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Chapter 3

UNIPLANAR MOTION WHERE
THE ACCELERATIONS PARALLEL
TO FIXED AXES ARE GIVEN

38. Let the coordinates of a particle referred to axes Ox and Oy be
x and y at time t, and let its accelerations parallel to the axes at this
instant be X and Y .

The equations of motion are then

d2x
dt2 = X ...(1),

and
d2y
dt2 = Y ...(2).

Integrating each of these equations twice, we have two equations
containing four arbitrary constants. These latter are determined from

the initial conditions, viz. the initial values x, y,
dx
dt

and
dy
dt

.
From the two resulting equations we then eliminate t, and obtain a

relation between x and y which is the equation to the path.

39. Parabolic motion under gravity, supposed constant, the resis-
tance of the air being neglected.

Let the axis of y be drawn vertically upward, and the axis of x
horizontal. Then the horizontal acceleration is zero, and the vertical
acceleration is −g.

Hence the equations of motion are

d2x
dt2 = 0, and

d2y
dt2 =−g ...(1).

45
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Integrating with respect to t, we have

dx
dt

= A, and
dy
dt

=−gt +C ...(2).

Integrating a second time,

x = At +B, and y =−g
t2

2
+Ct +D ...(3).

If the particle be projected from the origin with a velocity µ at
an angle α with the horizon, then when t = 0 we have x = y = 0,
dx
dt

= usinα.

Hence from (2) and (3) we have initially ucosα = A, usinα = C,
0 = B and 0 = D.

∴ (3) gives x = ucosαt, and y = usinαt− 1
2

gt2.

Eliminating t, we have

y = x tanα− g
2

x2

u2 cos2 α
which is the equation to a parabola.

40. A particle describes a path with an acceleration which is always
directed towards a fixed point and varies directly as the distance
from it; to find the path.

Let O be the centre of acceleration and A the point of projection.
Take OA as the axis of x and OY parallel to the direction of the initial
velocity, V , of projection.

Let P be any point on the path, and let MP be the ordinate of P.
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The acceleration, µ.PO, along PO is equivalent, by the triangle of
accelerations, to accelerations along PM and MO equal respectively
to µ.PM and µ.MO.

V

X
AM

O

Q

B

Y

P

Hence the equations of motion are

d2x
dt2 =−µx ...(1),

and
d2y
dt2 =−µy ...(2).

The solutions of these equations are, as in Art. 22,

x = Acos[
√

µt +B] ...(3),

and y = C cos[
√

µt +D] ...(4).

The initial conditions are that when t = 0, then

x = OA = a,
dx
dt

= 0, y = 0, and
dy
dt

= V.

Hence, from (3), a = AcosB and 0 =−asinB.

These give B = 0 and A = a.

Also, from (4), similarly we have 0 =C cosD, and V =−C
√µ sinD.
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∴ D =
π
2
, and C =− V√µ

.

∴ (3) and (4) give x = acos
√

µt ...(5),

and y =− V√µ
cos

[√
µt +

π
2

]
=

V√µ
sin(

√
µt) ...(6).

∴ x2

a2 +
y2

V 2

µ

= 1.

The locus of P is therefore an ellipse, referred to OX and OY as a
pair of conjugate diameters.

Also, if the ellipse meet OY in B, then OB =
V√µ

i.e. V =
√µ×

semi-diameter conjugate to OA.
Since any point on the path may be taken as the point of projection,
this result will be always true, so that at any point the velocity =√µ× semi-conjugate diameter.

[This may be independently derived from (5) and (6). For
(Velocity at P)2

=
.
x2 +

.
y2 +2

.
x

.
ycosω

= a2µ sin2(
√µt)+V 2 cos2(

√µt)−2aV
√µ sin(

√µt)cos(
√µt)cosω

= µ
[

a2 +
V
µ
−a2 cos2(

√
µt)−V 2

µ
sin2√µt

− 2aV√µ
sin(

√
µt)cos(

√
µt)cosω

]

= µ
[

a2 +
V 2

µ
− x2− y2−2xycosω

]
= µ

(
a2 +

V 2

µ
−OP2

)

= µ×Square of semi-diameter conjugate to OP]
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From equations (5) and (6) it is clear that the values of x and y are

the same at time t +
2π√µ

as they are at time t.

