation is emitted during the summers and absorbed during the winters		(d) Black surfaces are bette	r radiators than white
	(c) The radiation emitted lies in the ultraviolet region and hence is not visible	19.	Half part of ice block is co covered with white cloth and time clothes are removed	vered with black cloth and rest half is d then it is kept in sunlight. After some to see the melted ice. Which of the
	$\left(d\right)$ $% \left(d\right)$ The radiation emitted is in the infra-red region		following statements is corre	et
9.	The earth radiates in the infra-red region of the spectrum. The		(a) lee covered with white \mathbf{a}	cloth will melt more
	[RPET 2002: AIEEE 2003]		(b) Ice covered with black o	cloth will melt more
	(a) Wien's law (b) Rayleigh jeans law		(c) Equal ice will melt unde	er both clothes
	(c) Planck's law of radiation (d) Stefan's law of radiation		(d) It will depend on the te	emperature of surroundings of ice
10.	Infrared radiation is detected by [AIEEE 2002]	20.	If between wavelength λ and	d $\lambda + d\lambda$, e_{λ} and a_{λ} be the emissive
	(a) Spectrometer (b) Pyrometer		and absorptive powers of a	body and E_{λ} be the emissive power o
	(c) Nanometer (d) Photometer		true	[RPMT 1998; MP PET 1991]
11.	Pick out the statement which is not true [KCET 2002]		(a) $e_{\lambda} = a_{\lambda} = E_{\lambda}$	(b) $e_{\lambda}E_{\lambda} = a_{\lambda}$
	(a) <i>IR</i> radiations are used for long distance photography		(c) $e_{\lambda} = a_{\lambda}E_{\lambda}$	(d) $e_{A}e_{A}E_{A} = \text{constant}$
	(b) <i>IR</i> radiations arise due to inner electron transitions in atoms	21	When n coloring of heat is	$(-)$ $- \lambda - \lambda - \lambda$ $- \lambda$
	(c) <i>IR</i> radiations are detected by using a bolometer	21,	then the absorbtion power o	f body will be
	(d) Sun is the natural source of <i>IK</i> radiation		(a) p/q	(b) q/p
12.	A hot and a cold body are kept in vacuum separated from each other. Which of the following cause decrease in temperature of the hot body [AFMC 2005]		(c) p^2/q^2	(d) q^2/p^2
	(a) Radiation	22.	Distribution of energy in t	the spectrum of a black body can be
	(b) Convection		(a) Wien's law	(b) Stefan's law
	(c) Conduction		(c) Planck's law	(d) Kirchhoff's law
	(d) Temperature remains unchanged	23.	In rainy season, on a clear n	ight the black seat of a bicycle become
10	Good absorbers of heat are		wet because	-

(a) It absorbs water vapour			(c) A pin hole in a box	(d)	None of these	
(b) Black seat is good absorb	er of heat	33.	An ideal black body at room	n temperat	ture is thrown in	nto a furnace. It
(c) Black seat is good radiato	r of heat energy		is observed that		[11T-JEE ([Screening) 2002]
(d) None of the above			(a) Initially it is the darke	st body an	d at later times	the brightest
There is a rough black spot or	n a polished metallic plate. It is heated		(b) It is the darkest body	at all times	S	
upto 1400 <i>K</i> approximately an Which of the following statem	d then at once taken in a dark room. ents is true		(c) It cannot be distinguis	hed at all t	times	
	[NCERT 1984; CPMT 1998]		(d) Initially it is the dark distinguished	est body a	and at later time	es it cannot be
(a) In comparison with the p	late, the spot will shine more	34.	Absorption co-efficient of a	n open wit	ndow is	[KCET 2004]
(c) The spot and the plate w	ill be equally bright	•	(a) Zero	(b)	0.5	,
(d) The plate and the black s	not can not be seen in the dark room		(c) 1	(d)	0.25	
At a certain temperature for g	iven wave length, the ratio of emissive	0F	Which of the price is used	to see infr	v.25	of light
power of a body to emiss circumstances is known as	ive power of black body in same [RPMT 1997]	33.	which of the prism is used	to see min	a-red spectrum	[RPMT 2000]
(a) Relative emissivity	(b) Emissivity		(a) Rock-salt	(b)	Nicol	
(c) Absorption coefficient	(d) Coefficient of reflection		(c) Flint	(d)	Crown	
The cause of Fraunhoffer lines	s is	36.	Which of the following stat	ement is co	orrect	[RPMT 2001]
	[RPMT 1996; EAMCET 2001]		(a) A good absorber is a b	oad emitter	r	
(a) Reflection of radiations by	y chromosphere		(b) Every body absorbs an	d emits ra	diations at every	/ temperature
(b) Absorption of radiations	by chromosphere		(c) The energy of radiatio	ns emitted	۔ I from a black b	odv is same for
(c) Emission of radiations by	chromosphere		all wavelengths			5
(d) Transmission of radiation	s by chromosphere		(d) The law showing th	he relation	n of temperat	ures with the
Two thermometers A and B are exposed in sun light. The value of A is painted black, But that of B is not painted. The correct statement regarding this case is [BHU (Med.) 1999; MH CET 1999]			wavelength of maximum emission from an ideal black			
			Plank's law			
		37.	A piece of blue glass heate	ed to a hig	gh temperature	and a piece of
			then	ature, are	taken inside a	[KCET 2005]
(a) Temperature of <i>A</i> will	rise faster than <i>B</i> but the final		(a) The blue piece will loo	k blue and	l red will look as	usual
(b) Deth 4 and R show sound			(b) Bed look brighter red	and blue k	ook ordinary blu	
(b) Both A and B show equal			(b) Rea look brighter rea			1
(c) Temperature of A will rei	main more than B		(c) Blue shines like bright		ipared to the rec	i piece
(d) Temperature of <i>B</i> will ris	e faster	- 0	(d) Both the pieces will lo	ок equally	red.	6.1
There is a black spot on a boo dark room then it glows more	ly. If the body is heated and carried in . This can be explained on the basis of	38.	good emitters"	/ states th	at "good absorb	ers of heat are [Orissa JEE 2005]
(a) Newton's law of cooling	(h) Wien's law		(a) Stefan's law	(b)	Kirchoff's law	
			(c) Planck's law	(d)	Wein's law	
(c) Kirchoff's law	(d) Stefan s					
When red glass is heated in da	rk room it will seem		Radiatior	n (Wein	's law)	
	[RPET 2000]	_				~~
(a) Green	(b) Purple	Ι.	According to Wein's law D	CE 1995, 96	; MP PET/PMT 19	88
(c) Black	(d) Yellow			DPMT 19	999; AIIMS 2002; (CBSE PMT 2004]
A hot body will radiate heat m	ost rapidly if its surface is [UPSEAT 1999, 2000]		(a) $\lambda_m T$ = constant	(b)	$\frac{\lambda_m}{T} = \text{constar}$	nt
(a) White & polished	(b) White & rough		T			
(c) Black & polished	(d) Black & rough		(c) $\frac{1}{\lambda_{m}} = \text{constant}$	(d)	$T + \lambda_m = \operatorname{con}$	stant
A body, which emits radiation	s of all possible wavelengths, is known	2	On investigation of light f	rom three	different stars	A B and C it
as	[CPMT 2001; Pb. PET 2002]	4.	was found that in the spec	ctrum of A	4 the intensity of	of red colour is
(a) Good conductor	(b) Partial radiator		maximum, in <i>B</i> the intensi	ty of blue	colour is maxi	mum and in C
(c) Absorbor of photons	(d) Perfectly black had		the intensity of yellow colo	ur is maxi	mum. From the	se observations
(c) Absorber of photons			it can be concluded that			[001100 - 1
Which of the following is the e	example of ideal black body			4 :		[CPMT 1989]
	[AIEEE 2002; CBSE PMT 2002]		(a) The temperature of /	a is maxin	num, <i>b</i> is mini	mum and C is

24.

25.

26.

27.

28.

29.

30.

31.

32.

(a) Kajal

(b) Black board

Transmission of Heat 713

UNIV	CREAL	714 Transmission	of Heat						
	(b)	The temperature of <i>A</i> is intermediate	maximum, C is minimum and B is	11.	Four	r pieces of iro w different co	on heated in a olours listed l	a furi pelow.	ace to different temperatures Which one has the highest
	(c)	The temperature of B is intermediate	maximum, A is minimum and C is		tem	white		(1.)	[MP PET 1992]
	(d)	The temperature of C is	maximum. B is minimum and A is		(a)	Oranga		(d)	rellow
	(4)	intermediate		10	(c) 1f a	Urange	bastad at a bia	(a) h tar	Ked
	lf wa	velengths of maximum in	tensity of radiations emitted by the	12.			neateu at a mg		
	sun a	and the moon are 0.5×10^{-10}	$0^{-6}m$ and $10^{-4}m$ respectively, the		(a)	Blue		(D)	white Blash
	ratio	of their temperatures is		10	(C)	he tomporat	una of the	(a)	DIACK
	(a) ·	1/100	[MF FMT 1990]	13.	tem	perature, then	ure or the	Sun	[MP PET 1989; RPMT 1996]
	(a) (c)	100	(d) 200		(a)	Radiated ener	rgy would be p	oredoi	minantly in infrared
	(C) The v	wavelength of radiation emi	itted by a body depends upon		(b)	Radiated ener	rgy would be p	oredoi	minantly in ultraviolet
	(a)	The nature of its surface			(c)	Radiated ener	gy would be p	redon	ninantly in X-ray region
	(b)	The area of its surface			(d)	Radiated ene	ergy would b	ecom	e twice the present radiated
	(0)	The temperature of its sur	haa			energy			1 1
	(L) (J)	All the above fratters	acc.	14.	The	maximum en	ergy in the th	10 ⁻⁵	radiation from a hot source
	If bla	ck wire of platinum is hea yellow and finally white. It	ted, then its colour first appear red, can be understood on the basis of		occu the tem	ars at a wavelo temperature o per ampont ig	ength of 11× of the source (o 84 ther source	10 ⁻⁵ on Ke e (on	cm. According to Wein's law, lvin scale) will be n times the Kelvin scale) for which the
	(a) ⁻	Wien's displacement law			wav	elength at may	ximum energy	is 5.	$5 \times 10^{-5} cm$. The value <i>n</i> is
	(b)	Prevost theroy of heat exch	ange			_			M'1' 1991]
	(c)	Newton's law of cooling			(a)	2		(b)	4
	(d)	None of the above			(c)	1		(d)	1
	Coloi	r of shining bright star is	an indication of its			2		. ,	
		0 0	[AIIMS 2001; RPMT 1999; BCECE 2005]	15.	The	wavelength	of maximum	energ	y released during an atomic
	(a)	Distance from the earth	(b) Size		expl	osion was 2	$2.93 \times 10^{-10} m$. Gi	iven that Wein's constant is
	(c)	Temperature	(d) Mass		2.9	$3 \times 10^{-5} m -$	K, the maxir	num	temperature attained must be
	The v	wavelength of maximum e	mitted energy of a body at $700 K$ is		01 11	le order of	Harvana	CEE 10	206. MH CET 2002. Ph. PET 2000]
	4.08 wavel	μm . If the temperature length of maximum emitted	of the body is raised to 1400 <i>K</i> , the d energy will be		(a)	$10^{-7} K$	[MP PET 1990]	(b)	$10^7 K$
	(a)	1 02 µm	(b) $16.32 \ \mu m$		(c)	$10^{-13} K$		(d)	$5.86 \times 10^7 K$
	(a)	1.02 µm	(b) 10.32 µm	16.	The	maximum v	vavelength of	radi	ation emitted at $2000 K$ is
	(c)	8.16 µm	(d) 2.04 μm		4μ	<i>m</i> . What will	be the maxim	um v	vavelength of radiation emitted
	A bla wavel	ack body at 200 <i>K</i> is fo length of 14 <i>µm</i> . When it	und to exit maximum energy at a s temperature is raised to $1000 K$, the		at (a)	[MP PMT/PET	1998; DPMT 20	00] (b)	0.66 <i>um</i>
	wavel	length at which maximum	energy is emitted is[RPMT 1998; MP PE	Г 1991; BVP	2003]	5.55 µm		(0)	0.00 µm
	(a)	14 µm	(b) $70\mu F$		(c)	$1 \mu m$		(d)	1 <i>m</i>
	(c)	2.8 µm	(d) 2.8 <i>mm</i>	17.	Hov	is the temper	rature of stars	deter	mined by
	Ť				<i>,</i> .			<i></i>	[BHU 1999, 02; DCE 2000, 03]
	Two	stars emit maximum rac	nation at wavelength $3600 A$ and		(a)	Stefan's law		(b)	Wein's displacement law
	4800	A respectively. The ratio	of their temperatures is	-	(c)	Kirchhoff's la	W	(d)	Ohm's law
			[MP PMT 1991]	18.	On the	increasing the	e temperature urs will be pot	of a iced b	substance gradually, which of
	(a)	1:2	(b) $3:4$		une.		Pb. PMT 1995: P	 Ь. РЕТ	1996; CPMT 1995. 98: KCET 2000
	(c)	4:3	(d) 2:1		(a)	۱ White		(b)	Yellow
	A bla	CK body emits radiations of 000 Å	r maximum intensity at a wavelength		(c)	Green		(d)	Red
	of JU	when the temperat	ture of the body is 1227 C. If the	19.	A bl	ack body has	maximum wav	eleng	th λ_{m} at temperature 2000 K
	temp inten	sity of emitted radiation we	build be observed at		lts c	orr ewpoPieting	92] velength at	temp	erature 3000 K will be [CBSE PA
	(a)	2754.8Å	(b) 3000Å		(a)	$\frac{3}{2}\lambda_m$		(b)	$\frac{2}{2}\lambda_m$
	(c)	3500Å	(d) 4000Å		(c)	$\frac{4}{2}$		(4)	3 <u>9</u> 2
					(C)	$\overline{0}^{\prime}$		(a)	$- n_m$

- 20.Relation between the colour and the temperature of a star is given
by29.[Kerala PET 2001]
 - (a) Wein's displacement law
 - (b) Planck's law
 - (c) Hubble's law
 - (d) Fraunhofer diffraction law
- **21.** A black body at a temperature of 1640 *K* has the wavelength corresponding to maximum emission equal to 1.75 μ . Assuming the moon to be a perfectly black body, the temperature of the moon, if the wavelength corresponding to maximum emission is 14.35 μ is

				•
(a)	100 K	(b)	150 K	
(c)	200 K	(d)	250 K	

22. The maximum wavelength of radiations emitted at 900 K is $4 \mu m$. What will be the maximum wavelength of radiations emitted at 1200 K [BHU 2002]

				-	-
(a)	3 µm		(b)	0.3 µm	

(c)	$1 \mu m$	(d)	1 <i>m</i>
(c)	$1 \mu m$	(d)	1 m

23. Solar radiation emitted by sun resembles that emitted by a black body at a temperature of 6000 *K*. Maximum intensity is emitted at a wavelength of about 4800Å. If the sun were to cool down from 6000 *K* to 3000 *K* then the peak intensity would occur at a wavelength [UPSEAT 2002]

(a)	4800 <i>Å</i>	(b)	9600Å

- (c) 7200\AA (d) 6400\AA
- 24. What will be the ratio of temperatures of sun and moon if the wavelengths of their maximum emission radiations rates are 140 Å and 4200 Å respectively [] & K CET 2004]

(a)	1:30	(b)	30 : 1
(c)	42:14	(d)	14:42

25. The radiation energy density per unit wavelength at a temperature *T* has a maximum at a wavelength λ . At temperature 2*T*, it will have a maximum at a wavelength

[UPSEAT 2004]

3.

5.

6.

[Kerala (Med.) 2002]

- (a) 4λ (b) 2λ
- (c) $\lambda/2$ (d) $\lambda/4$
- **26.** The absolute temperatures of two black bodies are 2000 K and 3000 K respectively. The ratio of wavelengths corresponding to maximum emission of radiation by them will be

(a)	2:3	(b)	3:2
(c)	9:4	(d)	4:9

27. The temperature of sun is 5500 *K* and it emits maximum intensity radiation in the yellow region $(5.5 \times 10^{-7} m)$. The maximum radiation from a furnace occurs at wavelength $11 \times 10^{-7} m$. The temperature of furnace is [] & K CET 2000]

(a)	1125 <i>K</i>	(b)	2750 K
$\langle \rangle$		(1)	

- (c) 5500 K (d) 11000 K
- **28.** A particular star (assuming it as a black body) has a surface temperature of about $5 \times 10^4 K$. The wavelength in nanometers at which its radiation becomes maximum is

$(b = 0.0029 \ mK)$		[EAMCET (Med.) 2003]
(a) 48	(b) 58	
(c) 60	(d) 70	

9. The maximum energy in thermal radiation from a source occurs at the wavelength 4000Å. The effective temperature of the source is

(a) 7000 K (b) 80000 K

(c) $10^4 K$ (d) $10^6 K$

30. The intensity of radiation emitted by the sun has its maximum value at a wavelength of 510 nm and that emitted by the north star has the maximum value at 350 nm. If these stars behave like black bodies, then the ratio of the surface temperature of the sun and north star is

[IIT 1997 Cancelled; JIPMER 2000; AIIMS 2000]

(a) 1.46 (b) 0.69 (c) 1.21 (d) 0.83

Radiation (Stefan's law)

 The amount of radiation emitted by a perfectly black body is proportional to [AFMC 1995; Pb. PMT 1997;

CPMT 1974, 98, 02; AIIMS 2000; DPMT 1995, 98, 02]

- (a) Temperature on ideal gas scale
- (b) Fourth root of temperature on ideal gas scale
- $(c) \quad \mbox{Fourth power of temperature on ideal gas scale}$
- (d) Source of temperature on ideal gas scale

2. A metal ball of surface area 200 cm^2 and temperature $527^{\circ}C$ is

surrounded by a vessel at $27^{\circ}C$. If the emissivity of the metal is 0.4, then the rate of loss of heat from the ball is $(\sigma = 5.67 \times 10^{-8} J/m^2 - s - k^4)$ [MP PMT/PET 1988]

- (a) 108 joules approx. (b) 168 joules approx.
- (c) 182 joules approx. (d) 192 joules approx.
- The rate of radiation of a black body at $0^{\circ}C$ is *EJ/sec*. The rate of radiation of this black body at $273^{\circ}C$ will be

[MP PMT 1989; Kerala PET 2002; UPSEAT 2001]

- (a) 16 *E* (b) 8 *E*
- (c) 4 E (d) E

4. A black body radiates energy at the rate of E *W/m* at a high temperature *TK*. When the temperature is reduced to $\frac{T}{2}K$, the

[RPMatizoo3energy will be

[CPMT 1988; UPSEAT 1998; MNR 1993; SCRA 1996; MP PMT 1992; DPMT 2001; MH CET 2001]

(a)
$$\frac{E}{16}$$
 (b) $\frac{E}{4}$

(c)
$$4E$$
 (d) $16E$

- An object is at a temperature of $400^{\circ}C$. At what temperature would it radiate energy twice as fast? The temperature of the surroundings may be assumed to be negligible[MP PMT 1990; DPMT 2002]
- (a) $200^{\circ} C$ (b) 200 K
- (c) $800^{\circ} C$ (d) 800 K

A black body at a temperature of $227^{\circ}C$ radiates heat energy at the rate of 5 *cal/cm-sec*. At a temperature of $727^{\circ}C$, the rate of heat radiated per unit area in *cal/cm*-will be

(a) 80 (b) 160

716	Transmission	of	Heat
 ,			

	(c)	250			(d)	500			
7.	Ener	rgy is	being	emitted	from the	surface	of a blac	k body at	
	127 Tem	7°C nperatu	temper re of th	ature at 1e black b	the rate ody at whi	of 1. ch the ra	$0 \times 10^6 J$ at the of energy of the of energy of the second sec	$sec-m^2$. gy emission	16.
	is 1	6.0×1	$10^{6} J/s$	$\sec -m^2$	will be				
						[MF	PMT 1991;	AFMC 1998]	
	(a)	254	°C		(b)	508° (2		
	(c)	527	°C		(d)	727° (5		
8.	ln A mult	/KS sy tiplying	stem, S g factor	tefan's co of σ will	onstant is d l be	enoted b	by σ . In C	GS system	17.
	(a)	1			(b)	10 ³			
	(c)	10^{5}			(d)	10^{2}			
9.	lf te then	empera 1 the ra	ture of ate of er	a black i nergy radi	body increa iation incre	ases from ases by	$17^{\circ}C$ to	287°C,	
					[A11MS 1997;	; Haryana	PMT 2000;	RPMT 2003]	
	(a)	$\left(\frac{28}{2}\right)$	$\left(\frac{7}{2}\right)^4$		(b)	16			18.

(c) 4 (d) 2 The temperature of a piece of iron is $27^{\circ}C$ and it is radiating 10. energy at the rate of $Q kWm^{-2}$. If its temperature is raised to

 $\left(\frac{1}{7}\right)$

 $151^{o} C$, the rate of radiation of energy will become approximately

- $2Q kWm^{-2}$ (b) $4Q kWm^{-2}$ (a) (d) $8O kWm^{-2}$ $6O kWm^{-2}$ (c)
- The temperatures of two bodies *A* and *B* are $727^{\circ}C$ and $127^{\circ}C$. 11. The ratio of rate of emission of radiations will be

(a)	727/127	(b)	625/16
(c)	1000/400	(d)	100/16

12. The temperature at which a black body of unit area loses its energy at the rate of 1 joule/second is

(a) $-65^{\circ}C$	(b)	$65^{\circ}C$	
--------------------	-----	---------------	--

(d) None of these (c) 65 K

The area of a hole of heat furnace is $10^{-4} m^2$. It radiates 13. 1.58×10^5 calories of heat per hour. If the emissivity of the furnace is 0.80, then its temperature is

(a)	1500 K	(b)	2000 K

- (c) 2500 K (d) 3000 K
- Two spheres P and Q, of same colour having radii $8 \ cm$ and 14. $2 \ cm$ are maintained at temperatures $127^{\circ} C$ and $527^{\circ} C$ respectively. The ratio of energy radiated by P and Q is
 - (a) 0.054 (b) 0.0034
 - (d) 2 (c) 1
- A body radiates energy 5W at a temperature of $127^{\circ}C$. If the 15. temperature is increased to $927^{\circ}C$, then it radiates energy at the rate of

[MP PET 1994;BHU 1995; CPMT 1998; AFMC 2000]

410W	(b)	81 W

(a)

19.

