12
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THE FUNDAMENTAL EQUATION OF DYNAMICS

Let R be the constant upward thurst on the acrostat of mass m, coming down with a
constant acceleration w. Applying Newton’s second law of motion for the aerostat in
projection form

F,= mw,
mg-R= mw 1
Now, if Am be the mass, to be dumped, then using the Eq. F, = mw,
R—(m-Am)g= (m- Am)w, @)
2mw

From Egs. (1) and (2), we get, Am = z+w

Let us write the fundamental equation of dynamics for all the three blocks in terms of
projections, having taken the positive direction of x and y axes as shown in Fig; and vsing
the fact that kinematical relation between the accelerations is such that the blocks move
with same value of acceleration (say w)

myg-T, = myw (1) X Ny Na
T,-T,-kmgumw ) 7T | 2 N
’ - L »
and Ty-kmyg= myw 3) 7777 /l”/” )'Crr///ln /'frz
The simultaneous solution of Egs. (1), (2) and T f m
(3) yields, 1 mig 23
[mo—ki(m+m,)] 1
q T 1 +k)m,

an 2" m0+ml+m2ng mog

As the block my moves down with acceleration w, so in vector form

— {mo—k(mli-mz)]é’
Let us indicate the positive direction of x-axis along the incline (Fig.). Figures show the
force diagram for the blocks.

Let, R be the force of interaction between the bars and they are obviously sliding down
with the same constant acceleration w.
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Newton’s second law of motion in projection form along x-axis for the blocks gives :

mgsinc-k;m geosa+R= mw (1)
mygsino —R—k,m,gcos a= m,w (2)
Solving Eqgs. (1) and (2) simultancously, we get
. kymy +k, m,
W= gsinc—-gcos and

m; +m,

R= my m, (k; - k;) g cos a
my+my
(b) when the blocks just slide down the plane, w= 0, so from Eqn. (3)
km+km -0
m +m,

ot, {m;+ my)sina= (k;m +km;)cosa

- (ky m, + ky my)

my +
Case 1. When the body is launched up :
Let k be the coefficeint of friction, u the velocity of projection and ! the distance traversed
along the incline. Retarding force on the block = mgsin a + kmg cos a and hence the
retardation = gsino + kgcos a.
Using the equation of particle kinematics along the incline,

0= u’~2(gsina+kgeosa)l

@)

gsina-gcosa

Hence fan o

2

oh 1= Z(gsinu:‘-kgcosu) @)
and O0=u-(gsina+kgcosa)t

ot, u- (gsina-!-kgcosa)r 2)
Using (2) in (1) I = %(gsina-rkgoosa)rz E)

Case (2). When the block comes downward, the net force on the body
= mg sin o — km g cos o and hence its acceleration = gsina -k gcos o
Let, t be the time required then,
1= %(gsina—kgcosa)t'z @)
From Egs. (3) and (4)
7 sina-kcosa

—_—
f?2 sina+kcosa

But-:-;-- -i—- (according to the question),

Hence on solving we get

2
k= _TI__E 2'3 ana= 016
T] +
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163 At the initial moment, obviously the tension in the thread connecting m; and m., equals
the weight of m.,,.

.(a) For the block m., to come down or the block m, to go up, the conditions is
2 ; 10 go up
myg-T20 and T-m, gsina—fra0

where T is tension and f, is friction which in the limiting case equals km,g cosct. Then

or myg-m sinc>km, gcosa
or sz->(koosa+sina} N T
1
(b) Similatly in the case T
mygsina-m,g>fr, fr
or, m gsino ~my g > km, gcosa & ‘mtg, ng_
or, %:2—<(sina—kcoso.)

1
(c) For this case, ncither kind of motion is possible, and fr need not be limiting,

m
Hence, (kcosa+sina)>-;’—2>(sina-kcosa)
1

1.64 From the conditions, obtained in the previous problem, first we will check whether the
mass m, goes up or down.

Here, my/m, = vy > sin o + k cos a, (substituting the values). Hence the mass m, will come
down with an acceleration (say w). From the free body diagram of previous problem,
m,—g~T=mw ®
and T-m gsina-km geosa=mw (2)
Adding (1) and_(2), we get,
myg-m gsina—-km gcosa= (m +m)w

(mzfml-sina-kcosa)g- (n-sina-kcosa)g
(1L +my/m)) 1+7m
Substituting all the values, w= 0-048g~005 g
As m, moves down with acceleration of magnitude w= 0.05 g> 0, thus in vecior form
acceleration of m, :

W=

—

- (n-sino-kcosa)g —
W, Ton 0.05g.

1.65 Let us write the Newton’s second law in projection form along positive x-axis for the
plank and the bar

fr=mw , fr=mw, 1
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1.66

1.67

At the initial moment, fr represents the static
friction, and as the force F grows so does the
friction force fr, but up to it’s limiting value

ie fr= fri = kN=kmg. fr m; r"‘*F
Unless this value is reached, both bodies moves 3y fp

as a single body with equal acceleration. But T
as soon as the force fr reaches the limit, the  /Z/7/////7 717777777 /0// 1717
bar starts sliding over the plank i.c. wy 2 wy.

Substituting here the values of w; and w;, taken from Eq. (1) and taking into account that

=k m, g, we obtain, {at - g)/m, 2 — g, were the sign "=" corresponds to the moment
r 2 m
1

1= 1) (say)
k m+
1
© bmyg
If t<t, then w = (constant), and

1

wy = (at - km, g}/m,
On this basis w, (f} and w, (f), plots are as shown in the figure of answersheet.

Let us designate the x-axis (Fig.) and apply F,= m w_ for body A :
mgsina-kmgcosa=mw

or, w= gsina-kgeosa

Now, from kinematical equation :

Iseca= 0+(1/2)wr?
of, tw V2Iseco/(sina -kcosa) g

= V21/(sin2a/2-kecos’a)g
(using Eq. (1)).
d(____sin2a —kcosza)

2
fore . , Ta w
i.e. ~2-—09~;—2—E+2kcosasinu-0
1 °
or, tan?.a-—;:ba- 49

and putting the values of o, k and / in Eq. (2) we get 7, = 1s.