Hence the time of describing the ellipse is
2π√µ

.

41. If a particle possess two simple harmonic motions, in perpendic-
ular directions and of the same period, it is easily seen that its path
is an ellipse.

If we measure the time from the time when the x-vibration has its
maximum value, we have

x = acosnt ...(1),

and y = bcos(nt + ε) ...(2),

where a,b are constants.

(2) gives
y
b

= cosnt cosε− sinnt sinε =
x
a

cosε− sinε
√

1− x2

a2 .

∴
(y

b
− x

a
cosε

)2
= sin2 ε

(
1− x2

a2

)

i.e.,
x2

a2 −
2xy
ab

cosε +
y2

b2 = sin2 ε ...(3).
This always represents an ellipse whose principal axes do not, in

general, coincide with the axes of coordinates, but which is always
inscribed in the rectangle x =±a, y =±b.

The figure drawn is an ellipse where ε is equal to about
π
3

.

If ε = 0, equation (3) gives
x
a
−y

b
= 0, i.e. the straight line AC.

If ε = π, it gives
x
a

+
y
b

= 0, i.e. the straight line BD.
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C D

X
O

AYB

In the particular case when ε =
π
2
, i.e. when the phase of the y-

vibration at zero time is one-quarter of the periodic time, equation
(3) becomes

x2

a2 +
y2

b2 = 1,

i.e. the path is an ellipse whose principal axes are in the direction
of the axes of x and y and equal to the amplitudes of the component
vibrations in these directions.

If in addition a = b, i.e. if the amplitudes of the component vibra-
tions are the same, the path is a circle.

42. If the period of the y-vibration is one-half that of the x-vibration,
the equations are

x = acosnt and y = bcos(2nt + ε).

Hence, by eliminating t, we have as the equation to the path

y
b

= cosε.

[
2x2

a2 −1
]
− sinε.

2x
a

√
1− x2

a2 .

On rationalization, this equation becomes one of the fourth degree.
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The dotted curve in the figure is the path when ε =− π
2
, i.e. when

the phase of the y-vibration at zero time is negative and equal to one-
quarter of the period of the y-vibration.

B

Y

E A

X

D

O

C

When ε = π, i.e., when the phase of the y-vibration at zero time

is one-half of the y-period, the path becomes x2 = −a2

2b
(y− b), i.e.

the parabola CED.

When ε = 0 the path is similarly the parabola

x2 =
a2

2b
(y+b).

For any other value of ε the path is more complicated.
Curves, such as the preceding, obtained by compounding simple

harmonic motions in two directions are known as Lissajous’ fig-
ures. For other examples with different ratios of the periods, and
for different values of the zero phases, the student may refer to any
standard book on Physics.

These curves may be drawn automatically by means of a pendu-
lum, or they may be constructed geometrically.
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43. EX. 1. A point moves in a plane so that its projection on the
axis of x performs a harmonic vibration of period one second with
an amplitude of one foot; also its projection on the perpendicular
axis of y performs a harmonic vibration of period two seconds with
an amplitude of one foot. It being given that the origin is the centre
of the vibrations, and that the point (1, 0) is on the path, find its
equation and draw it.

EX. 2. A point moves in a path produced by the combination of
two simple harmonic vibrations in two perpendicular directions, the
periods of the components being as 2:3; find the paths described (1)
if the two vibrations have zero phase at the same instant, and (2) if
the vibration of greater period be of phase one-quarter of its period
when the other vibration is of zero phase. Trace the paths, and find
their equations.

44. If in Art. 40 the acceleration be always from the fixed point and
varying as the distance from it, we have similarly

x = acosh
√

µt, and y =
V√µ

sinh
√

µt.

∴ x2

a2 −
y2

V 2

µ

= 1, so that the path is a hyperbola.

45. A particle describes a catenary under a force which acts parallel
to its axis; find the law of the force and the velocity at any point of
the path.
Taking the directrix and axis of the catenary as the axes of x and y,
we have as the equation to the catenary
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y =
c
2

(
e

x
c + e−

x
c

)
...(1).

