Class XII Session 2024-25 **Subject - Mathematics** Sample Question Paper - 4

Time Allowed: 3 hours **Maximum Marks: 80**

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

1. Let $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then A^n is equal to

a) $\begin{bmatrix} a^{n} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ c) $\begin{bmatrix} a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a^{n} \end{bmatrix}$

[1]

[1]

[1]

 $\begin{bmatrix}
 0 & na & 0 \\
 0 & na & 0 \\
 0 & 0 & na
\end{bmatrix}$ $d) \begin{bmatrix}
 a^n & 0 & 0 \\
 0 & a^n & 0 \\
 0 & 0 & a
\end{bmatrix}$

If the matrix $A = \begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$ is singular then x = ?. 2.

a) 1

b) 0

c) -1

d) -2

3. If A and B are invertible matrices, then which of the following is not correct?

a) $(AB)^{-1} = B^{-1} A^{-1}$

b) $(A + B)^{-1} = B^{-1} + A^{-1}$

c) $\det(A)^{-1} = [\det(A)]^{-1}$

d) adj $A = |A| \cdot A^{-1}$

- [1] Let $f(x) = [x]^2 + \sqrt{x}$, where $[\bullet]$ and $[\bullet]$ respectively denotes the greatest integer and fractional part functions, 4. then
 - a) f(x) is continuous and differentiable at x = 0 b) f(x) is non differentiable $\forall x \in Z$

c) f(x) is discontinuous $\forall x \in Z - \{1\}$

d) f(x) is continuous at all integral points

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i}+2\hat{j}-2\hat{k}$. 5.

a)
$$\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}.
ight)$$
, b) $\vec{r}=\widehat{2i}+2\hat{j}+3\hat{k}+\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}.
ight)$

$$\equiv R$$
 λ (

$$\lambda \in R$$
 $\lambda \in R$ $\lambda \in R$

- 6. The order of the differential equation of all circles of given radius a is:
 - a) 4 b) 1
- c) 2 d) 3
- 7. By graphical method solution of LLP maximize Z = x + y subject to $x + y \le 2x$; $y \ge 0$ obtained at [1]

[1]

[1]

[1]

[1]

- a) at infinite number of points b) only two points
- c) only one point d) at definite number of points
- The domain of the function $\cos^{-1}(2x-1)$ is 8.
 - a) $[0, \pi]$ b) [-1, 1]
- c) [0, 1]d) (-1, 0)
- $\int_0^{\pi/2} rac{\cos x}{(2+\sin x)(1+\sin x)} dx$ equals 9. [1]
- a) $\log\left(\frac{3}{4}\right)$ b) $\log\left(\frac{3}{2}\right)$ c) $\log\left(\frac{4}{3}\right)$ d) $\log\left(\frac{2}{3}\right)$
- If $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$, then the value of x is [1] 10.
 - a) $\pm 6\sqrt{5}$ b) $5\sqrt{5}$
 - c) $\pm 4\sqrt{3}$ d) $\pm 3\sqrt{5}$
- Objective function of an LPP is 11.
- a) a function to be optimized b) a function between the variables
 - d) a relation between the variables c) a constraint
- The vector in the direction of the vector $\hat{i}-2\hat{j}+2\hat{k}$ that has magnitude 9 is 12. [1]
 - a) $\hat{i}-2\hat{j}+2\hat{k}$ b) $3(\hat{i} - 2\hat{i} + 2\hat{k})$
 - c) $9(\hat{i} 2\hat{j} + 2\hat{k})$ d) $\frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$
- If $A = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 3 & -1 & 9 \end{vmatrix}$, then the value of det (Adj (Adj A)) equals [1] 13.
- - a) 14641 b) 121
- c) 11 d) 1331 If A and B are independent events such that $P(A) = \frac{1}{5}$, $P(A \cup B) = \frac{7}{10}$, then what is $P(\bar{B})$ equal to? 14.
- - a) $\frac{3}{8}$ b) $\frac{7}{9}$
 - c) $\frac{3}{7}$ d) $\frac{2}{7}$

15.	Degree of the differential equation $\sin x + \cos \left(\frac{dy}{dx}\right) =$	$= y^2$ is	[1]
	a) 2	b) not defined	
	c) 0	d) 1	
16.	If $ ec{a} imesec{b} =4, ec{a}\cdotec{b} =2$, then $ ec{a} ^2 ec{b} ^2=$	a) 1	[1]
	a) 2	b) 20	
	c) 8	d) 6	
17.	If $y = \tan^{-1} \frac{\cos x}{1 + \sin x}$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{1}{2}$	b) 1	
	c) 0	d) $\frac{-1}{2}$	
18.	The cartesian equation of a line is given by $\frac{2x-1}{\sqrt{3}} = \frac{3}{2}$	$\frac{z+2}{2} = \frac{z-3}{3}$	[1]
	The direction cosines of the line is		
	a) $\frac{\sqrt{3}}{\sqrt{55}}, \frac{-4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$	b) $\frac{3}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$	
	c) $\frac{\sqrt{3}}{\sqrt{55}}$, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$	d) $\frac{-3}{\sqrt{55}}$, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$	
19.	Assertion (A): If manufacturer can sell x items at a price of $\Re(5 - \frac{x}{100})$ each. The cost price of x items is $\Re(5 - \frac{x}{100})$		
	$(rac{x}{5}+500)$. Then, the number of items he should sell		
	Reason (R): The profit for selling x items is given by		
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
20.	Assertion (A): Let $A = \{1, 5, 8, 9\}$, $B = \{4, 6\}$ and $f = \{(1, 4), (5, 6), (8, 4), (9, 6)\}$, then f is a bijective function Reason (R): Let $A = \{1, 5, 8, 9\}$, $B = \{4, 6\}$ and $f = \{(1, 4), (5, 6), (8, 4), (9, 6)\}$, then f is a surjective function		
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
	Sec	tion B	
21.	For the principal value, evaluate $\cot \left[\sin^{-1}\left\{\cos \left(\tan \theta\right)\right\}\right]$	$^{-1}$ 1) $\}]$	[2]
		OR	
	Which is greater, tan 1 or tan ⁻¹ 1?		
22.	Show that $f(x) = \sin x - \cos x$ is an increasing function on $(\frac{-\pi}{4}, \frac{\pi}{4})$.		[2]
23.			[2]
	radius of the circular wave is 10 cm, how fast is the enclosed area increasing?		
		OR $T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T$	
	Show that the function $f(x) = x^{100} + \sin x - 1$ is increasing on the interval $(\frac{\pi}{2}, \pi)$		
24.	Evaluate: $\int \tan^3 x \sec^3 x dx$ $ x \sin \theta \cos \theta $		[2]
25.		s independent of θ .	[2]

 \boldsymbol{x}

 $\cos \theta$

1

Section C

- 26. Evaluate the integral: $\int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$ [3]
- 27. In answering a question on a multiple choice questions test with four choices in each question, out of which only one is correct, a student either guesses or copies or knows the answer. The probability that he makes a guess is $\frac{1}{4}$ and the probability the he copies is also $\frac{1}{4}$. The probability that the answer is correct, given that he copied it is $\frac{3}{4}$. Find the probability that he knows the answer to the question, given that he correctly answered it.
- 28. Evaluate the definite integral $\int_0^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$ [3]

OR

Evaluate the definite integral: $\int_1^2 e^{2x} \left(rac{1}{x} - rac{1}{2x^2}
ight) dx$

60% and 35% respectively.