Let us fix the x -~y co-ordinate system to the wedge, taking the x — axis up, along the
incline and the y — axis perpendicular to it (Fig.).



1.68

30

Now, we draw the free body diagram for the
bar.

Letus apply Newton's second law in projection
form along x and y axis for the bar :

Tcosp-mgsino—fr=0 (1)

Tsinp+N-mgcosa= 0

or, N=mgcoso - Tsinf 2)
But f, = kN and using (2) in (1), we get

T= mgsina + kmg cos ot/ (cos P + k sin f) 3)
For T, the value of (cos B + ksin ) should be maximum
S d{cos P + ksin )
0, ap
Putting this value of B in Eq. (3) we get,

w0 or tanf =k

mg (sin o + kcos o) m g (sina + kcos a)

T - -
VIR + kY1 Y1+ k2

First of all let us draw the free body diagram for the small body of mass m and indicate
x — axis along the horizontal plane and y — axis, perpendicular to it, as shown in the figure,

Let the block breaks off the planc at t= £, i.c. N=

So, N=mg-apsinoa=0

N F
or, ty= _me 1) ﬁ, T o

asina o

From F, = mw,, for the body under

investigation : Tir77 ///l/////////
m

mdy/dt = atcos a ; Integrating within the
limits for v (1)

mfdvxz acosaftdt (using Eq. 1)
0

0

&

acosc 2

So, ve o (2
Integrating, Eqn. (2} for s (r)
3
acosat
" om 3 @
Using the value of ¢ = £, from Eq. (1), into Egs. (2) and (3)
mg°cosa m? g° cos .

V= > and s = 3

2asin“a 6 a*sin’ o
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1.69 Newton’s second law of motion in projection form, along horizontal or x - axis i.e.

170

1.71

F = mw, gives.

Fcos (as) = mvg—v* {as o= as)

ds 1\ N r
or, Fcos(as)ds= mvdv
Integrating, over the limits for v (s) KoL
e © . f.f....)___.--.___-_; x
- f cos (as) ds = v? 777777777777
' L
Y
1 / 2 Fsin o mg
or V= —
ma

= V2gsina/3a (using F= 7£)

which is the sought relationship.
From the Newton’s second law in projection from :

For the bar,
T-2kmg= (2m)w
For the motor,
T-kmg= mw'
Now, from the equation of kinematics in the frame of bar or motor :

1 2
I= 2w W)t

From (1), (2) and (3) we get on eliminating T and w/
t=Y2/(kg+3w

\'N‘

TI
2m =

m 5
T 777 I 7777777717777 77 T 7 777777 f’
-

<7
fr

)
@)

@3)

Let us write Newton’s second law in vector from F = m w, for both the blocks (in the

frame of_grotmd).
Tem g= mW, M
—> — —»
T+myg=mw, 2

These two equations contain three unknown
quantities Wy, W, and T . The third equation

is provided by the kinematic relationship i-’ A T
between the accelerations :
W W, W= W-W ()
T

where W is th acceleration of the mass m,
with respect to the pulley or elevator car.
Summing up termwise the lefi hand and th-e m@’.
right-hand sides of these kinematical equations, we get

:
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W= 2%, @
The simultaneous solution of Egs+(1), (2) and (4) yields

—» —
o m-m)g+2mw,

Wy =
my, my
Using this result in Eq. (3), we get,
M =m, = 2mm, _,
= -— d = -
w my +m, (g~wy) and T m, +m, (wo g)
m,—m
Using the results in Eq. (3) we get w = L2 @@= Wo)
m +m,

(b) obviously the force exerted by the pulley on the celing of the car

m1+m

Note : one could also solve this problem in the frame of elevator car.

Let us write Newton’s second law for both, bar 1 and body 2 in terms of projection having
taken the positive direction of x, and x, as shown in the figure and assuming that body 2

starts sliding, say, upward along the incline

T, ~m gsina=mw, 1 /v:‘:I
N
myg-Ty= mw 2 T
For the pulley, moving in vertical direction Ti
from the equation F, = m w,
20,-T = (m,)w;= 0 & mg. ;2 l
(as mass of the pulley m,= 0) 2 X2
or =21, 3)
As the length of the threads are constant, the ng
kinematical relationship of accelerations
becomes
w= 2w, C))
Simultaneous solutions of all these equations yields :
m, .
2gi2 o~ sin o
! 2g(2m-sino)
W= m " (4n+1)
( 424 1)
my

As 1> 1, w is directed vertically downward, and hence in vector form

—- 2g(2n-sina)
W=
dn+1
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1.73 Let us write Newton’s second law for masses m, and m, and moving pully in vertical
direction along positive x - axis (Fig.) :

mg-T=mw, 1 — W —> X1
myg-T=mw, @ m Tt
0
T,-2T= 0(asm=0) 777TTTTITTIT77
or I=2T 3) T
Again using Newton’s second law in projection
form for mass my along positive x, direction r Wo
(Fig.), we get T
Ty mywy 4
The kinematical relationship between the x
accelerations of masses gives in terms of ’m;g mH
projection on the x — axis 2G
Wi Wy = 2w, G)

Simultaneous solution of the obtained five equations yields :
[4mymy+my (my—m;) ] g
4mymy + my (m; +my)

W1=

In vector form

> [mymy+my (o -m)) 18
MZ T my + my (m, +
1 My + my (my +my)
1.74 As the thread is not tied with m, so if there were no friction between the thread and the
ball m, the tension in the thread would be zero and as a result both bodies will have free
fall motion. Obviously in the given problem it is the friction force cxerted by the ball on

the thread, which becomes the tension in the thread. From the condition or language of
the problem w),>w, and as both are directed downward so, relative acceleration of