Since there is no acceleration parallel to the directrix,

∴ d2x
dt2 = 0.

∴ dx
dt

= const. = µ ...(2).

Differentiating equation (1) twice, we have

dy
dt

=
1
2

(
e

x
c − e−

x
c

)
.
dx
dt

=
1
2

(
e

x
c − e−

x
c

)
.u ...(3)

and
d2y
dt2 =

1
2c

(
e

x
c + e−

x
c

)
.
dx
dt

.u =
u2

c2 y

Also (velocity)2 =
(

dx
dt

)2

+
(

dy
dt

)2

= u2 +
u2

4

(
e

x
c − e−

x
c

)2
=

u2

4

(
e

x
c + e−

x
c

)2
=

u2

c2 y2

so that the velocity =
u
c

y.
Hence the velocity and acceleration at any point both vary as the

distance from the directrix.

46. A particle moves in one plane with an acceleration which is al-
ways towards and perpendicular to a fixed straight line in the plane
and varies inversely as the cube of the distance from it; given the
circumstances of projection, find the path.
Take the fixed straight line as the axis of x.
Then the equations of motion are

d2x
dt2 = 0 ...(1),
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and
d2y
dt2 =− µ

y3 ...(2).

(1) Gives x = At +B ...(3).

Multiplying (2) by
dy
dt

and integrating, we have
(

dy
dt

)2

=
µ
y2 +C.

∴ t =
∫ ydy√

µ +Cy2
=

1
c

√
µ +Cy2 +D ...(4).

Let the particle be projected from a point on the axis of y distant
b from the origin with component velocities u and v parallel to the
axes. Then when t = 0, we have

x = 0,y = b,
dx
dt

= u, and
dy
dt

= v.

∴ A = u,B = 0,C = v2− µ
b2 , and D =− b3v

b2v2−µ
.

∴ (3) and (4) give x = ut,

and
(

t +
b3v

b2v2−µ

)2

=
µb4

(b2v2−µ)2 +
y3b2

b2v2−µ
.

Eliminating t, we have as the equation to the path
(

x
u
− b3v

µ−b2v2

)2

+
y2b2

µ−b2v2 =
µb4

(µ−b2v2)2 .

This is an ellipse or a hyperbola according as µ ≶ b2v2

If µ = b2v2, then C = 0 and equation (4) becomes

t =
∫ ydy√µ

=
y2

2
√µ

+D =
y2−b2
√µ

.

Hence the path in this case is y2−b2 = 2
√µ

x
u
, i.e. a parabola.
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The path is thus an ellipse, parabola, or hyperbola according as

v S
√

µ
b2 , i.e. according as the initial velocity perpendicular to the

given line is less, equal to, or greater than the velocity that would
be acquired in falling from infinity to the given point with the given
acceleration.

For the square of the latter =−
∫ b

∞
2

µ
y3dy =

[
µ
y2

]b

∞
=

µ
b2 .

COR. If the particle describe an ellipse and meets the axis of x it will
not then complete the rest of the ellipse since the velocity parallel
to the axis of x is always constant and in the same direction; it will
proceed to describe a portion of another equal ellipse.

47. If the velocities and accelerations at any instant of particles
m1,m2,m3, . . . parallel to any straight line fixed in space by v1,v2,v3, . . .

and f1, f2, f3, . . . to find the velocity and acceleration of their centre
of mass.

If x1,x2,x3, . . . be the distances of the particles at any instant mea-
sured along this fixed line from a fixed point, we have

x̄ =
m1x1 +m2x2 + · · ·

m1 +m2 + · · · .

Differentiating with respect to t, we have

v̄ =
dx̄
dt

=
m1v1 +m2v2 + · · ·

m1 +m2 + · · · . ...(1)

and f̄ =
d2x̄
dt2 =

m1 f1 +m2 f2 + · · ·
m1 +m2 + · · · . ...(2)

where v̄ and f̄ are the velocity and acceleration required.
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Consider any two particles, m1 and m2, of the system and the mu-
tual actions between them. These are, by Newton’s Third Law, equal
and opposite, and therefore their impulses resolved in any direction
are equal and opposite. The changes in the momenta of the parti-
cles are thus, by Art. 15, equal and opposite, i.e. the sum of their
momenta in any direction is thus unaltered by their mutual actions.
Similarly for any other pair of particles of the system.