29. Solve the following differential equation $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that y = 1, when x = 0. [3]

Find the particular solution of the differential equation $(xe^{x/y} + y)dx = x dy$, given that y(1) = 0

30. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3, |\vec{b}| = 4, |\vec{c}| = 5$ and each one of them being \perp to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$

OR

If $\vec{a}=(\hat{i}-\hat{j}), \vec{b}=(3\hat{j}-\hat{k})$ and $\vec{c}=(7\hat{i}-\hat{k})$, find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and for which $\vec{c}\cdot\vec{d}=1$.

31. Find $\frac{dy}{dx}$ of the function $(\cos x)^y = (\cos y)^x$. [3]

Section I

- 32. Find the area of the region $\{(x, y) : x^2 + y^2 \le 4, x + y \ge 2\}$. [5]
- 33. Let $A = \{1, 2, 3,9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)].

OR

Let A = R - {3} and B = R - {1}. Consider the function f: A \Rightarrow B defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

- 34. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ then show that $A^2 5A + 7I = 0$ and hence find A^4 .
- 35. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the [5] sphere.

OR

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

Section E

36. **Read the following text carefully and answer the questions that follow:** [4] A shopkeeper sells three types of flower seeds A₁, A₂, A₃. They are sold in the form of a mixture, where the proportions of these seeds are 4 : 4 : 2 respectively. The germination rates of the three types of seeds are 45%,

Based on the above information:

- i. Calculate the probability that a randomly chosen seed will germinate. (1)
- ii. Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates. (1)
- iii. A die is throw and a card is selected at random from a deck of 52 playing cards. Then find the probability of getting an even number on the die and a spade card. (2)

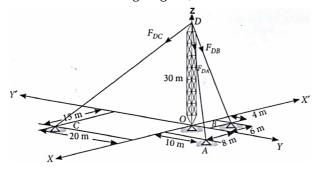
OR

If A and B are any two events such that P(A) + P(B) - P(A and B) = P(A), then find P(A|B). (2)

37. Read the following text carefully and answer the questions that follow:

[4]

Consider the following diagram, where the forces in the cable are given.



- i. What is the equation of the line along cable AD? (1)
- ii. What is length of cable DC? (1)
- iii. Find vector DB (2)

OR

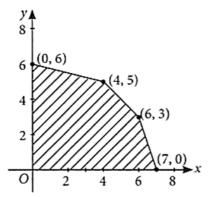
What is sum of vectors along the cable? (2)

38. Read the following text carefully and answer the questions that follow:

[4]

Linear programming is a method for finding the optimal values (maximum or minimum) of quantities subject to the constraints when a relationship is expressed as linear equations or inequations.

- i. At which points is the optimal value of the objective function attained? (1)
- ii. What does the graph of the inequality 3x + 4y < 12 look like? (1)
- iii. Where does the maximum of the objective function Z = 2x + 5y occur in relation to the feasible region shown in the figure for the given LPP? (2)



OR

What are the conditions on the positive values of p and q that ensure the maximum of the objective function Z = px + qy occurs at both the corner points (15, 15) and (0, 20) of the feasible region determined by the given system of linear constraints? (2)

Solution

Section A

1.

(c)
$$\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix}$$

Explanation: $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$
 $A^n = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \times \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \times \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \times \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \times \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \dots \{n \text{ times, (where } n \in N)\}$

$$A^n = \begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix}$$

2. **(a)** 1

Explanation: When a given matrix is singular then the given matrix determinant is 0.

$$|A| = 0$$

Given,
$$A = \begin{pmatrix} 3-2x & x+1 \\ 2 & 4 \end{pmatrix}$$

$$|A| = 0$$

$$4(3-2x)-2(x+1)=0$$

$$12 - 8x - 2x - 2 = 0$$

$$10 - 10x = 0$$

$$10(1 - x) = 0$$

$$x = 1$$

3.

(b)
$$(A + B)^{-1} = B^{-1} + A^{-1}$$

Explanation: Since, A and B are invertible matrices.

So, we can say that

$$(AB)^{-1} = B^{-1} A^{-1} ...(i)$$

We know that, $A^{-1} = \frac{1}{|A|}$ (adj A)

$$\Rightarrow$$
 adj A = $|A| \cdot A^{-1}$...(ii)

Also,
$$\det(A)^{-1} = [\det(A)]^{-1}$$

$$\Rightarrow$$
 det (A)⁻¹ = $\frac{1}{[\det(A)]}$

$$\Rightarrow$$
 det (A) · det (A)⁻¹ = 1 ...(iii)

Which is true,

So, only option d is incorrect.

4.

(c) f(x) is discontinuous $\forall x \in Z - \{1\}$

Explanation: f(x) is discontinuous $\forall x \in Z - \{1\}$

5. **(a)**
$$\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}.\right),\lambda\in R$$

Explanation: The equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$, let vector $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and vector $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - 2\hat{k}$,

the equation of line is:

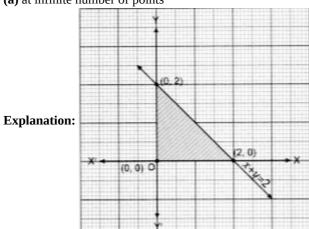
$$\overrightarrow{a} + \lambda \overrightarrow{b} = (\hat{i} + \hat{j} + \hat{k}) + \lambda (3\hat{i} + 2\hat{j} - 2\hat{k})$$

6.

(c) 2

Explanation: Let the equation of given family be $(x - h)^2 + (y - k)^2 = a^2$. It has two arbitrary constants h and k. Therefore, the order of the given differential equation will be 2.

7. **(a)** at infinite number of points



Feasible region is shaded region with corner points (0, 0), (2, 0) and (0, 2)

$$Z(0, 0) = 0$$

$$Z(2, 0) = 2 \leftarrow maximise$$

$$Z(0, 2) = 2 \leftarrow$$
 maximise

 Z_{max} = 2 obtained at (2, 0) and (0, 2) so is obtained at any point on line segment joining (2, 0) and (0, 2).

8.

