3. Rationalisation

Exercise 3.1

1. Question

Simplify each of the following :

(i)
$$\sqrt[3]{4} \times \sqrt[3]{16}$$
 (ii) $\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}$

Answer

(i) $\sqrt[3]{4} \times \sqrt[3]{16}$ = $\sqrt[3]{4} \times 16 = \sqrt[3]{64}$ = $\sqrt[3]{4^3} = (4^3)^{\frac{1}{2}} = 4$ (ii) $\frac{\sqrt[4]{1250}}{\sqrt[4]{2}} = \sqrt[4]{\frac{1250}{2}}$ = $\sqrt[4]{\frac{625 \times 2}{2}} = \sqrt[4]{625}$ = $\sqrt[4]{5^4} = (5^4)^{\frac{1}{4}} = 5$

2. Question

Simplify the following expressions :

- (i) (4+ √7) (3+ √2)
- (ii) (3+ √3) (5 √2)
- (iii) (√5 -2) (√3 √5)

Answer

(i)
$$(4 + \sqrt{7})(3 + \sqrt{2})$$

= $4 \times 3 + 4 \times \sqrt{2} + \sqrt{7} \times 3 + \sqrt{7} \times \sqrt{2}$
= $12 + 4\sqrt{2} + 3\sqrt{7} + \sqrt{14}$
(ii) $(3 + \sqrt{3})(5 - \sqrt{2})$
= $3 \times 5 + 3 \times (-\sqrt{2}) + \sqrt{3} \times 5 + \sqrt{3} \times (-\sqrt{2})$

$$= 15 - 3\sqrt{2} + 5\sqrt{3} - \sqrt{3} \times 2$$

$$= 15 - 3\sqrt{2} + 5\sqrt{3} - \sqrt{6}$$

(iii) $(\sqrt{5} - 2)(\sqrt{3} - \sqrt{5})$

$$= \sqrt{5} \times \sqrt{3} + \sqrt{5} \times (-\sqrt{5}) + (-2) \times \sqrt{3} + (-2) \times (-\sqrt{5})$$

$$= \sqrt{5} \times 3 - \sqrt{5} \times 5 - 2\sqrt{3} + 2\sqrt{5}$$

$$= \sqrt{15} - \sqrt{5^2} - 2\sqrt{3} + 2\sqrt{5}$$

$$= \sqrt{15} - 5 - 2\sqrt{3} + 2\sqrt{5}$$

Simplify the following expressions :

- (i) (11+ √11) (11- √11)
 (ii) (5+ √7) (5- √7)
- (iii) $(\sqrt{8} \sqrt{2}) (\sqrt{8} + \sqrt{2})$
- (iv) (3+ 43) (3- 43)
- (V) $(\sqrt{5} \sqrt{2}) (\sqrt{5} + \sqrt{2})$

Answer

(i)
$$(11 + \sqrt{11})(11 - \sqrt{11}) = (11)^2 - (\sqrt{11})^2$$

Because $(a + b)(a - b) = a^2 - b^2$
= 121 - 11 = 110
(ii) $(5 + \sqrt{7})(5 - \sqrt{7}) = (5)^2 - (\sqrt{7})^2$
= 25 - 7 = 18
(iii) $(\sqrt{8} - \sqrt{2})(\sqrt{8} + \sqrt{2}) = (\sqrt{8})^2 - (\sqrt{2})^2$
= 8 - 2 = 6
(iv) $(3 + \sqrt{3})(3 - \sqrt{3}) = (3)^2 - (\sqrt{3})^2$
= 9 - 3 = 6
(v) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2$
= 5 - 2 = 3

4. Question

Simplify the following expressions:

(i) $(\sqrt{3} + \sqrt{7})^2$ (ii) $(\sqrt{5} - \sqrt{3})^2$ (iii) $(2\sqrt{5} + 3\sqrt{2})^2$

Answer

(i) $(\sqrt{3} + \sqrt{7})^2 = (\sqrt{3})^2 + 2 \times \sqrt{3} \times \sqrt{7} + (\sqrt{7})^2$ Because: $(a + b)^2 = (a)^2 + 2 \times \sqrt{a} \times \sqrt{b} + (b)^2$ $= 3 + 2\sqrt{3 \times 7} + 7$ $= 10 + 2\sqrt{21}$ (ii) $(\sqrt{5} - \sqrt{3})^2 = (\sqrt{5})^2 - 2 \times \sqrt{5} \times \sqrt{3} + (\sqrt{3})^2$ $(a)^2 - 2 \times \sqrt{a} \times \sqrt{b} + (b)^2$ $= 5 - 2\sqrt{5 \times 3} + 3$ $= 8 - 2\sqrt{15}$ (iii) $(2\sqrt{5} + 3\sqrt{2})^2 = (2\sqrt{5})^2 + 2(2\sqrt{5}) \times (3\sqrt{2}) + (3\sqrt{2})^2$ $= 2^2 \times \sqrt{5}^2 + 2 \times 2 \times 3 \times \sqrt{5 \times 2} + 3^2 \times \sqrt{2}^2$ $= 4 \times 5 + 12\sqrt{5 \times 2} + 9 \times 2$ $= 20 + 12\sqrt{10} + 18$ $= 38 + 12\sqrt{10}$