M = w,-w,_ and is directed downward. Kinematical equation for the ball in the frame
of rod in projection form along upward direction gives :

P 5 Ory=wa) £ N

Newton’s second law in projection form along
vertically down direction for both, rod and ball
gives,

Mg—fr= Mw, (2)

mg—fr=mw, 3)
Multiplying Eq. (2) by m and Eq. (3) by M
and then subtracting Eq. (3) from (2) and after
vsing Eq. (1) we get

2IMm
fr M —m)t?
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Suppose, the ball goes up with accleration w, and the rod comes down with the acceleration w.
As the length of the thread is constant, 2 w, = w, (§9)]

From Newton’s second law in projection form along vertically upward for the ball and
vertically downward for the rod respectively gives,

T-mg=mw, (2)
and Mg-T'=Mw, 3
but T=2T  (because pulley is massless) (4)

From Egs. (1), (2), (3) and (4)
(M-mg _(2-m)g

W = (in upward direction}

m+ 4M n+4
and  w,= 2 2121 : 4; (downwards)

From kinematical equation in projection form, we get
1 2
i = 5 (w, +wy)t

as, w, and w, are in the opposite direction.

Putting the values of w,; and w,, the sought

time becomes
t=V2IMm+4)/3(2-n)g = 14s

Using Newton’s second law in projection form along x — axis for the body 1 and along
negalive x — axis for the body 2 respectively, we get

mg-T = mw 1

Ty-myg=myw, 2
For the pulley lowering in downward direction
from Newton’s law along x axis,
T\-2T,= 0 (as pulley is mass less)

of, T,=2T, 3)
As the length of the thread is constant so,
W2 = 2 wl (4)

The simultaneous solution of above equations yields,

2(m, - z)g 2(n- 2)(
4my+m n+4

)

Obviously during the time interval in which the body 1 comes to the horizontal floor
covering the distance 4, the body 2 moves upward the distance 2A4. At the moment when
the body 2 is at the height 2k from the floor its velocity is given by the expression :

Ve 2w, (20) = 2 2m-2)g %,M'_z)&
? ? n+4

W, =

1 +4
After the body m, touches the floor the thread becomes slack or the tension in the thread
zero, thus as a result body 2 is only under gravity for it’s subsequent motion.
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178

Owing to the velocity v, at that moment or at the height 24 from the floor, the body 2
further goes up under gravity by the distance,

pu i M(1-2)
2g n+4

Thus the soyght maximum height attained by the body 2 :
4hn-2) 6uh

m+4) m+4
Let us draw free body diagram of each body, i.c. of rod A and of wedge B and also draw
the kinemetical diagram for accelerations, after analysing the directions of motion of
A and B. Kinematical relationship of accelarations is :

Wa
tanas — m
Ws
Let us write Newton’s second law for both bedies in terms of projections having taken
positive directions of y and x axes as shown in the figure.

Ha 2h+H =28+

m,g-Ncosa=m,w, )
and Nsino = mgwy (3)
Simultaneous solution of (1), (2) and (3} yields :
m, gsina g §

w, = - = an
m,sino +mgeotacosa (1 +m cot’ a)

. S g
W= o (tan o + 1) cot o)
N —
A Wag
- B
wA -
NV Ya
L
l}rl 2 ‘mAg, _ "
ﬁx' —
wB

Note : We may also solve this problem using conservation of mechanical energy instead
of Newton’s second law,

Let us draw free body diagram of each body and fix the coordinate system, as shown in
the figure. After analysing the motion of M and m on the basis of force diagrams, let us
draw the kinematical diagram for accelerations (Fig.).

As the length of threads are constant so,
ds = ds,, and as F;M and FL do not change their directions that why

va’m I - IWMI = w {say) and

Woas 11V and Wy, 7,
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—>
wm .
T
T T fr
->
N N *} Wm
A (1 o
W
T
ox Mo
Ww
AS W, = W, + Wy
50, from the triangle law of vector addition
W= VZw (1)
From the Eq. F, = mw,_, for the wedge and block :
T-N=Mw, )
and N = mw 3)
Now, from the Eq. F = mw,, for the block
mg —_ T_ m = mw (4)
Simulianeous solution of Egs. (2), (3) and (4) yields :

W= mg - g
(m+2m+ M) (k+2+M/m)

Hence using Eq. (1)
Y &VZ
" 2+k+M/m)
Bodies 1 and 2 will remain at rest with repect to bar A for w_, < w <w,, , where w,, is

the sought minimum acceleration of the bar Beyond these limits there will be a relative
motion between bar and the bodies. For 0 < w <w,_,, the tendency of body 1 in relation

to the bar A is to move towards right and is in the opposite sense for wzw,__ . On the

basis of above argument the static friction on 2 by A is directed upward and on 1 by A
is directed towards left for the purpose of calculating w,; .

Let us write Newton’s second law for bodies 1 and 2 in terms of projection along positive

;—;rx:s-(frigw) of, fry=m T-mw (1) AN — W

Ny= mw @ T
As body 2 has no acceleration in vertical f T«
direction, so v U

fro=mg-T (3) 'mg T
From (1) and (3)

(rotfr)=m@E-w) (4) o A—> N2

But  fr,+frsk(N, +N) 2 'Ifmg.
or  fr,+fr,<k(mg+mw) 5)

e
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1.81

From (4} and (5)

mig-w)smk(g+w), or wa

1-k
Hence Wppin ™ g—é—;ﬂl

g{l-k
(1+k)

On the basis of the initial argument of the solution of 1.79, the tendency of bar 2 with
respect to 1 will be to move up along the plane.