(a)

[MP PET 1986]

(c) 405 W (d) 200 W

16. A thin square steel plate with each side equal to 10 *cm* is heated by a blacksmith. The rate of radiated energy by the heated plate is 1134 W. The temperature of the hot steel plate is (Stefan's constant $\sigma = 5.67 \times 10^{-8} watt m^{-2} K^{-4}$, emissivity of the plate = 1)

(a)	1000 K	(b)	1189 K
· ·		· · · · ·	

- (c) 2000 K(d) 2378 K
- The temperatures of two bodies A and B are respectively $727^{\circ}C$ and $327^{\circ}C$. The ratio $H_{A}: H_{B}$ of the rates of heat radiated by them is [UPSEAT 1999;

MP PET 1999; MH CET 2000; AIIMS 2000]

(a)	727:327	(b)	5:3
(c)	25:9	(d)	625 : 81

The energy emitted per second by a black body at $27^{\circ}C$ is 10 J. If the temperature of the black body is increased to $327^{\circ}C$, the energy emitted per second will be

[CPMT 1999; DCE 1999]

- (a) 20 J(b) 40 J

 $160 \ kcal/m^2 \ min$

earth is $20 kcal/m^2 min$. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one

[CBSE PMT 1998; Pb. PET 2001]

(b) $40 \ kcal/m^2 \ min$

- (d) 80 $kcal/m^2$ min (c) $320 \ kcal/m^2 \ min$
- A spherical black body with a radius of $12 \ cm$ radiates $440 \ W$ 20. power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watt would be

[IIT 1997 Re-Exam] (a) 225 (b) 450 (d) 1800 (c) 900 If the temperature of the sun (black body) is doubled, the rate of 21. energy received on earth will be increased by a factor of [CBSE PMT 1993; BHU 2 (a) 2 (b) 4 (c) 8 (d) 16 The ratio of energy of emitted radiation of a black body at $27^{\circ}C$ 22. and 927° Cmis 1994] [Pb. PMT 1995; CPMT 1997, 2000; CBSE PMT 2000; DPMT 1998, 02, 03] (a) 1:4 (b) 1:16

(c) 1:64 (d) 1:256

If the temperature of a black body be increased from $27^{\circ}C$ to 23. $327^{\circ}C$ the radiation emitted increases by a fraction of

[Pb. PET 1997; JIPMER 1999]

(d) 160 J (c) 80 / [MP PET 1992] The radiant energy from the sun incident normally at the surface of

(a)	16	(b)	8
(\mathbf{c})	4	(b)	2

The rectangular surface of area 8 $cm \times 4cm$ of a black body at a 24. temperature of $127^{\circ}C$ emits energy at the rate of *E* per second. If the length and breadth of the surface are each reduced to half of the initial value and the temperature is raised to $327^{\circ}C$, the rate of emission of energy will become [MP PET 2000]

(a)
$$\frac{3}{8}E$$
 (b) $\frac{81}{16}E$
(c) $\frac{9}{16}E$ (d) $\frac{81}{64}E$

At temperature T, the power radiated by a body is Q watts. At the 25. temperature 3T the power radiated by it will be

(a)	3 <i>Q</i>	(b) 9 <i>Q</i>	
(c)	27 Q	(d) 81 Q	

Two spherical black bodies of radii r_1 and r_2 and with surface 26. temperature T_1 and T_2 respectively radiate the same power. Then the ratio of r_1 and r_2 will be

[KCET 2001; UPSEAT 2001]

[RPET 2000; AIEEE 2002]

[MP PET 2000]

(a)
$$\left(\frac{T_2}{T_1}\right)^2$$
 (b) $\left(\frac{T_2}{T_1}\right)^4$
(c) $\left(\frac{T_1}{T_2}\right)^2$ (d) $\left(\frac{T_1}{T_2}\right)^4$

Temperature of a black body increases from $327^{\circ}C \operatorname{to} 927^{\circ}C$, 27. the initial energy possessed is 2KJ, what is its final energy

(a) 32 <i>KJ</i>	(b)	320 <i>KJ</i>	
------------------	-----	---------------	--

- (c) 1200 KJ (d) None of these
- 28. The original temperature of a black body is 727° C. The temperature at which this black body must be raised so as to double the total radiant energy, is [Pb. PMT 2001]
 - (a) 971 K (b) 1190 K
 - (c) 2001 K (d) 1458 K
- Two black metallic spheres of radius 4m, at 2000 K and 1m at 4000 29. K will have ratio of energy radiation as

(a)	1:1	(b)	4:1	
(c)	1:4	(d)	2:1	

The energy spectrum of a black body exhibits a maximum around a 30. wavelength λ_o . The temperature of the black body is now changed

such that the energy is maximum around a wavelength $\frac{3\lambda_o}{4}$. The

power radiated by the black body will now increase by a factor of [KCET 2002]

- (a) 256/81 (b) 64/27
- (c) 16/9 (d) 4/3
- A black body is at a temperature 300 K. It emits energy at a rate, 31. which is proportional to

[Pb. PMT 1998; AIIMS 2002; MH CET 2003]

(a)	300		(b)	$(300)^2$
-----	-----	--	-----	-----------

- (c) $(300)^3$ (d) $(300)^4$
- If the temperature of a hot body is increased by 50% then the increase 32. in the quantity of emitted heat radiation will be

[RPET 1998; EAMCET 2001; MP PMT 2003]

- (a) 125% (b) 200%
- (d) 400% (c) 300%
- Two identical metal balls at temperature $200^{\circ} C$ and $400^{\circ} C$ 33.
 - kept in air at $27^{\circ}C$. The ratio of net heat loss by these bodies is
 - (b) 1/2 (a) 1/4
 - (d) $\frac{473^4 300^4}{673^4 300^4}$ (c) 1/16
- Two spheres made of same material have radii in the ratio 1: 2 Both 34. are at same temperature. Ratio of heat radiation energy emitted per second by them is

[MP PMT 2002; MH CET 2004]

(a)	1:2	(b)	1:8	
(\mathbf{c})	1:4	(d)	1 : 16	

- 35. A black body at a temperature of $127^{\circ}C$ radiates heat at the rate of 1 $ca / cm \times sec.$ At a temperature of 527°C the rate of heat radiation from the body in $(cal|cm \times sec)$ will be
 - [MP PET 2002]
 - (a) 16.0 (b) 10.45 (c) 4.0 (d) 2.0
- A black body radiates 20 W at temperature $227^{\circ}C$. If temperature 36. of the black body is changed to $727^{\circ}C$ then its radiating power will be [DCE 2001]

- (a) 120 W (b) 240 W
- (c) 320 W (d) 360 W
- Two spheres of same material have radius 1m and 4 m and 37. temperature 4000K and 2000K respectively. The energy radiated per second by the first sphere is [Pb. PMT 2002]
 - (a) Greater than that by the second
 - (b) Less than that by the second
 - (c) Equal in both cases

38.

- (d) The information is incomplete
- The radiation emitted by a star A is 10,000 times that of the sun. If the surface temperatures of the sun and the star A are 6000 K and 2000 K respectively, the ratio of the radii of the star A and the sun is
 - (a) 300 : 1 (b) 600:1
 - (c) 900:1 (d) 1200 : 1
- A black body radiates at the rate of W watts at a temperature T. If 39. the temperature of the body is reduced to T/3, it will radiate at the rate of (in Watts)

[BHU 1998; MP PET 2003]

- (a) 81
- (d) (c)

Transmission of Heat 717

[CBSE PMT 2002; DCE 1999, 03; AIIMS 2003]

40.	Star A has radius r surf	ace temperature T while star B has radius $4r$	50.	The value of Stefan's constant is [RPMT 2002]
	and surface temperature : <i>P</i> is	P 7/2. The ratio of the power of two starts, P [MP PMT 2004]		(a) $5.67 \times 10^{-8} W / m^2 - K^4$ (b) $5.67 \times 10^{-5} W / m^2 - K^4$
	(a) 16 : 1	(b) 1:16		(c) $5.67 \times 10^{-11} W / m^2 - K^4$ (d) None of these
	(c) 1:1	(d) 1:4	51.	Rate of cooling at $600K$, if surrounding temperature is $300K$ is F
•	Suppose the sun expan present radius and its	ds so that its radius becomes 100 times its surface temperature becomes half of its		The rate of cooling at $900K$ is [DPMT 2002]
	present value. The total factor of	energy emitted by it then will increase by a [AIIMS 2004]		(a) $\frac{16}{3}R$ (b) $2R$
	(a) 10 [.]	(b) 625		(c) $3R$ (d) $\frac{2}{R}$
	(c) 256	(d) 16		
.2.	If the temperature of the its radius from R to $2R$, on the earth to what it s	e sun were to be increased from T to $2T$ and then the ratio of the radiant energy received was previously will be	52.	A black body of surface area $10 cm$ is heated to $127^{\circ} C$ and i suspended in a room at temperature $27^{\circ} C$. The initial rate of loss o heat from the body are being to the temperature will be
	(a) 4	(b) 16		(a) 2.99 W (b) 1.89 W
	(c) 32	(d) 64		(c) 1.18 W (d) 0.99 W
3.	At 127 C radiates energy	is 2.7×10 J/s. At what temperature radiated	53.	Two identical objects A and B are at temperatures T and T respectively. Both objects are placed in a room with perfectly
	(a) $400 K$	(b) $4000 K$		absorbing walls maintained at temperatures $T (T_A > T > T_B)$. The
	(c) 80000 K	(d) 40000 K		objects A and B attain temperature T eventually which one of the following is correct statement
4.	If the initial temperatures of metallic sphere and disc, of the same			[CPMT 1997
	mass, radius and natur cooling in same environ	e are equal, then the ratio of their rate of ment will be		 (a) 'A' only emits radiations while B only absorbs them until both attain temperature
		[] & K CET 2004]		(b) A loses more radiations than it absorbs while B absorbs more
	(a) 1:4	(b) 4:1		radiations that it emits until temperature T is attained
	(c) 1:2	(d) 2:1		(c) Both <i>A</i> and <i>B</i> only absorb radiations until they attain temperature <i>T</i>
5.	A black body radiates energy at the rate of 1 \times 10 ^{i} J / s $\times m$ at temperature of 227 ^{i} C. The temperature to which it must be heated			 (d) Both A and B only emit radiations until they attain temperature T
	so that it radiates energ	y at rate of 1×10 J/sm, is	54.	[DPMT 2004] When the body has the same temperature as that of surroundings [I
	(a) 5000 K	(b) 5000 <i>C</i>	•••	(a) It does not radiate heat
	(c) 500 K	(d) 500 <i>C</i>		(b) It radiates the same quantity of heat as it absorbs
6.	The temperature of the	body is increased from -73° C to 327° C, the		(c) It radiates less quantity of heat as it receives from surrounding
	ratio of energy emitted per second is : [CPMT 2001: Ph PET 2001]			(d) It radiates more quantity of heat as it receives heat from
	(a) 1:3	(b) 1:81	55.	The ratio of radiant energies radiated per unit surface area by two
	(c) 1:27	(d) 1:9	55.	bodies is 16 : 1, the temperature of hotter body is $1000 K$, then the
7.	If the temperature of th	ne body is increased by 10%, the percentage		temperature of colder body will be
	increase in the emitted	radiation will be		[UPSEAT 2001
		[RPMT 2001, 02]		(a) $250 K$ (b) $500 K$
	(a) 46%	(b) 40%		(c) 1000 K (d) $62.5 K$

- (d) 80% (c) 30%
- If the sun's surface radiates heat at $\ 6.3 \times 10^7 Wm^{-2}$. Calculate the 48. temperature of the sun assuming it to be a black body $(\sigma = 5.7 \times 10^{-8} W m^{-2} K^{-4})$ [BHU (Med.) 2000]

A sphere at temperature 600K is placed in an environment of

(a)	$5.8 \times 10^3 K$	(b)	$8.5 \times 10^3 K$
-----	---------------------	-----	---------------------

(c) $3.5 \times 10^8 K$	(d)	$5.3 \times 10^8 K$
-------------------------	-----	---------------------

49.

56. The spectral energy distribution of star is maximum at twice temperature as that of sun. The total energy radiated by star is

- (a) Twice as that of the sun
- (b) Same as that of the sun
- (c) Sixteen times as that of the sun
- (d) One sixteenth of sun

Radiation (Newton's Law of Cooling)

temperature is 200K. Its cooling rate is H. If its temperature reduced to 400 K then cooling rate in same environment will become [CBSE PMT 1999; BHU 2004] water cools from $60^{\circ}C$ to $50^{\circ}C$ in the first 10 minutes and to $42^{\circ}C$ in the next 10 minutes. The temperature of the (a) (3/16)*H* (b) (16/3)*H*

surrounding is [MP PET 1993] (c) (9/27)H (d) (1/16)*H* (a) $5^{o}C$ (b) $10^{\circ} C$

(d) $20^{\circ} C$ (c) $15^{\circ}C$ A bucket full of hot water cools from $75^{\circ}C$ to $70^{\circ}C$ in time T_1 , 2. from $70^{\circ}C$ to $65^{\circ}C$ in time T_2 and from $65^{\circ}C$ to $60^{\circ}C$ in time T_3 , then [NCERT 1980; MP PET 1989; CBSE PMT 1995; KCET 2003; MH CET 1999] (a) $T_1 = T_2 = T_3$ (b) $T_1 > T_2 > T_3$ (c) $T_1 < T_2 < T_3$ (d) $T_1 > T_2 < T_3$ Consider two hot bodies B_1 and B_2 which have temperatures 3.

 $100^{\circ} C$ and $80^{\circ} C$ respectively at t = 0. The temperature of the surroundings is $40^{\circ} C$. The ratio of the respective rates of cooling R_1 and R_2 of these two bodies at t = 0 will be

- (a) $R_1: R_2 = 3:2$ (b) $R_1: R_2 = 5:4$
- (c) $R_1: R_2 = 2:3$ (d) $R_1: R_2 = 4:5$
- Newton's law of cooling is a special case of 4.
 - (a) Stefan's law (b) Kirchhoff's law
 - (c) Wien's law (d) Planck's law
- Equal masses of two liquids are filled in two similar calorimeters. 5. The rate of cooling will [MP PMT 1987]
 - (a) Depend on the nature of the liquids
 - (b) Depend on the specific heats of liquids
 - (c) Be same for both the liquids
 - (d) Depend on the mass of the liquids
- 6. In Newton's experiment of cooling, the water equivalent of two similar calorimeters is 10 gm each. They are filled with 350 gm of water and 300 gm of a liquid (equal volumes) separately. The time taken by water and liquid to cool from $70^{\circ}C$ to $60^{\circ}C$ is 3 min and 95 sec respectively. The specific heat of the liquid will be
 - (a) 0.3 $Cal|gm \times^{\circ} C$ (b) 0.5 Callgm $\times^{\circ}C$
 - (c) 0.6 $Cal|gm \times^{\circ} C$ (d) 0.8 $Cal|gm \times^{\circ} C$
- 7. Newton's law of cooling is used in laboratory for the determination [CPMT 1973; CPMT 2002] of the
 - (a) Specific heat of the gases (b) The latent heat of gases
 - (c) Specific heat of liquids (d) Latent heat of liquids
- A body cools from $60^{\circ}C$ to $50^{\circ}C$ in 10 *minutes* when kept in 8. air at $30^{\circ} C$. In the next 10 *minutes* its temperature will be
 - (a) Below $40^{\circ} C$ (b) $40^{\circ} C$
 - (c) Above $40^{\circ} C$ (d) Cannot be predicted
- Liquid is filled in a vessel which is kept in a room with temperature 9 20° C. When the temperature of the liquid is 80° C, then it loses heat at the rate of 60 cal/sec. What will be the rate of loss of
 - heat when the temperature of the liquid is $40^{\circ} C$
 - (a) 180 *cal*/sec (b) $40 \ cal/sec$
 - (c) 30 cal/sec(d) 20 cal/sec
- Which of the following statements is true/correct 10.

[Manipal MEE 1995]

During clear nights, the temperature rises steadily upward near (a) the ground level

- **Transmission of Heat 719**
- Newton's law of cooling, an approximate form of Stefan's law, (b) is valid only for natural convection
- The total energy emitted by a black body per unit time per (c) unit area is proportional to the square of its temperature in the Kelvin scale
- (d) Two spheres of the same material have radii 1m and 4mand temperatures 4000 K and 2000 K respectively. The energy radiated per second by the first sphere is greater than that radiated per second by the second sphere
- A body takes 4 *minutes* to cool from $100^{\circ}C$ to $70^{\circ}C$. To cool 11.
 - from $70^{\circ}C$ to $40^{\circ}C$ it will take (room temperature is $15^{\circ}C$) (b) 6 minutes
 - (a) 7 minutes
 - (c) 5 minutes (d) 4 minutes
- A cup [WP RET 2999] from $80^{\circ}C$ to $60^{\circ}C$ in one minute. The 12. ambient temperature is $30^{\circ}C$. In cooling from $60^{\circ}C$ to $50^{\circ}C$ it will take [MP PMT 1995; UPSEAT 2000;
 - MH CET 2002]
 - 30 seconds 60 seconds (a)(b)
 - 90 seconds 50 seconds (d) (c)
- A liquid cools down from $70^{\circ}C$ to $60^{\circ}C$ in 5 *minutes*. The 13. time taken to cool it from $60^{\circ}C$ to $50^{\circ}C$ will be

[MP PET 1992, 2000; MP PMT 1996]

(a) 5 minutes

15.

- (b) Lesser than 5 minutes
- Greater than 5 *minutes* (c)
- Lesser or greater than 5 minutes depending upon the density (d) of the liquid
- If a metallic sphere gets cooled from $62^{\circ}C$ to $50^{\circ}C$ in 14. 10 minutes and in the next 10 minutes gets cooled to $42^{\circ}C$, then the temperature of the surroundings is

[MP PET 1997]

- (a) $30^{\circ} C$ (b) $36^{\circ}C$
- (c) $26^{\circ} C$ (d) $20^{\circ} C$
- The rates of cooling of two different liquids put in exactly similar calorimeters and kept in identical surroundings are the same if
 - (a) The masses of the liquids are equal
 - (b) Equal masses of the liquids at the same temperature are taken
 - Dimeret von the liquids at the same temperature are (c) taker
 - (d) Equal volumes of the liquids at the same temperature are taken
- A body cools from $60^{\circ}C$ to $50^{\circ}C$ in 10 *minutes*. If the room 16. temperature is $25^{o}C$ and assuming Newton's law of cooling to hold good, the temperature of the body at the end of the next $\ 10$ minutes will be

[MP PMT 1994] [MP PMT/PET 1998; BHU 2000; Pb. PMT 2001]

- 38.5° C (b) $40^{\circ} C$ (a)
- (c) $42.85^{\circ}C$ (d) $45^{\circ}C$
- The temperature of a liquid drops from 365K to 361 K in 2 17. minutes. Find the time during which temperature of the liquid drops from 344 K to 342K. Temperature of room is 293 K
 - (a) 84 sec (b) 72 sec

UNIN	720 Transmission	n of Heat			
	(c) 66 <i>sec</i>	(d) 60 <i>sec</i>	26.	The temperature of a b	ody falls from $50^{\circ}C$ to $40^{\circ}C$ in 10
18.	A body cools from $50.0^{\circ}C$	to $49.9^{\circ}C$ in 5 s. How long will it		minutes. If the temperatu	are of the surroundings is $20^{\circ} C$ Then
	take to cool from $40.0^{\circ}C$ t	o $39.9^{\circ}C$? Assume the temperature		temperature of the body a	ter another 10 minutes will be
	of surroundings to be 30.0° valid	<i>C</i> and Newton's law of cooling to be [CBSE PMT 1994]		(a) $36.6^{\circ} C$	(b) $33.3^{\circ}C$
	(a) 2.5 <i>s</i>	(b) 10 <i>s</i>		(c) $35^{\circ}C$	(d) $30^{\circ} C$
	(c) 20 <i>s</i>	(d) 5 <i>s</i>	27.	It takes 10 minutes to co	bol a liquid from $61C$ to $59C$. If room
19.	A container contains hot	water at $100^{o}C.$ If in time T_1		(a) 10 min	(b) 11 min
	temperature falls to $80^{\circ}C$	and in time T_2 temperature falls to		(c) 13 <i>min</i>	(d) 15 <i>min</i>
	$60^{\circ} C$ from $80^{\circ} C$, then	[CPMT 1997]	28.	A calorimeter of mass	0.2 kg and specific heat 900 J/kg-K.
	(a) $T_1 = T_2$	(b) $T_1 > T_2$		Containing 0.5 <i>kg</i> of a	liquid of specific heat 2400J /kg-K. Its
	(c) $T_1 < T_2$	(d) None		temperature falls from 60	^{o}C to 55 ^{o}C in one minute. The rate of
20.	Hot water kept in a beaker p	laced in a room cools from $70^{o}C$ to		cooling is	[MP PET 2003]
	60° <i>C</i> in 4 <i>minutes</i> . The time	taken by it to cool from $69^{\circ}C$ to		(a) 5 <i>J/s</i>	(b) 15 <i>J/s</i>
	$59^{\circ}C$ will be	[JIPMER 1999]		(c) 100 <i>J/s</i>	(d) 115 <i>J/s</i>
	(a) The same 4 minutes	(b) More than 4 minutes	29.	According to Newton's law	of cooling, the rate of cooling of a body
	(c) Less than 4 minutes	(d) We cannot say definitely		is proportional to $(\Delta heta)^n$, where $\Delta heta$ is the difference of the
21.	Newton's law of cooling, h	olds good only if the temperature		temperature of the body a	nd the surroundings, and <i>n</i> is equal to
	difference between the body a	[BHU 2000]		(a) One	(b) Two
	(a) less than 10° C	(b) More than 10° C		(c) Three	(d) Four
	(a) Less than 10 $^{\circ}$ C		30.	The initial temperature of	a body is $80^{\circ}C$. If its temperature falls to
	(c) Less than 100° C	(d) More than 100° C		64° <i>C</i> in 5 <i>minutes</i> and in	10 <i>minutes</i> to $52^{\circ}C$ then the temperature
22.	In a room where the temper	rature is $30^{\circ}C$, a body cools from		of surrounding will be	[MP PMT 2003]
	$61^{\circ}C$ to $59^{\circ}C$ in 4 minum body to cool from $51^{\circ}C$ to 4	ites. The time (in min.) taken by the $49^{0}C$ will be		(a) 26° <i>C</i>	(b) 49° <i>C</i>
		[UPSEAT 2000]		(c) $35^{\circ}C$	(d) $42^{\circ}C$
	(a) 4 <i>min</i> (c) 5 <i>min</i>	(b) 6 <i>min</i> (d) 8 <i>min</i>	31.	A liquid cools from 50 <i>C</i> 41.5 <i>C</i> in the next 5 minute	to $45 \cdot C$ in 5 minutes and from $45 \cdot C$ to es. The temperature of the surrounding is
23.	According to 'Newton's Law of	cooling', the rate of cooling of a body		(a) 27 <i>C</i>	(b) 40.3 <i>C</i>
	is proportional to the	[MP PET 2001]		(c) $23.3 \cdot C$	(d) 33.3 <i>C</i>
	(a) Temperature of the body		32.	A cup of tea cools from 65	$5.5^{\circ}C$ to $62.5^{\circ}C$ in one minute in a room of
	(b) Temperature of the surro	unding		22.5 C. How long will the s	same cup of tea take, in minutes, to $5 \cdot C$ in the same room 2 (choose pearest
	(c) Fourth power of the tem	preserve of the body and the		value)	[Kerala PMT 2004]
	surroundings	inperature of the body and the		(a) 1	(b) 2
24.	A body cools in 7 minutes fro	om $60^{\circ}C$ to $40^{\circ}C$ What time (in		(c) 3	(d) 4
	minutes) does it take to co	from $40^{\circ}C$ to $28^{\circ}C$ if the	33.	The temperature of a body	y falls from $62^{\circ}C$ to $50^{\circ}C$ in 10 <i>minutes</i> . If
	surrounding temperature is cooling holds	10° C ? Assume Newton's Law of [Kerala (Engg.) 2001]		next 10 <i>minutes</i> will becom	ie [RPMT 2002]
	(a) 3.5	(b) 11		(a) $42 C$	(b) $40^{\circ}C$
	(c) 7	(d) 10		(c) $56^{\circ}C$	(d) 55 [.] C
25.	A body takes 5 minutes for	cooling from $50^{\circ}C$ to $40^{\circ}C$. Its	34.	A body takes 5 <i>minute</i> temperature of the surrour	s to cool from $90^{\circ}C$ to $60^{\circ}C$. If the ndings is $20^{\circ}C$, the time taken by it to cool
	Temperature comes down t	is [MP PMT 2002]		(a) 5 <i>min</i>	(b) 8 min
	() 150 C			(c) 11 min	(d) 12 min
	(a) $15^{\circ}C$	(b) 20° C	25	An object is cooled from	75° C to 65° C in 2 minutes in a room at
	(c) 25° C	(d) $10^{\circ} C$	33.	30° <i>C</i> . The time taken to c the same room in minutes	sool another object from $55^{\circ}C$ to $45^{\circ}C$ in is
					[EAMCET (Med.) 1996]
				(a) 4	(b) 5

section have been joined as shown in the figure. Each rod is of the same le **RPET 1998** left and right ends are kept at $0^{\circ}C$ and $90^{\circ}C$ respectively. The temperature of the junction of the three rods will be [IIT-JEE (Screening) 2001]

connected to 200 volt mains. The temperature is uniform through out the room and heat is transmitted through a glass window of area $1m^2$ and thickness 0.2 *cm*. What will be the temperature outside? Given that thermal conductivity K for glass is $0.2 cal/m/^{\circ} C/sec$