Explanation: We have $f(x) = \cos^{-1}(2x - 1)$

Since, -1
$$\leq$$
 2x - 1 \leq 1

$${\Rightarrow} 0 \leq 2x \leq 2$$

$$\Rightarrow 0 \le x \le 1$$

$$\therefore$$
 x \in [0,1]

9.

(c)
$$\log\left(\frac{4}{3}\right)$$

Explanation: $\log\left(\frac{4}{3}\right)$

Let
$$I=\int_0^{rac{\pi}{2}}rac{\cos x}{(2+\sin x)(1+\sin x)}dx$$

Let $\sin x = t$, then $\cos x \, dx = dt$

When
$$x = 0$$
, $t = 0$ $x = \frac{\pi}{2}$, $t = 1$

Therefore the integral becomes

$$\begin{split} I &= \int_0^1 \frac{dt}{(2+t)(1+t)} \\ &= \int_0^1 \left[\frac{-1}{2+t} + \frac{1}{1+t} \right] dt \\ &= \left[-\log(2+t) + \log(1+t) \right]_0^1 \\ &= \left[\log(1+t) - \log(2+t) \right]_0^1 \\ &= \log 2 - \log 3 - \log 1 + \log 2 \\ &= \log \frac{4}{3} \end{split}$$

10.

(c)
$$\pm 4\sqrt{3}$$

Explanation: Given,
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow$$
 x × 1 + (-5) × 0 + (-1) × 2 x × 0 + (-5) × 2 + (-1) × 0

$$x \times 2 + (-5) \times 1 + (-1) \times 3 \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} (x - 2) \times x + (-10) \times 4 + (2x - 8) \times 1 \end{bmatrix} = 0$$

$$\Rightarrow x^{2} - 2x - 40 + 2x - 8 = 0$$

$$\Rightarrow x^{2} = 48$$

(a) a function to be optimized 11.

 $\Rightarrow x = \pm \sqrt{48} = \pm 4\sqrt{3}$

Explanation: a function to be optimized

The objective function of a linear programming problem is either to be maximized or minimized i.e. objective function is to be optimized.

12.

(b)
$$3(\hat{i}-2\hat{j}+2\hat{k})$$

Explanation: Let $\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$

Unit vector in the direction of a vector \vec{a}

$$=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{1^2+2^2+2^2}}=\frac{i-2\hat{j}+2\hat{k}}{3}$$

 \therefore Vector in the direction of \vec{a} with magnitude 9

$$=9\cdotrac{i-2j+2k}{3}=3(i-2j+2k)\,.$$

13.

Explanation: We know that, for a square matrix of order n, if $|A| \neq 0$

$$Adj(Adj A) = |A|^{n-2} A (: n = 3)$$

$$\therefore \operatorname{Adj}(\operatorname{Adj} A) = |A|^{3-2} A (: n = 3)$$

:
$$|Adj(Adj A) = ||A| A|| = |A|^3 \det A |A|^4$$

$$= 11^4 = 14641$$

(a) $\frac{3}{8}$ 14.

Explanation: Given that,

$$P(A) = \frac{1}{5}, P(A \cup B) = \frac{7}{10}$$

Also, A and B are independent events,

$$\therefore P(A \cap B) = P(A) \cdot P(B)$$

$$\Rightarrow$$
 P(A) + P(B) - P(A \cup B) = P(A) \cdot P(B)

$$\Rightarrow \frac{1}{5} + P(B) - \frac{7}{10} = \frac{1}{5} \times P(B)$$

$$\Rightarrow P(B) - \frac{1}{5} = \frac{7}{10} - \frac{1}{5} = \frac{7}{10}$$

$$\Rightarrow \frac{4P(B)}{5} = \frac{1}{2} \Rightarrow P(B) = \frac{5}{8}$$

$$\Rightarrow P(B) - \frac{P(B)}{5} = \frac{7}{10} - \frac{1}{5} = \frac{5}{10}$$

$$\Rightarrow \frac{4P(B)}{5} = \frac{1}{2} \Rightarrow P(B) = \frac{5}{8}$$

$$\therefore P(\bar{B}) = 1 - P(B) = 1 - \frac{5}{8} = \frac{3}{8}$$

15.

(b) not defined

Explanation: not defined

16.

(b) 20

Explanation: We know that

$$(\vec{a} \cdot \vec{b})^2 + (\vec{a} \times \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

$$|\vec{a}|^2 \cdot |\vec{b}|^2 = 2^2 + 4^4$$

$$|\vec{a}|^2 \cdot |\vec{b}|^2 = 20$$

(d)
$$\frac{-1}{2}$$

Explanation: Given that $y = \tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right)$

Using $\cos x=\cos^2rac{x}{2}-\sin^2rac{x}{2}$, $\sin x=2\sinrac{x}{2}\cosrac{x}{2}$ and $\cos^2 heta+\sin^2 heta=1$

Therefore,

$$y = \tan^{-1} \left(\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} \right) = \tan^{-1} \left(\frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) \left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2} \right)$$

$$\Rightarrow y = \tan^{-1} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}$$

Dividing by $\cos \frac{x}{2}$ in numerator and denominator, we get

$$y = an^{-1} rac{1- anrac{x}{2}}{1+ anrac{x}{2}}$$

Using $an\left(rac{\pi}{4}-x
ight)=rac{1- an x}{1+ an x}$, we obtain

$$y = \tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right)$$

$$=\frac{\pi}{4}-\frac{x}{2}$$

Differentiating with respect to x, we

$$\frac{dy}{dx} = -\frac{1}{2}$$

18.

(c)
$$\frac{\sqrt{3}}{\sqrt{55}}$$
, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$

Explanation: Rewrite the given line as

$$r^{rac{2\left(x-rac{1}{2}
ight)}{\sqrt{3}}} = rac{y+2}{2} = rac{z-3}{3}$$

or
$$\frac{x-\frac{1}{2}}{\sqrt{3}} = \frac{y+2}{4} = \frac{z-3}{6}$$

 \therefore DR's of line are $\sqrt{3}$, 4 and 6

Therefore, direction cosines are:

$$\frac{\sqrt{3}}{\sqrt{(\sqrt{3})^2+4^2+6^2}}, \frac{4}{\sqrt{(\sqrt{3})^2+4^2+6^2}}, \frac{6}{\sqrt{(\sqrt{3})^2+4^2+6^2}} \text{ or } \frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$$

19.

(c) A is true but R is false.

Explanation: Let S(x) be the selling price of x items and let C(x) be the cost price of x items.

Then, we have

$$S(x) = (5 - \frac{x}{100})x = 5x - \frac{x^2}{100}$$

and C(x) =
$$\frac{x}{5}$$
 + 500

Thus, the profit function P(x) is given by

$$P(x) = S(x) - C(x) = 5x - \frac{x^2}{100} - \frac{x}{5} - 500$$

i.e.
$$P(x) = \frac{24}{5}x - \frac{x^2}{100} - 500$$

On differentiating both sides w.r.t. x, we get

$$P'(x) = \frac{24}{5} - \frac{x}{50}$$

Now, P'(x) = 0 gives x = 240.