Let us fix (x - y) coordinate system in the frame of ground as shown in the figure.
From second law of motion in projection form along y and x axes :

mgcosa-N=mwsina

o, N=m(gcosa-wsina) 1
mgsina+ fr= mwcosa

of, fr=m(wcosa-gsina) 2)

but fr < kN, so from (1) and (2)

(wcosa-gsina)sk(gcosa+wsina)

or, w(cosa—ksina)sg{kcosa+sina)

{cosa+sina)

or, W= -
cos a - ksina

’
So, the sought maximum acceleration of the

wedge :
(kcosa+sina)g (kcota+1l)g

W= - where cota> k

wax cos o - ksina cota -k

Let us draw the force diagram of each body, and on this basis we observe that the prism
moves towards right say with an acceleration wl and the bar 2 of mass m, moves down

the plane with respect to 1, say with acceleration w,1 , then, Wz = w21 +w, (Fig.)

Let us write Newton’s second law for both bodies in projection form along positive

¥, and x; axes as shown in the Fig.

mygeos o =N =myw,(, = mz[wzl(y2)+w1iy2)]= mz[0+wlsina]

or, mygeosa~Nw= m,w, sina

and " Nsina = mw,
Solving (1) and (2), we get

M, £ SIN &L COS AL _gsinacosa
-

W1==

mi+mysin‘o (my/my)+sin’a

-
Wy

¥

P

¥

Wh

1
@)
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1.82 To analyse the kinematic relations befween the bodies, skelch the force diagram of each
body as shown in the figure.

On the basis of force diagram, it is obvious that the wedge M will move towards right
and the block will move down along the wedge. As the length of the thread is constant,
the distance travelled by the block on the wedge must be equal to the distance travelled
by the wedge on the floor. Hence ds, ,, = ds,, As V., and v, do not change their
directions and acceleration that’s why W, ,, 11 V., and w,, 11 Vo A Wy = Wy =W
(say) and accordingly the diagram of kinematical dependence is shown in figure.

N 7 T
7 >
Wing —
/\% —> X Wm
% \ N M -
mg
7777777777777 7777777777777 T 7
. M

> > —» . o
As w = W, + wy, so from triangle law of vector addition.

W, = \/wf,+w”fM-2me wycos o = wY2(1 - cos o) (£)]
From F, = mw_, (for the wedge),
T=Tcosa+Nsina= Mw (2)

For the bar m let us fix ( x — y ) coordinate system in the frame of ground Newton’s law
in projection form along x and y axes (Fig.) gives

mgsino-T=mw, =m [Wm ot Wu(x)]
=m[wm+ W), COS (Jt—-u.)] =mw(l - cosat) 3

mgeosa-N=mw, = m[me(y)+wMU)]- m[0+wsina ] (4)

Solving the above Egs. simultancously, we get
_ m g sin o,
M+2m(1-cosa)
Note : We can study the motion of the block m in the frame of wedge also, alternately
we may solve this problem using conservation of mechanical energy.

w

1.83 Let us sketch the diagram for the motion of the particle of mass m along the circle of
radius R and indicate x and y axis, as shown _1hn the figure.

—> —»
(a) For the particle, change in momentum Ap= mv (-i)-mv(j)
—
$0, |Apl= V2my

and time taken in describing quarter of the circle,
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R
Af= 2y
= ~ 2 A
Hence, <F>= lap]| _ ‘@"W.va s 16(
Ar TR/ 2v nR vf _
{b) In this case vy
- — ._’
p‘.=Oandpf. mw‘t(_l), R
50 |AF|-mw,t 0 X

Hence, [<I?>] = JAtEl-

=mw,

While moving in a loop, nommal reaction exerted by the flyer on the loop at different
points and uncompensated weight if any contribute to the weight of flyer at those points.

{a) When the aircraft is at the lowermost point, Newton'’s second law of motion in projection
form F, = mw, gives

2

my
N-mg= R
my?
or, N=mg+ = 2:09 kN

R

(b) When it is at the upper most point, again
from F_= mw, we get

, my*
N'+ mg R
" mv2
N = R -mg= 0TkN

(¢} When the aircraft is at the middle point of the loop, again from F, = mw,
2

R

The uncompensated weight is mg. Thus effective weight = VN +m“g” = 1-56 kN acts
obliquely.
Let us depict the forces acting on the small sphere m, (at an arbitrary position when the

N =

= 1-4 kN

thread makes an angle 0 from the vertical) and write equation F = mw via prajection on

A A
the unit vectors u, and . From F,= mw,, we have

mgsine-md—v

dt
_mm_m vdy
ds 1(-d0)

(as vertical is refrence line of angular position)



or vdve ~glsin0d9
Integrating both the sides :

v a
dv= —gl| sinBdo
_{vv glj/;sm

v
ar, 2-glcose

2
Hence T 2gcos 0= w, a4)

(Eq. (1} can be casily obtained by the
conservation of mechanical energy).

From F =mw,

mv?

T-mgcosl= T

Using (1) we have
T= 3mgcos 0 2)
Again from the Eq. F,= mw,:

mgsinO=mw, or w,= gsin@ 3

Hence w= \/wf-rw“z - '\/(gsin{))2-1-(2g(:0s9)2 (using 1 and 3)

= gV1+3cos?O

(b) Vertical component of velocity, v, = vsin 8

So, vy2= v2sin20 = 2g1cos Bsin?0 (using 1)
. 2
For maximum v, or vy2 , @S—d[);—mg)- 0
. . 1
which yields cos 0= i

Therefore from (2) T= 3mg &= \/—— ¥3 mg

{c) We have W= W, &, +w, un thus W= Wt W
But in accordance with the problem w, = 0

So, Wiy + Wy = 0
or, gsinesin9+2gcos29(—-oos0)-0

1 o
or, cosaz‘/—s— or, 0= 547
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The ball has only normal acceleration at the lowest position and only tangential acceleration
at any of the extreme position. Let v be the speed of the ball at its lowest position and /
be the length of the thread, then according to the problem

