Sample Question Paper - 35 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- *3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.*
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

1. Find the mean of the following distribution :

Class	3-5	5-7	7-9	9-11	11-13
Frequency	5	10	10	7	8

2. In the given figure, *PQ* is the common tangent to both the circles. *SR* and *PT* are also tangents. If SR = 16 cm, PT = 28 cm, then find *RP*.

3. For what values of k, the quadratic equation $x^2 - 2kx + 5k = 0$ has equal roots?

OR

Solve for $x: 2x^2 + 6\sqrt{3}x - 60 = 0$

- 4. If the numbers 2n + 1, 3n + 4 and 6n + 1 are in A.P., find *n* and hence find the numbers.
- 6. Two cubes each of volume 27 cm³ are joined end to end to form a solid. Find the surface area of the resulting cuboid.

OR

A cuboidal solid block of metal 49 cm \times 44 cm \times 18 cm is melted and formed into a solid sphere. Calculate the radius of the sphere.

Maximum Marks: 40

SECTION - B

7. Find out the mode for the following data showing frequency with which profits are made:

Profit (in ₹ 10)	3-4	4-5	5-6	6-7	7-8	8-9	9-10
Frequency	83	27	25	50	75	38	18

- **8.** The angle of depression of a car, standing on the ground, from the top of a 75 m high tower, is 30°. Find the distance of the car from the base of the tower.
- **9.** Draw a circle with the help of a round bottle cap. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

OR

Geometrically divide a line segment of length 9.6 cm internally in the ratio of 4 : 1.

10. Find the median of the following data :

Class interval	0-10	10-20	20-30	30-40	40-50	Total
Frequency	8	16	36	34	6	100

SECTION - C

11. Two ships are approaching a light-house from opposite directions. The angles of depression of the two ships from the top of the light-house are 30° and 45°. If the distance between the two ships is 100 m, find the height of the light-house. [Use $\sqrt{3} = 1.732$]

OR

Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles. [Use $\sqrt{3} = 1.732$]

12. From a solid cylinder of height 20 cm and diameter 12 cm, a conical cavity of height 8 cm and radius 6 cm is hollowed out. Find the total surface area of the remaining solid. $\left[\text{Use } \pi = \frac{22}{7} \right]$

Case Study - 1

13. In a maths class, the teacher draws two circles that touch each other externally at point *K* with centres *A* and *B* and radii 5 cm and 4 cm respectively as shown in the figure.

Based on the above information, answer the following questions.

- (i) Find the value of *PA*.
- (ii) Find the value of *PK*.

Case Study - 2

14. While playing a treasure hunt game, some clues (numbers) are hidden in various spots collectively forms an A.P. If the number on the n^{th} spot is 5n - 1, then answer the following questions to help the player in spotting the clues.

- (i) Which number is on the 24th spot?
- (ii) Which spot is numbered as 119?

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

1. The frequency distribution table from the given data can be drawn as :

Class	Class marks	Frequency	$f_i x_i$
	(x_i)	(f_i)	
3-5	4	5	20
5-7	6	10	60
7-9	8	10	80
9-11	10	7	70
11-13	12	8	96
Total		40	326

$$\therefore \quad \text{Mean} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{326}{40} = 8.15$$

2. Since tangents drawn from an external point to a circle are equal in length.

 \therefore PQ = PT = 28 cm and RQ = RS = 16 cm

Now, RP = PQ - RQ = (28 - 16) cm = 12 cm

3. For roots of $x^2 - 2kx + 5k = 0$ to be equal, Discriminant, D = 0

$$\therefore \quad (-2k)^2 - 4(1)(5k) = 0 \implies 4k^2 - 20k = 0$$
$$\implies k^2 - 5k = 0 \implies k(k-5) = 0 \implies k = 0 \text{ or } k = 5$$

OR

 $\Rightarrow x^2 - x - 6 = 0$, which is the required quadratic equation.

Also,
$$x^2 + 2x - 3x - 6 = 0$$

 $\Rightarrow x(x+2) - 3(x+2) = 0 \Rightarrow (x+2)(x-3) = 0$

 \Rightarrow x = 3, -2 (x = -2 is not possible as x is a natural number)

 $\therefore x = 3$

Let the edge of each cube 6. be *a* cm. :. Volume of each cube $= a^3 \text{ cm}^3$

 $= 2 (6 \times 3 + 3 \times 3 + 3 \times 6) = 2 \times 45 = 90 \text{ cm}^2$

OR

Let *r* be the radius of sphere.

Now, volume of block = volume of sphere

$$\Rightarrow 49 \times 44 \times 18 = \frac{4}{3} \times \frac{22}{7} \times r^{3}$$
$$\Rightarrow \frac{49 \times 44 \times 18 \times 3 \times 7}{4 \times 22} = r^{3}$$
$$\Rightarrow (7 \times 3)^{3} = r^{3} \text{ or } r = 21 \text{ cm}$$

 \therefore Radius of sphere = 21 cm

7. From the given data, we observe that the highest frequency is 83, which lies in the class interval 3-4.

... Modal class is 3-4.
So,
$$l = 3$$
, $h = 1$, $f_1 = 83$, $f_0 = 0$, $f_2 = 27$

$$\therefore \quad \text{Mode} = l + \left(\frac{J_1 - J_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $3 + \left(\frac{83 - 0}{2 \times 83 - 0 - 27}\right) \times 1 = 3 + \frac{83}{166 - 27} = 3 + \frac{83}{139}$
= $3 + 0.5971 = 3.5971$
8. $\frac{D}{4}$

Let AB = 75 m be the height of tower and C be the position of car.