Also, P'(x) =
$$\frac{-1}{50}$$

So, P'(240) =
$$\frac{-1}{50}$$
 < 0

Thus, x = 240 is a point of maxima.

Hence, the manufacturer can earn maximum profit, if he sells 240 items.

20.

(d) A is false but R is true.

Explanation: We have, $A = \{1, 5, 8, 9\}$, $B = \{4, 6\}$ and $f = \{(1, 4), (5, 6), (8, 4), (9, 6)\}$

So, all elements of B has a domain element on A or we can say elements 1 and 8 & 5 and 9 have some range 4 & 6, respectively.

Therefore, $f: A \rightarrow B$ is a surjective function not one to one function.

Also, for a bijective function, f must be both one to one onto.

Section B

21. We know that $\tan^{-1} 1 = \frac{\pi}{4}$.

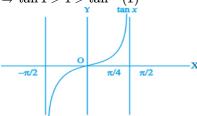
$$\cot \left[\sin^{-1} \left\{ \cos \left(\tan^{-1} 1 \right) \right\} \right]$$

$$= \cot \left\{ \sin^{-1} \left(\cos \frac{\pi}{4} \right) \right\} = \cot \left(\sin^{-1} \frac{1}{\sqrt{2}} \right) = \cot \frac{\pi}{4} = 1$$

From Fig. we note that $\tan x$ is an increasing function in the interval $\left(\frac{-\pi}{2},\ \frac{\pi}{2}\right)$, since $1>\frac{\pi}{4}\Rightarrow \tan 1>\tan\frac{\pi}{4}$. This gives $\tan 1 > 1$

$$\Rightarrow \tan 1 > 1 > \frac{\pi}{4}$$

$$\Rightarrow \tan 1 > 1 > \tan^{-1}(1)$$



22. Given: $f(x) = \sin x - \cos x$

$$f'(x) = \cos x + \sin x$$

$$= \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x \right)$$
$$= \sqrt{2} \left(\frac{\sin \pi}{4} \cos x + \frac{\cos \pi}{4} \sin x \right)$$

$$=\sqrt{2}\sin\left(\frac{\pi}{4}+x\right)$$

$$x\in\left(-rac{\pi}{4},rac{\pi}{4}
ight)$$

$$\Rightarrow -rac{\pi}{4} < x < rac{\pi}{4}$$

$$\Rightarrow -\frac{\pi}{4} < x < \frac{\pi}{4}$$

$$\Rightarrow 0 < \frac{\pi}{4} + x < \frac{\pi}{2}$$

$$\Rightarrow \sin 0^\circ < \sin \left(rac{\pi}{4} + \mathrm{x}
ight) < \sin rac{\pi}{2}$$

$$\Rightarrow 0 < \sin\left(\frac{\pi}{4} + x\right) < 1$$

$$\Rightarrow \sqrt{2}\sin\left(\frac{\pi}{4}+x\right)>0$$

$$= f'(x) > 0$$

Hence, f(x) is an increasing function on $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$

23. Let A be the area of the circle of radius r.

Then, A =
$$\pi r^2$$

Therefore, the rate of change of area A with respect to time 't' is

$$\frac{d\mathbf{A}}{dt} = \frac{d}{dt}(\pi r^2) = \frac{d}{dr}(\pi r^2) \cdot \frac{dr}{dt} = 2\pi r \frac{dr}{dt}$$
 ...(By Chain Rule)

Given that $\frac{dr}{dt} = 4 \text{cm/s}$

Therefore, when r = 10,
$$\frac{dA}{dt}$$
 = $2\pi \times 10 \times 4 = 80\pi$

Thus, the enclosed area is increasing at a rate of $80\pi~cm^2/s$, when r = 10 cm.

OR

Given interval: $x \in (\pi/2, \pi)$

$$\Rightarrow \pi/2 < x < \pi$$

$$x^{99} > 1$$

$$100x^{99} > 100$$

Again,
$$x \in (\pi/2,\pi) \Rightarrow -1 < \cos x < 0 \Rightarrow 0 > \cos x > -1$$

$$100x^{99} > 100$$
 and $\cos x > -1$

$$100x^{99} + \cos x > 100 - 1 = 99$$

$$100x^{99} + \cos x > 0$$

Thus f(x) is increasing on $(\pi/2, \pi)$

24. Let
$$I = \int \tan^3 x \sec^3 x \, dx$$
, then we have

$$I = \int \tan^2 x \sec^2 x$$
 (sec x tan x) $dx = \int (\sec^2 x - 1) \sec^2 x$ (sec x tan x) dx

Substituting sec x = t and sec x tan x dx = dt, we obtain

$$I = \int (t^2 - 1) t^2 dt = \int (t^4 - t^2) dt = \frac{t^5}{5} - \frac{t^3}{3} + C = \frac{1}{5} \sec^5 x - \frac{1}{3} \sec^3 x + C$$

$$I = \int (t^{2} - 1) t^{2} dt = \int (t^{4} - t^{2}) dt = \frac{t^{5}}{5} - \frac{t^{3}}{3} + C = \frac{1}{5} \sec^{5} x - \frac{1}{3} \sec^{3} x + C$$

$$25. \text{ Let } \Delta = \begin{bmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{bmatrix}$$

Expanding along first row,

$$\Delta = x \begin{vmatrix} -x & 1 \\ 1 & x \end{vmatrix} - \sin \theta \begin{vmatrix} -\sin \theta & 1 \\ \cos \theta & x \end{vmatrix} + \cos \theta \begin{vmatrix} -\sin \theta & -x \\ \cos \theta & 1 \end{vmatrix}$$
$$\Rightarrow \Delta = x (-x^2 - 1) - \sin \theta (-x \sin \theta - \cos \theta) + \cos \theta (-\sin \theta + x \cos \theta)$$

$$\Rightarrow \Delta = x (-x^2 - 1) - \sin \theta (-x \sin \theta - \cos \theta) + \cos \theta (-\sin \theta + x \cos \theta)$$

$$\Rightarrow \Delta = -x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$$

$$\Rightarrow \Delta = -x^3 - x + x \left(\sin^2\theta + \cos^2\theta\right) = -x^3 - x + x = -x^3$$
 which is independent of θ

Section C

26. We have,

$$I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$
 ...(i)

Using property of definite integral we have,

$$= \int_0^{\pi} \frac{(\pi - x)}{a^2 \cos^2(\pi - x) + b^2 \sin^2(\pi - x)} dx$$

$$= \int_0^{\pi} \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} dx \dots (ii)$$

Adding (i) and (ii)