2

"T- gsino (1)

where o is the maximum deflection angle
From Newton’s law in projection form : F,= mw,

dv

- mgsin O = mv oo

or, ~glsinBdB = vdv

On integrating both the sides within their limits.
0

-ngsmede-fvdv
]

v

or, vi = 2gl (1 - cos o) 2)
Note : Eq. (2) can easily be obtained by the conservation of mechanical energy of the
ball in the uniform field of gravity.
From Eqs. (1) and (2) with 6 = o
2gl(l-cosa)= lgcosa
or, cos a = % 50, o= 53°

Let us depict the forces acting on the body A (whlch are the force of gravity mg and the
normal reactmn N ) and write equation F= mw via projection on the unit vectors

u and u (Fig.)
From F, = mw,

mg sin O = mﬂﬁ
g dr

T A
ds Rdo
or, gRsin0d0= vdy
Integrating both side for obtaining v (8)
i v
[ srsinoao= fvav
o o ‘
2 +
of, L' s 22R (1 -cos ) o
From F, = mw,

2
mgcos 0 -N= m—‘:-,

@)

At the moment the body loses contact with the surface, N = 0 and therefore the Eq. (2)
becomes

v = gRcos @ (3)
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where vand B correspond to the moment when the body loses contact with the surface.
Solving Egs. (1) and (3) we obtain cos 8 = —;— of, B= cos” ' (2/3) and v = V 2gR/3 .

At first draw the free body diagram of the device as, shown. The forces, acting on the
sleeve are it’s weight, acting vertically downward, spring force, along the length of the
spring and normal reaction by the rod, perpendicular to its length.

Let F be the spring force, and Al be the elongation.
From, F, = mw, :

NsinB+Fcos0= ma’r (1)
where rcos 0= (I + Al).
Similarly from F,= mw,

NcosO-FsinB=0 or, N=Fsin08/cos9 (2)
From (1) and (2)
F(sin0/cos 8)-sinB+FcosO= ma’r
= mo? (ly + AD)/cos 6

On putting F= x A,

KAlsin®@+xAlcos’ 0= ma(ly+Al) & F
N /

on solving, we get,

2 o - )
K-mw’ (x/ma’-1) mg
and it is independent of the direction of rotation.

Al= mw

According to the question, the cyclist moves along the circular path and the centripetal
force is provided by the frictional force. Thus from the equation F = mw_

fr=— or hng= m_rv_
r V2 b
or kﬁ(l--ﬁ)g=7 or V= ky(r-r*/R)g 1
2
’
‘%)
For v, we should have p» =0
or, 1—%[- 0, sor=R"2
1 ——
As initial velocity is zero thus
V= 2ws (1)

As w, >0 the speed of the car increases with time or distance. Till the moment, sliding
starts, the static friction provides the required centripetal acceleration to the car.

Thus fr=mw, but fr= kmg



52

191

1.92

2
So, w' s k2g2 or, w,2+-}-s I«:’g2
or, Vs (B -wHR

Hence Voas = V (kzgz-w?)R

Vour L [TEY
so, from Eqn. (1), the sought distance 5 = 2w "2 (w ) -1 = 60m.

¢ £
Since the car follows a curve, so the maximum velocity at which it can ride without sliding
at the point of minimum radius of curvature is the sought velocity and obviously in this
case the static friction between the car and the road is limiting.

Hence from the cquation F, = mw

2
kmg = mRv or v VkRg
50 Voaxr = VER ;. 8. 1
We know that, radius of curvature for & curve at any point (x, y) is given as,
2 43/2
re | Lt @yan?] o
@y ad
For the given curve, ]
dy_a (2N gy =-a. x
o] b and P azsmu
Substituting this value in {2) we get,
[1 +(@/0?) cos® (x/a) P2
{a/ az) sin (x/a)
For the minimum R, * = =
a 2
and therefore, corresponding radius of curvature
2
o
Roin = a 3

Hence from (1) and (2)

Ve = OV kg/a
The sought tensile stress acts on cach element of the chain. Hence divide the chain into
small, similar elements so that each element may be assumed as a particle. We consider
one such clement of mass dm, which subtends angle d a at the centre. The chain moves
along a circle of known radius R with a known angular speed ® and certain forces act on
it. We have to find one of these forces.

From Newton’s second law in projection form, F, = mw, we get
2 T'sin (do./2) - dN cos 8 = dm o’ R
and from F, = mw;, we get
dN sinb = gdm
Then putting dm = mda/2 n and sin (da/2) = de/2 and solving, we get,
m (mzR + g cot 0)

T 2x
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YXx

193 Let, us consider a small element of the thread and draw free body diagram for this elemenr.
(a) Applying Newton’s second law of motion in projection form, F, = mw, for this element,

(T+dT)sin (d9/2)+ Tsin (d0/2)-dN= dm w’R=0
or, 2Tsin (d 0/2) = d N, [negelecting the term({dT sind 0/2) ]

or, Td0=dN, as sin 22 48 o)
2 2
Also, dfr=kdN= (T+dl'}y-T=dT T (2)
From Egs. (1) and (2), Cl f r
kTd0=dT or L kdo dn
In this case Q@ =n so, 0
T 3 d T+dT
or, or, nTl— n 3
1 I, 1
SO, k=;h‘l ?:= Elnno T.I. T-z

as —_— —— 0 — ‘no m‘[ mz

m.
{(b) When m—z- T, Which is greater than 7y, the blocks will move with same value of
1
acceleration. (say w) and clearly m, moves downward. From Newton’s second law in

projection form (downward for m, and upward for m,) we get :
myg-Ty= myw (4)

and Ti-mg=mw &)
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Also =Ty (6}

Simultaneous solution of Eqs. (4), (5) and (6) yields :
(mz"rlom1)g_ (n-my) [ m, ]

myamemy)  amg) & (¥ m T
The force with which the cylinder wall acts
on the particle will provide centripetal force
necessary for the motion of the particle, and
since there is no acceleration acting in the
horizontal direction, horizontal component of
the velocity will remain constant througout

(@

the motion.
So V.= vy COs QL
Using, F, = mw,, for the particle of mass m,
m V2 m V2 00‘82 o
N= x _ 0
R R *

which is the required normal force.