Then, according to question,

530°

In right
$$\triangle ABC$$
, $\cot 30^\circ = \frac{AC}{AB}$
 $\Rightarrow AC = AB \cot 30^\circ$

 $\Rightarrow AC = 75 \times \sqrt{3} \Rightarrow AC = 75\sqrt{3} \text{ m}$

Thus, the distance of the car from the base of the tower is $75\sqrt{3}$ m.

9. Steps of construction :

Step-I: Draw the circle using a round bottle cap.

Step-II: Draw two non parallel chords *PQ* and *RS* on this circle.

Step-III: Draw the perpendicular bisectors of *PQ* and *RS* such that they intersect at *O*.

Therefore, *O* is the centre of the given circle.

Step-IV : Take a point *P* outside this circle.

Step-V: Join *OP* and bisect it. Let *M* be the mid-point of *OP*.

Step-VI : Taking *M* as centre and *OM* as radius, draw a circle intersecting the given circle at *A* and *B*.

Step-VII: Join PA and PB.

Thus, PA and PB are the required two tangents.

OR

Steps of construction :

Step-I : Draw a line segment AB = 9.6 cm. **Step-II** : Draw a ray AX making an acute angle with AB.

Step-III : Locate (4 + 1 =) 5 points $A_1, A_2, ..., A_5$ on *AX* such that $AA_1 = A_1A_2 = ... = A_4A_5$.

Step-IV : Join A_5B .

Step-V : Through A_4 , draw A_4Y parallel to A_5B meeting AB at point Y such that $\angle AA_5B = \angle AA_4Y$. Thus, point Y divides AB in the ratio of 4 : 1, *i.e.*,

AY: YB = 4:1

10. The frequency distribution table from the given data can be drawn as :

Class interval	Frequency (<i>f_i</i>)	Cumulative frequency (<i>c.f.</i>)
0-10	8	8
10-20	16	24
20-30	36	60
30-40	34	94
40-50	6	100
Total	100	

Here, N = 100, $\frac{N}{2} = 50$, which lies in the class interval 20-30

:. Median class is 20-30.

Median =
$$l + \left[\frac{\frac{N}{2} - c. f.}{f}\right] \times h$$

= $20 + \left[\frac{50 - 24}{36}\right] \times 10 = 20 + 7.22 = 27.22$

11. Let *AB* be the light house and two ships *C* and *D* are 100 m apart.

Let BC = x then, BD = 100 - x

OR

Let *AB* and *CD* be two poles of height *h* m. Let *P* be a point on road such that BP = x m so that PD = BD-BP = (80 - x)m

$$\frac{h}{80-x} = \tan 30^\circ \Rightarrow \quad h = \frac{1}{\sqrt{3}}(80-x) \qquad \dots (ii)$$

From (i) and (ii), we have

$$\sqrt{3}x = \frac{1}{\sqrt{3}}(80 - x) \implies 3x = 80 - x$$
$$\implies 4x = 80 \text{ or } x = 20$$

Distance of point *P* from AB = 20 m Distance of point *P* from CD = 80 - 20 = 60 m

Distance of point 1 from CD = 00 = 20 = 00

Height of each pole, $h = x\sqrt{3} = 20\sqrt{3}$

$$= 20 \times 1.732 = 34.64$$
 m

12. Height of the cylinder, $h_1 = 20$ cm

 \therefore Radius of the cylinder, $r = \frac{12}{2} = 6$ cm

Height of the cone, $h_2 = 8$ cm Radius of the cone, r = 6 cm Total surface area of the remaining solid

= Area of the top face of the cylinder + CSA of the cylinder + CSA of the cone.

Slant height of the cone, $l = \sqrt{(8)^2 + (6)^2}$

$$=\sqrt{64+36} = \sqrt{100} = 10 \text{ cm}$$

CSA of the cone = πrl

$$=\frac{22}{7} \times 6 \times 10 = \frac{1320}{7} \text{ cm}^2$$

CSA of the cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 6 \times 20 = \frac{5280}{7} \text{ cm}^2$$

Area of the top face of the cylinder $= \pi r^2$

$$=\frac{22}{7}\times(6)^2=\frac{792}{7}\,\mathrm{cm}^2$$

... Total surface area of the remaining solid

$$= \left(\frac{1320}{7} + \frac{5280}{7} + \frac{792}{7}\right) \text{ cm}^2$$
$$= \frac{7392}{7} \text{ cm}^2 = 1056 \text{ cm}^2$$

13. Here, AS = 5 cm, BT = 4 cm [:: Radii of circles]

(i) Since, radius at point of contact is perpendicular to tangent.

- :. By Pythagoras theorem, we have $PA = \sqrt{PS^2 + AS^2} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13 \text{ cm}$
- (ii) PK = PA + AK= 13 + 5 = 18 cm.

20 cm

6 cm

14. Number on n^{th} spot = 5n - 1*i.e.*, $t_n = 5n - 1$

(i) Number on
$$24^{\text{th}}$$
 spot = t_{24}

$$= 5(24) - 1 = 119$$

(ii) Let n^{th} spot is numbered as 119.

$$\therefore t_n = 119$$

 \Rightarrow $5n - 1 = 119 \Rightarrow 5n = 120 \Rightarrow n = 24$