Adding (i) and (ii)
$$2I = \int_0^{\pi} \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$
$$= \pi \int_0^{\pi} \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$

$$=\pi\int_0^\pi rac{\sec^2 x}{a^2+b^2\tan^2 x}dx$$
 ... (Dividing numerator and denominator by $\cos^2 x$)

$$f_{0}=2\pi\int_{0}^{rac{\pi}{2}}rac{\sec^{2}x}{a^{2}+b^{2} an^{2}x}dx\;...\left[ext{ Using }\int_{0}^{2a}f(x)dx=\int_{0}^{a}f(x)dx+\int_{0}^{a}f(2a-x)dx
ight]$$

Put $\tan x = t$

$$\Rightarrow$$
 sec² xdx = dt

When
$$x \to 0; t \to 0$$

and
$$x o rac{\pi}{2}; t o \infty$$

$$\therefore 2I=2\pi\int_0^{rac{x}{2}}rac{dt}{a^2+b^2t^2}$$

$$\Rightarrow I = rac{\pi}{b^2} \int_0^{rac{\pi}{2}} rac{dt}{rac{a^2}{t^2} + t^2}$$

$$=rac{\pi}{b^2} imesrac{b}{a}\Big[an^{-1}\Big(rac{bt}{a}\Big)\Big]_0^\infty$$

$$= \frac{\frac{b^2}{ab} \left[\frac{\pi}{2} - 0 \right]}{\frac{\pi}{ab} \times \frac{\pi}{2}}$$
$$= \frac{\pi^2}{2ab}$$

$$=\frac{ab}{1}\times\frac{\pi}{2}$$

$$=\frac{av}{\pi^2}$$

Hence,
$$I = \frac{\pi^2}{2ab}$$

27. Let E_1 = Student guesses the answer

 E_2 = Student copies the answer

 E_3 = Student knows the answer

A = Student answers the question correctly.

$$\mathrm{P}\left(\mathrm{E}_{1}
ight)=rac{1}{4},\mathrm{P}\left(\mathrm{E}_{2}
ight)=rac{1}{4},\mathrm{P}\left(\mathrm{E}_{3}
ight)=1-\left(rac{1}{4}+rac{1}{4}
ight)=rac{1}{2}$$

$$P(A | E_1) = \frac{1}{4}, P(A | E_2) = \frac{3}{4}, P(A | E_3) = 1$$

The required probability

$$=P\left(E_{3}\mid A
ight)=rac{P\left(E_{3}
ight) imes P\left(A\mid E_{3}
ight)}{\sum\limits_{i=1}^{3}P\left(E_{i}
ight) imes P\left(A\mid E_{i}
ight)}$$

$$= \frac{\frac{\frac{1}{2} \times 1}{\frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{2} \times 1}}{\frac{1}{8} + \frac{3}{8} + 1} = \frac{8}{12} = \frac{2}{3}$$

28.
$$I = \int_0^{\pi/4} \frac{\sin x \cdot \cos x}{\cos^4 x + \sin^4 x} dx$$

Dividing Nr. and Dr. by $\cos^4 x$

$$=\int_0^{\pi/4}rac{rac{\sin x \cdot \cos x}{\cos^4 x}}{rac{\cos^4 x}{\cos^4 x}+rac{\sin^4 x}{\cos^4 x}}dx$$
 $=\int_0^{\pi/4}rac{\tan x \cdot \sec^2 x}{1+ an^4 x}dx$
 $=\int_0^{\pi/4}rac{\tan x \cdot \sec^2 x}{1+(an^2 x)^2}dx$

Put $\tan^2 x = t$

 $2 \tan x \cdot \sec^2 x dx = dt$

When x = 0, t = 0 and when $x = \frac{\pi}{4}$, t = 1

$$\begin{split} & \therefore I = \frac{1}{2} \int_0^1 \frac{dt}{1 + t^2} \\ & = \frac{1}{2} \left[\tan^{-1} t \right]_0^1 \\ & = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8} \end{split}$$

We have,

$$I = \int_{1}^{2} e^{2x} \left(\frac{1}{x} - \frac{1}{2x^{2}} \right) dx$$

$$I = \int_{1}^{2} \frac{1}{x} \cdot e^{2x} - \int_{1}^{2} \frac{1}{2x^{2}} \cdot e^{2x} dx$$

$$\Rightarrow I = I_{1} - I_{2}$$

Now, $I_1 = \int_1^2 \frac{1}{x} e^{2x}$ (By parts we have)

$$\Rightarrow I_{1} = \left[\frac{1}{x}\right]_{1}^{2} \cdot \int_{1}^{2} e^{2x} dx - \int_{1}^{2} -\frac{1}{x^{2}} \frac{e^{2x}}{2} dx$$

$$\Rightarrow I_{1} = \left[\frac{1}{x} \cdot \frac{e^{2x}}{2}\right]_{1}^{2} + \int_{1}^{2} \frac{1}{2x^{2}} e^{2x} dx$$

$$\Rightarrow I_{1} = \left[\frac{1}{2x} e^{2x}\right]_{1}^{2} + I_{2}$$

As,
$$I = I_1 - I_2$$

$$\Rightarrow I = \left[\frac{1}{2x}e^{2x}\right]_{1}^{2} - I_{2} + I_{2}$$

$$\Rightarrow I = \left[\frac{1}{2x}e^{2x}\right]_{1}^{2} = \frac{1}{2}\left[\frac{1}{2}e^{4} - e^{2}\right]$$

$$\Rightarrow I = \frac{1}{4}e^{2}\left(e^{2} - 1\right)$$

29. According to the question,

Given differential equation is,

$$\begin{aligned}
\frac{dy}{dx} &= 1 + x^2 + y^2 + x^2y^2 \\
\Rightarrow \quad \frac{dy}{dx} &= 1\left(1 + x^2\right) + y^2\left(1 + x^2\right) \\
\Rightarrow \quad \frac{dy}{dx} &= \left(1 + x^2\right)\left(1 + y^2\right) \\
\Rightarrow \quad \frac{dy}{dx} &= \left(1 + x^2\right)dx
\end{aligned}$$

On integrating both sides, we get

$$\int rac{dy}{1+y^2} = \int \left(1+x^2
ight) dx \ \Rightarrow an^{-1}y = x + rac{x^3}{3} + C \; ...$$
(i)

Given that y = 1, when x = 0.

On putting x = 0 and y = 1 in Eq. (i), we get

$$tan^{-1}1 = C$$

$$\Rightarrow \quad an^{-1}(an\pi/4) = C \quad \left[\because anrac{\pi}{4} = 1
ight]$$

$$\Rightarrow C = \frac{\pi}{4}$$

On putting the value of C in Eq. (i), we get

$$\tan^{-1} y = x + \frac{x^3}{3} + \frac{\pi}{4}$$

OR

$$\therefore y = \tan\left(x + \frac{x^3}{3} + \frac{\pi}{4}\right)$$

which is the required solution of differential equation.