Exercise 3.2

1. Question

Rationalise the denominator of each of the following (i-vii) :

(i)
$$\frac{3}{\sqrt{5}}$$
 (ii) $\frac{3}{2\sqrt{5}}$ (iii) $\frac{1}{\sqrt{12}}$ (iv) $\frac{\sqrt{2}}{\sqrt{5}}$ (v) $\frac{\sqrt{3}+1}{\sqrt{2}}$ (vi) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$ (vii) $\frac{3\sqrt{2}}{\sqrt{5}}$

Answer

(i) As there is $\sqrt{5}$ in the denominator and we know that $\sqrt{5} \times \sqrt{5} = 5$ So, multiply numerator and denominator by $\sqrt{5}$,

$$\frac{3}{\sqrt{5}} = \frac{3 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{3\sqrt{5}}{5} = \frac{3}{5}\sqrt{5}$$

(ii) $\frac{3}{2\sqrt{5}} \times \frac{2\sqrt{5}}{2\sqrt{5}} = \frac{3 \times 2\sqrt{5}}{(2\sqrt{5})^2} = \frac{6\sqrt{5}}{20} = \frac{3}{10}\sqrt{5}$

$$\frac{1}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} = \frac{\sqrt{12}}{12}$$

$$= \frac{\sqrt{3}\sqrt{4}}{12}$$
(iii)
$$= \frac{2\sqrt{3}}{12}$$

$$= \frac{\sqrt{3}}{6}$$

(iv) $\frac{\sqrt{2}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{2} \times \sqrt{5}}{(\sqrt{5})^2} = \frac{1}{5} \sqrt{10}$ (v) $\frac{\sqrt{3}+1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{2}$ (vi) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{6}+\sqrt{5}}{3}$ (vii) $\frac{3\sqrt{2}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{10}}{5}$

2. Question

Find the value to three places of decimals of each of the following. It is given that

 $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$ and $\sqrt{10} = 3.162$. (i) $\frac{2}{\sqrt{3}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\sqrt{5}+1}{\sqrt{2}}$ (iv) $\frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}}$ (v) $\frac{2+\sqrt{3}}{3}$ (vi) $\frac{\sqrt{2}-1}{\sqrt{5}}$

Answer

(i) Given that $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$ and $\sqrt{10} = 3.162$

So we have,

 $\frac{2}{\sqrt{3}}$ Rationalising factor of denominator is $\sqrt{3}$

$$\frac{\frac{2}{\sqrt{3}}}{\sqrt{3}} = \frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{3}$$
$$\frac{2 \times 1.732}{3} = \frac{3.464}{3}$$

=1.15466667 = 1.54

(ii) we have $\frac{3}{\sqrt{10}}$ rationalisation factor of denominator is $\sqrt{10}$

$$\frac{3}{\sqrt{10}} = \frac{3 \times \sqrt{10}}{\sqrt{10 \times \sqrt{10}}} = \frac{3\sqrt{10}}{10}$$

$$\frac{3 \times 3.162}{10} = 0.9486$$
(iii) we have $\frac{\sqrt{5}+1}{\sqrt{2}}$ rationalisation factor of denominator is $\sqrt{2}$

$$= \frac{\sqrt{5}+1}{\sqrt{2}} = \frac{\sqrt{5}+1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{(\sqrt{5}+1)\sqrt{2}}{(\sqrt{2})^2} = \frac{\sqrt{5} \times \sqrt{2} + 1 \times \sqrt{2}}{2}$$

$$= \frac{\sqrt{5 \times 2} + \sqrt{2}}{2} = \frac{\sqrt{10} + \sqrt{2}}{2}$$

$$= \frac{3.162 + 1.414}{2} = \frac{4.576}{2} = 2.288$$
(iv) we have $\frac{\sqrt{10+\sqrt{15}}}{\sqrt{2}}$ rationalisation factor of denominator is $\sqrt{2}$

$$= \frac{\sqrt{10+\sqrt{15}}}{\sqrt{2}} = \frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{(\sqrt{10}+\sqrt{15})\sqrt{2}}{(\sqrt{2})^2}$$

$$= \frac{\sqrt{10}\times\sqrt{2}+\sqrt{15}\times\sqrt{2}}{2} = \frac{\sqrt{10}\times2+\sqrt{15\times2}}{2}$$

$$= \frac{\sqrt{20} + \sqrt{30}}{2} = \frac{\sqrt{2 \times 10} + \sqrt{3 \times 10}}{2}$$
$$= \frac{\sqrt{2} \times \sqrt{10} + \sqrt{3} \times \sqrt{10}}{2} = \frac{1.414 \times 3.162 + 1.732 \times 3.162}{2}$$
$$= \frac{4.471068 + 5.476584}{2} = \frac{9.947652}{2}$$
$$= 4.973826 = 4.973$$
(v) We have $\frac{2 + \sqrt{3}}{3}$
$$= \frac{2 + \sqrt{3}}{3} = \frac{2 + 1.732}{3} = \frac{3.732}{3} = 1.244$$

