Electromagnetic Fields & Theory

Electromagnetic waves:

Maxwell’s equations predict the existence of electro-magnetic waves that propagate in vacuum with the
elec-tric and magnetic fields perpendicular and with ratio:

E =¢B

The waves travel with velocity ¢ where 1

c=
VEoHo

Energy in Electromagnetic waves:
The energy flow rate (power per unit area) of an elec-tromagnetic wave is given by the Poynting vector §
IO R
S=—EXxB
Ho
The magnitude of the time-averaged value of S " is called the intensity of the wave
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Speed of light in materials

When light propagates through a material, its speed is lower than the speed in free space space by a
factor called the index of refraction

c
v=—

n
Reflection and refraction

At a smooth interface, the incident, reflected, and re-fracted rays and the normal to the interface all lie in a single

plane. The angle of incidence and angle of reflec-tion (measured from the normal) are equal 8,.= 6, and the angle of
refraction is given by Snell’s law:

N SIn @, = 1y sin 6y,

Polarization

A polarizing filter passes waves that are linearly po-larized along its polarizing axis. When polarized light
of intensity I,ax is incident on a polarizing filter used as an analyzer, the intensity I of the light transmitted
depends on the angle ¢ between the polarization direction of the incident light and the polarizing axis of the
analyzer:

I=1I,,., cos® o}



Spherical Mirrors
Object and image distances:

i S R |

s * s F
where f = R/2.

Thin Lenses
Object and image distances:

where

Magnification
The lateral magnification for the systems described above is

Forces:
The force on a charge ¢ moving with velocity ¥ in a
magnetic field B is

ﬁ=q5’x§

and the force on a differential segment dl_'carrying current
Iis

dF = Idl' x B

Magnetic Flux:
Magnetic flux is defined analogously to electric flux

<I>B=/§-dl

The magnetic flux through a closed surface seems to be zero

fB'-dA'=O



Magnetic dipoles:

A current loop creates a magnetic dipole fi = I A where
I is the current in the loop and A is a vector normal to
the plane of the loop and equal to the area of the loop.
The torque on a magnetic dipole in a magnetic field is

F=jxB

Biot-Savart Law: .
The magnetic field dB produced at point P by a dif-
ferential segment dl carrying current I is

fﬂfﬂ&f
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dB =

where 7 points from the segment di’to the point P.

Magnetic field produced by a moving charge:
Similarly, the magnetic field produced at a point P by
a moving charge is
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Ampere’s Law: (without displacement current)

%é ' df: MOIencl

Faraday’s Law:
The EMF produced in a closed loop depends on the
change of the magnetic flux through the loop

d®p
dt

When an EMF is produced by a changing magnetic flux
there is an induced, nonconservative, electric field E such

that
fﬁ.df:_i/g.m
dt |4

Mutual Inductance:

When a changing current 4; in circuit 1 causes a chang-
ing magnetic flux in circuit 2, and vice-versa, the induced
EMF in the circuits is

dil d712
and & =-M—
dt ! dt

where M is the mutual inductance of the two loops

_ No®py  Ni®p:
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where N; is the number of loops in circuit .

Self Inductance:
A changing current 4 in any circuit generates a chang-
ing magnetic field that induces an EMF in the circuit:

Ldi

£=-L%
dt

where L is the self inductance of the circuit

)
L=N-2
i
For example, for a solenoid of N turns, length [, area A,
Ampere’s law gives B = po(N/1)i, so the flux is &5 =
po(N/1)iA, and so

N2
L= IU’OTA

Capacitance:

A capacitor is any pair of conductors separated by an
insulating material. When the conductors have equal and
opposite charges @ and the potential difference between
the two conductors is Vi, , then the definition of the ca-
pacitance of the two conductors is

C=-*
Va b

The energy stored in the electric field is
1
U=_-CV?
2
If the capacitor is made from parallel plates of area A

separated by a distance d, where the size of the plates is
much greater than d, then the capacitance is given by

C = EoA/d
Capacitors in series:
1 n 1 n
Coq C1 Co 7

Capacitors in parallel:
Ceq =C1+Cy+ ...