Hence the sum of the momenta of the system parallel to any line,
and hence by (1) the momentum of the centre of mass, is unaltered
by the mutual actions of the system.

If P1,P2, . . . be the external forces acting on the particles m1,m2, . . .

parallel to the fixed line, we have

m1 f1 +m2 f2 · · ·= (P1 +P2 + · · ·)+ (The sum of the components

of the internal actions on the particles)

= P1 +P2 + · · · ,
since the internal actions are in equilibrium taken by themselves.

Hence equation (2) gives

(m1 +m2 + . . .) f̄ = P1 +P2 + . . . ,

i.e. the motion of the centre of mass in any given direction is the
same as if the whole of the particles of the system were collected at
it, and all the external forces of the system applied at it parallel to
the given direction.

Hence also If the sum of the external forces acting on any given
system of particles parallel to a given direction vanishes, the mo-
tion of the centre of gravity in that direction remains unaltered, and
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the total momentum of the system in that direction remains constant
throughout the motion.

This theorem is known as the Principle of the Conservation of Lin-
ear Momentum.

As an example, if a heavy chain be falling freely the motion of its
centre of mass is the same as that of a freely falling particle.

EXAMPLES ON CHAPTER 3

1. A particle describes an ellipse with an acceleration directed to-
wards the centre; show that its angular velocity about a focus is
inversely proportional to its distance from that focus.

2. A particle is describing an ellipse under a force to the centre; if
v,v1 and v2 are the velocities at the ends of the latus-rectum and
major and minor axes respectively, prove that

v2v2
2 = v2

1(2v2
2− v2

1).

3. The velocities of a point parallel to the axes of x and y are u+ωy
and v+ω ′x respectively, where u,v,ω, and ω ′ are constants; show
that its path is a conic section.

4. A particle moves in a plane under a constant force, the direction of
which revolves with a uniform angular velocity; find equations to
give the coordinates of the particle at any time t.

5. A small ball is projected into the air; show that it appears to an
observer standing at the point of projection to fall past a given
vertical plane with constant velocity.

6. A man starts from a point O and walks, or runs, with a constant
velocity u along a straight road, taken as the axis of x. His dog
starts at a distance a from O, his starting point being on the axis
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of y which is perpendicular to Ox, and runs with constant velocity
u
λ

in a direction which is always towards his master. show that the
equation to his path is

2
[

x− aλ
1−λ 2

]
= y

[
1

1+λ

(y
a

)λ
− 1

1−λ

(
a
y

)λ
]

.

If λ = 1, show that the path is the curve 2
(

x+
a
4

)
=

y2

2a
−a log

y
a
.

[The tangent at any point P of the path of the dog meets Ox at the

point where the man then is, so that
dy
dx

=− y
ut− x

.

Also
ds
dt

=
u
λ

. ∴ − y
dx
dy

= ut− x = λ s− x.

∴ − d
dy

[
y

dx
dy

]
= λ

ds
dy
− dx

dy
,

giving − y
d2x
dy2 =−λ

√
1+

(
dx
dy

)2

, etc. ]

7. A particle is fastened to one end, B, of a light thread and rests on
a horizontal plane; the other end, A, of the thread is made to move
on the plane with a given constant velocity in a given straight line;
show that the path of the particle in space is a trochoid.
[Show that AB turns round A with a constant angular velocity.]

8. Two boats each move with a velocity v relative to the water and
both cross a river of breadth a running with uniform velocity V .
They start together, one boat crossing by the shortest path and the
other in the shortest time. Show that the difference between the
times of arrival is either

a
v

{
V

(V 2− v2)1/2 −1
}

or
a
v

{
v

(v2−V 2)1/2 −1
}

,
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according as V or v is the greater.
[The angle that v makes with V being θ , the length of the path is

a.

√
V 2 + v2 +2V vcosθ

vsinθ

and the corresponding time is
a

vsinθ
. The condition for a mini-

mum path gives

(vcosθ +V )(V cosθ + v) = 0.]