[IIT 1978]

- (b) 15.00°*C* (d) None of the above
- There is formation of layer of snow $x \, cm$ thick on water, when the

temperature of air is $-\theta^o C$ (less than freezing point). The thickness of layer increases from x to y in the time t, then the value of *t* is given by

a)
$$\frac{(x+y)(x-y)\rho L}{2k\theta}$$
 (b) $\frac{(x-y)\rho L}{2k\theta}$

[IIT (980;
$$\underbrace{CPMT}_{k\theta}^{y})(x,-y)\rho L$$
 (d) $\frac{(x-y)\rho Lk}{2\theta}$

A composite metal bar of uniform section is made up of length 25 cm of copper, 10 cm of nickel and 15 cm of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at $100^{\circ}C$ and the aluminium end at $0^{\,o}\,C$. The whole rod is covered with belt so that there is no heat loss occurs at the sides. If $K_{\rm Cu}=2K_{Al}$ and $K_{Al} = 3K_{Ni}$, then what will be the temperatures of Cu - Ni and Ni - Al junctions respectively

Си	Ni	Al
100° <i>C</i>		0° <i>C</i>

- $23.33^{\circ}C$ and $78.8^{\circ}C$ (b) $83.33^{\circ}C$ and $20^{\circ}C$
- (c) $50^{\circ} C$ and $30^{\circ} C$ (d) $30^{\circ}C$ and $50^{\circ}C$
- Three rods of identical area of cross-section and made from the [IIT 1988; MP PMT 1994, 97; SCRA 1998] same metal form the sides of an isosceles triangle *ABC*, right angled at B. The points A and B are maintained at temperatures T and $\sqrt{2}T$ respectively. In the steady state the temperature of the point C is T_C . Assuming that only heat conduction takes place, $\frac{I_C}{T}$ is equal to [IIT 1995]

UNIVERSAL

722 Transmission of Heat

(a)
$$\frac{1}{(\sqrt{2}+1)}$$
 (b) $\frac{3}{(\sqrt{2}+1)}$
(c) $\frac{1}{(\sqrt{2}+1)}$ (d) $\frac{1}{(\sqrt{2}+1)}$

- **10.** The only possibility of heat flow in a thermos flask is through its cork which is 75 *cm* in area and 5 *cm* thick. Its thermal conductivity is 0.0075 *cal/cmsec C*. The outside temperature is 40 *C* and latent heat of ice is 80 *cal g*. Time taken by 500 *g* of ice at 0 *C* in the flask to melt into water at 0 *C* is **[CPMT 1974, 78; MNR 1983]**
 - (a) 2.47 hr (b) 4.27 hr (c) 7.42 hr

11. A sphere, a cube and a thin circular plate, all made of the same material and having the same mass are initially heated to a temperature of $1000^{\circ}C$. Which one of these will cool first

J & K CET 2000 MH CET 2000; UPSEAT 2001]

- (a) Plate (b) Sphere
- (c) Cube (d) None of these
- 12. Three rods of the same dimension have thermal conductivities 3K, 2K and K. They are arranged as shown in fig. Given below, with their ends at 100 *C*, 50 *C* and 20 *C*. The temperature of their junction is
 - (a) $60^{\circ} C$
 - (b) 70° C 50° C
 - (c) $50^{\circ} C$ $100^{\circ} C$

$$\begin{array}{c} (c) & 50 \\ (d) & 35 \\ \end{array}$$

13. Two identical conducting rods are first connex ed independently to two vessels, one containing water at 100 *C* and the other@containing ice at 0 *C*. In the second case, the rods are joined end to end and connected to the same vessels. Let q and q g / s be the rate of melting of ice in two cases respectively. The ratio of q_1 / q_2 is

[IIT-JEE (Screening) 2004]

(a) $\frac{1}{2}$ (b) $\frac{2}{1}$ (c) $\frac{4}{1}$ (d) $\frac{1}{4}$

14. A solid cube and a solid sphere of the same material have equal surface area. Both are at the same temperature $120^{\circ}C$, then [MP PET 1992, 90]

- $(a)\quad Both \ the \ cube \ and \ the \ sphere \ cool \ down \ at \ the \ same \ rate$
- (b) The cube cools down faster than the sphere
- $(c) \quad \text{The sphere cools down faster than the cube} \\$
- (d) Whichever is having more mass will cool down faster
- **15.** Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength λ_B corresponding to maximum spectral radiancy in the radiation from B is shifted from the wavelength corresponding to

maximum spectral radiancy in the radiation from A , by $1.00\,\mu m$. If the temperature of A is 5802~K

- (a) The temperature of B is 1934 K
- (b) $\lambda_B = 1.5 \,\mu m$
- (c) The temperature of B is 11604 K
- (d) The temperature of B is 2901 K

A black body is at a temperature of 2880 K. The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm is U_1 , between 999 nm and 1000 nm is U_2 and between 1499 nm and 1500 nm is U_3 . The Wein's constant $b = 2.88 \times 10^6$ nm K. Then

[11T 1998]

- (a) $U_1 = 0$ (b) $U_3 = 0$
- (c) U_1^{IIT} (d) $U_2 > U_1$

are doubled, the power received by the foil will be

17.

18.

19.

16.

A black metal foil is warmed by radiation from a small sphere at temperature T and at a distance d. It is found that the power received by the foil is `*P*. If both the temperature and the distance

$$\begin{array}{c} (a) & 16P \\ [UPSEAT 2002] \\ (c) & 2P \end{array} \qquad \qquad (b) & 4P \\ (d) & P \end{array}$$

Three rods of same dimensions are arranged as shown in figure they have thermal conductivities K_1, K_2 and K_3 The points *P* and *Q* are maintained at different temperatures for the heat to flow at the same rate along *PRQ* and *PQ* then which of the following option is correct **[KCET 2001]**

(a)
$$K_3 = \frac{1}{2}(K_1 + K_2)$$

(b) $K_3 = K_1 + K_2$
(c) $K_3 = \frac{K_1 K_2}{K_1 + K_2}$
(d) $K_2 = 2(K_1 + K_2)$

Two metallic spheres
$$S_1$$
 and S_2 are made of the same material
and have identical surface finish. The mass of S_1 is three times that
of S_2 . Both the spheres are heated to the same high temperature
5: MRRMPTa2020 in the same room having lower temperature but are
thermally insulated from each other. The ratio of the initial rate of
cooling of S_1 to that of S_2 is [IIT 1995]

(a)
$$1/3$$
 (b) $(1/3)^{1/3}$

(c)
$$1/\sqrt{3}$$
 (d) $\sqrt{3}/1$

20. Three discs *A*, *B* and *C* having radii 2*m*, 4*m*, and 6*m* respectively are coated with carbon black on their other surfaces. The wavelengths corresponding to maximum intensity are 300 *nm*, 400 *nm* and 500 *nm*, respectively. The power radiated by them are *Q*, *Q*, and *Q* respectively

					SELF SCORER
		[IIT-JEE (Screening) 2004]		the first and if the thermal conductivity of n	naterial of second rod is
(a) <i>Q</i>	is maximum (ł	b) Q is maximum		$\frac{1}{4}$ that of first, the rate at which ice melts in	n gm/\sec will be [EAMCET
(c) Q	is maximum (o	$\mathbf{d} \mathbf{Q}_{1} = \mathbf{Q}_{1} = \mathbf{Q}_{2}$			
The tot	tal energy radiated from a b nute and is used to heat a qu	lack body source is collected for antity of water. The temperature		(a) 3.2 (b) 1.6 (c) 0.2 (d) 0.1	
of wate	er is found to increase for	m $20^{\circ}C$ to $20.5^{\circ}C$. If the	28.	One end of a copper rod of length $1.0\ m$ a	nd area of cross-section
absolute	e temperature of the bla	ick body is doubled and the $20^{\circ}C$		10^{-3} is immersed in boiling water and the	other end in ice. If the
the tem	perature of water will be	[UPSEAT 2004]		coefficient of thermal conductivity of coppe	er is $92 cal/m-s-^{o}C$
(a) 2	$1^{\circ}C$ (b)	b) $22^{\circ}C$		and the latent heat of ice is $8 imes 10^4 cal/k_{ m cal}$	g , then the amount of
(c) 24	$4^{\circ}C$ (a	d) $28^{\circ}C$		ice which will melt in one minute is	
. A solid	sphere and a hollow sphere	of the same material and size are		() $0.2 \times 10^{-3} h_{-3}$ () $0.2 \times 10^{-3} h_{-3}$	[MINK 1994]
neated surroun	to the same temperature and dings. If the temperature	difference between each sphere		(a) $9.2 \times 10^{-10} \text{ kg}$ (b) 8×1^{-2}	0 Kg
and its	surroundings is T , then			(c) $6.9 \times 10^{-3} kg$ (d) $5.4 >$	$(10^{-3} kg)$
		[Manipal MEE 1995]	29.	An ice box used for keeping eatable cold h	ias a total wall area of
(a) Th	ne hollow sphere will cool at	a faster rate for all values of T		$1 metre^2$ and a wall thickness of	5.0 cm. The thermal
(b) Th	ne solid sphere will cool at a fa	ster rate for all values of T		conductivity of the ice box is $K = 0.01 \ jc$	$oule/metre - {}^oC$. It is
(c) Bo (d) Bo	oth spheres will cool at the san oth spheres will cool at the s	me rate for all values of T ame rate only for small values of		filled with ice at $0^{\circ}C$ along with eatabl temperature is $30^{\circ}C$. The latent heat	es on a day when the of fusion of ice is
Т	,			$334 imes 10^3$ $joules/kg$. The amount of ice r	nelted in one day is
. A solid	copper cube of edges 1 cr	n is suspended in an evacuated		(1 day = 86,400 sec onds)	[MP PMT 1995]
enclosu	re. Its temperature is found	to fall from $100^{\circ}C$ to $99^{\circ}C$		(a) 776 gms (b) 7760) gms
in 100 surface	s. Another solid copper cu	ibe of edges $2 cm$, with similar manner. The time required		(c) 11520 gms (d) 1552	2 gms
for this	sube to cool from 100° C	to $99^{\circ}C$ will be approximately M	30.	Five rods of same dimensions are arranged	as shown in the figure.
(-) 2		\sim 50 °		They have thermal conductivities <i>K</i> , <i>K</i> , <i>K</i> , <i>K</i>	and K. When points A
(a) 2.	5 S (I	5) 50 \$		and <i>B</i> are maintained at different tempe through the central rod if	ratures, no heat flows
(c) 20	00 s (a	d) $400 \ s$			[KCET 2002]
. A body 10 <i>min</i> i	initially at 80 [.] <i>C</i> cools to 64 <i>utes</i> . The temperature of the	C in 5 <i>minutes</i> and to 52 [.] C in body after 15 <i>minutes</i> will be[UPSE /	AT 2000; 1	(a) $K_1 = K_4$ and $K_2 = K_3$ Pb. PET 2004]	KCE1 2002]
(a) 42	2.7 [.] C (ł	b) 35 C		(b) $K_1 K_4 = K_2 K_3$	K

4.	A body initially at 80° C	cools to 64° C in 5 <i>minutes</i> and to 52° C in
	10 <i>minutes</i> . The temperat	ture of the body after 15 <i>minutes</i> will be[UP
	(a) $42.7^{-}C$	(b) 35 C

(c)	47 [.] C	(d)	40 [.] C

A 5cm thick ice block is there on the surface of water in a lake. The 25. temperature of air is $-10^{\circ}C$; how much time it will take to double the thickness of the block

 $(L = 80 \text{ cal/g}, K = 0.004 \text{ Erg/s-k}, d = 0.92 \text{ g cm}^{-3})$

[RPET 1998]

32.

(a)	1 <i>hour</i>	(b)	191 hours
(c)	19.1 <i>hours</i>	(d)	1.91 <i>hours</i>

Four identical rods of same material are joined end to end to form a 26. square. If the temperature difference between the ends of a diagonal is $100^{\circ} C$, then the temperature difference between the ends of other diagonal will be

[MP PET 1989; RPMT 2002]

(a)
$$0^{\circ} C$$

(b) $\frac{100}{l} {}^{\circ} C$; where *l* is the length of each rod
(c) $\frac{100}{2l} {}^{\circ} C$
(d) $100^{\circ} C$

27. A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of 0.1gm of ice per second. If the rod is replaced by another with half the length and double the radius of

A hot metallic sphere of radius r radiates heat. It's rate of cooling is 31.

(c) $K_1 K_2 = K_3 K_4$

(d) $\frac{K_1}{K_4} = \frac{K_2}{K_3}$

- (a) Independent of *r* (b) Proportional to r
- (c) Proportional to r^2 (d) Proportional to 1/r
- A solid copper sphere (density ρ and specific heat capacity c) of radius r at an initial temperature 200K is suspended inside a chamber whose walls are at almost 0K. The time required (in μ s) for the temperature of the sphere to drop to 100 K is

(a)
$$\frac{72}{7} \frac{r\rho c}{\sigma}$$
 (b) $\frac{7}{72} \frac{r\rho c}{\sigma}$
(c) $\frac{27}{7} \frac{r\rho c}{\sigma}$ (d) $\frac{7}{27} \frac{r\rho c}{\sigma}$

One end of a copper rod of uniform cross-section and of length 3.1 33. *m* is kept in contact with ice and the other end with water at $100^{\circ}C$. At what point along it's length should a temperature of 200°C be maintained so that in steady state, the mass of ice melting be equal to that of the steam produced in the same interval of time. Assume that the whole system is insulated from the surroundings. Latent heat of fusion of ice and vaporisation of water are 80 cal/gm and 540 cal/gm respectively

- (a) 40 cm from 100°C end
 (b) 40 cm from 0°C end
 (c) 125 cm from 100°C end
 (d) 125 cm from 0°C end
- **34.** A sphere and a cube of same material and same volume are heated upto same temperature and allowed to cool in the same surroundings. The ratio of the amounts of radiations emitted will be

1 -

1

(a) 1:1
(b)
$$\frac{4\pi}{3}$$
:1
(c) $\left(\frac{\pi}{6}\right)^{1/3}$:1
(d) $\frac{1}{2}\left(\frac{4\pi}{3}\right)^{2/3}$:

35. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity *K* and 2*K* and thickness *x* and 4*x*, respectively are *T* and *T* (*T* > *T*). The rate of heat transfer through the slab, in a steady state is $\left(\frac{A(T_2 - T_1)K}{x}\right)f$, with *f* which equal to[**AIEEE 2004**]

36. The figure shows a system of two concentric spheres of radii *r* and *r* and kept at temperatures *T* and *T*, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is proportional to [AIEEE 2005]

(a)
$$\frac{r_1 r_2}{(r_1 - r_2)}$$

(b) $(r_2 - r_1)$
(c) $(r_2 - r_1)(r_1 r_2)$
(d) $\ln\left(\frac{r_2}{r_1}\right)$

37. Four rods of identical cross-sectional area and made from the same metal form the sides of square. The temperature of two diagonally opposite points and T and $\sqrt{2}$ T respective in the steady state. Assuming that only heat conduction takes place, what will be the temperature difference between other two points

(a)
$$\frac{\sqrt{2}+1}{2}T$$
 (b) $\frac{2}{\sqrt{2}+1}T$

(c) 0

(d) None of these

The graph. Shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation. Find the correct relation between the emissivity (e) and absorptivity (a) of the two bodies

[IIT-JEE (Screening) 2003]

2. The plots of intensity versus wavelength for three black bodies at temperatures T, T and T respectively are as shown. Their temperature are such that

(a) $T_{1} > T_{2} > T_{1}$ (b) $T_{2} > T_{2} > T_{1}$ (c) $T_{2} > T_{2} > T_{2}$ (d) $T_{3} > T_{4} > T_{3}$

1.

The adjoining diagram shows the spectral energy density distribution E_{λ} of a black body at two different temperatures. If the areas under the curves are in the ratio 16 : 1, the value of temperature *T* is **[DCE 1999]**

(a) 32,000 K

3.

- (b) 16,000 K
- (c) 8,000 K
- (d) 4,000 K

[BCECE 2005]

Transmission of Heat 727

(d)

Following graph shows the correct variation in intensity of heat radiations by black body and frequency at a fixed temperature

5. Variation of radiant ^venergy emitted by sun, filament of tungsten lamp and welding arc as a function of its wavelength is shown in figure. Which of the following option is the correct match

- (a) Sun- T_1 , tungsten filament $-T_2$, welding arc $-T_3$
- (b) Sun $-T_2$, tungsten filament $-T_1$, welding arc $-T_3$
- (c) Sun $-T_3$, tungsten filament $-T_2$, welding arc $-T_1$
- (d) Sun $-T_1$, tungsten filament $-T_3$, welding arc $-T_2$

6.

7.

A body cools in a surrounding which is at a constant temperature of θ_0 . Assume that it obeys Newton's law of cooling. Its temperature θ is plotted against time *t*. Tangents are drawn to the curve at the points $P(\theta = \theta_1)$ and $Q(\theta = \theta_2)$. These tangents meet the time axis at angles of ϕ_2 and ϕ_1 , as shown

8.

The spectrum of a black body at two temperatures 27 C and 327 C is shown in the figure. Let A and A be the areas under the two

curves respectively. The value of $\frac{A_2}{A_1}$ is

(a) 1:16

(b) 4:1

(c) 2:1

(d) 16:1

10.

11.