If a dielectric material is inserted, then the capacitance
increases by a factor of K where K is the dielectric con-
stant of the material

C=KCy



Current:
When current flows in a conductor, we define the cur-
rent as the rate at which charge passes:

dQ
I=°%
dt

We define the current density as the current per unit area,
and can relate it to the drift velocity of charge carriers
by

-

J = nquy

where n is the number density of charges and ¢ is the
charge of one charge carrier.

Ohm’s Law and Resistance:

Ohm’s Law states that a current density J in a material
is proportional to the electric field E. The ratio p = E/J
is called the resistivity of the material. For a conductor

with cylindrical cross section, with area A and length L,
the resistance R of the conductor is

_rL

k="

A current I flowing through the resistor R produces a
potential difference V' given by

V =IR
Resistors in series:
ch =R+ Ry + ...

Resistors in parallel:

Power:
The power transferred to a component in a circuit by
a current [ is

pP=VvVI
where V' is the potential difference across the component.

Kirchhoff’s rules:
The algebraic sum of the currents into any junction

must be zero:
S0

The algebraic sum of the potential differences around
any loop must be zero.

Y v=o0

Force on a charge:

An electric field E exerts a force F on a charge g given
by:

F=qE
Coulomb’s law:

A point charge ¢ located at the coordinate origin gives
rise to an electric field E given by

— q "

E = 7

4megr?

where r is the distance from the origin (spherical coor-
dinate), 7 is the spherical unit vector, and ¢y is the per-
mittivity of free space:

€0 = 8.8542 x 10712 C? /(N - m?)

Superposition:

The principle of superposition of electric fields states
that the electric field E of any combination of charges
is the vector sum of the fields caused by the individual
charges

E-YF

To calculate the electric field caused by a continuous dis-
tribution of charge, divide the distribution into small el-
ements and integrate all these elements:

E= / dE = / da
q dmeor
Electric flux:

Electric flux is a measure of the “flow” of electric field
through a surface. It is equal to the product of the

area element and the perpendicular component of E in-
tegrated over a surface:

@E:/Ecosa;dA:/E-ﬁdA:/E‘-dﬁ

where ¢ is the angle from the electric field E to the sur-
face normal 7.

Gauss’ Law:

Gauss’ law states that the total electric flux through
any closed surface is determined by the charge enclosed
by that surface:

@E:fﬁdg:%@
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Electric conductors:

The electric field inside a conductor is zero. All ex-
cess charge on a conductor resides on the surface of that
conductor.

Electric Potential:

The electric potential is defined as the potential energy
per unit charge. If the electric potential at some point
is V then the electric potential energy at that point is
U = qV. The electric potential function V() is given by
the line integral:

V(f')=—/ E-dl+ V(i)
o

Beware of the minus sign. This gives the potential pro-
duced by a point charge q:

q
V =
dmegr

for a collection of charges g;

i
L Z dmeor;

and for a continuous distribution of charge

V=/ dq
q dmeor

where in each of these cases, the potential is taken to be
zero infinitely far from the charges.

Field from potential:

If the electric potential function is known, the vector
electric field can be derived from it:

ov ov ov
Bemgy Bu=—%y B="%

or in vector form:

=5 ov._ oV OV .
o [ T B

Beware of the minus sign.

Coulomb’s Law: The electric field intensity of a point
charge is in the outward radial direction and has a
magnitude proportional to the charge and inversely
proportional to the square of the distance from the charge.

Gauss’s Law: The net electric flux through any closed
surface is equal to L& times the net electric charge
enclosed within that closed surface.