Obviously the radius vector describing the position of the particle relative to the origin of
coordinate is

r=xi+yj=asinwti+bcoswtj

Differentiating twice with respect the time :

P d
W= —5%=-—wz(asinwti_:-bcosmrﬁ=-—m2? 1)
t
Thus F=mw=-ma’r
(a) We have Aﬁ’-ff.dt
t
- [mga= mgt (1
0 — —n
. . . . 2( Vo8 )
(b) Using the solution of problem 1.28 (b), the total time of motion, v= - 7—
Hence using t=1tin (1)
|4p7 =mg

= -2n(vyg)/g (Vg & is -ve)
From the equation of the given time dependence force F=a t(t-t)} at t =1, the force

vanishes,
T

(a) Thus AEbu;adet
0



— 3
o1, q-f;’t('t—t}dt _a_g___
0
but p= mv so v _a—'_
6m
{b) Again from the cquation Femw
Et.("l:—t)-md—?
dt
or, alte-t2)dtm mdv"

Integrating within the limits for V),

¢ g
fETtt-tz)dt- mfd?
0 0

o gn &1l _2)_Filfx 1
? mi 2 3 mt2 3
2
at“f{x
Thus v-m(z—s)forrsr

198 We have F = Fsin ot

—
.
or mfi—l= F,sin of or mdv= I_":sinmtdt
di
On integrating,
—

my = —2 cos wt +C, (where C is integration constant)
u)

F,
When t=0, v=0, 50 C=x —
mm

—» —

-F, F

—_ 0
Hence, v= ——cos ot + ——
mo mwo

F,
As |coswt < 1 s0, v= —q-(l—oosmt)
mw
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'

Thus s-fvdt

0

Fyt Fysinot F, .
= - T 5 { ot - sin wt )
m w mw maw

(Figure in the answer sheet), N
1.99 According to the problem, the force acting on thc particle of mass m is, F Fy cos wt

—»

dv FIJ
So, m——m Fomsmt or dv= — cos ot dt
dr m

Integrating, within the limits.

—
v

f 7

It is clear from equation (1), that after starting at r = 0, the particle comes to rest fro

EI"’l

t
- F
cosmtdt or v= ——sin ot
mow
0

. i 4
the first time at = —.
)

F Ea. (1 - Fy n
rom Eq. (1), v= |v|= —; sinot for £< @
Thus during the time interval ¢ = /o, the sought distance
F L%
s —2 sin wt df = 2F2
mw mw
0
From Eq. (1)
FD L
¢
Voax = o= 2 | sinewr | <
1.100 (a) From the problem F=—rv so m_= -
av —  —»
Thus m—=—yv[asdvi]v]
dt
or, d_ T
v m
On integrating lnv=—-}%t+C
But at t=0, v=y, s0, C=Iny,
1 v_r _ I,
of, n-%——mt o1, v=v,€ m
Thus for t—+o, yva= 0

dv -r
)] Wchavcmdt-—rv so dv= mds
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Integrating within the given limits to obtain v (s );

v s
r rs
or, dve ——1ds ot v=y,-—
f mf E V=Y 1
Yy o
mvy,
Thus for va (, s-sw-T
(c} Let we have mdv _ -rv or dv —La
v m
v ¢
- v,
or, £f-—li--*j; dt, or, In 2 ..
v m nv, m
0 0
So ‘e ~-min(i/m) miny
r r
Now, average velocity over this time interval,
Piny
;
n
* vee m di
frae vp{n-1)
<v>m= = -
far " 1an Ninn
r

According 1w the problem

dv 2 dv
mxa -kv* or m;—-i-—kdl

Integrating, withing the limits,

v

t
dv k m{vo-v)
e -m{d: or, t= T (1)
*o
To finw the value of k, rewrite
dv 2 dv k
mvds-—kv or, == —
On integrating
v k
foeife
v m
¥ [+
s k=T @)
0 h v

Putting the value of k from (2) in (1), we get
h(vg=v)
s ————

v, vlny-q-
0 v
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From Newton’s second law for the bar in projection from, F, = m w, along x direction
we get
mg sin o - kmg cos o m mw

dv .
or, vE-x-- gsino —axgcosa, (as k= ax),
or, vdv = (gsina —ax g cos o) dx
or, fvdv-gf(sina—xcosa)dx
0 0

2 2
So, L=g(sinax—£~acosa) (1}

2 2 N fir

From (1) v = O at either
x=1{, or x= %tana

As the motion of the bar is unidirectional it / -mg
stops after going through a distance of &

2
—tan a.
a

From (1), for v

max?
2

d , . X . ; 1
E’-C-{smar— > acosa )= 0, which yields x = aiana

Hence, the maximum velocity will be at the distance, x = tan a/a
Putting this value of x in (1) the maximum velocity,

'\/ g sin o 1an o
Vv -

max a

Since, the applied force is proportional to the lime and the frictional force also exists, the
molion does not start just after applying the force. The body starts ils motion when F
equals the limiting friction.

Let the motion start after time ¢, , then
km
F=aty=kmg or, ty= _;g_

So, for = s 1, the body remains at rest and for £ > 7, obviously

d
md—:)= a(@-ty or, mdv=alt-t)de

Integrating, and noting v = (at ¢ = ,, we have fort> 1,

v ¢
a
fmdv= af(r-t{,)dt or v= 51-(%40)2
‘o

0

!