The energy distribution E with the wavelength $\begin{pmatrix} \text{Time} \\ \lambda \end{pmatrix}$ for the black body radiation at temperature T *Kelvin* is shown in the figure. As the temperature is increased the maxima will

- (a) Shift towards left and become higher
- (b) Rise high but will not shift
- (c) Shift towards right and become higher
- (d) Shift towards left and the curve will become broader
- For a small temperature difference between the body and the surroundings the relation between the rate of loss heat R and the temperature of the body is depicted by

UNIVERSAL SELF SCORER

12. Heat is flowing through a conductor of length *l* from x = 0 to x = l. If its thermal resistance per unit length is uniform, which of the following graphs is correct

13. Radius of a conductor increases uniformly from left end to right end as shown in fig.

Material of the conductor is isotropic and its curved surface is thermally isolated from surrounding. Its ends are maintained at temperatures T and T (T > T): If, in steady state, heat flow rate is equal to H, then which of the following graphs is correct

14. Which of the following graphs correctly represents the relation between $\ln E$ and $\ln T$ where E is the amount of radiation emitted per unit time from unit area of a body and T is the absolute temperature [DCE 2002]

15. A hollow copper sphere *S* and a hollow copper cube *C*, both of negligible thin walls of same area, are filled with water at $90^{\circ}C$ and allowed to cool in the same environment. The graph that correctly represents their cooling is

In the figure, the distribution of energy density of the radiation emitted by a black body at a given temperature is shown. The possible temperature of the black body is

16.

t

[RPMT 1996]

17. Which of the following is the v = T graph for a perfectly black body (v =maximum frequency of radiation)

	R	As	sertion & Reason
Deal	the associate	1	For AIIMS Aspirants
the o	ptions given b	elow:	reason carefully to mark the concer option out of
(a)	If both ass	ertion	and reason are true and the reason is the correct
(b)	If both ass		and reason are true but reason is not the correct
(c) (d) (e)	If assertion If the asser If assertion	is tru tion a is fai	ie asserium. ie but reason is false. ind reason both are false. ise but reason is true.
1.	Assertion	:	A body that is a good radiator is also a good absorber of radiation at a given wavelength.
	Reason	:	According to Kirchoff's law the absorptivity of a body is equal to its emissivity at a given wavelength. [AIIMS 2005]
2.	Assertion	:	For higher temperature, the peak emission wavelength of a black body shifts to lower wavelengths.
	Reason	:	Peak emission wavelength of a blackbody is proportional to the fourth power of temperature. [AIIMS 2005]
3.	Assertion	:	Temperatures near the sea coast are moderate.
	Reason	:	Water has a high thermal conductivity.
	A .:		[AIIMS 2003]
4.	Assertion	:	It is notter over the top of a fire than at the same distance on the sides.
	Reason	:	Air surrounding the fire conducts more heat upwards. [AIIMS 2003]
5.	Assertion	:	Bodies radiate heat at all temperatures.
	Reason	:	Rate of radiation of heat is proportional to the fourth power of absolute temperature.
			[A11MS 1999, 2002]
6.	Assertion	:	Woolen clothes keep the body warm in winter.
	Reason	:	Air is a bad conductor of heat.
-	A		[AIIMS 2002]
7.	Assertion	:	of same thickness in contact (series) is less than the smaller value of thermal conductivity.
	Reason	:	For two plates of equal thickness in contact (series) the equivalent thermal conductivity is given by [AIIMS 1997]
			$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2}$
8.	Assertion	:	A hollow metallic closed container maintained at a uniform temperature can act as a source of black body radiation.
	Reason	:	All metals acts as a black body
			[A11MS 1996]
9.	Assertion	:	If the temperature of a star is doubled then the rate of loss of heat from it becomes 16 times.
	Reason	:	Specific heat varies with temperature.
			[AIIMS 1996]

10.	Assertion	:	The radiation from the sun's surface varies as the fourth power of its absolute temperature.
	Reason	:	The sun is not a black body. [AIIMS 1999]
11.	Assertion	:	Blue star is at high temperature than red star.
	Reason	:	Wein's displacement law states that $T \propto (1 / \lambda_m) . \tag{AIIMS 2002}$
12.	Assertion	:	The S.I. unit of thermal conductivity is watt $m K$.
	Reason	:	Thermal conductivity is a measure of ability of the material to allow the passage of heat through it.
13.	Assertion	:	A brass tumbler feels much colder than a wooden tray on a chilly day.
	Reason	:	The thermal conductivity of brass is less than that of wood. $% \left({{{\left({{{{{\bf{n}}}} \right)}_{{{\bf{n}}}}}}} \right)$
14.	Assertion	:	Like light radiations, thermal radiations are also electromagnetic radiation.
	Reason	:	The thermal radiations require no medium for propagation.
15.	Assertion	:	Snow is better insulator than ice.
	Reason	:	Snow contain air packet and air is good insulator of heat.
16.	Assertion	:	Water can be boiled inside satellite by convection.
	Reason	:	Convection is the process in which heat is transmitted from a place of higher temperature to a place of lower temperature by means of particles with their migrations from one place to another.
17.	Assertion	:	The absorbance of a perfect black body is unity.
	Reason	:	A perfect black body when heated emits radiations of all possible wavelengths at that temperature.
18.	Assertion	:	A man would feel iron or wooden balls equally hot at $98.4^{\circ}F$.
	Reason	:	At 98.4° F both iron and wood have same thermal conductivity.
19.	Assertion	:	As temperature of a black body is raised, wavelength corresponding to maximum energy reduces.
	Reason	:	Higher temperature would mean higher energy and hence higher wavelength.
20.	Assertion	:	All black coloured objects are considered black bodies.
	Reason	:	Black colour is a good absorber of heat.
21.	Assertion	:	Greater is the coefficient of thermal conductivity of a material, smaller is the thermal resistance of a rod of that material.
	Reason	:	Thermal resistance is the ratio of temperature difference between the ends of the conductor and rate of flow of heat.
22.	Assertion	:	Radiation is the speediest mode of heat transfer.
	Reason	:	Radiation can be transmitted in zig-zag motion.
23.	Assertion	:	Two thin blankets put together are warmer than a single blanket of double the thickness.

_			
	Reason	:	Thickness increases because of air layer enclosed between the two blankets.
24.	Assertion	:	Animals curl into a ball, when they feel very cold
	Reason	:	Animals by curling their body reduces the surface area.

Answers

Conduction

1	а	2	d	3	d	4	а	5	d
6	d	7	d	8	d	9	c	10	d
11	C	12	а	13	а	14	b	15	d
16	b	17	С	18	с	19	а	20	а
21	a	22	а	23	b	24	d	25	а
26	b	27	b	28	d	29	d	30	b
31	b	32	C	33	b	34	b	35	а
36	d	37	d	38	b	39	а	40	C
41	b	42	C	43	C	44	b	45	C
46	а	47	C	48	b	49	b	50	а
51	C	52	b	53	b	54	C	55	а
56	a	57	a	58	C	59	C	60	а
61	C	62	d	63	b	64	b	65	b
66	C	67	b	68	b				

Convection 5 2 а 3 С 4 b C a 6 а 7 с 8 b 9 а 10 d 13 11 а 12 С С

Radiation (General, Kirchoff's law, Black body)

1	b	2	a	3	с	4	d	5	d
6	С	7	d	8	d	9	С	10	b
11	b	12	а	13	с	14	а	15	d
16	b	17	а	18	b	19	b	20	C
21	b	22	С	23	с	24	а	25	b
26	b	27	а	28	c	29	а	30	d
31	d	32	С	33	a	34	С	35	а
36	d	37	С	38	b				

Radiation (Wein's law)

1	а	2	c	3	d	4	С	5	а
6	С	7	d	8	С	9	С	10	b
11	а	12	b	13	b	14	C	15	b
16	а	17	b	18	а	19	b	20	а

21	с	22	а	23	b	24	b	25	c
26	b	27	b	28	b	29	а	30	b

Radiation (Stefan's law)

1	с	2	с	3	a	4	а	5	d
6	а	7	C	8	b	9	b	10	b
11	b	12	C	13	С	14	С	15	С
16	b	17	d	18	d	19	C	20	d
21	d	22	d	23	а	24	d	25	d
26	а	27	а	28	b	29	а	30	а
31	d	32	d	33	d	34	C	35	а
36	C	37	C	38	C	39	а	40	C
41	b	42	d	43	С	44	d	45	а
46	b	47	а	48	а	49	а	50	а
51	а	52	d	53	b	54	b	55	b
56	C								

Radiation (Newton's Law of Cooling)

1	b	2	C	3	а	4	а	5	b	
6	с	7	C	8	С	9	d	10	b	
11	b	12	d	13	С	14	С	15	d	
16	С	17	а	18	b	19	С	20	b	
21	а	22	b	23	d	24	С	25	b	
26	b	27	d	28	d	29	а	30	b	
31	d	32	d	33	а	34	С	35	а	
36	b	37	b							

Critical Thinking Questions

1	а	2	b	3	d	4	c	5	b
6	а	7	а	8	b	9	b	10	а
11	а	12	b	13	C	14	b	15	ab
16	d	17	b	18	C	19	b	20	b
21	d	22	а	23	C	24	а	25	C
26	а	27	С	28	C	29	d	30	b
31	d	32	b	33	а	34	С	35	d
36	а	37	C						

Graphical Questions

1	C	2	b	3	d	4	C	5	C
6	b	7	а	8	d	9	b	10	а
11	C	12	C	13	b	14	d	15	C
16	b	17	b						

Assertion & Reason

1	а	2	с	3	b	4	с	5	е
6	а	7	d	8	C	9	b	10	C

UNIVERSAL ELF SCORER

Conduction

- 1. (a) Cu is better conductor than Al and Ag is better conductor than Cu. Hence conductivity in increasing order is Al < Cu < Ag.
- 2. (d) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$ $\therefore \frac{r^2}{l}$ is maximum in option (d), hence it will conduct more heat.
- 3. (d) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{d^2}{l}$ (*d* = Diameter of rod) $\Rightarrow \frac{(Q/t)_1}{(Q/t)_2} = \left(\frac{d_1}{d_2}\right)^2 \times \frac{l_2}{l_1} = \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right) = \frac{1}{8}$
- **4.** (a) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} = \frac{\Delta \theta}{(l / KA)} = \frac{\Delta \theta}{R}$ (*R* = Thermal resistance)

$$\Rightarrow t \propto R \qquad (\because Q \text{ and } \Delta \theta \text{ are same})$$

$$\Rightarrow \frac{t_P}{t_S} = \frac{R_P}{R_S} = \frac{R/2}{2R} = \frac{1}{4} \Rightarrow t_P = \frac{t_S}{4} = \frac{4}{4} = 1 \text{ min } .$$

(Series resistance $R_S = R_1 + R_2$ and parallel resistance

$$R_P = \frac{R_1 R_2}{R_1 + R_2} \,)$$

- 5. (d) For cooking utensils, low specific heat is preferred for it's material as it should need less heat to raise it's temperature and it should have high conductivity, because, it should transfer heat quickly.
- 6. (d) In steady state there is no absorption of heat in any position. Heat passes on or is radiated from it's surface. Therefore, in steady state the temperature of the body does not change with time but can be different at different points of the body.
- 7. (d) It is the property of material.
- 8. (d) Because steady state has been reached.

9. (c)
$$\frac{Q_1}{t} = \frac{KA(90-60)}{0.6} = 50 \ KA$$

and $\frac{Q_2}{t} = \frac{KA(150-110)}{0.8} = 50 \ KA$
10. (d) Given $A_1 = A_2$ and $\frac{K_1}{K_2} = \frac{5}{4}$

$$\therefore R_1 = R_2 \implies \frac{l_1}{K_1 A} = \frac{l_2}{K_2 A} \implies \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{4}.$$

11. (c)
$$\frac{\Delta Q}{\Delta t} = \frac{KA \,\Delta \theta}{\Delta x} \Rightarrow$$
 Thermal gradient $\frac{\Delta \theta}{\Delta x}$
 $= \frac{(\Delta Q / \Delta t)}{KA} = \frac{10}{0.4} = 25^{\circ}C / cm$

12. (a) It is given that
$$\frac{K_1}{K_2} = \frac{1}{3} \implies K_1 = K$$
 then $K_2 = 3K$

the temperature of the junction in contact

$$\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2} = \frac{1 \times 100 + 3 \times 0}{1 + 3} = \frac{100}{4} = 25^{\circ}C$$

$$Q \xrightarrow{\text{Junction temperature } \theta}$$

$$Q \xrightarrow{\text{Junction temperature } \theta}$$

$$Q = \frac{KA(\theta_1 - \theta_2)t}{l}; \text{ in both the cases , } A, I \text{ and } (\theta_1 - \theta_2)$$

are same so $Kt = \text{constant} \Rightarrow \frac{K_1}{K_2} = \frac{t_1}{t_2} = \frac{30}{20} = \frac{3}{2} = 1.5.$

13.

(a

UNIVERSAL

732 Transmission of Heat

14. (b)
$$\left(\frac{Q}{t}\right)_1 = \frac{K_1 A_1 (\theta_1 - \theta_2)}{l}$$
 and $\left(\frac{Q}{t}\right)_2 = \frac{K_2 A_2 (\theta_1 - \theta_2)}{l}$
given $\left(\frac{Q}{t}\right)_1 = \left(\frac{Q}{t}\right)_2 \Rightarrow K_1 A_1 = K_2 A_2$

15. (d) In variable state
$$\frac{Q}{t} \propto K$$
 and $\frac{Q}{t} \propto \frac{1}{\rho c} \Rightarrow \frac{Q}{t} \propto \frac{K}{\rho c}$

(K = thermal conductivity, ρ = density, c = specific heat)

16. (b)
$$K_1 : K_2 = l_1^2 : l_2^2 \Rightarrow \frac{l_1}{l_2} = \sqrt{\frac{K_1}{K_2}} = \sqrt{\frac{10}{9}} = \frac{\sqrt{10}}{3}$$

17. (c) $\frac{Q}{t} = \frac{KA(\Delta\theta)}{l} \Rightarrow 50 = \frac{5 \times 20 \ K}{0.4} \Rightarrow K = \frac{1}{5} = 0.2$

18. (c)

19. (a) Thermal resistance

$$= \frac{l}{KA} = \left[\frac{L}{MLT^{-3}K^{-1} \times L^{2}}\right] = [M^{-1}L^{-2}T^{3}K]$$

- 20. (a) When a piece of glass is heated, due to low thermal conductivity it does not conduct heat fast. Hence unequal expansion of it's layers crack the glass.
- 21. (a) In series both walls have same rate of heat flow. Therefore

$$\frac{dQ}{dt} = \frac{K_1 A(T_1 - \theta)}{d_1} = \frac{K_2 A(\theta - T_2)}{d_2} \qquad T_1 \qquad \theta$$
$$\Rightarrow K_1 d_2(T_1 - \theta) = K_2 d_1(\theta - T_2)$$
$$\Rightarrow \theta = \frac{K_1 d_2 T_1 + K_2 d_1 T_2}{K_1 d_2 + K_2 d_1} \qquad K_1 \theta + K_2 \theta_2^{\mathsf{loc}} \quad d \to \mathsf{c}_2 \mathsf{d}_2 \mathsf{d}_2$$

22. (a) Temperature of interface
$$\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

$$(: \frac{K_1}{K_2} = \frac{1}{4} \Longrightarrow \text{ If } K = K \text{ then } K = 4K)$$
$$\Rightarrow \theta = \frac{K \times 0 + 4K \times 100}{5 K} = 80^{\circ}C$$

23. (b)
$$\frac{\theta_1 - \theta_2}{l} = 80 \Rightarrow \frac{30 - \theta_2}{0.5} = 80 \Rightarrow \theta_2 = -10^{\circ} C$$

24. (d)
$$\frac{dQ}{dt} = -KA \frac{d\theta}{dx}$$
; when $K = \infty$, $\frac{d\theta}{dx} = 0$

i.e. θ is independent of *x i.e.* constant or uniform.

- (a) Air is poor conductor of heat.
- **26.** (b)
- **27.** (b)

25.

28. (d) Let the heat transferred be Q.

$$\underbrace{-} \stackrel{}{\longleftarrow} \stackrel{}{\longrightarrow} \underbrace{-} \stackrel{}{\longrightarrow} \underbrace{-} \stackrel{}{\longleftarrow} \underbrace{-} \stackrel{}{\longleftarrow} \underbrace{-} \stackrel{}{\longrightarrow} \underbrace{-} \stackrel{}{$$

37.

38.

When rods are joined lengthwise, $Q = \frac{KA\Delta\theta}{2l}t$ (ii)

From equation (i) and (ii) we get $t = 48 \ s$

29. (d)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{K_A}{K_B} = \frac{A_B}{A_A} = \left(\frac{r_B}{r_B}\right)^2 = \frac{1}{4} \Rightarrow K_A = \frac{K_B}{4}$$

30. (b) Thermal conductivity of composite plate

$$K_{eq} = \frac{2K_1K_2}{K_1 + K_2} = \frac{2 \times 2 \times 3}{2 + 3} = \frac{12}{5} = 2.4$$

31. (b)
$$Q \propto \frac{A}{l} \propto \frac{r^2}{l} \Rightarrow \frac{Q_2}{Q_1} = \frac{r_2^2}{r_1^2} \times \frac{l_1}{l_2}$$

 $\Rightarrow \frac{Q_2}{Q_1} = \frac{4}{1} \times \frac{1}{2} \Rightarrow Q_2 = 2Q_1$

32. (c)
$$\frac{Q}{At} = K \frac{\Delta \theta}{l} \Rightarrow K \frac{\Delta \theta}{l} = \text{constant} \Rightarrow \frac{\Delta \theta}{l} \propto \frac{1}{K}$$

Hence If $K_c > K_m > K_g$, then
 $\left(\frac{\Delta \theta}{l}\right)_c < \left(\frac{\Delta \theta}{l}\right)_m < \left(\frac{\Delta \theta}{l}\right)_g \Rightarrow X_c < X_m < X_g$
because higher K implies lower value of the ter

because higher ${\it K}$ implies lower value of the temperature gradient.

33. (b) In series
$$R_{eq} = R_1 + R_2 \Rightarrow \frac{2l}{K_{eq}A} = \frac{l}{K_1A} + \frac{l}{K_2A}$$

$$\Rightarrow \frac{2}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} \Rightarrow K_{eq} = \frac{2K_1K_2}{K_1 + K_2}$$

34. (b)
$$\frac{dQ}{dt} = KA \frac{d\theta}{dl} \Rightarrow \frac{dQ}{dt} \propto \frac{d\theta}{dl}$$
 (Temperature gradient)

35. (a)
$$\frac{dQ}{dt} = \frac{K(\pi r^2)d\theta}{dl} \Rightarrow \frac{\left(\frac{dQ}{dt}\right)_s}{\left(\frac{dQ}{dt}\right)_l} = \frac{K_s \times r_s^2 \times l_l}{K_l \times r_l^2 \times l_s} = \frac{1}{2} \times \frac{1}{4} \times \frac{2}{1}$$
$$\Rightarrow \left(\frac{dQ}{dt}\right)_s = \frac{\left(\frac{dQ}{dt}\right)_l}{4} = \frac{4}{4} = 1$$
36. (d)
$$Q = \frac{KA(\Delta\theta)t}{l}$$

 $\because \ Q \ {\rm and} \ \Delta \theta \ {\rm are \ same \ for \ both \ spheres \ hence}$

$$K \propto \frac{l}{At} \propto \frac{l}{r^2 t} \Rightarrow \frac{K_{\text{larger}}}{K_{\text{smaller}}} = \frac{l}{l_s} \times \left(\frac{r_s}{r_l}\right)^2 \times \frac{t_s}{t_l}. \text{ It is given}$$

that $r_l = 2r_s, \ l_l = \frac{1}{4}l_s$ and $t_1 = 25 \text{ min}, \ t_s = 16 \text{ min}.$
 $\Rightarrow \frac{K_{\text{larger}}}{K_{\text{smaller}}} = \left(\frac{1}{4}\right)\left(\frac{1}{2}\right)^2 \times \frac{16}{25} = \frac{1}{25}$
(d) $\frac{Q}{t} = \frac{KA(\Delta\theta)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$
 $\Rightarrow \frac{(Q/t)_l}{(Q/t)_2} = \left(\frac{r_l}{r_2}\right)^2 \times \frac{l_2}{l_1} = \left(\frac{2}{1}\right)^2 \times \left(\frac{4}{1}\right) = \frac{16}{1}$
(b) Temperature of interface $\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$
where $K = 2K$ and $K = 3K$ $\left(\because \frac{K_1}{K_2} = \frac{2}{3}\right)$

$$\Rightarrow \theta = \frac{2K \times 100 + 3K \times 0}{2K + 3K} = \frac{200K}{5K} = 40^{\circ}C$$

39. (a)
$$\frac{K_1}{K_2} = \frac{l_1^2}{l_2^2}$$
 \therefore $K_2 = \frac{K_1 l_2^2}{l_1^2} = \frac{0.92 \times (4.2)^2}{(8.4)^2} = 0.23$

40. (c) Mud is bad conductor of heat. So it prevents the flow of heat between surroundings and inside.

41. (b) Temperature gradient
$$=\frac{100-20}{20}=4^{\circ}C/cm$$

temperature at centre $= 100 - 4 \times 10 = 60^{\circ}C$

42. (c) Temperature of interface $\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1} = \frac{K \times 0 \times 2 + 3K \times 100 \times 1}{K \times 2 + 3K \times 1}$

5K
3. (c)
$$\Delta \theta = \frac{Q \times l}{KAt} = \frac{4000 \times 0.1}{400 \times 10^{-2}} = 100^{\circ} C$$

 $=\frac{300K}{100}$ = 60°C

- **44.** (b) Heat passes quickly from the body into the metal which leads to a cold feeling.
- (c) Heat energy always flow from higher temperature to lower temperature. Hence, temperature difference *w.r.t.* length (temperature gradient) is required to flow heat from one part of a solid to other part.
- 46. (a) When the temperature of an object is equal to that of human body, no heat is transferred from the object to body and vice versa, Therefore block of wood and block of metal feel equally cold and hot if they have same temperature as human body.
- **47.** (c)

4

48. (b) Temperature of water just below the lower surface of ice layer is $0^{\circ}C$.

49. (b)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} = \frac{100 \times 100 \times 10^{-4}(100 - 0)}{1}$$

 $\Rightarrow \frac{Q}{t} = 100 \text{ Joule / sec} = 6 \times 10^3 \text{ Joule / min}$

50. (a) Temperature of interface $\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1}$

It is given that $K_{Cu} = 9K_S$. So if $K_S = K_1 = K$ then $K_{Cu} = K_2 = 9K$

$$\Rightarrow \theta = \frac{9K \times 100 \times 6 + K \times 0 \times 18}{9K \times 6 + K \times 18} = \frac{5400K}{72K} = 75^{\circ}C$$

51. (c)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$$

[As $(\theta_1 - \theta_2)$ and *K* are constants]

$$\Rightarrow \frac{\left(\frac{Q}{t}\right)_1}{\left(\frac{Q}{t}\right)_2} = \frac{r_1^2}{r_2^2} \times \frac{l_2}{l_1} = \frac{4}{9} \times \frac{2}{1} = \frac{8}{9}$$

52. (b) In parallel combination equivalent conductivity

$$K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2} = \frac{K_1 + K_2}{2} \text{ (As } A_1 = A_2 \text{)}$$

53. (b)
$$Q = \frac{KA(\theta_1 - \theta_2)}{l}t \implies K_1 t_1 = K_2 t_2 \implies \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{35}{20} = \frac{7}{4}$$

Transmission of Heat 733

(As *Q*, *I*, *A* and $(\theta_1 - \theta_2)$ are same)

54. (c) A lake cools from the surface down. Above $4^{\circ}C$, the cooled water at the surface flows to the bottom because of it's greater density. But when the surface temperature drops below $4^{\circ}C$ (here it is $2^{\circ}C$), the water near the surface is less dense than the warmer water below. Hence the downward flow ceases, the water at the bottom remains at $4^{\circ}C$ until nearly the entire lake, is frozen.

55. (a) Temperature gradient
$$\frac{d\theta}{dx} = \frac{(125-25)^{\circ}C}{50 \ cm} = 2^{\circ}C \ / \ cm$$

56. (a)
$$K \propto l^2 \Rightarrow \frac{K_1}{K_2} = \frac{l_1^2}{l_2^2} = \left(\frac{10}{25}\right)^2 = \frac{1}{6.25}$$

57. (a) Thermal resistance of *Cu* is lesser than the thermal resistance of steel. Hence only in option (*a*) thermal resistance is minimum so heat current is maximum.