Maxwell Equations

Differential form integral form Significance
yxE=-2 %E P ;
IXRE=—o ~ = Faraday's Law
VxH=] -?2 i# H-di=I+ Tl ds Ampere's Circuital Law
at
V-D=p, fD'd-‘T:Q Gaus's Law
V.B=0 fB -ds =0 No isolated magnetic charge
- =d




Electrostatics

Force on a point charge g inside a static elec-
tric field
F=qE

Gauss’s law
]{D-dS:Q or V-D=p
s
Electrostatic fields are conservative

VXxE=0 or %E-dl:O
c

Electric field produced by a point charge ¢
in free space
_ ¢(R—-Ry)
Ameg |R — Ry|?

Electric field produced by a volume charge
distribution

1 s py dV!
E-— | R
Ame [y R

Electric field produced by a surface charge
distribution

1 s ps ds
E=— [ R
4re S’ RIQ

Electric field produced by a line charge dis-

tribution
1 2 Pl dl’
E= R/
dre ﬂ R

Electric field produced by an infinite sheet
of charge

E=32
2e
Electric field produced by an infinite line of

charge

Electric field - scalar potential relationship

P2

E=-VV or Vg—Vlz—/ E -dl

P1

Electric potential due to a point charge
(with infinity chosen as the reference)

q
Ve~— <
dmeg |R — Ry

Poisson’s equation

vy = -2

€

Constitutive relationship in dielectric mate-
rials
D=¢E+P

where P is the polarization.

P= GOXeE
Electrostatic energy density

1
We = §€E2

Boundary conditions

Elt = E2t or nx (El — Ez) =0

Dln_DQn:ps or ﬁ(Dl_DZ):ps

Ohm'’s law

Conductivity
T = poft

where 1 stands for charge mobility.

P:/E-Jdv

Joule’s law



Electrostatics
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Boundary Conditions for Electrostatic Fields:
E,, = E,, States that Tangential component of an E field is continuous across an interface i—‘ = %

D,, — D,, = p, States that the Normal component of D field is discontinuous across an interface where surface charge
exist-amount the amount of discontinuity being equal to the surface charge density.

When two dielectrics are in contact of no free charges at interface. p, = 0. Then D, = D,, or¢,E,, = 6,E,,



Magnetostatics:

Force on a moving charge ¢ inside a magnetic
field
F=quxB

Force on an infinitesimally small current el-
ement Idl inside a magnetic field

dF,, = Idl x B

Torque on a N-turn loop carrying current [
inside a uniform magnetic field

T=mxB
where m = n/N/A.

Gauss’s law for magnetism

S

Ampere’s law

VxH=J or %H-dl:[
c

Magnetic flux density — magnetic vector
potential relationship

B=VxA

Magnetic potential produced by a current
distribution

0 J o
=1 gy
4’/T \"d R/

Vector Poisson’s Equation

VZA = —uJ

Magnetic field intensity produced by an in-
finitesimally small current element (Biot-
Savart law)

I dxR
dH = —
I R?

Magnetic field produced by an infinitely long
wire of current in the z-direction

A~ T
H=¢p—
¢2777"

Magnetic field produced by a circular loop
of current in the ¢-direction

la?

H= ZQ(a2 + 22)3/2

Constitutive relationship in magnetic mate-
rials

B = uoH + oM
Magnetization

M =y, H

Boundary conditions

Bln = Bgn or n- (Bl - B2) =0

Hlt—Hgt:JS or 1n X (Hl—Hz):JS

Magnetostatic energy density

1
m = =pH?
w 2”



Magnetostatics:

Idlxa, KdS xa, Jdvxa,
:I 2 I—z'H_L_z
L AxR S 47R 47R

I I
H=——/ (cosa, —cosa L H=——a,.a, —a, xa .
4”’0( 2 1)a¢_ Y ¢ Ay (Xa,.