_ __a eV e F i P
Thus s-fvdz- 2mf(z 1) dt 6m(r ty)
t

0
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1104 While going upward, from Newton’s second law in vertical direction :

1108

vdy
kv2
At the maximum height A, the speed v = 0, so
0 A

[t e

Yo

Integrating and solving, we get,
m kv
h‘ﬁln(l'*mg) (1)
When the body falls downward, the net force acting on the body in downward direction

equals ( mg - kv?)y,
Hence net acceleration, in downward direction, according to second law of motion

m yav -(mg+kv?) or

ds - -ds

vdv v? vdy
ds &8 T % kvz-ds
£
¥’ .1
- [t [
A g-kv/m A

Integrating and putting the valve of & from (1), we get,
’ 2
v ie Vo/ Vi+kvy/mg.

Let us fix x - y co-ordinate system to the given plane, taking x-axis in the direction along
which the force vector was oriented at the moment £=0, then the fundamental cquation
of dynamics expressed via the projection on x and y-axes gives,

F dv, !
cOsw = m—y (1
dv
and Fsinwt= m—2 @
dt

. - . F_ .
(a) Using the condition W(0) =0, we obtain v, = o sinw! 3)
and
F
Vym o (1-coswt) 4
wVriev: 2F o Wt
Hence, ve Vo +v m | —— | (gin] —
L mow 2
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(b) It is secen from this that the velocity v

turns into zero after the time interval Af,
which can be found from the relation, ;}y f
At /
@ — = n. Consequentely, /
2 / F
the sought distance, is )
B At X G=wt
rd
5= f vdt= 8F2 _,f'
A mw ~
P
Jvat 0=== > X

Average velocity, < v> =

fa

i (%‘Jdt/ (Zro)=

Zn/w

2F

—— §in

mao
0

The acceleration of the disc along the plane is determined by the projection of the force
of gravity on this plane F_ = mgsin o and the friction force fr = kmg cos o. In our case

So, <> =
Tmw

k = tan o and therefore
fr=F =mgsina

Let us find the projection of the acceleration
on the derection of the tangent to the trajectory
and on the x-axis :

mw,= F_cosp-fr=mgsina(cosgp-1)
mw = F —frcosg=mgsino (1-cosp)
Itis seen fromthis thai w, = — w,, which means
that the velocity v and its projection v, differ

only by a constant value C which does not
change with time, i.e.

ve v +C,

where v, = vcos ¢. The constant C is found from the initial condition v= v, whence
C =y, since ¢ = -g- initially. Finally we obtain

y= vO/(1+coqu).
In the cource of time ¢~ 0 and v — vy/2. (Motion then is unaccelerated.)

Let us consider an element of length ds at an angle ¢ from the vertical diameter. As the
speed of this element is zero at initial instant of time, it’s centripetal acceleration is zero,
and hence, d N — hdscos g= (1, where ) is the linear mass density of the chain Let
T and T+dT be the tension at the upper and the lower ends of ds. we have from,
F=mw,

(T+dT)+hdsgsing-T= Msw,

or, dT+ ARdopgsing = Adsw,
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If we sum the above equation for all elements,
the term f dT = {} because there is no tension

at the free ends, so
/R

?Lngsinq;dtp- ?Lw,fd.s‘nklw,
0

Hence w, = glﬁ(l-ms%)

As w, = a at initial moment

So, w=|w,]=g¥-(1—cosi{-)

In the problem, we require the velocity of the body, realtive to the sphere, which itself
moves with an acceleration w,, in horizontal direction (say towards left). Hence it is advisible
to solve the problem in the frame of sphere (non-inertial frame).
At an arbitary moment, when the body is at an angle 6 with the vertical, we sketch the
force diagram for the body and write the second law of motion in projection form
F = mw,

my?
or, mgcosB-N-mwosin0=T (1)

At the break off point, N = 0, 0= 0, and let

v= vyso the Eq. (1} becomes,

Yo .

R Bcos 0, - wysin g )

From, F, = mw,

mgsin 0 —mwoco59=mﬂ- m v dv
ds Rdo

or, vdv= R(gsin0+w,cos0)d9

Yo B,

Integrating,fv dv =fR (g sinD + w, cos0)d O
0 0

2

.;% = g(1 - cosBy) + w, sin G, 3

Note that the Eq. (3) can also be obtained by the work-cnergy theorem A= AT (in the
frame of sphere)

therefore, mgR (1 -cos 0, ) + mwy R sin B, = %mvoz
[bere mw, R sin 0, is the work done by the pseudoforce (- mw)}
2
Vo

or, ﬁ=g(l—ccnsEio)-i»wusineO
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Solving Eqs. (2) and (3) we get,

2+kV 5492 w,

vo = V2gR/3 and 6, = cos ~* , Where k= -
b = V28K ¢ [ 3(1+k%) g

Hence 6 Iwn-x' 17

This is not central force problem unless the path is a circle about the said point. Rather

here F, (tangential force) vanishes. Thus equation of motion becomes,
v, = v, = conslant
2
my A
and, ——= S forr=r,
r r

We can consider the latter equation as the equilibrium under two forces. When the motion
is perturbed, we write 7 = ry + x and the net force acting on the particle is,

2 2 2

A mvy -A nxy mvy x m vy

_(r +x)"+r +x'_"(1—r—)+ 7, (l_r_)'__i(l_n)x
0 i} 7o [1} 0 4 To

2
my
This is opposite 1o the displacement x, if n < 1- (To is an outward directed centrifugul

force while -_—% is thé inward directed external force).
r

There are two forces on the sleeve, the weight F, and the centrifugal force F,. We resolve
both forces into tangential and normal component then the net dowaward tangential force

on the sleeve is,
2

mgsinB i1 - L ZcosB
This vanishes for 8= 0and for 0

0= 0,= cos”’ (—3—) which is real if

>R

2

Mw?RSin@Cos @
m2R>g. Ifm2R<g, then 1 - = R

&

cos O
»Mw*RSin@=Fz

is always positive for small values of 8 and
hence the net tangential force near 8= 0 o'
opposes any displacement away from it *
0 = 0 is then stable.