58. (c) At steady state, rate of heat flow for both blocks will be same
i.e.,
$$\frac{K_1 A(\theta_1 - \theta)}{l_1} = \frac{K_2 A(\theta - \theta_2)}{l_2}$$
 (given $l_1 = l_2$)
 $\Rightarrow K_1 A(\theta_1 - \theta) = K_2 A(\theta - \theta_2) \Rightarrow \theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$
 $\theta_1 \qquad \theta \qquad \theta_2$
 $K_1 \qquad K_2 \qquad K_1 + K_2$

59. (c)
$$K = \frac{2K_1K_2}{K_1 + K_2} = \frac{2.K.2K}{K + 2K} = \frac{4}{3}K$$

60. (a) Temperature of interface
$$\theta = \frac{K_1 U_1 + K_2 U_2}{K_1 + K_2}$$

It is given that $\frac{K_1}{K_2} = \frac{5}{3} \implies K_1 = 5K$ and $K_2 = 3K$

$$\theta = \frac{5K \times 100 + 3K \times 20}{5K + 3K} = \frac{560K}{8K} = 70^{\circ}C$$

61. (c) In winter, the temperature of surrounding is low compared to the body temperature $(37.4^{\circ} C)$. Since woolen clothes are bad conductors of heat, so they keep the body warm.

77 0

TT 0

62. (d) Temperature of interface
$$T = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

= $\frac{300 \times 100 + 200 \times 0}{-60^{\circ}C}$

$$= \frac{1}{300 + 200} = 60^{\circ}C$$

(b) Rate of heat flow
$$\left(\frac{Q}{t}\right) = \frac{\kappa M}{L} \frac{(b_1 - b_2)}{L} \propto \frac{r}{L}$$

 $\therefore \frac{Q_1}{Q_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{l_2}{l_1}\right) = \left(\frac{1}{2}\right)^2 \times \left(\frac{2}{1}\right) = \frac{1}{2} \Rightarrow Q_2 = 2Q_1$

64. (b)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow 6000 = \frac{200 \times 0.75 \times \Delta\theta}{1}$$

 $\therefore \Delta\theta = \frac{6000 \times 1}{200 \times 0.75} = 40^{\circ}C$

65. (b) In series rate of flow of heat is same

63.

 $\begin{array}{ccc} \theta_1 & \theta & \theta_2 \\ \end{array}$ $A & B \\ K_A & K_B \end{array}$

$$\Rightarrow \frac{K_A A(\theta_1 - \theta)}{l} = \frac{K_B A(\theta - \theta_2)}{l}$$

$$\Rightarrow 3K_B(\theta_1 - \theta) = K_B(\theta - \theta_2)$$

$$\Rightarrow 3(\theta_1 - \theta) = (\theta - \theta_2)$$

$$\Rightarrow 3\theta_1 - 3\theta = \theta - \theta_2 \Rightarrow 4\theta_1 - 4\theta = \theta_1 - \theta_2$$

$$\Rightarrow 4(\theta_1 - \theta) = (\theta_1 - \theta_2)$$

$$\Rightarrow 4(\theta_1 - \theta) = 20 \Rightarrow (\theta_1 - \theta) = 5^{\circ}C$$

66. (c) Let θ be temperature middle point *C* and in series rate of heat flow is same $\Rightarrow K(2A)(100 - \theta) = KA(\theta - 70)$

 $\Rightarrow 200 - 2\theta = \theta - 70 \Rightarrow 3\theta = 270 \Rightarrow \theta = 90^{\circ}C$

67. (b) Thermal resistances are same

$$\Rightarrow \frac{l_1}{K_1 A_1} = \frac{l_2}{K_2 A_2} \Rightarrow \frac{l_1}{K_1} = \frac{l_2}{K_2} (\because A_1 = A_2)$$
$$\Rightarrow \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{3}$$

68. (b) $\frac{Q}{t} \propto \frac{r^2}{l}$; from the given options, option (b) has higher value of $\frac{r^2}{l}$.

Convection

- (c) Convection significantly transferring heat upwards (Gravity effect).
- **3.** (c) No flow of heat by convection in vacuum.
- **4.** (a)
- (b) Density of hot air is lesser than the density of cold air so hot air rises up.
- **6.** (a)

8.

 (c) In convection hot particles moves up ward (due to low density) and light particle moves downward (due to high density).

- (a) Natural convection arises due to difference of density at two places and is a consequence of gravity.
- 10. (d)

(b)

 (a) Convection is not possible in weightlessness. So the liquid will be heated through conduction.

12. (c) In forced convection rate of loss of heat
$$\frac{Q}{t} \propto A(T - T_0)$$

13. (c)

Radiation (General, Kirchoff's law, Black body)

- (b) Because of uneven surfaces of mountains, most of it's parts remain under shadow. So, most of the mountains. Land is not heated up by sun rays. Besides this, sun rays fall slanting on the mountains and are spread over a larger area. So, the heat received by the mountains top per unit area is less and they are less heated compared to planes (Foot).
- (a) The velocity of heat radiation in vacuum is equal to that of light.

3.	(c)	Radiation is the fastest mode of heat transfer.
4.	(d)	A thermopile is a sensitive instrument, used for detection of heat radiation and measurement of their intensity.
5.	(d)	The polished surface reflects all the radiation.
6.	(c)	Heat radiations are electromagnetic waves of high wavelength.
7.	(d)	When element and surrounding have same temperature. There will be no temperature difference, hence heat will not flow from the filament and it's temperature remains constant.
8.	(d)	Every body at all time, at all temperatures emits radiation (except at $T=0$). The radiation emitted by the human body is in the infra-red region.
9.	(c)	
10.	(b)	Infrared radiations are detected by pyrometer.
11.	(b)	
12.	(a)	In vacuum heat flows by the radiation mode only.
13.	(c)	Good absorbers are always good emitters of heat.
14.	(a)	A perfectly black body is a good absorber of radiations falls on it. So it's absorptive power is 1.
15.	(d)	According to Kirchoff's law in spectroscopy. If a substance emit certain wavelengths at high temperature, it absorbs the same wavelength at comparatively lower temperature.
16.	(b)	A person with dark skin absorbs more heat radiation and feels more heat. It also radiates more heat and feels more cold.
17.	(a)	For a black body emissivity = absorptive power.

- 18. (b) Highly polished mirror like surfaces are good reflectors, but not good radiators.
- 19. (b) Black cloth is a good absorber of heat, therefore ice covered by black cloth melts more as compared to that covered by white cloth.
- **20.** (c) According to Kirchoff's law, the ratio of emissive power to absorptive power is same for all bodies is equal to the emissive power of a perfectly black body *i.e.*,

$$\left(\frac{e}{a}\right)_{body} = E_{\text{Blackbody}}$$
 for a particular wave length

$$\frac{e_{\lambda}}{a_{\lambda}} \bigg|_{\text{body}} = (E_{\lambda})_{\text{Blackbody}} \implies e_{\lambda} = a_{\lambda} E_{\lambda}$$

21. (b) Absorption power =
$$\frac{\text{Heat absorbed}}{\text{Total heat given}}$$

- (c) Because Planck's law explains the distribution of energy correctly at low temperature as well as at high temperature.
- **23.** (c)

22.

24.

- (a) The black spot on heating absorbs radiations and so emits them in the dark room while the polished shining part reflects radiation and absorbs nothing and so does not emit radiations and becomes invisible in the dark.
- **25.** (b)
- 26. (b) When the light emitted from the sun's photosphere passes through it's outer part Chromosphere, certain wave lengths are absorbed. In the spectrum of sunlight, a large number of dark lines are seen called Fraunhoffer lines.
- 27. (a) As for a black body rate of absorption of heat is more. Hence thermometer A shows faster rise in temperature but finally both will acquire the atmospheric temperature.
- **28.** (c) According to Kirchoff's law, a good emitter is also a good absorber.
- 29. (a) Red and green colours are complementary to each other. When red glass is heated it absorbs green light strongly, hence

according to Kirchoff's law, the emissive power of red glass should be maximum for green light. That's why when this heated red glass is taken in dark room it strongly emits green light and looks greenish.

- 30. (d) Black and rough surfaces are good absorber that's why they emit well. (Kirchoff's law).
- **31.** (d)
- 32. (c) When light incident on pin hole, enters into the box and suffers successive reflection at the inner wall. At each reflection some energy is absorbed. Hence the ray once it enters the box can never come out and pin hole acts like a perfect black body.
- 33. (a) Initially black body absorbs all the radiant energy incident on it, So it is the darkest one. Black body radiates maximum energy if all other condition are same. So when the temperature of the black body becomes equal to the temperature of furnace it will be brightest of all.
- 34. (c) Open window behaves like a perfectly black body.
- 35. (a) Ordinary glass prism (crown, flint) absorbs the infrared radiation but rock salt prism transmit them. Hence it is used to obtain the spectrum of infrared radiation.
- 36. (d) A good absorber is a good emitter hence option (a) is wrong. Every body stops absorbing and emitting radiation at 0 K hence option (b) is wrong.

The energy of radiation emitted from a black body is not same for all wavelength hence option (c) is wrong.

Plank's law relates the wavelength (λ) and temperature (7)

according to the relation
$$E_{\lambda}d_{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{[e^{hc/kT} - 1]} d_{\lambda}$$
. Hence

option (d) is correct.

37. (c) When blue glass is heated at high temperature, it absorbs all the radiation of, higher wavelength except blue. If it is taken inside a dark room, it emits all the radiation of higher wavelength, hence it looks brighter red as compared to the red piece.

38. (b)

Radiation (Wein's law)

- **I.** (a)
- **2.** (c) According to Wein's law, $\lambda_m T = \text{constant}$

$$\lambda_r > \lambda_y > \lambda_b \Longrightarrow T_r < T_y < T_b \text{ or } T_A < T_C < T_B$$

3. (d)
$$\lambda_m T = \text{constant} \Rightarrow \frac{T_1}{T_2} = \frac{\lambda_2}{\lambda_1} \Rightarrow \frac{10^{-4}}{0.5 \times 10^{-5}} = 200$$

- **4.** (c) $\lambda_m T = \text{constant}$
- 5. (a) According to Wein's law $\lambda_m T = \text{constant}$, on heating up to ordinary temperatures, only long wavelength (red) radiation is emitted. As the temperature rises, shorter wavelengths are also emitted in more and more quantity. Hence the colour of radiation emitted by the hot wire shifts from red to yellow, then to blue and finally to white.
- **6.** (c) According to Wein's displacement law.

7. (d)
$$\lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Longrightarrow \lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = 4.08 \times \frac{700}{1400} = 2.04 \, m$$

8. (c)
$$\lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Longrightarrow \lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = \frac{14 \times 200}{1000} = 2.8 \ \mu m$$

9. (c)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{4800}{3600} \Longrightarrow \frac{48}{36} = \frac{4}{3}$$

10. (b)
$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{1500}{2500} \times 5000 = 3000 \text{\AA}$$

 (a) At low temperature short wavelength radiation is emitted. As the temperature rise colour of emitted radiation are in the following order

 $Red \rightarrow Yellow \rightarrow Blue \rightarrow White (at highest temperature)$

- 12. (b) Similar to Q. 11
- 13. (b) The wavelength corresponding to maximum emission of radiation from the sun is $\lambda_{max} = 4753 \text{ Å}$ (close to the wavelength of violet colour of visible region). Hence if temperature is doubled λ_{\perp} is decreased $\left(\lambda_m \propto \frac{1}{T}\right)$ *i.e.* mostly ultraviolet radiations emits.

14. (c)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{5.5 \times 10^5}{11 \times 10^5} = \frac{1}{2} \implies n = \frac{1}{2}$$
.

15. (b)
$$\therefore T = \frac{b}{\lambda_m} = \frac{2.93 \times 10^{-3}}{2.93 \times 10^{-10}} = 10^7 K$$

16. (a)
$$\therefore \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{T_1}{T_2} \Rightarrow \lambda_{m_2} = \frac{2000}{2400} \times 4 = 3.33 \ \mu m_2$$

20.

(b) (a)

(a)

19. (b)
$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{2000}{3000} \times \lambda_{m_1} = \frac{2}{3} \lambda_{m_1} = \frac{2}{3} \lambda_{m_2}$$

21. (c)
$$\frac{T_2}{T_1} = \frac{\lambda_{m_1}}{\lambda_{m_2}} = \frac{1.75}{14.35} \Rightarrow T_2 = \frac{1.75}{14.35} \times 1640 = 200 K$$

22. (a)
$$\frac{\lambda_2}{\lambda_1} = \frac{T_1}{T_2} \Rightarrow \lambda_2 = \frac{T_1}{T_2} \times \lambda_1 = \frac{900}{1200} \times 4 = 3 \mu m$$

23. (b)
$$\lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = \frac{4800 \times 6000}{3000} = 9600 \text{\AA}$$

24. (b)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{4200}{140} = \frac{30}{1}$$

25. (c)
$$\therefore \lambda_m T = \lambda'_m T' \implies \lambda_0 T = \lambda' \times 2T \implies \lambda' = \frac{\lambda_0}{2}$$

26. (b)
$$\lambda_m T = \lambda'_m T' \implies \frac{\lambda_m}{\lambda'_m} = \frac{T'}{T} = \frac{3000}{2000} = \frac{3}{2}$$

27. (b)
$$\lambda_{m_1}T = \lambda_{m_2}T_2 \implies 5.5 \times 10^{-7} \times 5500 = 11 \times 10^{-7} T$$

 $T = 550 \times 5K = 2750K$

$$\lambda_m T = b \text{ or } \lambda_m = \frac{b}{T} = \frac{0.0029}{5 \times 10^4} = 58 \times 10^{-9} m = 58 nm$$
29. (a) $\lambda_m = \frac{b}{T} \Rightarrow T = \frac{b}{\lambda_m} = \frac{2.93 \times 10^{-3}}{4000 \times 10^{-10}} = 7325 K$

30. (b)
$$\frac{T_s}{T_N} = \frac{(\lambda_N)_{\text{max}}}{(\lambda_s)_{\text{max}}} = \frac{350}{510} = 0.69$$

Radiation (Stefan's law)

- **1.** (c) $E \propto T^4$ (Stefan's law)
- 2. (c) Rate of heat loss $E = \sigma eA(T^4 T_0^4)$ = 5.67×10⁻⁸×0.4×200×10⁻⁴×[(273 + 527)⁴-(273 + 27)⁴] = 5.67×10⁻⁸×0.4×200×10⁻⁴×(800)⁴-(300)⁴=182*J/sec*

3. (a)
$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{E}{E_2} = \left(\frac{273+0}{273+273}\right)^4 \Rightarrow E_2 = 16 E.$$

4. (a)
$$E \propto T^4 \Rightarrow \frac{E_1}{E_2} = \frac{T^4}{T^4} \times 2^4 \Rightarrow E_2 = \frac{E}{16}$$

5. (d) $\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{420 + 273}{T}\right)^4 = \left(\frac{673}{T}\right)^4$ $\Rightarrow T = 2^{1/4} \times 673 = 800K.$

6. (a)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273 + 727}{237 + 227}\right) = \frac{(1000)^4}{(500)^4} = 16 \implies E_2 = 80$$

7. (c)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow T_2 = \left(\frac{E_2}{E_1}\right)^{1/4} \times T_1 = (16)^{1/4} \times (273 + 127)$$

 $\Rightarrow T_1 = 800 \ K = 527^{\circ} C$

8. (b) In M.K.S. system unit of
$$\sigma$$
 is $\frac{J}{m^2 \times sec \times K^4}$
 $\Rightarrow 1 \frac{J}{m^2 \times sec \times K^4} = \frac{10^7 erg}{10^4 cm^2 \times sec \times K^4}$
 $= 10^3 \frac{erg}{cm^2 \times sec \times K^4}$

9. (b) For a block body rate of energy
$$\frac{Q}{t} = P = A \sigma T^4$$

$$\Rightarrow P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left\{\frac{(273+7)}{(273+287)}\right\}^4 = \frac{1}{16}$$

10. (b)
$$E_2 = E_1 \frac{T_2^4}{T_1^4} = Q \times \frac{(273 + 151)^4}{(273 + 27)^4} = \left(\frac{424}{300}\right)^4 = 3.99Q \approx 4Q$$

n. (b)
$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{727 + 273}{127 + 273}\right)^4 = \frac{(1000)^4}{(400)^4} = \frac{10^4}{4^4} = \frac{625}{16}$$

(c)
$$E = \sigma T^4 \Rightarrow 5.6 \times 10^{-8} \times T^4 = 1$$

 $\Rightarrow T = \left[\frac{1}{5.6 \times 10^{-8}}\right]^{1/4} = 65 K$

12.

13. (c) According to Stefen's law $E = \sigma \epsilon A T^4$ $\Rightarrow \frac{1.58 \times 10^5 \times 4.2}{60 \times 60} = 5.6 \times 10^{-8} \times 10^{-4} \times 0.8 \times T^4$

$$60 \times 60$$

 $T \approx 2500 K$

14. (c) Total energy radiated from a body
$$Q = A a \sigma T^4 t$$

 $\Rightarrow Q \propto A T^4 \propto r^2 T^4$ ($\therefore A = 4 \pi r^2$)
 $\Rightarrow \frac{Q_P}{Q_Q} = \left(\frac{r_P}{r_Q}\right)^2 \left(\frac{T_P}{T_Q}\right)^4 = \left(\frac{8}{2}\right)^2 \left\{\frac{(273 + 127)}{(273 + 527)}\right\}^4 = 1$

15. (c) Rate of energy $\frac{Q}{t} = P = A \approx T^4 \implies P \propto T^4$ $\implies \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{927 + 273}{127 + 273}\right)^4 \implies P_1 = 405 W$

16. (b) The rate of radiated energy
$$\frac{Q}{t} = P = A \, \varepsilon \sigma T^4$$

$$\Rightarrow 1134 = 5.67 \times 10^{-8} \times (0.1)^2 T^4 \Rightarrow T = 1189 K$$

17. (d)
$$Q \propto T^4 \Rightarrow \frac{H_A}{H_B} = \left(\frac{273+727}{273+327}\right)^4 = \left(\frac{10}{6}\right)^4 = \left(\frac{5}{3}\right)^4 = \frac{625}{81}$$

18. (d)
$$(Q)_{Blackbody} = A \sigma T^4 t \implies Q \propto T$$

$$\Rightarrow Q_2 = Q_1 \left(\frac{T_2}{T_1}\right)^4 = 10 \left(\frac{273 + 327}{273 + 27}\right)^4 = 10 \left(\frac{600}{300}\right)^4 = 160J$$

19. (c)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{E_2}{20} = \left(\frac{2T}{T}\right)^4 = 16 \Rightarrow E_2 = 320 \ kcal/m^2 \ min.$$

20. (d) Radiated power by blackbody
$$P = \frac{Q}{t} = A \sigma T^4$$

$$\Rightarrow P \propto AT^4 \propto r^2 T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4$$
$$\Rightarrow \frac{440}{P_2} = \left(\frac{12}{6}\right)^2 \left(\frac{500}{1000}\right)^4 \Rightarrow P_2 = 1760 \, W \approx 1800 \, W$$

21. (d) Amount of energy radiated
$$\propto$$
 (Temperature).