1

fH-dI=1, .VxH=J H=——a,, il
27p 2 "

B=yH.¥=[B-dS. ¢B-dS=0,V-B=0,H=-VV,,

Idl KdS Jd
B=VxA A=[20" A=[L" A=[2C2 w-§A.d
L 47R S 4zR v 47R L
F=Q(E+uxB). dF = IdIxB, B.=H._
tanHI_ﬂ

(Hl _HZ)xanIZ =K.H, =H,,.
tand, /1,

g2 DYy e DWe :lIB-Hdv:lIﬂszv
1 E x 2 2

Boundary Conditions for Magnetostatic Fields:

B,, = B,, States that Normal component of B is continuous across an interface. u, H,, = p,H,,

H,, — H,, = ], States that the Tangential component of H field is discontinuous across an interface where free surface
current exist-amount the amount of discontinuitv being equal to the surface current density.

When conductivities of both media are finite, current are defined by volume current densities and free surface currents
don’t exist on interface hence j equal to zero, and the Tangential component of H field is continuous across the boundary of
almost all physical media; it is discontinuous only when an interface with an ideal conductor or a super conductor is

assumed.



Constants

Free space permittivity € =8.85x 107 F/m

Free space permeability ;4 =47 x 1077 H /m

Differential operations:

Gradient of a scalar field: The vector that represents both the magnitude and the direction of the
maximum space rate of increase of a scalar as the gradient of that scalar.
Measures the rate and direction of change in a scalar field. Maps scalar fields to vector fields.

Divergence of the vector field: the divergence of a vector field A at a point, abbreviated div A, as
the net outward flux of A per unit volume as the volume about the point tends to zero:

Measures the scalar of a source or sink at a given point in a vector field. Maps vector fields to
scalar fields.

Curl of a vector field: The curl of u vector field A, denoted by Curl A , is a vector whose
magnitude is the maximum net circulation of A per unit urea as the area tends to zero and whose
direction is the normal direction of the area when the area is oriented to make the net circulation
maximum.

Measures the tendency to rotate about a point in a vector field. Maps vector fields to
(pseudo)vector fields.

Divergence theorem: The volume integral of divergence of a vector field equals the total outward
flux of the vector through the surface that bounds the volume.

Stoke theorem: The surface integral of the curl of vector field over an open surface is equal to the
closed line integral of the vector along the contour bounding the surface.

Coordinate Systems Gradient divergence
el s, Y vas L+ 24+ 2y
Rectangular T T gy T % e TayY ezt
L NS TN Y
Rectangular e T rapte T L% ' *6*{ rj+ +E =
=D s w=—tZ R4 O Ay5me) + A
Spherical TR T Raa ™ " Rsingan® R2 3}1‘{ &) F pemaras 65 T pamaan e




Gradient, Divergence, Curl and Laplacian Opera ors

CARTESIAN (RECTANGULAR) COORDINATES (x, y, 2)
LoV oV aVv
e e e,

v ) A il qu" + a:d.\. a:irdl;,-
dx iy

dz

VxA=

la 8 @ _(0A, OA,

=X| — el B
dx dy az| dy iz
Ay A, 1|

vjvqalv *V 3tV

5 L ]
ax2 gy 9z

CYLINDRICAL COORDINATES (r,¢,z)

I LaV ~ 1V _aV
VV = T 3 B —_— T —
ar

rag az
1 0 1 0A; dA
V~A:—{—(rrl,]+—:—£+{ =
ror rodg 0z
r (iﬁr' z

i 1) az

rlor ¢ oz
r'1l..: f'r",f, 1./

; 19 / av 1 32v  3%v
ViV = ——(r— e
rar dr r< de- dz-

SPHERICAL COORDINATES (R,0,¢)

"?xz\:l d o9 0 :i.(iéiA, HA,;,)
Nl I !

