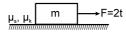


DPP No. 30

Total Marks : 21


Max. Time: 21 min.

Topic : Friction

Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.4 Comprehension ('-1' negative marking) Q.5 to Q.7

M.M., Min. [12, 12] (3 marks, 3 min.) (3 marks, 3 min.) [9, 9]

1. A force F = 2t (where t is time in seconds) is applied at t = 0 sec. to the block of mass m placed on a rough horizontal surface. The coefficient of static and kinetic friction between the block and surface are μ_{e} and μ_{e} respectively. Which of the following graphs best represents the acceleration vs time of the block. $(\mu_{s} > \mu_{k})$

2. A body of mass m is kept on a rough fixed inclined plane of angle of inclination θ = 30°. It remains stationary. Then magnitude of force acting on the body by the inclined plane is equal to: (B) mg sin θ (C) mg cos θ (D) none of these (A) mg

(C) $\frac{2mg}{9}$

3. A body of mass 10 kg lies on a rough inclined plane of inclination θ =

> $\sin^{-1}\frac{3}{5}$ with the horizontal. When a force of 30 N is applied on the block parallel to &

upward the plane, the total reaction by the plane on the block is nearly along:

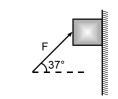
(A) OA	(B) OB	(C) OC	(D) OD

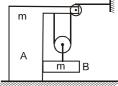
4. A 1 kg block is being pushed against a wall by a force F = 75 N as shown in the Figure. The coefficient of friction is 0.25. The magnitude of acceleration of the block is: (C) 5 m/s²

(A) 10 m/s² (B) 20 m/s²

COMPREHENSION

5.


Figure shows an arrangement of pulleys and two blocks. All surfaces are frictionless. All pulleys and strings are massless. All strings are smooth and massless.


- The acceleration of block A is : (A) $\frac{2g}{q}$ (C) $\frac{g}{5}$ (B) $\frac{g}{g}$
- 6. Normal reaction between A and ground is :

(A) mg	(B) <u>17mg</u>	(C) <u>16mg</u>
()	ý 9	ΎΥ

Normal reaction between A and B is : 7.

> (B) $\frac{mg}{q}$ (A) mg

Horizontal surface

(D) None of these

(D) None of these

(D) None of these

(D) none

<u>Answers Key</u>

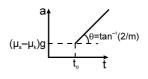
DPP NO. - 30

1.	(D)	2.	(A)	3.	(A)	4.	(B)	5 . (A)
6.	(B)	7.	(C)					

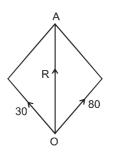
Hint & Solutions

DPP NO. - 30

1. Let $t_{\rm o}$ be the time when friction force is maximum


 $F = 2t_o = \mu_s mg$

The block just starts moving immediately after this instant, with acceleration


=
$$\frac{\mu_s mg - \mu_k mg}{m} = (\mu_s - \mu_k) g = (\mu_s - \mu_k) g$$

For t > t_o the acceleration of the block is


$$a = \frac{2t_o - \mu_k \, mg}{m}$$

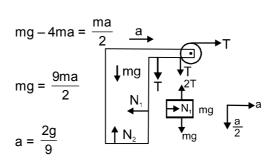
- 2. N = mg cos θ , f_s = mg sin θ R² = N² + f_s² \Rightarrow R = mg (A).
- 3. Frictional force along the in upward direction = 10 g sin θ - 30 = 30 Nt N = log cos θ = 80 Nt

Direction of R is along OA.

As the upward force (45N) is greater than total downward force (25N) hence, it has an upward acceleration.

$$\Sigma F_x = 0 \implies N = 60 N$$

$$\Sigma F_y = ma_y$$


$$\Rightarrow 45 - 25 = (1)a$$

$$a = 20 m/s^2.$$

Sol.(5,6,7)

T = 2ma

$$mg - 2T = \frac{ma}{2}$$

$$T = \frac{4mg}{9}$$

$$N_{1} = ma = \frac{2mg}{9}$$

$$N_{2} = mg + 2T$$

$$N_{2} = mg + 2T$$

$$= mg + \frac{8mg}{9} = \frac{17mg}{9}.$$