OR

The given differential equation can be rewritten as,

$$xe^{\frac{y}{x}} - y + x\frac{dy}{dx} = 0$$

$$\Rightarrow x\frac{dy}{dx} = y - xe^{\frac{y}{x}}$$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{y}{x}\right) - e^{\frac{y}{x}}$$

$$\Rightarrow \frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

 \Rightarrow the given differential equation is a homogenous equation.

The solution of the given differential equation is:

Put y = vx

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \left(\frac{vx}{x}\right) - e^{\frac{vx}{x}}$$

$$\Rightarrow x \frac{dv}{dx} = -e^{V}$$

Integrating both the sides we get:

$$\Rightarrow \int \frac{dv}{e^{v}} = -\int \frac{dx}{x} + c$$
$$\Rightarrow -e^{-V} = -\ln|x| + c$$

Resubstituting the value of y = vx we get

$$\Rightarrow -e^{-\left(\frac{y}{x}\right)} = -\ln|x| + c$$

Now,
$$y(1) = 0$$

$$\Rightarrow$$
 -e⁻⁽⁰⁾ = -ln|1| + c

$$\Rightarrow$$
 c = -1

$$\Rightarrow \log |x| + e^{-y/x} = 1$$

30.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = 0$$
, $\vec{b} \cdot (\vec{c} + \vec{a}) = 0$, $\vec{c} \cdot (\vec{a} + \vec{b}) = 0$ (Given)

$$\begin{vmatrix} \vec{a} + \vec{b} + \vec{c} \end{vmatrix}^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= \vec{a} \cdot \vec{a} + \vec{a} \cdot (\vec{b} + \vec{c}) + \vec{b} \cdot \vec{b} + \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{c} \cdot \vec{c} + \vec{c} \cdot (\vec{a} + \vec{b})$$

$$= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$$

$$= 9 + 16 + 25$$

$$= 50$$

$$|\vec{a} + \vec{b} + \vec{c}| = \sqrt{50}$$

$$= 5\sqrt{2}$$

OR

Let
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

 $\vec{d} \perp \vec{a}, \vec{d} \cdot \vec{a} = 0 \implies (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) (\hat{i} - \hat{j}) = 0$
 $\Rightarrow a_1 - a_2 = 0 \dots (i)$
 $\vec{d} \perp \vec{b}, \vec{a} \cdot \vec{b} = 0 \implies (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) (3j - \hat{k}) = 0$
 $\Rightarrow 3a_2 - a_2 = 0 \dots (ii)$
 $\vec{d} \vec{c} = 1 \implies (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) (7\hat{i} - \hat{k}) = 1$
 $\Rightarrow 7a_1 - a_3 = 1 \dots (iii)$

Solving equation (i) and (ii) we get $3a_1 - a_3 = 0$...(iv)

Again solving equation (iii) & (iv) we get $a_1=rac{1}{4}$

From equation (i), $a_1 - a_2 = 0$ or $a_1 = a_2 = \frac{1}{4}$

From equation (ii), 3a₂ - a₂ = 0 \Rightarrow 3 \cdot $\frac{1}{4}$ = a_3 \Rightarrow a_3 = $\frac{3}{4}$

Hence, $\vec{d} = \frac{1}{4}\hat{i} + \frac{1}{4}\hat{j} + \frac{3}{4}\hat{k}$

31. We have, $(\cos x)^y = (\cos y)^x$

On taking log both sides, we get

$$\log(\cos x)^y = \log(\cos y)^x$$

$$\Rightarrow$$
 y log(cos x) = x log(cos y)

On differentiating both sides w.r.t x, we get

$$y \cdot \frac{d}{dx} \log(\cos x) + \log \cos x \cdot \frac{d}{dx}(y)$$

$$=xrac{d}{dx}\mathrm{log}ig(\cos y)+\mathrm{log}(\cos y)rac{d}{dx}(x)$$
 [by using product rule of derivative]

$$\Rightarrow y \cdot \frac{1}{\cos x} \frac{d}{dx} (\cos x) + \log(\cos x) \frac{dy}{dx} = x \cdot \frac{1}{\cos y} \frac{d}{dx} (\cos y) + \log\cos y.1$$

$$\Rightarrow y \cdot \frac{1}{\cos x} (-\sin x) + \log(\cos x) \cdot \frac{dy}{dx} = x \cdot \frac{1}{\cos y} (-\sin y) \frac{dy}{dx} + \log\cos y.1$$

$$\Rightarrow y \cdot \frac{1}{\cos x}(-\sin x) + \log(\cos x) \cdot \frac{dy}{dx} = x \cdot \frac{1}{\cos y}(-\sin y) \cdot \frac{dy}{dx} + \log\cos y$$

$$\Rightarrow y \cdot \frac{dy}{\cos x} = \sin x + \log(\cos x) \cdot \frac{dy}{dx} = x \cdot \frac{dy}{dx} + \log(\cos y)$$

$$\Rightarrow -y \tan x + \log(\cos x) \frac{dy}{dx} = -x \tan y \frac{dy}{dx} + \log(\cos y)$$

$$\Rightarrow [x \tan y + \log(\cos x)] \frac{dy}{dx} = \log(\cos y) + y \tan x$$

$$\therefore \frac{dy}{dx} = \frac{\log(\cos y) + y \tan x}{x \tan y + \log(\cos x)}$$

$$\Rightarrow$$
[x tan y + log (cos x)] $\frac{dy}{dx}$ = log(cos y) + y tan x

$$\therefore \frac{dy}{dx} = \frac{\log(\cos y) + y \tan x}{x \tan y + \log(\cos x)}$$

Section D

32. According to Given question , Region is $\{(x, y): x^2 + y^2 \le 4, x + y \ge 2\}$.

The above region has a circle with equation $x^2 + y^2 = 4$ (i)

centre of the given circle is (0, 0)

Radius of given circle = 2

The above region consists of line whose equation is

$$x + y = 2$$
(ii)

Point of intersection of line and circle is

$$\Rightarrow$$
 x² + (2 - x)² = 4 [from Eq. (ii)]

$$\Rightarrow x^2 + 4 + x^2 - 4x = 4$$

$$\Rightarrow 2x^2 - 4x = 0$$

$$\Rightarrow$$
 2x (x - 2) = 0

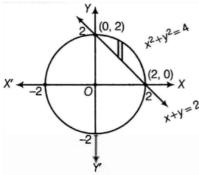
$$\Rightarrow$$
 x = 0 or 2

When x = 0, then y = 2 - 0 = 2

When
$$x = 2$$
, then $y = 2 - 2 = 0$

So, points of intersection are (0, 2) and (2, 0).