22. (d)
$$\frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{273 + 27}{273 + 927}\right)^4 = \left(\frac{1}{4}\right)^4 = \frac{1}{256}$$

23. (a)
$$\frac{E_2}{E_1} = \frac{T_2^4}{T_1^4} = \left(\frac{237 + 227}{273 + 27}\right)^4 = \left(\frac{600}{300}\right)^4 = 16$$

24. (d)
$$(Q)_{Blackbody} = A\sigma T^4 t \Rightarrow \frac{Q}{t} \propto P = A\sigma T^4$$

Breadth are halved so area becomes one fourth.

$$\Rightarrow \frac{P_1}{P_2} = \frac{A_1}{A_2} \times \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{A_1}{(A_1/4)} \times \left(\frac{273 + 327}{273 + 127}\right)$$
$$\Rightarrow P_2 = \frac{81}{64} E$$

25. (d) Power radiated
$$P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4$$

$$\Rightarrow \frac{Q}{P_2} = \left(\frac{T}{3T}\right)^4 \Rightarrow P_2 = 81Q$$

26. (a) For black body, $P = A \, \varpi T^4$. For same power $A \propto \frac{1}{T^4}$

$$\Rightarrow \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{r_1}{r_2} = \left(\frac{T_2}{T_1}\right)^2$$
27. (a) $\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273 + 927}{273 + 327}\right)^4 = \left(\frac{1200}{600}\right)^4 = 16$

NIVERSAL

$$\Rightarrow Q = 32 \ KJ$$
28. (b) $\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{T_2}{T_1}\right)^4$

$$\Rightarrow T_2^4 = 2 \times T_1^4 = 2 \times (273 + 727)^4 \Rightarrow T_2 = 1190K.$$
29. (a) $\frac{Q_1}{Q_2} = \frac{r_1^2 T_1^4}{r_2^2 T_2^4} = \frac{4^2}{1^2} \times \left(\frac{2000}{4000}\right)^4 = 1$

30. (a) According to Wein's law $\lambda_T = \text{constant}$

$$\Rightarrow \lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Rightarrow T_2 = \frac{\lambda_{m_1}}{\lambda_{m_2}} T_1 = \frac{\lambda_0}{3\lambda_0 / 4} \times T_1 = \frac{4}{3} T_1$$

Now
$$P \propto T^4 \Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{P_2}{P_1} = \left(\frac{4/3}{T_1}\right)^4 = \frac{256}{81}$$

31. (d) $E \propto T^4$

32. (d)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4$$

 $\Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T}{T+T/2}\right)^4 = \frac{16}{81} \Rightarrow Q_2 = \frac{81}{16}Q_1$
% increase in energy $= \frac{Q_2 - Q_1}{Q_1} \times 100 = 400\%$

33. (d) If temperature of surrounding is considered then net loss of energy of a body by radiation $Q = A \, \varepsilon \sigma (T^4 - T_0^4) t \Rightarrow Q \propto (T^4 - T_0^4) \Rightarrow \frac{Q_1}{Q_2} = \frac{T_1^4 - T_0^4}{T_2^4 - T_0^4}$ $= \frac{(273 + 200)^4 - (273 + 27)^4}{(273 + 400)^4 - (273 + 27)^4} = \frac{(473)^4 - (300)^4}{(673)^4 - (300)^4}$ 34. (c) $Q = A \varepsilon \sigma T^4 \Rightarrow Q \propto A \propto r^2$ ($\because T = \text{constant}$)

34. (c)
$$Q = A \, \varpi \sigma T^4 \Rightarrow Q \propto A \propto r^2$$
 ($\because T = \text{constant}$)
 $\Rightarrow \frac{Q_1}{Q_2} = \frac{r_1^2}{r_2^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$
35. (a) $\frac{Q_2}{Q_1} = \frac{T_2^4}{T_1^4} = \left(\frac{273 + 527}{273 + 127}\right)^4 = \left(\frac{800}{400}\right)^4 \Rightarrow Q_2 = 16 \frac{cal}{cm^2 \times s}$
36. (c) For a black body $\frac{Q}{t} = P = A \, \sigma T^4$
 $\Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{P_2}{20} = \left(\frac{273 + 727}{273 + 227}\right)^4$
 $\Rightarrow \frac{P_2}{20} = (2)^4 \Rightarrow P_2 = 320W$

37. (c) Energy radiated per sec
$$\frac{Q}{t} = P = A \, \varepsilon \sigma T^4$$

$$P \propto r^{2}T^{4} \Rightarrow \frac{P_{2}}{P_{1}} = \frac{r_{2}}{r_{1}^{2}} \cdot \frac{I_{2}}{T_{1}^{4}} = \frac{4}{1^{2}} \times \left(\frac{2000}{4000}\right) = 1$$
38. (c) $Q \propto AT^{4} \propto r^{2}T^{4} \Rightarrow \frac{Q_{\text{star}}}{Q_{\text{sun}}} = \frac{r^{2} \operatorname{star} \cdot T^{4} \operatorname{star}}{r^{2} \operatorname{sun} \times T_{\text{sun}}^{4}}$

$$\Rightarrow \frac{10000}{1} = \frac{r_{\text{star}}^2}{r_{\text{sun}}^2} \times \left(\frac{6000}{2000}\right)^4 \Rightarrow \frac{r_{\text{star}}}{r_{\text{sun}}} = \frac{100 \times 9}{1} = \frac{900}{1}$$

39. (a)
$$P = \left(\frac{Q}{t}\right) \propto T^4 \Rightarrow \frac{W}{P_2} = \left(\frac{T}{T/3}\right)^4 \Rightarrow P_2 = \frac{W}{81}.$$

40. (c) Power
$$P \propto AT^4 \propto r^2T^4$$

41.

$$\Rightarrow \frac{P_2}{P_1} = \left(\frac{r_2}{r_1}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{4r}{r}\right)^2 \times \left(\frac{T/2}{T}\right)^4 = \mathbf{I}.$$

(b) $\frac{Q_2}{Q_1} = \left(\frac{r_2^2}{r_1^2}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{100}{1}\right)^2 \times \left(\frac{1}{2}\right)^4 = 625$

42. (d)
$$Q \propto r^2 T^4 \implies \frac{Q_2}{Q_1} = \left(\frac{r_2}{r_1}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = (2)^2 \times (2)^4 = 64$$

43. (c) Energy radiated from a body
$$Q = A \varepsilon \sigma T^4 t$$

$$\Rightarrow \frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{T_2}{T_1} = \left(\frac{Q_2}{Q_1}\right)^{1/4} = \left(\frac{4.32 \times 10^6}{2.7 \times 10^{-3}}\right)^{1/4}$$
$$= \left(\frac{16 \times 27}{27} \times 10^8\right)^{1/4} = 2 \times 10^2$$
$$\Rightarrow T_2 = 200 \times T_1 = 80000 K$$

44. (d)
$$E \propto AT^4 \Rightarrow \frac{E_{\text{sphere}}}{E_{\text{Disc}}} = \frac{4\pi r^2}{2\pi r^2} \times \left(\frac{T}{T}\right)^4 = \frac{2}{1}$$

45. (a)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{T_2}{T_1} = \left(\frac{E_2}{E_1}\right)^{1/4} = \left(\frac{10^9}{10^5}\right)^{1/4} = 10$$

 $\Rightarrow T_2 = 10T_1 = 10 \times (273 + 227) = 5000 K$

46. (b) Energy per second
$$P\left(=\frac{Q}{t}\right) \propto T^4$$

$$\frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{273 - 73}{273 + 327}\right)^4 = \left(\frac{200}{600}\right)^4 = \frac{1}{81}$$

47. (a)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^2$$

If $T_1 = T$ then $T_2 = T + \frac{10}{100}T = 1.1T$
 $\Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T}{1.1T}\right)^4 \Rightarrow Q_2 = 1.46 Q_1$
 $\Rightarrow \%$ increase in energy $= \frac{Q_2 - Q_1}{Q_1} \times 100 = 46\%$

48. (a) From Stefan's law $E = \sigma T^4$

$$T^{4} = \frac{E}{\sigma} = \frac{6.3 \times 10^{7}}{5.7 \times 10^{8}} = 1.105 \times 10^{15} = 0.1105 \times 10^{16}$$
$$T = 0.58 \times 10^{4} K = 5.8 \times 10^{3} K$$

49. (a) Rate of cooling $\propto (T^4 - T_0^4)$

$$\Rightarrow \frac{H}{H'} = \frac{(T_1^4 - T_0^4)}{(T_2^4 - T_0^4)} = \frac{400^4 - 200^4}{600^4 - 200^4}$$

UNIVERSAL

738 Transmission of Heat

or
$$H' = \frac{(16+4)(16-4)H}{(36+4)(36-4)} = \frac{3}{16}H$$

50. (a)

51. (a) Rate of cooling
$$\propto (T^4 - T_0^4) \Rightarrow \frac{R_1}{R_2} = \frac{(T_1^4 - T_0^4)}{(T_2^4 - T_0^4)}$$

 $\Rightarrow \frac{R}{R_2} = \frac{(600)^4 - (300)^4}{(900)^4 - (300)^4} \text{ or } R_2 = \frac{16}{3} R$
52. (d) Loss of heat $\Delta Q = A \varpi (T^4 - T_0^4) t$
 \Rightarrow Rate of loss of heat $\frac{\Delta Q}{t} = A \varpi (T^4 - T_0^4)$
 $= 10 \times 10^{-4} \times 1 \times 5.67 \times 10^{-8} \{273 + 127\}^4 - (273 + 27)^4 \}$
 $= 0.99 W.$

53. (b) According to Prevost theory every body radiate heat at all temperature (except 0 K) and also absorbs heat from surroundings.

 \therefore $T_A > T \implies$ Object A emits radiations more than the radiations it absorbs.

and $T_B < T \implies$ Object *B* absorbs more radiations than it emits.

After a certain time all bodies attains a common temperature. (b) According to Prevost theory

55. (b)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} \Rightarrow T_2^4 = \left(\frac{E_2}{E_1}\right) T_1^4$$

 $\Rightarrow T_2^4 = \frac{1}{16} \times (1000)^4 = \left(\frac{1000}{2}\right)^4 \Rightarrow T_2 = 500K$

56. (c) $Q \propto T^4$

54.

Radiation (Newton's Law of Cooling)

1. (b) According to Newton's law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

In the first case, $\frac{(60 - 50)}{10} = K \left[\frac{60 + 50}{2} - \theta_0 \right]$
$$1 = K (55 - \theta)$$

In the second case,
$$\frac{(50-42)}{10} = K \left[\frac{50+42}{2} - \theta_0 \right]$$
$$0.8 = K (46 - \theta_0) \qquad \dots (ii)$$

Dividing (i) by (ii), we get
$$\frac{1}{0.8} = \frac{55 - \theta_0}{46 - \theta_0}$$

or
$$46 - \theta_0 = 44 - 0.8\theta_0 \implies \theta_0 = 10^{\circ}C$$

2. (c) According to Newton's law of cooling

Rate of cooling \propto Mean temperature difference

$$\Rightarrow \frac{\text{Fall in temperatur e}}{\text{Time}} \propto \left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

$$\begin{array}{l} \because \left(\frac{\theta_1 + \theta_2}{2}\right)_1 > \left(\frac{\theta_1 + \theta_2}{2}\right)_2 > \left(\frac{\theta_1 + \theta_2}{2}\right)_3 \\ \\ \Rightarrow T_1 < T_2 < T_3 \end{array}$$

(a) Initially at *t* = 0

З.

5.

6.

10.

....(i)

Rate of cooling (*R*) \propto Fall in temperature of body ($\theta - \theta$)

$$\Rightarrow \frac{R_1}{R_2} = \frac{\theta_1 - \theta_0}{\theta_2 - \theta_0} = \frac{100 - 40}{80 - 40} = \frac{3}{2}$$

- (a) For small difference of temperature, it is the special case of Stefan's law.
 - (b) Liquid having more specific heat has slow rate of cooling because for equal masses rate of cooling $\frac{d\theta}{dt} \propto \frac{1}{c}$.

(c)
$$S_{l} = \frac{1}{m_{l}} \left[\frac{t_{l}}{t_{W}} (m_{W}C_{W} + W) - W \right]$$

= $\frac{1}{300} \left[\frac{95}{3 \times 60} (350 \times 1 + 10) - 10 \right] = 0.6 \ Cal/gm \times^{\circ} C$

- (c) Newton's law of cooling is used for the determination of specific heat of liquids.
- 8. (c) By Newton's law of cooling.

9. (d) Rate of loss of heat
$$\left(\frac{\Delta Q}{t}\right) \propto$$
 temperature difference $\Delta \theta$

$$\frac{\left(\frac{\Delta Q}{t}\right)_1}{\left(\frac{\Delta Q}{t}\right)_2} = \frac{\Delta \theta_2}{\Delta \theta_1} \implies \frac{60}{\left(\frac{\Delta Q}{t}\right)_2} = \frac{80 - 60}{40 - 20} \implies \left(\frac{\Delta Q}{t}\right)_2 = \frac{20 \, cal}{sec}$$

(b) During clear nights object on surface of earth radiate out heat and temperature falls. Hence option (a) is wrong.
 The total energy radiated by a body per unit time per unit area *E* ∝ *T*. Hence option (*c*) is wrong.

Energy radiated per second is given by
$$\frac{Q}{t} = PAs\sigma T^4$$

$$\Rightarrow \frac{P_1}{P_2} = \frac{A_1}{A_2} \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{r_1}{r_2}\right)^2 \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{1}{4}\right)^2 \left(\frac{4000}{200}\right) = \frac{1}{1}$$

 \therefore *P* = *P*, hence option (d) is wrong.

Newton's law is an approximate form of Stefan's law of radiation and works well for natural convection. Hence option (b) is correct.

11. (b)
$$\frac{\theta_1 - \theta_2}{t} = K\left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

 $\therefore \frac{100 - 70}{4} = K\left(\frac{100 + 70}{2} - 15\right) = 60K \Rightarrow K = \frac{1}{8}$
Again $\frac{70 - 40}{t} = \frac{1}{8}\left(\frac{70 + 40}{2} - 15\right) = 5 \Rightarrow t = 6$ min.
12. (d) $\frac{80 - 60}{1} = K\left(\frac{80 + 60}{2} - 30\right) \Rightarrow K = \frac{1}{2}$
Again $\frac{60 - 50}{t} = \frac{1}{2}\left(\frac{60 + 50}{2} - 30\right) \Rightarrow t = 0.8 \times 60 = 48$ sec.
13. (c) According to Newton's law of cooling

(c) According to Newton's law of cooling Rate of cooling ∞ mean temperature difference.

$$= \left(\frac{70+60}{2} - \theta_0\right) = (65 - \theta_0)$$

Finally, mean temperature difference

$$= \left(\frac{60+50}{2} - \theta_0\right) = (55 - \theta_0)$$

In second case mean temperature difference decreases, so rate of fall of temperature decreases, so it takes more time to cool through the same range.

(c) $\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$ 14.

In the first 10 minute

$$\frac{62-50}{10} = K \left[\frac{62+50}{2} - \theta_0 \right] \Rightarrow 1.2 = K [56 - \theta_0] \quad \dots \text{ (i)}$$
$$\frac{50-42}{10} = K \left[\frac{50+42}{2} - \theta_0 \right] \Rightarrow 0.8 = K [46 - \theta_0] \quad \dots \text{ (ii)}$$

from equations (i) and (ii)
$$\frac{1.2}{0.8} = \frac{(56 - \theta_0)}{(46 - \theta_0)} \implies \theta_0 = 26^{\circ}C$$

(d) $\frac{d\theta}{dt} = \frac{\sigma A}{mc} (T^4 - T_0^4)$. If the liquids put in exactly similar calorimeters and identical surrounding then we can consider $\ensuremath{\mathcal{T}}$ $d\theta = (T^4 - T_0^4)$

and A constant then
$$\frac{dv}{dt} \propto \frac{(1 - T_0)}{mc}$$

If we consider that equal masses of liquid (m) are taken at the If we consider the $\frac{d\theta}{dt} \propto \frac{1}{c}$

So for same rate of cooling c should be equal which is not possible because liquids are of different nature. Again from equation (i)

$$\frac{d\theta}{dt} \propto \frac{(T^4 - T_0^4)}{mc} \implies \frac{d\theta}{dt} \propto \frac{(T^4 - T_0^4)}{V\rho c}$$

Now if we consider that equal volume of liquid (V) are taken at the same temperature then $\frac{d\theta}{dt} \propto \frac{1}{\rho c}$.

So for same rate of cooling multiplication of $\rho \times c$ for two liquid of different nature can be possible. So option (d) may be correct.

16. (c)
$$\frac{60-50}{10} = K\left(\frac{60+50}{2}-25\right)$$
(i)

$$\frac{50-\theta}{10} = K \left[\frac{50+\theta}{2} - 25 \right] \qquad \dots \dots (ii)$$

On dividing, we get
$$\frac{10}{50-\theta} = \frac{60}{\theta} \Rightarrow \theta = 42.85^{\circ} C$$

17. (a)
$$\frac{365-361}{2} = K \left[\frac{365+361}{2} - 293 \right] = 70 \text{ K} \Rightarrow K = \frac{1}{35}$$

Again $\frac{344-342}{t} = \frac{1}{35} \left[\frac{344-342}{2} - 293 \right] = \frac{10}{7}$
 $\Rightarrow t = \frac{14}{10} \min = \frac{14}{10} \times 60 = 84 \text{ sec.}$
18. (b) $\frac{50-49.9}{5} = K \left(\frac{50+49.9}{2} - 30 \right)$ (i)

$$\frac{40-39.9}{t} = K \left[\frac{40+39.9}{2} - 30 \right] \qquad \dots \dots (ii)$$

from equations (i) and (ii) we get $t \approx 10$ sec.

Rate of loss of heat is directly proportional to the temperature (c) difference between water and the surroundings.

20. (b) Rate of cooling
$$= \frac{-d\theta}{dt} \propto \left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

In second case average temperature will be less hence rate of cooling will be less. Therefore time taken will be more than 4 minutes.

....

19.

22. (b) First case,
$$\frac{61-59}{4} = K \left[\frac{61+59}{2} - 30 \right]$$
(i)

Second case,
$$\frac{51-49}{t} = K \left[\frac{51+49}{2} - 30 \right]$$
(ii)

By solving equation (i) and (ii) we get t = 6 min.

23. (d)
24. (c) In first case
$$\frac{60-40}{7} = K \left[\frac{60+40}{2} - 10 \right]$$
(i)

In second case
$$\frac{40-28}{t} = K \left[\frac{40+28}{2} - 10 \right]$$
(ii)

$$By solving t = 7 minutes$$

25. (b) In first case
$$\frac{50-40}{5} = K \left[\frac{50+40}{2} - \theta_0 \right]$$
(i)

In second case
$$\frac{40-33.33}{5} = K \left[\frac{40+33.33}{2} - \theta_0 \right]$$
(ii)

By solving $\theta_0 = 20^o C$.

26. (b) In first case
$$\frac{50-40}{10} = K \left[\frac{50+40}{2} - 20 \right]$$
(i)

In second case
$$\frac{40 - \theta_2}{10} = K \left[\frac{40 + \theta_2}{2} - 20 \right]$$
(ii)

By solving
$$\theta_2 = 33.3^{\circ} C$$
.

27. (d) In first case
$$\frac{61-59}{10} = K \left[\frac{61+59}{2} - 30 \right]$$
(i)

In second case
$$\frac{51-49}{10} = K \left[\frac{51+49}{2} - 30 \right]$$
(ii)

By solving t = 15 min.

$$\frac{dQ}{dt} = (mc + W)\frac{d\theta}{dt} = (m_lc_l + m_cc_c)\frac{d\theta}{dt}$$
$$\Rightarrow \frac{dQ}{dt} = (0.5 \times 2400 + 0.2 \times 900)\left(\frac{60 - 55}{60}\right) = 115 \frac{J}{\text{sec}}.$$
According to Newton's law

29.

30.

Rate of cooling \propto temperature difference $\Delta \theta$

(b) According to Newton's law
$$\frac{\theta_1 - \theta_2}{t} = k \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

Initially,

15.

$$\frac{(80-64)}{5} = K \left(\frac{80+64}{2} - \theta_0 \right) \Rightarrow \ 3.2 = K[72 - \theta_0] \quad \dots \text{ (i)}$$

2.

3.

4.

5.

6.

Finally

$$\frac{(64-52)}{10} = K \left[\frac{64+52}{2} - \theta_0 \right] \Rightarrow 1.2 = K [58 - \theta_0] \dots \text{ (ii)}$$

On solving equation (i) and (ii) $\,\,\theta_0=49^\circ C\,.$

31. (d)
$$\frac{50-45}{5} = K\left(\frac{50+45}{2} - \theta_0\right)$$
(i)
 $\frac{45-41.5}{5} = K\left(\frac{45+41.5}{2} - \theta_0\right)$ (ii)

Solving equation (i) and (ii) we set $\theta_0 = 33.3~^\circ C$.

32. (d)
$$\frac{65.5 - 62.5}{1} = K \left(\frac{65.5 + 62.5}{2} - 22.5 \right) \Rightarrow K = \frac{3}{41.5}$$
And again
$$\frac{46.5 - 40.5}{t} = \frac{3}{41.5} \left(\frac{46.5 + 40.5}{2} - 22.5 \right)$$

$$\Rightarrow \frac{6}{t} = \frac{3}{41.5} \times 21 \Rightarrow t = \frac{82}{21} \approx 4 \text{ minute.}$$
33. (a)
$$\frac{62 - 50}{10} = K \left(\frac{62 + 50}{2} - 26 \right) \Rightarrow \frac{6}{5} = K \times 30 \Rightarrow K = \frac{1}{25}$$
And,
$$\frac{50 - \theta}{10} = \frac{1}{25} \left(\frac{50 + \theta}{2} - 26 \right) \Rightarrow \theta = 42^{\circ} C.$$
34. (c)
$$\frac{90 - 60}{5} = K \left(\frac{90 + 60}{2} - 20 \right) \Rightarrow 6 = K \times 55 \Rightarrow K = \frac{6}{55}$$
And,
$$\frac{60 - 30}{t} = \frac{6}{55} \left(\frac{60 + 30}{2} - 20 \right) \Rightarrow t = 11 \text{ minute.}$$
35. (a) According to Newton's law of cooling in first case,
$$\frac{75 - 65}{4} = K \left[\frac{75 + 65}{2} - 30 \right] \qquad \dots (i)$$

in first case, $\frac{1}{t} = K \left[\frac{1}{2} - 30 \right]$

in second case,
$$\frac{55-45}{t} = K \left[\frac{55+45}{2} - 30 \right]$$
(ii)

Dividing eq. (i) by (ii) we get $\frac{5t}{10} = \frac{40}{20} \Longrightarrow t = 4$ minutes

in first case,
$$\frac{80-50}{5} = K \left[\frac{80+50}{2} - 20 \right]$$
(i)
n second case, $\frac{60-30}{5} = K \left[\frac{60+30}{2} - 20 \right]$ (ii)

in second case,
$$\frac{66-36}{t} = K \left[\frac{66+36}{2} - 20 \right]$$
 (i

Dividing equation (i) by (ii) we get,
$$\frac{t}{2} = \frac{43}{25} \Rightarrow t = 9 \text{ min.}$$

(b) According to Newton's law of cooling. 37.

Critical Thinking Questions

1. (a)
$$\frac{dQ}{dt} = \frac{KA\Delta\theta}{l}$$
, For both rods K, A and $\Delta\theta$ are same \Rightarrow
 $\frac{dQ}{dt} \propto \frac{1}{l}$ So $\frac{(dQ/dt)_{semi \ circular}}{(dQ/dt)_{straight}} = \frac{l_{straight}}{l_{semicircular}} = \frac{2r}{\pi r} = \frac{2}{\pi}$.

(b) Suppose thickness of each wall is x then

$$\left(\frac{Q}{t}\right)_{combination} = \left(\frac{Q}{t}\right)_{A} \Rightarrow \frac{K_{S}A(\theta_{1}-\theta_{2})}{2x} = \frac{2KA(\theta_{1}-\theta)}{x}$$

$$\therefore K_{S} = \frac{2 \times 2K \times K}{(2K+K)} = \frac{4}{3}K \text{ and } (\theta_{1}-\theta_{2}) = 36^{\circ}$$

$$\Rightarrow \frac{\frac{4}{3}KA \times 36}{2x} = \frac{2KA(\theta_{1}-\theta)}{x}$$
Hence temperature difference
across wall A is

$$(\theta_{1}-\theta) = 12^{\circ}C$$

$$\theta_{1} \times \theta \times \theta_{2}$$

(d)
$$t = \frac{\rho L}{2K\theta} (x_2^2 - x_1^2) \Longrightarrow t \propto (x_2^2 - x_1^2)$$

 $\Rightarrow \frac{t}{t'} = \frac{(x_2^2 - x_1^2)}{(x_2'^2 - x_1'^2)} \Longrightarrow \frac{9}{t'} = \frac{(1^2 - 0^2)}{(2^2 - 1^2)} \Longrightarrow t' = 21 \text{ hours}$

 $(c) \;\;$ Both the cylinders are in parallel, for the heat flow from one end as shown.