9. A particle moves in one plane with an acceleration which is always
perpendicular to a given line and is equal to µ÷ (distance from the
line)2. Find its path for different velocities of projection.
If it be projected from a point distant 2a from the given line with

a velocity
√

µ
a

parallel to the given line, show that its path is a

cycloid.
10. If a particle travel with horizontal velocity u and rise to such a

height that the variation in gravity must be taken account of as far
as small quantities of the first order, show that the path is given by
the equation

(h− x)2 =
2u2

g
(k− y)

(
1+

5k + y
6a

)
,

where 2a is the radius of the earth; the axes of x and y being hori-
zontal and vertical, and h,k being the coordinates of the vertex of
the path.

11. A particle moves in a plane with an acceleration which is parallel
to the axis of y and varies as the distance from the axis of x; show
that the equation to its path is of the form y = Aax + Ba−x, when
the acceleration is a repulsion.
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If the acceleration is attractive, then the equation is of the form

y = Acos[ax+B].

12. A particle moves under the action of a repulsive force perpendic-
ular to a fixed plane and proportional to the distance from it. Find
its path, and show that, if its initial velocity be parallel to the plane
and equal to that which it would have acquired in moving from
rest on the plane to the point of projection, the path is a catenary.

13. A particle describes a rectangular hyperbola, the acceleration be-
ing directed from the centre; show that the angle θ described about
the centre in time t after leaving the vertex is given by the equation
tanθ = tanh(

√µt), where µ is acceleration at distance unity.
14. A particle moves freely in a semicircle under a force perpendicular

to the bounding diameter; show that the force varies inversely as
the cube of the ordinate to the diameter.

15. Show that a rectangular hyperbola can be described by a particle
under a force parallel to an asymptote which varies inversely as
the cube of its distance from the other asymptote.

16. A particle is moving under the influence of an attractive force m
µ
y3

towards the axis of x. Show that, if it be projected from the point
(0,k) with component velocities U and V parallel to the axes of x
and y, it will not strike the axis of x unless µ > V 2k2, and that in
this case the distance of the point of impact from the origin is

Uk2

µ1/2−V k
.

17. A plane has two smooth grooves at right angles cut in it, and two
equal particles attracting one another according to the law of the
inverse square are constrained to move one in each groove. Show
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that the centre of mass of the two particles moves as if attracted
to a centre of force placed at the intersection of the grooves and
attracting as the inverse square of the distance.

ANSWERS WITH HINTS

Art. 43
Ex. 1 Parabola, y2 =−1

2
(x−1)

Ex. 2 (1)
2x2

a2 =
(

1+
y
b

)(
2y
b
−1

)2

,

(2)
2x2

a2 = 1+

√
1− y2

b2

(
1− 4y2

b2

)
.

Examples on Chapter 3 (end of Art. 47)

4. x =
P

ω2(1− cosωt)+ut,

y =
(

P
ω

+ v
)

t− P
ω2 sinωt

9. Cycloid, 2a− y = a(1− cos2θ), x = a(2θ + sin2θ)
12. Catenary, y =

g
2

(
e

x
g + e−

x
g
)

14. x2 + y2 = a2,
.
x = C = const. then

..
y =−C2a2

y3

15. xy = C,
.
x = V = const. then

..
y =

2V 2

C2 y3

16.
..
x = 0, and

..
y = − µ

y3 ∴ .
x = U and

.
y 2 =

µ
y2−A, where A =

µ
k2−V 2, and A must be positive, i.e., µ > k2V 2 for otherwise

.
y, which

is initially positive, will never be zero, and then the particle would
not turn back towards the axis of x.
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As long as
.
y is positive, i.e., until y =

√
µ
A

, then t =
∫ ydy√

µ−Ay2
=

1
A

[kV −
√

µ−Ay2], since y = k initially ∴ t1 =
kV
A

.

When
.
y becomes negative, we have t − t1 = −

∫ ydy√
µ−Ay2

=

1
A

√
µ−Ay2, so that, when y = 0, t = t1 +

√µ
A

=
kV +

√µ
A

=

k2
√µ− kV

, and x = Ut = as given.
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