W’ R

mgs:n@ mng-; mgCost-mw?‘RSiﬂa

Ifw’R >g 1-

cosf is negative for small

O near 9= O and 6 = O is then unstable.
However 8= §; is stable because the force tends to bring the sleeve near the equilibrium
position 0= 0

If R = g, the two positions coincide and becomes a stable equilibrium point.
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Define the axes as shown with z along the local vertical, x due east and y due north. (We
assume we are in the northern hemisphere). Then the Coriolis force has the components.

F_=-2m@xv)

car

= 2mw [ v, cos0 — v, sinb) ii v, cosB_;T: v, cosB k)= 2ma (v, cos8 — v, 5in0) i
since v, is small when the direction in which the gun is fired is due north. Thus the
equation of motion (neglecting centrifugal forces) are

X = 2mw (v, sing - v, cosp),y = 0 and z = - g @ Y-No reh
Integrating we get y= v (constant), z = - gt z_vgrucal
and % = 20 vsing £ + wg 2 cosg p-Ea4St

Finally,
t2 . 1 3
x= OV squ+-3-mgt cosg
Now v >> gt in the present case. so,

2 2
. s .8
x = v sing (—;) = msmq:—v-

~ 7 cm (to the east).

The disc exerts three forces which are mutually perpendicular. They are the reaction of
the weight, mg, vertically upward, the Coriolis force 2mv' @ perpendicular to the plane of
the vertical and along the diameter, and mw’r outward along the diameter. The resuitant
force is,

F= m'\/g2+(J.m4r2-c-(2v’m)2

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts om it.
The equation is,

. 2 dr
myvs= mw°r where va —-

dr
. dv dfl »
Butv= Vdr dr(Zv )
50, -:—vzn -;—mz r2+constant
or, Ve v%,+m2 r

v, being the initial velocity when r = 0. The Coriolis force is then,

2mo Vi +* P = 2m(1)2r\/1+v(2,/m2r2

= 2-83 N on putting the values.
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The disc OBAC is rotating with angular
velocity w about the axis OO’ passing through

the edge point O. The equation of motion in 4

rotating frame is,
— —- — —,
mw = F+mw’R + 2mv’ x @ = F+F,
—
where F,, is the resultant inertia) forc., (psendo

force) which is the vector sum of centrifugal 0
and Coriolis forces.

(a) AtA,F, vanishes. Thus 0= - 2mw’Rn+2mv' o n

o'
)w
8
- "\ X
c

A
where n is the inward drawn unit vector to the centre from the point in question, here A.

Thus, v'= R

(7] 2
s0, w=tu v?_ o*R.
(b) AtB }?,-;- mw? OC +mw? BC

its magnimde is mo? VaR® - r!, where r= OB.
The equation of motion in the rotating coordinate system is,
- 2 5r —
mw = F+mw’R+2m( x )

Now, * v'= R@e;+Rsindge,

and W-w'cosee_:—w'sinBZ;
— —_ —
{ - e, € &
E;’;Fm' 0 RO Rsin@yg
wces O —wsin0 0

= & (WR sin®® §) + @R sin 0 cos B ¢ e, — WR O cos O &,
Now on the sphere,
v=(-RO?’-Rsin*0¢)e
+(RO -RsinOcos0g’) ey
+(Rsin9¢'+2800599¢)5;
Thus the equation of motion are,

m(-R 0% - Rsin’0 ¢? ) = N - mgcos 0 +mo> R sin’ 8 + 2mo R sin” 0 ¢

m(RB'-Rsinecothiaz)- mgsin9+mw2.Rsi11Gcosﬂ+2mesin8coth§)

m({Rsin@@ +2Rcos00¢)= ~2mwRbcosd
From the third equation, we get, p= - ®

A result that is easy to understant by considering the motion in non-rotating frame. The

eliminating ¢ we get,
mR & = mgcosO-N
mRO = mgsin 6
Integrating the last equation,

%mRéz- mg (1 - cos 8)
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Hence Na= (3 -2cosB)ymg
So the body must fly off for 0= 8, = cos ™! %, exactly as if the sphere were nonrotating.

Now, at this point F = centrifugal force = m® R sin 6= V% ma® R

™ vV 0’ R? 8?2 cos® 0 + (w? RH?sin’ 6 x 2m
2 2 4 28 _2 2 8¢
‘\/ (m R) +me9x3R x2m 3mmR 5+3m2R

(2) When the train is moving along a meridian only the Coriolis force has a lateral
component and its magnitude (see the previous problem) is,

Zmwvcos 8= 2m @ sin A

(Here we have put R § — v)

3, 2n_ 54000 V3
So, Fiara = 2% 2000 x 10° x 200 x S x

= 3TTKN, (we write A for the latitude)

(b) The resultant of the inertial forces acting
on the train is, _,
F,= -2moR0Ocosbe,

+(mw* RsinBcos@+2mwRsinBcos 0 p) 2y

+(mo’Rsin®0+2mwRsin0¢)e,

This vanishes if 6= 0, p= - %m

- @ =

Thus v=v¢e¢,vv--%szinB-—%chosk

(We write X for the latitude here)

Thus the train must move from the east to west along the 60™ parallel with a speed,

1 12 o ‘. .
2chos)\.-4x864x10 x6-37x 10" = 115-8 m/s ~ 417 kin/hr

We go to the equation given in 1.111. Here v, = 0 so we can take y = 0, thus we get for

the motion in the x z plane.
x=-2wvcos@

and zZ=- 8‘
Integrating, = - g¢

X= gcospt s

1 1 2h
So x-imgcostpt --3-mgcos¢>

= —coscp\/

There is thus a displacement to the east of

2 2% /D
3x864x500x1x 98:--12.6c:.m