- (dA, 0A, o I dA,
+¢ = = +Z— r_{-’fnld;}
az ar

r Lar dg

ov_ad¥ 5l . 1 av
- 3R R 36 Rsind d¢
v.A=— 2 (R2An+ —im sinf) + Silg
: RZ3R RV Rsin0 98" ¢ Rsinf 96
R R @Rsing |
) | d 8 ?
Vxp=sralos =2 =
R=sinf [dR d# a¢
|Ag RAg (RsinB)Ag
A 3Ag 1 1 3Ag 3 dAg
ik Agsiné gl Sy e R A ) e
Rsm(—?[ﬁf?{ ¢5in0k aq&] R[sme 30 ( “”}”" [JR{ 8=
1.8 av I 2 BV 1 8%V
vy = B + —(qinﬁ-— +
R? HR( dR) R?sin@ 30 L] R2sin” § 0¢°




Electromagnetic wave propagation

XH:J'F.D D=¢E 2p .
= _ = UE
X E B BZP.H 2H_|J-H
V.D=py ] =oE = e
VB=0

By _ B _ 7. - '
H_Z__Hy u/e ;EH=0 E LHinUPW

For loss less medium 2E-p?E=0 p=./jou(c +jwe) =a+jp.

E(z,t)= Eq e ** cos(wt—Bz); Hy=Ey/m.

= | Jou
N= Joriec MI< O

ml= % tan 28, = o/we.
[1+(i
n=oa+jB a — attenuation constant - Neper /m. | Ny| =20 log, , e = 8.686 dB

For loss less medium o =0; a=0.

B — phase shift/length; p=w/B; A=21/.
Js _ | 0E
E B |j(er
If tan 0 is very small (o << we) — good (lossless) dielectric
If tan O is very large (o >> we) — good conductor

=0/ we=tan 6 — loss tanjent 6 =28,

Complex permittivity €c =€ (1 — ﬁ) =¢-je".

n
€ o
€ we

Plane wave in loss less dielectric :- (o = 0)
a:O;B:w\/ﬁ;w=ﬁ; A=21/B; n=+u/g 20.
E & H are in phase in lossless dielectric

Freespace :-(c=0,p=pg,E=¢y)

a=0,B=wHo€o; u=1/Hogy ,A=21/B; N=+/Ho/€o <0=120m 20

Here also E & H in phase .
Good Conductor :-
o >>we O/weE— 00 = 0g=0 g£=¢g); L= Ul

a=B=./mfuc;u=./2w/uc ;A=2n/B ; n= /%4450

Skindepthé =1/a
n=—VZemt= H
o

o
. . T[f
Skin resistance Ry = — = |-
o o
Rl
Rac =y

1

Rgc=—.
dc os



Poynting Vector :-

(E x H) ds =-% E[SEZ-I-MHZ] dv- [ocE2dv
S \
— E% 20z
Oave(z) = 2l € cos 0, a,
Total time avge power crossing given area Payge = Paye (8) ds

S
Direction of propagation :- (ay)
dg X dg = ady

ag X ag = ag
— Both E & H are normal to direction of propagation
— Means they form EM wave that has no E or H component along direction of propagation .

Reflection of plane wave :-
(a) Normal incidence

) . E -
Reflection coefficient T' = -2 =12=M

Eip mM2+M1
T=Ew_ 202
Eip mM2tm

Medium-I Dielectric , Medium-2 Conductor :-

N2 > Mg -
['>0 , there is a standing wave in medium & Ty.q wave in medium ‘2’.

Max values of | E{| occurs
—n7\1

Tyn coefficient

Zax =-0T/Bq = — n= 0,1,2..
7 _ —@n+1)m _ —-(2n+1)A4
min = T g7 = 2
. _ —(@n+)m _ —@n+1)m _ —-(2n+1)A4
N2 <Nq - E paxoccurs @ B Zyax = > = Zmax = 28, = 1
- _ -nm _ —nlAq
Bl Zmin_ rl“T:Zmin_ B Ty
1
H min occurs when there is |t;|jmax
g = |[E1lmax _ [Hilmax _ 1+, | r | _s-1
|E1Imin [Hi|min 1-|1|° s+1