On drawing the graph, we get the shaded region as shown below:



Required area= $\int_0^2 \left[y_{ ext{(circle})} - y_{ ext{(line)}} \,
ight] dx$

$$= \int_0^2 \left[\sqrt{4-x^2} - (2-x) \right] dx \text{ [From Eq(i) and (ii)]}$$

$$=\int_0^2 \sqrt{4-x^2} dx - \int_0^2 (2-x) dx$$

$$=\left[rac{x}{2}\sqrt{4-x^2}+rac{4}{2} ext{sin}^{-1}rac{x}{2}
ight]_0^2-\left[2x-rac{x^2}{2}
ight]_0^2\left[\because\sqrt{a^2-x^2}dx=rac{x}{2}\sqrt{a^2-x^2}+rac{a^2}{2} ext{sin}^{-1}\left(rac{x}{a}
ight)
ight]$$

$$= \left[0 + 2 \sin^{-1}\!\left(\tfrac{2}{2}\right) - 0 - 2 \sin^{-1}0\right] - \left(4 - \tfrac{4}{2} - 0\right)$$

$$=\left(2\sin^{-1}-0
ight)-\left(4-rac{4}{2}
ight)$$

$$=2\cdot\frac{\pi}{2}-2$$

$$=(\pi-2)$$
 sq units

33. Given that $A = \{1, 2, 3,9\}$ (a, b) R (c, d) a + d = b + c for $(a, b) \in A \times A$ and $(c, d) \in A \times A$.

$$\Rightarrow$$
 a + b = b + a, \forall a, b \in A

Which is true for any $a, b \in A$

Hence, R is reflexive.

Let (a, b) R (c, d)

$$a+d=b+c$$

$$c + b = d + a \Rightarrow (c, d) R (a, b)$$

So, R is symmetric.

Let (a, b) R (c, d) and (c, d) R (e, f)

$$a + d = b + c$$
 and $c + f = d + e$

$$a + d = b + c$$
 and $d + e = c + f(a + d) - (d + e) = (b + c) - (c + f)$

$$(a - e) = b - f$$

$$a + f = b + e$$

So, R is transitive.

Hence R is an equivalence relation.

Let (a,b) R (2,5),then

If b<3, then a does not belong to A.

Therefore, possible values of b are >3.

For b=4,5,6,7,8,9

Therefore, equivalence class of (2,5) is

$$\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9).$$

OR

A = R - {3} and B = R - {1} and
$$f(x) = \left(\frac{x-2}{x-3}\right)$$

Let
$$x_1,x_2\in ext{A}$$
, then $f(x_1)=rac{x_1-2}{x_1-3}$ and $f(x_2)=rac{x_2-2}{x_2-3}$

Now, for $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 3}{x_2 - 3}$$

$$\Rightarrow (x_1-2)(x_2-3)=(x_2-2)(x_1-3)$$

$$\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 2x_1 - 3x_2 + 6$$

$$\Rightarrow -3x_1 - 2x_2 = -2x_1 - 3x_2$$

$$=x_1=x_2$$

 \therefore *f* is one-one function.

Now
$$y = \frac{x-2}{x-3}$$

$$\Rightarrow y(x-3) = x-2$$

$$\Rightarrow xy - 3y = x - 2$$

$$\Rightarrow x(y-1) = 3y-2$$

$$\Rightarrow x = \frac{3y-2}{y-1}$$

$$\therefore f\left(\frac{3y-2}{y-1}\right) = \frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} = \frac{3y-2-2y+2}{2y-2-3y+3} = y$$

$$\Rightarrow f(x) = y$$

Therefore, f is an onto function.

34. Given $A^2 - 5A + 7I = 0$

L.H.S =
$$\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \text{R.H.S}$$

$$A^2 = 5A - 7I$$

$$A^3 = A^2$$
. A

$$= 5A^2 - 7AI$$

$$= 5A^2 - 7A$$
 (Since AI = A)

$$= 5(5A - 7I) - 7A$$

$$= 25A - 35I - 7A$$

$$A^{3} = 18A - 35I$$

$$A^{4} = A^{3}.A$$

$$= (18A - 35I).A$$

$$= 18A^{2} - 35IA$$

$$= 18(5A - 7I) - 35A$$

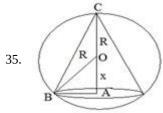
$$= 90A - 126I - 35A$$

$$= 55A - 126I$$

$$= 55\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} - 126\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 165 & 55 \\ -55 & 110 \end{bmatrix} + \begin{bmatrix} -126 & 0 \\ 0 & -126 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 39 & 55 \\ -55 & -16 \end{bmatrix}.$$



$$\begin{split} v &= \frac{1}{3}\pi r^2 h \; \left[r^2 = \sqrt{R^2 - x^2} \right] \\ V &= \frac{1}{2}\pi. \left(R^2 - x^2 \right). \left(R + x \right) \\ \frac{dy}{dx} &= \frac{1}{3}\pi \left[\left(R^2 - x^2 \right) (1) + \left(R + x \right) (-2x) \right] \\ &= \frac{1}{3}\pi \left[\left(R + x \right) \left(R - x \right) - 2x \left(R + x \right) \right] \\ &= \frac{1}{3}\pi \left(R + x \right) \left[R - x - 2x \right] \\ &= \frac{1}{3}\pi \left(R + x \right) \left(R - 3x \right)....(1) \\ \mathrm{Put} \; \frac{dv}{dr} &= 0 \end{split}$$

$$R = -x$$
 (neglecting)

$$R = 3x$$

$$\frac{R}{3} = x$$

On again differentiating equation (1)

on again uniferentiating equation (1)
$$\frac{d^2v}{dx^2} = \frac{1}{3}\pi \left[(R+x)(-3) + (R-3x)(1) \right] \\ = \frac{d^2v}{dx^2} \Big]_{x=\frac{R}{3}} = \frac{1}{3}\pi \left[\left(R + \frac{R}{3} \right) (-3) + \left(R - 3.\frac{R}{3} \right) \right] \\ \frac{1}{3}\pi \left[\frac{4R}{3} \times -3 + 0 \right] \\ = \frac{-1}{2}\pi 4R$$

$$=rac{-1}{3}\pi 4R$$
 $rac{d^2v}{dx^2}<0$ Hence maximum

Now
$$v = \frac{1}{3}\pi \left[\left(R^2 - x^2 \right) \left(R + x \right) \right] \left[x = \frac{R}{3} \right]$$

$$v = \frac{1}{3}\pi \left[\left(R^2 - \left(\frac{R}{3} \right)^2 \right) \left(R + \left(\frac{R}{3} \right) \right) \right]$$

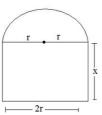
$$= \frac{1}{3}\pi \left[\frac{8R^2}{9} \times \frac{4R}{3} \right]$$

$$v = rac{8}{27} \left(rac{4}{3}
ight) \pi R^3$$

$$v = \frac{8}{27}$$
 Volume of sphere

Volume of cone = $\frac{8}{27}$ of volume of sphere.

