AIRPORT CAPACITY

- The number of aircraft movements which an airport can process within a specified period of time with an average delay to the departing aircraft within the acceptable time limit is defined as airport capacity.
- The following factors affect the airport operating capacity:
 Runway configurations and the connected taxiways

 Single Runway: is usually adopted when the wind blows in one direction for most of the time in a year and air traffic requirement does not exceed the capacity of such pattern.

- Parallel Runway: The capacity of this pattern depends upon the lateral spacing between the two runways, the weather conditions and the navigational aids available at the airport.
- Intersecting Runways: is usually adopted when wind in a particular direction does not provide the required coverage. Whether both the runways can be used for simultaneous landing and take off, depends upon the cross wind component on each runway.
- Non-intersecting Runways: Capacity depends upon the wind conditions and visibility.

RUNWAY CAPACITY

- It is defined as the ability of a runway system to accommodate aircraft landings and take offs.
- Expressed as operations/hour or operations per year.

SATURATION CAPACITY

- The ultimate or saturation capacity of a runway is the maximum number of aircraft that can be handled during a given period under conditions of continuous demand.
- Factors affecting runway capacity

Runway capacity depends upon

- 1. Air traffic control
- 2. Characterization of demand
- 3. Environmental factors
- 4. Layout and design of the runway system
- Average landing delay (Steady State)

$$W = \frac{\rho}{2\mu(1-\rho)}$$
 (Bowen & Pearcy equation).

where,

 ρ = the load factor = 1 μ

 λ = arrival rate (aircraft/unit time)

μ = Service rate (aircraft/unit time)

$$=\frac{1}{b}$$

b = mean service time.

$$W = \frac{\rho(1 + C_b^2)}{2\mu(1 - \rho)}$$
 (Pollaczek-Khinchin formula)

where, C_b = coefficient of variation of service time = $\frac{\sigma_b}{b}$

 σ_{b} = Standard deviation of service time

The weighted hourly capacity (WHC)

 $\frac{\Sigma \, \text{capacity} \times \% \, \text{use} \times \text{weighting factor}}{\Sigma \% \, \text{use} \times \text{weighting factor}}$

Practical Annual Capacity

PAC = WHC × annual utilization × percentage use of airport

GATE CAPACITY

- Gate: is defined by an aircraft parking space, adjacent to a terminal building and used by a single aircraft for the loading and unloading of passengers, baggage and mail.
- Gate capacity is defined as the ability of a specified number of gates to accommodate aircraft loading and unloading operations under conditions of continuous demand.
- It is the inverse of the weighted average gate occupancy time for all the aircraft served.

The gate capacity for a single gate

$$C_{sg} = \frac{1}{\text{weight service time}}$$

=aircraft/minute/gate.

If G = the total number of gates

The capacity for all gates is C = G C_{sq} = ... aircraft/hr

The capacity of the gate system

$$C = \min_{\text{all}} \left[\frac{G_i}{T_i M_i} \right]$$

where, G_i = the number of gates that can accommodate aircraft of class i.

T_i = mean gate occupancy time of aircraft of class i

 M_i = fraction of aircraft class *i* demanding service.