
## **Practical Geometry**

## **MATHEMATICAL REASONING**

- 1. Through a line in a plane, number of lines that can be drawn is
  - (a) 1

(b) 2

- (c) 0
- (d) Infinite
- 2. An angle of 75° is drawn using a pair of compass and ruler by bisecting .
  - (a)  $60^{\circ}$
- (b)  $60^{\circ}$  and  $90^{\circ}$
- (c)  $0^{\circ}$  and  $90^{\circ}$
- (d)  $120^{\circ}$  and  $180^{\circ}$
- 3. If O is a point on the circle and P is a point in the exterior of the circle. Length of OP = 7.5 cm and radius of the circle is 5.5 cm. What will be the length of  $\overline{QP}$ , if Q is the centre?



- (c) 7.5 cm
- (d) 13.5 cm
- 4. A perpendicular is drawn to a line segment MN at N using protractor and point P is marked on perpendicular, then
  - (a)  $\overline{MP} \perp \overline{NP}$
- (b)  $\overline{MN} | \overline{NP}$
- (c) MN | MP
- (d)  $\overline{MN} \perp \overline{NP}$
- Sumit constructed an angle of 90° and **5**. trisected it. Measure of two angles taken together will be
  - (a)  $20^{\circ}$
- (b) 40°
- (c)  $60^{\circ}$
- (d) None of these
- A line segment has end points. 6.
  - (a) No
- (b) 2
- (c) 1
- (d) 3

- 7. Number of perpendicular bisectors for a line segment is
  - (a) Three
- (b) Five
- (c) One
- (d) Infinite
- 8. To draw an angle of 150° using a pair of compass and ruler
  - (a) Bisect angle between 120° and 180°
  - (b) Bisect angle between 60° and 120°
  - (c) Bisect angle between  $0^{\circ}$  and  $160^{\circ}$
  - (d) None of these
- A line segment  $\overline{PQ} = 8.2 \ cm$  is bisected at O, 9. then length of PO is \_\_\_.
  - (a) 4.2 cm
- (b) 4 cm
- (c) 4.1 cm
- (d) 16.4 cm
- 10. Number of set squares in geometry box is
  - (a) 0
- (b) 1
- (c) 2
- (d)

## **ACHIEVERS SECTION (HOTS)**

11. Which of the following steps is INCORRECT while constructing an angle of 60°?

> **Step - 1:** Draw a line EF and mark a point O on it.

> **Step – 2:** Place the pointer of the compass at O and draw an arc of convenient radius which cuts the line EF at point P.

> **Step – 3:** With the pointer at A (as centre) now draw an arc that passes through O.

> **Step – 4:** Let the two arcs intersect at Q. Join OQ. We get  $\angle$ QOP whose measure is  $60^{\circ}$ .

- (a) Only Step 1
- (b) Both Step 2 and Step 3
- (c) Only Step 3
- (d) Both Step 3 and Step 4

- **12.** Fill in the blanks.
  - (i) Perpendicular bisector of the diameter of a circle passes through the **P** of the circle.
  - (ii) If B is image of A in line l and D is image of C in line l, then  $AC = \mathbf{Q}$ .
  - (iii) Angle bisector is a ray which divides the angle in  $\underline{\mathbf{R}}$  equal parts.

|     | P      | Q  | R |
|-----|--------|----|---|
| (a) | Centre | BD | 2 |
| (b) | Centre | AD | 1 |
| (c) | Centre | AB | 1 |
| (d) | Centre | BC | 2 |

**13.** Arrange the given steps in CORRECT order of constructing a perpendicular using ruler and compases.

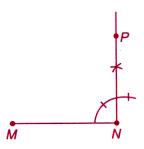
Steps of construction:

- 1. With A and B as centres and a radius greater than AP construct two arcs, which cut each other at Q.
- 2. Join PQ. Then  $\overline{PQ}$  is perpendicular to 1. We write  $\overline{PQ} \perp 1$  .
- 3. With P as centre and a convenient radius, construct an arc intersecting the line *l* at two points A and B.
- 4. Given a point P on a line 1.
- (a) 4 3 1 2
- (b) 3 4 2 1
- (c) 4-1-3-2
- (d) 1 2 3 4
- **14.** State 'T' for true and 'F' for false.
  - (i) It is possible to divide a line segment in 5 equal parts by perpendicularly bisecting a given line segment 5 times.
  - (ii) With a given centre and a given radius, only one circle can be drawn.
  - (iii) If we bisect an angle of a square, we get two angles of  $45^{\circ}$  each.

|     | (i) | (ii) | (iii) |
|-----|-----|------|-------|
| (a) | F   | T    | T     |
| (b) | F   | T    | F     |
| (c) | T   | F    | T     |
| (d) | T   | T    | F     |

**15.** Read the statements carefully.

**Statement – 1:** Two lines are said to be perpendicular if they intersect each other at an angle of  $90^{\circ}$ .


**Statement – 2:** A unique circle can be drawn passing through the given centre. Which of the following options holds?

- (a) Both Statement  $\mathbf{1}$  and Statement  $\mathbf{2}$  are true.
- (b) Statement  $\mathbf{1}$  is true and Statement  $\mathbf{2}$  is false.
- (c) Statement 1 is false and Statement 2 is true
- (d) Both Statement  $\mathbf{1}$  and Statement  $\mathbf{2}$  are false.

| ANSWER KEY |   |     |   |     |   |     |   |     |   |
|------------|---|-----|---|-----|---|-----|---|-----|---|
| 1.         | D | 2.  | В | 3.  | В | 4.  | D | 5.  | С |
| 6.         | В | 7.  | С | 8.  | Α | 9.  | С | 10. | С |
| 11.        | С | 12. | Α | 13. | Α | 14. | Α | 15. | В |

## **HINTS & EXPLANATIONS**

- 1. (d) Not Available
- **2.** (b) Not Available
- **3.** (b) :  $\overline{OQ} + \overline{OP} = 5.5 + 7.5 = 13 cm$
- **4.** (d):



- $MN \perp NP$
- **5.** (c) Not Available
- **6.** (b) Not Available

- 7. (c) Not Available
- **8.** (a) Not Available
- 9. (c) : Length of  $\overline{PO} = \left(\frac{8.2}{2}\right) cm = 4.1 cm$ P

  8.2 cm

  Q
- 10. (c) Not Available
- **11.** (c): Step-3 is incorrect it should be written as: with the pointer at P (as centre) now draw an arc that passes through O.
- **12.** (a) Not Available
- 13. (a) Not Available
- **14.** (a) Not Available
- **15.** (b) Not Available