OR



Let P be the perimeter of window

$$P=2x+2r+rac{1}{2} imes 2\pi r$$

$$10=2x+2r+\pi r$$
 [P = 10] $x=rac{10-2r-\pi r}{2}$

$$x = \frac{10-2r-\pi r}{2}$$

Let A be area of window

$$A=2rx+rac{1}{2}\pi r^2$$

$$egin{aligned} &=2r\left[rac{10-2r-\pi r}{2}
ight]+rac{1}{2}\pi r^2 \ &=10r-2r^2-\pi r^2+rac{1}{2}\pi r^2 \end{aligned}$$

$$=10r-2r^2-\pi r^2+\frac{1}{2}\pi r$$

$$=10r-2r-\pi r = 10r-2r^2-rac{\pi r^2}{2} = 10r-2r^2-rac{\pi r^2}{2} = rac{dA}{dr} = 10-4r-\pi r = rac{d^2A}{dr^2} = -\left(\pi+4
ight) = 0 = 10$$

$$\frac{dA}{dr} = 10 - 4r - \pi r$$

$$\frac{d^2A}{d^2} = -(\pi + 4)$$

$$\frac{dA}{dr} = 0$$

$$r=rac{10}{\pi+4}$$

$$\frac{d^2A}{dr^2} < 0$$
 maximum

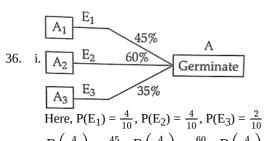
$$x=rac{10-2r-\pi r}{2} \ x=rac{10}{\pi+4}$$

$$x = \frac{10}{\pi + 4}$$

Length of rectangle = $2r = \frac{20}{\pi + 4}$

width
$$=\frac{10}{\pi+4}$$

Section E



Here,
$$P(E_1) = \frac{4}{10}$$
, $P(E_2) = \frac{4}{10}$, $P(E_3) = \frac{2}{10}$

$$P\left(\frac{A}{E_{1}}\right) = \frac{45}{100}, P\left(\frac{A}{E_{2}}\right) = \frac{60}{100}, P\left(\frac{A}{E_{3}}\right) = \frac{35}{100}$$

$$\therefore P(A) = P(E_{1}) \cdot P\left(\frac{A}{E_{1}}\right) + P(E_{2}) \cdot P\left(\frac{A}{E_{2}}\right) + P(E_{3}) \cdot P\left(\frac{A}{E_{3}}\right)$$

$$= \frac{4}{10} \times \frac{45}{100} + \frac{4}{10} \times \frac{60}{100} + \frac{2}{10} \times \frac{35}{100}$$

$$= \frac{180}{1000} + \frac{240}{1000} + \frac{70}{100}$$

$$= \frac{490}{1000} = 4.9$$

$$\therefore P(A) = P(E_1) \cdot P\left(\frac{A}{E_1}\right) + P(E_2) \cdot P\left(\frac{A}{E_2}\right) + P(E_3) \cdot P\left(\frac{A}{E_3}\right)$$

$$= \frac{4}{2} \cdot \frac{45}{2} \cdot \frac{4}{2} \cdot \frac{60}{2} + \frac{2}{2} \cdot \frac{35}{2}$$

$$=\frac{10}{1800} + \frac{100}{1000} + \frac{70}{1000}$$

$$=\frac{490}{1000}=4.9$$

ii. Required probability = $P\left(\frac{E_2}{A}\right)$

$$= \frac{P(E_2) \cdot P\left(\frac{A}{E_2}\right)}{P(A)}$$

$$= \frac{\frac{4}{10} \times \frac{60}{100}}{\frac{490}{1000}}$$

$$=\frac{240}{400}=\frac{24}{400}$$

iii. Let,

 E_1 = Event for getting an even number on die and

 E_2 = Event that a spade card is selected

$$\therefore P(E_1) = \frac{3}{6}$$

$$=\frac{1}{2}$$

and
$$P(E_2) = \frac{13}{52} = \frac{1}{4}$$

Then,
$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$$

= $\frac{1}{2}$, $\frac{1}{4} = \frac{1}{8}$
OR
 $P(A) + P(B) - P(A \text{ and } B) = P(A)$
 $\Rightarrow P(A) + P(B) - P(A \cap B) = P(A)$
 $\Rightarrow P(B) - P(A \cap B) = 0$
 $\Rightarrow P(A \cap B) = P(B)$
 $\therefore P(A|B) = \frac{P(A \cap B)}{P(B)}$
= $\frac{P(B)}{P(B)}$
= 1

37. i. Clearly, the coordinates of A are (8, 10, 0) and D are (0, 0, 30)

$$\therefore \text{ Equation of AD is given by}$$

$$\frac{x-0}{8-0} = \frac{y-0}{10-0} = \frac{z-30}{-30}$$

$$\Rightarrow \frac{x}{4} = \frac{y}{5} = \frac{30-z}{15}$$

ii. The coordinates of point C are (15, -20, 0) and D are (0, 0, 30)

∴ Length of the cable DC
$$= \sqrt{(0-15)^2 + (0+20)^2 + (30-0)^2} \\ = \sqrt{225 + 400 + 900} = \sqrt{1525} = 5\sqrt{61} \text{ m}$$

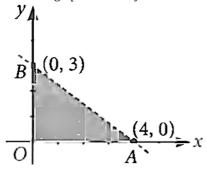
iii. Since, the coordinates of point B are (-6, 4, 0) and D are (0, 0, 30), therefore vector DB is $(-6-0)\hat{i} + (4-0)\hat{j} + (0-30)\hat{k}$, i.e., $-6\hat{i} + 4\hat{j} - 30\hat{k}$

OR

Required sum

$$= (8\hat{i} + 10\hat{j} - 30\hat{k}) + (-6\hat{i} + 4\hat{j} - 30\hat{k}) + (15\hat{i} - 20\hat{j} - 30\hat{k})$$
$$= 17\hat{i} - 6\hat{j} - 90\hat{k}$$

- 38. i. When we solve an L.P.P. graphically, the optimal (or optimum) value of the objective function is attained at corner points of the feasible region.
 - ii. From the graph of 3x + 4y < 12 it is clear that it contains the origin but not the points on the line 3x + 4y = 12.



iii. Maximum of objective function occurs at corner points.

Corner Points	Value of $Z = 2x + 5y$
(0, 0)	0
(7, 0)	14
(6, 3)	27
(4, 5)	$33 \leftarrow Maximum$
(0, 6)	30

OR

Value of Z = px + qy at (15, 15) = 15p + 15q and that at (0, 20) = 20q. According to given condition, we have $15p + 15q = 20q \Rightarrow 15p = 5q \Rightarrow q = 3p$