Since [Il|<1= 1<8§<

Transmission Lines

Supports only TEM mode
LC=pe;G/C=o0/c.
d?vy d?1g
o TP Vs=0; —-r?=0

I = /(R+joL)(G+jwC) =a+jp
V(z, t) = Vi e cos (wt- Bz) + Vi e** cos (wt + Bz)
Vo _RtjoL vy

7 = 0 _ |R+jwL
0 I; Y G+jwC G+jwC

Lossless Line: (R=0=G; 0=0)
sy=a+jf=jwVLC; a=0,=wvLC ; A= 1/fVLC, u=1/+vLC

Zo=m

Distortion less :(R/L = G/C)
—>a=\/RG;B=wL\/§=wC\E=w\/ﬁ
R L
_)Z(’:\E:\E; A=1/fVLC; u==="Vp;uzg=1/C, u/zg=1/L




i/p impedance :-

Zy+ Zotan hl . . . :
Zin=1y [ﬁtzzhl] for lossless line  y=jB = tan hjBl=j tan 1
Z1+ jZgtan Bl]

Zin B ZO [Z0+ Zy, tan 1

Zy—Zy
Zy+Zg

VSWR =T =

CSWR =-T,
Transmission coefficient S=1+T

\% I +| L 7y, Zg
SWR= —fmax_ max _ "1 L _ ZL = 20
Vin Imin _|FL| Zy Zy,
(Zy>Zo) (Zy <Zy)
\%
|Zinlmax = Im_ax =8Z,
Vm'll’l
|Zin|min = Imm :ZO/S
max

Shorted line :- I, =-1,S=00  Zj, = Zs. =jZ, tan I
IL=-1,S =00 Zy=2Zs=]jZ tan pl.

Z;, may be inductive or capacitive based on length ‘0’

If 1 < A/4 - inductive (Z;, +ve)
%< | <A/2 — capacitive (Z;, -ve)

Open circuited line :-

Zin = Zoc = ~jZ cot Bl

=1 s=o I <A/4 capacitive
%< | < A2 inductive
Lsc Loc = Z(z)

Matched line : (Z;, =Z,)
Zin=Zy T=0;s=1
No reflection . Total wave Tyeq . S0, max power transfer possible .

Behaviour of Transmission Line for Different lengths :-

I=1/4 - ZZSOC;C’S} - impedance inverter @ | = A /4

I=A2: Zin=7 = ZSC:O} impedance reflector @ | = A /2

Zoc=00



Wave Guides

TM modes : (H,=0)
E, =E, sin (m—:)x sin (%) y e Nz

h? =kZ +kj .-.yz\/(%)2+(%)z—w2us where k= w +/1€

m— no. of half cycle variation in X-direction
n— no. of half cycle variation in Y- direction .

Cut off frequency w¢ = = (%)2 + (n%t)z y=0; a=0=0
k? < (%)2 + (%H)Z — Evanscent mode ; y=a; =0

k2 > (m)z + (%H)Z — Propegationmode y=jf a=0

a

2 2
= 1 I e s . . .
( ) + ( ) u, = phase velocity s lossless dielectric medium

2

[G2+@E)?
f\? o . .
B=p" .J1—- (?C) B'=w/ W B’ = phase constant in dielectric medium.

up, = /B A=2m/B =u,/f - phase velocity & wave length in side wave guide

A=W/, =

2
Ntm =1’ /1 - (f?c) n' = impedance of UPW in medium

TE Modes :- (E, =0)

H, =Hj cos (ﬂ) cos (nny) e Mz

a

_’T]TE:%: ﬂ'/,/l—(?)z

= MtE ~ NT™

)
(e}

TE¢ Dominant mode

Antennas :
. : . jloBdl . —j
Hertzian Dipole :- = an sin @ e JBY Egs = NHos
Half wave Dipole :-
jlpe IBY cos(gcos 9)
bs — Ysin® 5 Egs =NHaos
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