Hence $K_{eq} = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2}$; where A = Area of cross-section

of inner cylinder = πR and A_2 = Area of cross-section of cylindrical shell $= \pi \{ (2R)^2 - (R)^2 \} = 3\pi R^2$

$$\Rightarrow K_{eq} = \frac{K_1(\pi R^2) + K_2(3\pi R^2)}{\pi R^2 + 3\pi R^2} = \frac{K_1 + 3K_2}{4}$$

(b) Let the temperature of junction be θ . Since roads *B* and *C* are parallel to each other (because both having the same temperature difference). Hence given figure can be redrawn as follows

$$R_{p} = \frac{R}{2}$$

$$R_{p} = \frac{Q}{R}$$

$$R_{p} = \frac{$$

(a) Heat developed by the heater $H = \frac{V^2}{R} \cdot \frac{t}{J} = \frac{(200)^2 \times t}{20 \times 4.2}$ Heat conducted by the glass $H = \frac{0.2 \times 1 \times (20 - \theta)t}{0.002}$

Hence
$$\frac{(200)^2 \times t}{20 \times 4.2} = \frac{0.2 \times (20 - \theta)t}{0.002} \Rightarrow \theta = 15.24^{\circ} C$$

7. (a) Since
$$t = \frac{\rho L}{2k\theta} (x_2^2 - x_1^2)$$

$$\therefore t = \frac{\rho L}{2k\theta} (x^2 - y^2) = \frac{\rho L(x+y)(x-y)}{2K\theta}$$

8. (b) If suppose
$$K_{Ni} = K \Longrightarrow K_{Al} = 3K$$
 and $K_{Cu} = 6K$.
Since all metal bars are connected in series

So
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{Cu} = \left(\frac{Q}{t}\right)_{Al} = \left(\frac{Q}{t}\right)_{Ni}$$

and $\frac{3}{K_{eq}} = \frac{1}{K_{Cu}} + \frac{1}{K_{Al}} + \frac{1}{K_{Ni}} = \frac{1}{6K} + \frac{1}{3K} + \frac{1}{K} = \frac{9}{6K}$
 $\Rightarrow K_{eq} = 2K$
 $Q := 2S : = 2S : = 2S : = 10 \ cm \rightarrow |< 15 \ cm \rightarrow |< 15 \ cm \rightarrow |< 15 \ cm \rightarrow |< 100^{\circ}C} = \frac{Cu}{100^{\circ}C} : = \frac{0}{\theta} : = 0 \ cm \rightarrow |< 15 \ cm \rightarrow |< 100^{\circ}C} = \frac{Q}{\theta} : = 0 \ cm \rightarrow |< 10 \ cm \rightarrow |< 15 \ cm \rightarrow |$

9. (b)
$$\therefore$$
 $T_B > T_A \implies$ Heat will flow *B* to *A* via two paths (i) *B* to *A* (ii) and along *BCA* as shown.

Rate of flow of heat in path BCA will be same

$$i.e. \left(\frac{Q}{t}\right)_{BC} = \left(\frac{Q}{t}\right)_{CA} \qquad (T)A$$

$$\Rightarrow \frac{k(\sqrt{2}T - T_C)A}{a} = \frac{k(T_C - T)A}{\sqrt{2}a} \xrightarrow{a} \qquad (T)A$$

$$\Rightarrow \frac{T_C}{T} = \frac{3}{1 + \sqrt{2}} \qquad \sqrt{2}T \xrightarrow{b} \qquad a\sqrt{2}$$

10. (a)
$$mL = \frac{KA\Delta\theta \ t}{\Delta x} \Rightarrow 500 \times 80 = \frac{0.0075 \times 75 \times (40 - 0)t}{5}$$

$$\Rightarrow$$
 t = 8.9 × 10° sec = 2.47 hr.

11. (a) Rate of cooling
$$\frac{\Delta\theta}{t} = \frac{A \, \varepsilon \sigma (T^4 - T_0^4)}{mc} \Rightarrow \frac{\Delta\theta}{t} \propto A$$
. Since area of plate is largest so it will cool fastest.

12. (b) Let the temperature of junction be θ then according to following figure.

$$H = H + H$$

$$\Rightarrow \frac{3K \times A \times (100 - \theta)}{l} = \frac{2KA(\theta - 50)}{l} + \frac{KA(\theta - 20)}{l}$$

$$\Rightarrow$$
 300 - 3 θ = 3 θ - 120 \Rightarrow θ = 70°*C*

13. (c) Initially the rods are placed in vessels as shown below

$$\frac{Q}{t} = \frac{(\theta_1 - \theta_2)}{R} \Rightarrow \left(\frac{Q}{t}\right)_1 = \frac{mL}{t} = q_1 L = \frac{(100 - 0)}{\frac{R}{2}} \quad \dots (i)$$

Finally when rods are joined end to end as shown

$$\Rightarrow \left(\frac{Q}{t}\right)_{2} = \frac{mL}{t} = q_{2}L = \frac{(100-0)}{2R} \qquad \dots \text{ (ii)}$$

From equation (i) and (ii), $\frac{q_1}{q_2} = \frac{\tau}{1}$

14. (b) Rate of cooling of a body
$$R = \frac{\Delta \theta}{t} = \frac{A \, \varepsilon \sigma (T^* - T_0^*)}{mc}$$

$$\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{Volume}}$$

 \Rightarrow For the same surface area. $R \propto \frac{1}{\text{Volume}}$

- ∵ Volume of cube < Volume of sphere
- \Rightarrow R_{Cube} > R_{Sphere} *i.e.* cube, cools down with faster rate.

$$E = eA \sigma T^4 \Longrightarrow E_1 = e_1 A \sigma T_1^4 \text{ and } E_2 = e_2 A \sigma T_2^4$$

$$\because E_1 = E_2 \therefore e_1 T_1^4 = e_2 T_2^4$$

$$\implies T_2 = \left(\frac{e_1}{e_2} T_1^4\right)^{\frac{1}{4}} = \left(\frac{1}{81} \times (5802)^4\right)^{\frac{1}{4}} \implies T_B = 1934 K$$

And, from Wein's law $\lambda_A \times T_A = \lambda_B \times T_B$

$$\Rightarrow \frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A} \Rightarrow \frac{\lambda_B - \lambda_A}{\lambda_B} = \frac{T_A - T_B}{T_A}$$
$$\Rightarrow \frac{1}{\lambda_B} = \frac{5802 - 1934}{5802} = \frac{3968}{5802} \Rightarrow \lambda_B = 1.5 \ \mu m$$

(d) Wein's displacement law is $\lambda_m T = b$

16.

$$\Rightarrow \lambda_m = \frac{b}{T} = \frac{2.88 \times 10^6}{2880} = 1000 \, nm.$$

Energy distribution with wavelength will be as follows

From the graph it is clear that U > U.

17. (b) Energy received per second *i.e.*, power $P \propto (T^4 - T_0^4)$

$$\Rightarrow P \propto T^4 \qquad (::T_0 << T)$$

Also energy received per sec $(p) \propto \frac{1}{d^2}$

(inverse square law)

$$\Rightarrow P \propto \frac{T^4}{d^2} \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 \times \left(\frac{d_2}{d_1}\right)^2$$
$$\Rightarrow \frac{P}{P_2} = \left(\frac{T}{2T}\right)^2 \times \left(\frac{2d}{d}\right)^2 = \frac{1}{4} \Rightarrow P_2 = 4P.$$

18. (c) The given arrangement of rods can be redrawn as follows

$$K = \frac{2K_1K_2}{K_1 + K_2}$$

$$H_1$$

$$H_2$$

$$K_3$$

$$K = \frac{2K_1K_2}{K_1 + K_2}$$

$$K_3$$

$$K_3$$

$$K_3$$

$$K_4(\theta_1 - \theta_2)$$

$$K_3 = \frac{K_1K_2}{K_1 + K_2}$$

19. (b) Rate of cooling
$$(R) = \frac{\Delta \theta}{t} = \frac{A \in \sigma(T^4 - T_0^4)}{mc}$$

$$\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{volume}} \propto \frac{r^2}{r^3} \propto \frac{1}{r}$$
$$\Rightarrow \text{Rate } (R) \propto \frac{1}{r} \propto \frac{1}{m^{1/3}} \left[\because m = \rho \times \frac{4}{3} \pi r^3 \Rightarrow r \propto m^{1/3} \right]$$
$$\Rightarrow \frac{R_1}{R_2} = \left(\frac{m_2}{m_1}\right)^{1/3} = \left(\frac{1}{3}\right)^{1/3}$$

20. (b) Radiated power $P = A \, \omega T^4 \implies P \propto A T^4$

From Wein's law, $\lambda_m T = \text{constant} \Rightarrow T \propto \frac{1}{\lambda}$

$$\therefore P \propto \frac{A}{(\lambda_m)^4} \propto \frac{r^2}{(\lambda_m)^4}$$
$$\Rightarrow Q_A : Q_B : Q_C = \frac{2^2}{(300)^4} : \frac{4^2}{(400)^4} : \frac{6^2}{(500)^4}$$

 $\therefore Q_B$ will be maximum.

21. (d) The total energy radiated from a black body per minute.

$$Q \propto T^4 \Rightarrow \frac{Q_2}{Q_1} = \left(\frac{2T}{T}\right)^4 = 16 \Rightarrow Q_2 = 16Q_1$$

If *m* be mass of water taken and *S* be its specific heat capacity, then $Q_1 = ms(20.5 - 20)$ and $Q_2 = ms(\theta - 20)$ $\theta^{\circ}C =$ Final temperature of water $Q_2 = \theta - 20$ 16 $\theta - 20$

$$\Rightarrow \frac{Q_2}{Q_1} = \frac{\theta - 2\theta}{0.5} \Rightarrow \frac{10}{1} = \frac{\theta - 2\theta}{0.5} \Rightarrow \theta = 28^{\circ}C$$

22. (a) Rate of cooling
$$\frac{\Delta \theta}{t} = \frac{A \varkappa (T^4 - T_0^4)}{mc}$$

As surface area, material and temperature difference are same, so rate of loss of heat is same in both the spheres. Now in this case rate of cooling depends on mass.

$$\Rightarrow \text{Rate of cooling } \frac{\Delta\theta}{t} \propto \frac{1}{m}$$

-

23.

26.

 $\because m_{solid} > m_{hollow}$. Hence hollow sphere will cool fast.

(c) Rate of cooling
$$\frac{\Delta\theta}{t} = \frac{A \varkappa \sigma (T^4 - T_0^4)}{mc}$$

 $\Rightarrow t \propto \frac{m}{A}$ [:: $\Delta\theta, t, \sigma, (T^4 - T_0^4)$ are constant]
 $\Rightarrow t \propto \frac{m}{A} \propto \frac{\text{Volume}}{\text{Area}} \propto \frac{a^3}{a^2} \Rightarrow t \propto a \Rightarrow \frac{t_1}{t_2} = \frac{a_1}{a_2}$
 $\Rightarrow \frac{100}{t_2} = \frac{1}{2} \Rightarrow t_2 = 200 \text{ sec.}$

24. (a) According to Newton law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

$$80^{\circ}C \xrightarrow{5 \text{ min}} 64^{\circ}C$$

$$2 \text{ 10 min} 52^{\circ}C$$

$$15 \text{ min} \theta = ?$$

For first process :
$$\frac{(80-64)}{5} = K \left[\frac{80+64}{2} - \theta_0 \right]$$
 ...(i)

For second process :
$$\frac{(80-52)}{10} = K \left[\frac{80+52}{2} - \theta_0 \right]$$
 ...(ii)

For third process :
$$\frac{(80 - \theta)}{15} = K \left[\frac{80 + \theta}{2} - \theta_0 \right] \qquad \dots (iii)$$

On solving equation (i) and (ii) we get $K = \frac{1}{15}$ and $\theta_0 = 24^\circ C$. Putting these values in equation (iii) we get $\theta = 42.7^\circ C$

25. (c)
$$t = \frac{Ql}{KA(\theta_1 - \theta_2)} = \frac{mLl}{KA(\theta_1 - \theta_2)} = \frac{V\rho Ll}{KA(\theta_1 - \theta_2)}$$

= $\frac{5 \times A \times 0.92 \times 80 \times \frac{5 + 10}{2}}{0.004 \times A \times 10 \times 3600} = 19.1 \, hours.$

(a) Suppose temperature difference between A and B is 100°C and $\theta > \theta$

Heat current will flow from *A* to *B* via path *ACB* and *ADB*. Since all the rod are identical so $(\Delta \theta)_r = (\Delta \theta)_r$

(Because heat current $H = \frac{\Delta \theta}{R}$; here R = same for all.)

 $\Rightarrow \theta_A - \theta_C = \theta_A - \theta_D \Rightarrow \theta_C = \theta_D$ *i.e.* temperature difference between *C* and *D* will be zero.

F SCORER

27. (c)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{mL}{t} = \frac{K(\pi r^2)\Delta\theta}{l}$$

 \Rightarrow Rate of melting of ice $\left(\frac{m}{t}\right) \propto \frac{Kr^2}{l}$
Since for second rod K becomes $\frac{1}{4}$ th r becomes double and
length becomes half, so rate of melting will be twice *i.e.*
 $\left(\frac{m}{t}\right)_2 = 2\left(\frac{m}{t}\right)_1 = 2 \times 0.1 = 0.2 \text{ gm / sec.}$
28. (c) Heat transferred in one minute is utilised in melting the ice so,
 $\frac{KA(\theta_1 - \theta_2)t}{l} = m \times L$
 $\Rightarrow m = \frac{10^{-3} \times 92 \times (100 - 0) \times 60}{1 \times 8 \times 10^4} = 6.9 \times 10^{-3} \text{ kg}$
29. (d) $\frac{dQ}{dt} = \frac{KA}{l} d\theta = \frac{0.01 \times 1}{0.05} \times 30 = 6\frac{J}{\text{sec}}$

Heat transferred in on day (86400 sec)

$$\theta = 6 \times 86400 = 518400 J$$

Now
$$Q = mL \implies m = \frac{Q}{L} = \frac{518400}{334 \times 10^3}$$

 $= 1.552 \ kg = 1552g.$

30. (b) For no current flow between C and D

$$\begin{split} & \left(\frac{Q}{t}\right)_{AC} = \left(\frac{Q}{t}\right)_{CB} \Rightarrow \frac{K_1 A(\theta_A - \theta_C)}{l} = \frac{K_2 A(\theta_C - \theta_B)}{l} \\ \Rightarrow \frac{\theta_A - \theta_C}{\theta_C - \theta_B} = \frac{K_2}{K_1} \qquad \dots (i) \\ & \text{Also} \left(\frac{Q}{t}\right)_{AD} = \left(\frac{Q}{t}\right)_{DB} \Rightarrow \frac{K_3 A(\theta_A - \theta_D)}{l} = \frac{K_4 A(\theta_D - \theta_B)}{l} \\ \Rightarrow \frac{\theta_A - \theta_D}{\theta_D - \theta_B} = \frac{K_4}{K_3} \qquad \dots (ii) \end{split}$$

It is given that $\theta_C = \theta_D$, hence from equation (i) and (ii) we

get
$$\frac{K_2}{K_1} = \frac{K_4}{K_3} \implies K_1 K_4 = K_2 K_3$$

31. (d) Rate of cooling
$$R_C = \frac{d\theta}{dt} = \frac{A \varkappa \sigma (T^4 - T_0^4)}{mc}$$

32.

 $\Rightarrow \frac{d\theta}{dt} \propto \frac{A}{V} \propto \frac{r^2}{r^3} \Rightarrow \frac{d\theta}{dt} \propto \frac{1}{r}$ (b) $\frac{dT}{dt} = \frac{\sigma A}{mcJ} (T^4 - T_0^4)$ [In the given problem fall in

temperature of body dT = (200 - 100) = 100K, temp. of surrounding T = 0K, Initial temperature of body T = 200K].

$$\frac{100}{dt} = \frac{\sigma 4\pi^2}{\frac{4}{3}\pi^3 \rho \, c \, J} (200^4 - 0^4)$$
$$\implies dt = \frac{r\rho \, c \, J}{48\sigma} \times 10^{-6} \, s = \frac{r\rho \, c}{\sigma} \cdot \frac{4.2}{48} \times 10^{-6}$$

$$= \frac{7}{80} \frac{r\rho c}{\sigma} \mu s \simeq \frac{7}{72} \frac{r\rho c}{\sigma} \mu s \qquad [\text{As } J = 4.2]$$

33. (a) Rate of flow of heat is given by $\frac{dQ}{dt} = \frac{\Delta\theta}{l/KA}$ also

$$\frac{dQ}{dt} = L \frac{dm}{dt} \quad \text{(where } L = \text{Latent heat)}$$

 $\Rightarrow \frac{dm}{dt} = \frac{KA}{l} \left(\frac{\Delta \theta}{L}\right).$ Let the desire point is at a distance x from water at 100°C.

$$| \underbrace{ x \ m \longrightarrow | \underbrace{ (3.1 - x) \ m \longrightarrow |}}_{100^{\circ}C} \\ 100^{\circ}C \\ 200^{\circ}C \\ 0^{\circ}C \\$$

: Rate of ice melting = Rate at which steam is being produced

$$\Rightarrow \left(\frac{dm}{dt}\right)_{Steam} = \left(\frac{dm}{dt}\right)_{Ice} \Rightarrow \left(\frac{\Delta\theta}{Ll}\right)_{Steam} = \left(\frac{\Delta\theta}{Ll}\right)_{Ice}$$
$$\Rightarrow \frac{(200-100)}{540 \times x} = \frac{(200-0)}{80(3.1-x)} \Rightarrow x = 0.4 \ m = 40 \ cm$$

34. (c) $Q = \sigma A t (T - T_a)$

36.

If *T*, *T*, *σ* and *t* are same for both bodies then $\frac{Q_{sphere}}{Q_{sphere}} = \frac{A_{sphere}}{Q_{sphere}} = \frac{4\pi r^2}{Q_{sphere}}$(i)

$$\frac{2\text{ sphere}}{Q_{cube}} = \frac{\text{ sphere}}{A_{cube}} = \frac{112}{6a^2} \qquad \dots \text{(i)}$$

But according to problem, volume of sphere = Volume of cube A $(A \)^{1/3}$

$$\Rightarrow \frac{4}{3}\pi r^3 = a^3 \Rightarrow a = \left(\frac{4}{3}\pi\right)^{1/3} r$$

Substituting the value of a in equation (i) we get

$$\frac{Q_{sphere}}{Q_{cube}} = \frac{4\pi r^2}{6a^2} = \frac{4\pi r^2}{6\left\{\left(\frac{4}{3}\pi\right)^{1/3}r\right\}^2}$$
$$= \frac{4\pi r^2}{6\left(\frac{4}{3}\pi\right)^{2/3}r^2} = \left(\frac{\pi}{6}\right)^{1/3} : 1$$

35. (d) Equation of thermal conductivity of the given combination $K_{eq} = \frac{l_1 + l_2}{\frac{l_1}{K_1} + \frac{l_2}{K_2}} = \frac{x + 4x}{\frac{x}{K} + \frac{4x}{2K}} = \frac{5}{3}K.$ Hence rate of flow of

heat through the given combination is

$$\frac{Q}{t} = \frac{K_{eq} \cdot A(T_2 - T_1)}{(x + 4x)} = \frac{\frac{5}{3}KA(T_2 - T_1)}{5x} = \frac{\frac{1}{3}KA(T_2 - T_1)}{x}$$

On comparing it with given equation we get $f = \frac{1}{3}$

(a) Consider a concentric spherical shell of radius r and thickness dr as shown in fig.

The radial rate of flow of heat through this shell in steady state

8.

will be
$$H = \frac{dQ}{dt} = -KA \frac{dT}{dr} = -K(4\pi r^2) \frac{dT}{dr}$$

$$\Rightarrow \int_{r_1}^{r_2} \frac{dr}{r^2} = -\frac{4\pi K}{H} \int_{T_1}^{T_1} dT$$

Which on integration and simplification gives

$$H = \frac{dQ}{dt} = \frac{4\pi K r_1 r_2 (T_1 - T_2)}{r_2 - r_1} \Longrightarrow \frac{dQ}{dt} \propto \frac{r_1 r_2}{(r_2 - r_1)}$$

37. (c) Similar to Q.No.26

1.

Temperature difference between C and D is zero.

Graphical Questions

(c) Rate of cooling
$$\left(-\frac{dT}{dt}\right) \propto$$
 emissivity (e)
From graph, $\left(-\frac{dT}{dt}\right)_x > \left(-\frac{dT}{dt}\right)_y \Rightarrow e_x > e_y$

Further emissivity (e) \propto Absorptive power (a) $\Rightarrow a_x > a_y$ (: good absorbers are good emitters).

2. (b) According to Wien's law
$$\lambda_m \propto \frac{1}{T}$$
 and from the figure
 $(\lambda_m)_1 < (\lambda_m)_3 < (\lambda_m)_2$ therefore $T > T > T$.

3. (d)
$$\frac{A_T}{A_{2000}} = \frac{16}{1}$$
 (given)

Area under $e_\lambda - \lambda\,$ curve represents the emissive power of body and emissive power $\propto T^4$

(Hence area under $e_{\lambda} - \lambda$ curve) $\propto T^4$

$$\Rightarrow \frac{AT}{A_{2000}} = \left(\frac{T}{2000}\right)^4 \Rightarrow \frac{16}{1} = \left(\frac{T}{2000}\right)^4 \Rightarrow T = 4000K.$$

- 4. (c) According to Wein's law $\lambda_m \propto \frac{1}{T} \Rightarrow \nu_m \propto T$. As the temperature of body increases, frequency corresponding to maximum energy in radiation (ν) increases this is shown in graph (c).
- 5. (c) According to Wein's displacement law.

6. (b) For
$$\theta$$
-*t* plot, rate of cooling $= \frac{d\theta}{dt} =$ slope of the curve.
At $P_t \frac{d\theta}{dt} = \tan \phi_2 = k(\theta_2 - \theta_0)$, where $k =$ constant.

At
$$Q \frac{d\theta}{dt} = \tan \phi_1 = k(\theta_1 - \theta_0) \implies \frac{\tan \phi_2}{\tan \phi_1} = \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0}$$

7. (a) According to Wein's displacement law

$$\lambda_m \propto \frac{1}{T} \implies \lambda_{m_2} < \lambda_{m_1} \quad (:: T_1 < T_2)$$

There fore *I*- λ graph for *T* have lesser wavelength (λ) and so curve for *T* will shift towards left side.

(d) Area under given curve represents emissive power and emissive power $\propto T \implies A \propto T^4$

$$\Rightarrow \frac{A_2}{A_1} = \frac{T_2^4}{T_1^4} = \frac{(273 + 327)^4}{(273 + 27)^4} = \left(\frac{600}{300}\right)^4 = \frac{16}{1}$$

9. (b) According to Newton's law of cooling

Rate of cooling ∞ Temperature difference

$$\Rightarrow -\frac{d\theta}{dt} \propto (\theta - \theta_0) \Rightarrow -\frac{d\theta}{dt} = \alpha (\theta - \theta_0) \quad (\alpha = \text{ constant})$$
$$\Rightarrow \int_{\theta_i}^{\theta} \frac{d\theta}{(\theta - \theta_0)} = -\alpha \int_{0}^{t} dt \Rightarrow \theta = \theta_0 + (\theta_i - \theta_0)e^{-\alpha t}$$

This relation tells us that, temperature of the body varies exponentially with time from θ_i to θ_0

Hence graph (b) is correct.

- 10. (a) According to Wein's displacement law $\lambda_m \propto \frac{1}{T}$. Hence, if temperature increases λ_m decreases *i.e.*, peak of the $E \lambda$ curve shift towards left.
- **11.** (c) Rate of loss of heat $(R) \propto$ temperature difference

 $\Rightarrow R \propto (\theta - \theta_0) \Rightarrow R = k(\theta - \theta_0) = k \theta - k \theta_0 \ (k = \text{ constant})$

on comparing it with y = mx + c it is observed that, the graph between R and θ will be straight line with slope =k and intercept $= -k \theta_0$

$$C = -k\theta_0$$

$$d\theta$$

$$R$$

$$Slope = tan\phi = k$$

$$\theta \rightarrow$$

12. (c) $\frac{dQ}{dt} = -KA \frac{d\theta}{dx}$

 $\therefore \ \frac{dQ}{dt}, K \text{ and } A \text{ are constants for all points}$

 \Rightarrow d heta \propto -dx ; *i.e.* temperature will decrease linearly with *x*.

- 13. (b) Since the curved surface of the conductor is thermally insulated, therefore, in steady state, the rate of flow of heat at every section will be the same. Hence the curve between *H* and *x* will be straight line parallel to *x*-axis.
- 14. (d) According to Stefan's law $E = \sigma T^4$

$$\Rightarrow \log E = \log \sigma + 4 \log T \Rightarrow \log E = 4 \log T + \log \sigma$$

on comparing this equations with y = mx + C

we find that graph between log *E* and log *T* will be a straight line, having positive slope (m = 4) and intercept on log *E* axis equal to $\log \sigma$

15. (c)
$$\frac{d\theta}{dt} = \frac{\varepsilon A \sigma}{mc} 4 \theta_0^3 \Delta \theta$$

For given sphere and cube $\frac{\mathcal{E}A\sigma}{mc} 4\theta_0^3 \Delta \theta$ is constant so for both rate of fall of temperature $\frac{d\theta}{dt}$ = constant

6. (b)
$$\lambda_m T = b$$
 where $b = 2.89 \times 10^{-3} mK$

$$T = \frac{b}{\lambda_m} = \frac{2.89 \times 10^{-3}}{1.5 \times 10^{-6}} \approx 2000K$$

17. (b) Wein's law
$$\lambda_m \propto rac{1}{T}$$
 or $u_m \propto T$

=

1.

3.

4.

5.

6.

 $\nu_{\rm i}$ increases with temperature. So the graph will be straight line.

Assertion and Reason

(a) According to Kirchoff's law $\frac{e_{\lambda}}{a_{\lambda}} = E_{\lambda}$

If for a particular wave length $E_{\lambda} = 1 \implies e_{\lambda} = a_{\lambda}$ *i.e.*, aborptivity of a body is equal to it's emissivity. This statement also reveals that a good radiator is also a good absorber and vice versa.

2. (c) According to Weins law $\lambda_m T$ = constant *i.e.*, peak emission

wavelength $\lambda_m \propto \frac{1}{T}$. Also μ as T increases λ_m decreases. Hence assertion is true but

reason is false.

τ

- (b) During the day when water is cooler than the land, the wind blows off the water onto the land (as warm air rises and cooler air fills the place). Also at night, the effect is reversed (since the water is usually warmer than the surrounding air on land). Due to this wind flow the temperature near the sea coast remains moderate.
- (c) Heat is carried away from a fire sideways mainly by radiations. Above the fire, heat is carried by both radiation and by convection of air. The latter process carries much more heat.

- (e) Assertion is false because at absolute zero (U K), heat is neither radiates nor absorbed. Reason is the statement of Stefan's law, as $E \propto T^4$.
- (a) Woolen fibres encloses a large amount of air in them. Both wool and air are the bad conductors of heat and the coefficient of thermal conductivity is small. So, they prevent any loss of heat from our body.

 (d) Equivalent thermal conductivity of two equally thick plates in series combination is given by

If $K_1 < K_2$

then $K_1 < K < K_2$

Hence assertion and reason both are false.

- 8. (c) Hollow metallic closed container maintained at a uniform temperature can act as source of black body. It is also well-known that all metals cannot act as black body because if we take a highly metallic polished surface. It will not behave as a perfect black body.
- **9.** (b) This is in accordance with the Stefan's law $E \propto T^4$.
- 10. (c) At a high temperature (6000 *K*), the sun acts like a perfect blackbody emitting complete radiation. That's why the radiation coming from the sun's surface follows Stefan's law $E = \sigma T^4$.
- **11.** (a) From Wein's displacement law, temperature $(T) \propto 1/\lambda_m$ (where λ_m is the maximum wavelength). Thus temperature of a body is inversely proportional to the wavelength. Since blue star has smaller wavelength and red star has maximum wavelength, therefore blue star is at higher temperature then red star.

12. (b) From the definition heat flow,
$$Q = \frac{KA \Delta \theta t}{l}$$

Thermal conductivity $K = \frac{\theta \times l}{A \times \Delta \theta \times t}$

$$\Rightarrow K = \frac{J \times m}{m^2 \times K \times \sec} = \frac{watt}{m \times K}$$

=

If thermal conductivity of a substance is high, it will pass more heat.

- 13. (c) The thermal conductivity of brass is high *i.e.*, brass is a good conductor of heat. So, when a brass tumbler is touched, heat quickly flows from human body to tumbler. Consequently, the tumbler appears colder, on the other hand wood is a bad conductor. So, heat does not flow from the human body to the wooden tray in this case. Thus it appears comparatively hotter.
- 14. (b) Light radiations and thermal radiations both belongs to electromagnetic spectrum. Light radiations belongs to visible region while thermal radiation belongs to infrared region of *EM* spectrum. Also *EM* radiations requires no medium for propagation.
- 15. (a) When the temperature of the atmosphere reaches below 0° *C*, then the water vapours present in air, instead of condensing, freeze directly in the form of minute particles of ice. Many particles coalesce and take cotton-like shape which is called snow. Thus snow contains air packets in which convection currents cannot be formed. Hence snow is a good heat insulator. In ice there is no air, so it is a bad insulator.
- 16. (e) In the process of convection, the liquid at the bottom, becoming lighter, rises up. Thus the basis of convection is the difference in weight and upthrust. In weightlessness, this difference does not exist. So convection is not possible.
- 17. (b) Both assertion and reason are true but reason is not correctly explaining the assertion.

- 18. (c) The 98.4°F is the standard body temperature of a man. If a man touch a iron or wooden ball at 98.4° F, no heat transfer takes place between ball and man, so both the balls would feel equally hot for the man.
- **19.** (c) According to Wien's displacement law the $\lambda_m \propto \frac{1}{T}$.

Hence assertion is true but reason is false.

20. (e) It is not necessary that all black coloured object are black bodies. For example, if we take a black surface which is highly polished, it will not behave as a perfect black body.

A perfectly black body absorbs all the radiations incident on it.

21. (b) By definition,
$$R = \frac{(\theta_1 - \theta_2)}{Q/t} = \frac{l}{KA} \Rightarrow R \propto \frac{1}{K}$$

23.

 (c) Actually, the process of radiation does not require any material for transmission of heat.

> Thermal radiation travels with the velocity of light and hence the fastest mode of the transfer. Thermal radiation is always transmitted in a straight line.

- (c) Two thin blankets put together are more warm because an insulating layer of air (as air is good insulator of heat) is enclosed between two blankets due to which it gives more warmness.
- 24. (a) When the animals feel cold, they curl their bodies into a ball so as to decrease the surface area of their bodies. As total energy radiated by body varies directly as the surface area of the body, the loss of heat due to radiation would be reduced.

- ET Self Evaluation Test -15
- A rod of 40 cm in length and temperature difference of $80^{\circ}C$ at 1. its two ends. Another rod B of length 60 cm and of temperature difference $90^{\circ}C$, having the same area of cross-section. If the rate of flow of heat is the same, then the ratio of their thermal conductivities will be (a) 3:4 (b) 4:3(c) 1:2 (d) 2:1 Two vessels of different materials are similar in size in every respect. 2. The same quantity of ice filled in them gets melted in 20 minutes and 40 minutes respectively. The ratio of thermal conductivities of [AFMC 1998] the materials is
 - (a) 5:6
 (b) 6:5

 (c) 3:1
 (d) 2:1
- **3.** In a steady state of thermal conduction, temperature of the ends *A* and *B* of a 20 *cm* long rod are $100^{\circ}C$ and $0^{\circ}C$ respectively. What will be the temperature of the rod at a point at a distance of 6 *cm* from the end *A* of the rod
 - (a) $-30^{\circ} C$ (b) $70^{\circ} C$
 - (c) $5^{\circ}C$ (d) None of the above
- Four rods of silver, copper, brass and wood are of same shape. They are heated together after wrapping a paper on it, the paper will burn first on
 (a) Silver
 (b) Copper
 - (c) Brass (d) Wood
- **5.** The two opposite faces of a cubical piece of iron (thermal conductivity = 0.2 CGS units) are at $100^{\circ}C$ and $0^{\circ}C$ in ice. If the area of a surface is $4cm^2$, then the mass of ice melted in 10 minutes will be

(a)	30 gm	(b)	300 gm
(c)	5 <i>gm</i>	(d)	50 gm

- 6. Wein's constant is 2892×10^{-6} MKS unit and the value of λ_m from moon is 14.46 microns. What is the surface temperature of moon
 - (a) 100 K (b) 300 K
 - (c) 400 K (d) 200 K
- 7. If at temperature $T_1 = 1000K$, the wavelength is $1.4 \times 10^{-6} m$,

then at what temperature the wavelength will be $2.8 \times 10^{-6} m$

- (a) 2000*K* (b) 500*K*
- (c) 250K (d) None of these
- **8.** The wavelength of maximum intensity of radiation emitted by a star is 289.8 *nm*. The radiation intensity for the star is : (Stefan's constant $5.67 \times 10^{-8} Wm^{-2} K^{-4}$, constant $b = 2898 \mu m K$) -
 - (a) $5.67 \times 10^8 W/m^2$ (b) $5.67 \times 10^{12} W/m^2$
 - (c) $10.67 \times 10^7 W/m^2$ (d) $10.67 \times 10^{14} W/m^2$
- **9.** Two friends *A* and *B* are waiting for another friend for tea. *A* took the tea in a cup and mixed the cold milk and then waits. *B* took the tea in the cup and then mixed the cold milk when the friend comes. Then the tea will be hotter in the cup of

(a) *A* (b) *B*

10.

- (c) Tea will be equally hot in both cups
- (d) Friend's cup

There are two spherical balls A and B of the same material with same surface, but the diameter of A is half that of B. If A and B are heated to the same temperature and then allowed to cool, then

- (a) Rate of cooling is same in both
- (b) Rate of cooling of A is four times that of B
- (c) Rate of cooling of A is twice that of B
- (d) Rate of cooling of A is $\frac{1}{4}$ times that of B
- **11.** Five identical rods are joined as shown in figure. Point *A* and *C* are maintained at temperature $120^{\circ}C$ and $20^{\circ}C$ respectively. The temperature of junction *B* will be

- 12. Can we boil water inside the earth satellite by convection
 - (a) Yes

13.

- (b) No
- (c) Nothing can be said
- (d) In complete information is given
- In the following figure, two insulating sheets with thermal resistances *R* and 3*R* as shown in figure. The temperature θ is
 - (a) $20^{\circ}C$ (b) $60^{\circ}C$ (c) $75^{\circ}C$ (d) $8d^{\text{RPMT}} 2004$]
- 14. The top of insulated cylindrical container is covered by a disc having emissivity 0.6 and thickness 1 *cm*. The temperature is maintained by circulating oil as shown in figure. If temperature of upper surface of disc is $127^{\circ}C$ and temperature of surrounding is $27^{\circ}C$, then the radiation temperature 200 p the surroundings will be (Take 17

$$\sigma = \frac{17}{3} \times 10^{-8} W / m^2 K^4)$$

UNIVERSAL

748 Transmission of Heat

15. The following figure shows two air-filled bulbs connected by a U-tube partly filled with alcohol. What happens to the levels of alcohol in the limbs *X* and *Y* when an electric bulb placed midway between the bulbs is lighted

- (a) The level of alcohol in limb X falls while that in limb Y rises
- (b) The level of alcohol in limb X rises while that in limb Y falls
- (c) The level of alcohol falls in both limbs
- (d) There is no change in the levels of alcohol in the two limbs
- **16.** Two conducting rods A and B of same length and cross-sectional area are connected (i) In series (ii) In parallel as shown. In both combination a temperature difference of $100^{\circ}C$ is maintained. If thermal conductivity of A is 3K and that of B is K then the ratio of heat current flowing in parallel combination to that flowing in series combination is

2*mm.* The outer and inner temperature are $40^{\circ}C$ and $20^{\circ}C$ respectively. Thermal conductivity of glass in MKS system is 0.2. The heat flowing in the room per second will be

(a) 3	3×10^{4} j	ioules	(b)	2×10^{4}	joules
-------	---------------------	--------	-----	-------------------	--------

- (c) 30 *joules* (d) 45 *joules*
- 18. The spectrum from a black body radiation is a

[MP PMT 1989; RPET 2000]

- (a) Line spectrum
- (b) Band spectrum
- (c) Continuous spectrum
- (d) Line and band spectrum both
- 19. The Wien's displacement law express relation between

[CBSE PMT 2002]

- (a) Frequency and temperature
- (b) Temperature and amplitude
- (c) Wavelength and radiating power of black body
- (d) Wavelength corresponding to maximum energy and temperature
- **20.** A black body is heated from $27^{\circ}C$ to $127^{\circ}C$. The ratio of their energies of radiations emitted will be

21. A body takes T minutes to cool from $62^{\circ}C$ to $61^{\circ}C$ when the surrounding temperature is $30^{\circ}C$. The time taken by the body to cool from $46^{\circ}C$ to $45.5^{\circ}C$ is

[MP PET 1999]

[AIIMS 2001]

- (a) Greater than T minutes
- (b) Equal to *T* minutes
- (c) Less than *T* minutes
- (d) Equal to T/2 minutes
- **22.** A partition wall has two layers A and B in contact, each made of a different material. They have the same thickness but the thermal conductivity of layer A is twice that of layer B. If the steady state temperature difference across the wall is 60K, then the corresponding difference across the layer A is

[SCRA 1994; JIPMER 2001]

(SET -15)

(a	10 K	(b)	20 K
10	.,	(0)	

- (c) 30K (d) 40K
- 23. Water and turpentine oil (specific heat less than that of water) are both heated to same temperature. Equal amounts of these placed in identical propagation are then left in air

- (a) Their cooling curves will be identical
- (b) *A* and *B* will represent cooling curves of water and oil respectively
- (c) *B* and *A* will represent cooling curves of water and oil respectively
- (d) None of the above

S Answers and Solutions

2.

1. (a)
$$\frac{dQ}{dt} = \frac{KA(\theta_1 - \theta_2)}{d}$$

 $\Rightarrow \frac{K_1 \Delta \theta_1}{l_1} = \frac{K_2 \Delta \theta_2}{l_2}$ ($\because \frac{dQ}{dt}$ and *A* are same)
 $\Rightarrow \frac{K_1 \times 80}{40} = \frac{K_2 \times 90}{60} \Rightarrow \frac{K_1}{K_2} = \frac{3}{4}$

(d)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \implies \frac{mL}{t} = \frac{KA(\theta_1 - \theta_2)}{l}$$

 $\Rightarrow K \propto \frac{1}{t} \qquad (\because \text{ remaining quantities are same})$

$$\Rightarrow \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{40}{20} = \frac{2}{1}.$$

3. (b) In steady state, temperature gradient = constant

Transmission of Heat 749_

$$\Rightarrow \frac{(\theta_A - \theta_x)}{6} = \frac{(\theta_A - \theta_B)}{20} \Rightarrow (100 - \theta) = \frac{6}{20} \times (100 - 0)$$
$$\Rightarrow \theta_x = 70^{\circ}C$$

 (d) In conducting rod given heat transmits so burning temperature does not reach soon. In wooden rod heat doesn't conducts.

5. (b)
$$Q = mL = KA \frac{(\theta_1 - \theta_2)}{l}t \implies m = \frac{1}{L} \times KA \frac{(\theta_1 - \theta_2)}{l} \times t$$

$$= \frac{1}{80} \times 0.2 \times 4 \times \frac{(100 - 0)}{\sqrt{4}} \times 10 \times 60 \quad (\because l^2 = 4 \implies l = \sqrt{4})$$
$$= \frac{0.2 \times 4 \times 100 \times 600}{80 \times 2} = 300 \ gm$$

6. (d)
$$\lambda_m T = 2892 \times 10^{-6} \Rightarrow T = \frac{2892 \times 10^{-6}}{14.46 \times 10^{-6}} = 200 \text{ K}$$

7. (a)
$$\lambda_m \propto \frac{1}{T} \Rightarrow \lambda m_1 T_1 = \lambda m_2 T_2$$

 $\Rightarrow T_2 = \frac{\lambda m_1 T_1}{\lambda m_2} = \frac{1.4 \times 10^{-6} \times 1000}{2.8 \times 10^{-6}} = 2000K$

8. (a) We know $\lambda_{\max}T = b$

$$\Rightarrow T = \frac{b}{\lambda_{\text{max}}} = \frac{2898 \times 10^{-6}}{289.8 \times 10^{-9}} = 10^4 \, K$$

According to Stefan's Law

$$E = \sigma T^4 = (5.67 \times 10^{-8})(10^4)^4 = 5.67 \times 10^8 W/m^2$$

9. (a) The rate of heat loss is proportional to the difference in temperature. The difference of temperature between the tea in cup A and the surrounding is reduced, so it loses less heat. the tea in cup B loses more heat because of large temperature difference. Hence the tea in cup A will be hotter.

10. (c) Rate of cooling
$$R_C = \frac{A \, \varepsilon \sigma (T^4 - T_0^4)}{mc} = \frac{A \, \varepsilon \sigma (T^4 - T_0^4)}{V \rho C}$$

 $\Rightarrow R_C \propto \frac{A}{V} \propto \frac{1}{r} \propto \frac{1}{(\text{Diameter})} \quad (\because m = \rho V)$

Since diameter of A is half that of B so it's rate of cooling will be doubled that of B

11. (c) If thermal resistance of each rod is considered *R* then, the given combination can be redrawn as follows

$$\frac{(120-20)}{R} = \frac{(120-\theta)}{R} \Rightarrow \theta = 70^{\circ}C$$

(b) No, In convection the hot liquid at the bottom becomes lighter and hence it rises up. In this way the base of the convection is the difference in weight and upthrust. In the state of weightlessness this difference does not occur, so convection is not possible.

12.

17.

14. (d) For the two sheets H = H (H = Rate of heat flow)

$$\Rightarrow \frac{(100-\theta)}{R} = \frac{(\theta-20)}{3R} \Rightarrow \theta = 80^{\circ}C$$

15. (a) Rate of heat loss per unit area due to radiation *i.e.* emissive power $e = \partial \sigma (T^4 - T_0^4)$

$$= 0.6 \times \frac{17}{3} \times 10^{-8} \times [(400)^4 - (300)^4]$$

= 3.4 \times 10^{-8} \times (175 \times 10^8) = 3.4 \times 175 = 595 J / m² \times sec

16. (a) Black bulb absorbs more heat in comparison with painted bulb. So air in black bulb expands more. Hence the level of alcohol in limb X falls while that in limb Y rises.

(a) Heat current
$$H = \frac{\Delta \theta}{R} \Rightarrow \frac{H_P}{H_S} = \frac{R_S}{R_P}$$

In first case : $R_S = R_1 + R_2 = \frac{l}{(3K)A} + \frac{l}{KA} = \frac{4}{3} \frac{l}{KA}$
In second case : $R_P = \frac{R_1R_2}{R_1 + R_2} = \frac{\frac{l}{(3K)A} \times \frac{l}{KA}}{\left(\frac{l}{(3K)A} + \frac{l}{KA}\right)} = \frac{l}{4KA}$
 $\therefore \frac{H_P}{H_S} = \frac{\frac{4l}{3KA}}{\frac{l}{4KA}} = \frac{16}{3}$
(b) $\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} = \frac{0.2 \times 10 \times 20}{2 \times 10^{-3}} = 2 \times 10^4$ J / sec

19. (d)

17.

20. (d)
$$\frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} = \left(\frac{273+27}{273+127}\right)^4 = \left(\frac{300}{400}\right)^4 = \frac{81}{256}$$

21. (b) In first step

$$\frac{62-61}{T} = K \left[\frac{62-61}{2} - 30^{\circ} \right] \Rightarrow \frac{1}{T} = K [81.5] \qquad \dots (i)$$

In second step, suppose process takes $T'\min$ then

$$\frac{46-45.5}{T'} = K \left[\frac{46-45.5}{2} - 30 \right] \frac{0.5}{T'} = K [15.75] \qquad \dots (ii)$$

On diving equation (i) and (ii) $\frac{2T'}{T} = 2 \implies T' = T$

22. (b) Suppose conductivity of layer *B* is *K*, then it is 2*K* for layer *A*. Also conductivity of

combination layers A and B is K

$$= \frac{2 \times 2K \times K}{(2K+K)} = \frac{4}{3} K$$
Hence $\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{A}$

$$A = B$$

$$2K = K$$

$$\theta_{1} = x + \theta = x + \theta_{2}$$

$$\Rightarrow \frac{4}{3} \frac{KA \times 60}{2x} = \frac{2K \cdot A \times (\Delta \theta)_{A}}{x} \Rightarrow (\Delta \theta)_{A} = 20K$$

23. (b) As we know, Rate of cooling
$$\propto \frac{1}{\text{specific heat}(c)}$$

 $\therefore c_{\text{oil}} < c_{\text{Water}}$

 \Rightarrow (Rate of cooling)_{oil} > (Rate of cooling)_{Water}

It is clear that, at a particular time after start cooling, temperature of oil will be less than that of water.

So graph B represents the cooling curve of oil and A represents the cooling curve of water