(vi) We have $\frac{\sqrt{2}-1}{\sqrt{5}}$ rationalising factor of denominator is $\sqrt{5}$ $= \frac{\sqrt{2}-1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{(\sqrt{2} \times \sqrt{5}) - (1 \times \sqrt{5})}{(\sqrt{5})^2}$ $= \frac{\sqrt{2 \times 5} - 1\sqrt{5}}{5} = \frac{\sqrt{10} - \sqrt{5}}{5}$ $= \frac{3.162 - 2.236}{5} = \frac{0.926}{5}$

= 0.185

3. Question

Express each one of the following with rational denominator:

(i)
$$\frac{1}{3+\sqrt{2}}$$
 (ii) $\frac{1}{\sqrt{6}-\sqrt{5}}$ (iii) $\frac{16}{\sqrt{41}-5}$
(iv) $\frac{30}{5\sqrt{3}-3\sqrt{5}}$ (v) $\frac{1}{2\sqrt{5}-\sqrt{3}}$ (vi) $\frac{\sqrt{3}+1}{2\sqrt{2}-\sqrt{3}}$ (vii) $\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$ (viii) $\frac{3\sqrt{2}+1}{2\sqrt{5}-3}$ (ix) $\frac{b^2}{\sqrt{a^2+b^2}+a^2}$

Answer

(i) we have $\frac{1}{3+\sqrt{2}}$ rationalizing factor of the denominator is $3-\sqrt{2}$

$$= \frac{1}{3+\sqrt{2}} = \frac{1}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}$$
$$= \frac{3-\sqrt{2}}{(3)^2 - (\sqrt{2})^2}$$

because $(a + b)(a - b) = (a)^2 - (b)^2$

$$=\frac{3-\sqrt{2}}{9-2}=\frac{3-\sqrt{2}}{7}$$

(ii) we have $\frac{1}{\sqrt{6}-\sqrt{5}}$ rationalizing factor of the denominator is $\sqrt{6}+\sqrt{5}$

$$= \frac{1}{\sqrt{6} - \sqrt{5}} \times \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}}$$
$$= \frac{\sqrt{6} + \sqrt{5}}{\left(\sqrt{6}\right)^2 - \left(\sqrt{5}\right)^2} = \frac{\sqrt{6} + \sqrt{5}}{6 - 5} = \frac{\sqrt{6} + \sqrt{5}}{1}$$
$$= \sqrt{6} + \sqrt{5}$$

(iii) we have $\frac{16}{\sqrt{41-5}}$ rationalizing factor of the denominator is $\sqrt{41+5}$ $=\frac{16}{\sqrt{41-5}} \times \frac{\sqrt{41+5}}{\sqrt{41+5}}$ $=\frac{16\times(\sqrt{41}+5)}{(\sqrt{41}-5)(\sqrt{41}+5)}=\frac{16\sqrt{41}+5}{(\sqrt{41})^2-(5)^2}$ $=\frac{16\sqrt{41+5}}{41-25}=\frac{16\sqrt{41+5}}{16}=\sqrt{41}+5$ (iv) we have $\frac{30}{5\sqrt{3}-3\sqrt{5}}$ to rationalize factor of $5\sqrt{3}-3\sqrt{5}$ is $5\sqrt{3}+3\sqrt{5}$ $=\frac{30}{5\sqrt{3}-3\sqrt{5}}\times\frac{5\sqrt{3}+3\sqrt{5}}{5\sqrt{3}+3\sqrt{5}}=\frac{3(5\sqrt{3}+3\sqrt{5})}{(5\sqrt{3})^2-(3\sqrt{5})^2}$ $=\frac{30(5\sqrt{3}+3\sqrt{5})}{5^2(\sqrt{3})^2-3^2(\sqrt{5})^2}=\frac{30(5\sqrt{3}+3\sqrt{5})}{25\times 3-9\times 5}$ $=\frac{30(5\sqrt{3}+3\sqrt{5})}{75-45}=\frac{30(5\sqrt{3}+3\sqrt{5})}{20}$ $=5\sqrt{3} + 3\sqrt{5}$ (v) we have $\frac{1}{2\sqrt{5}-\sqrt{2}}$ to rationalize factor of $2\sqrt{5}-\sqrt{3}$ is $2\sqrt{5}+\sqrt{3}$ $= \frac{1}{2\sqrt{5} - \sqrt{3}} \times \frac{2\sqrt{5} + \sqrt{3}}{2\sqrt{5} + \sqrt{3}} = \frac{2\sqrt{5} + \sqrt{3}}{(2\sqrt{5})^2 - (\sqrt{3})^2}$ $=\frac{2\sqrt{5}+\sqrt{3}}{2^{2}(\sqrt{5})^{2}-(\sqrt{3})^{2}}=\frac{2\sqrt{5}+\sqrt{3}}{4\times 5-3}$ $=\frac{2\sqrt{5}+\sqrt{3}}{20-2}=\frac{2\sqrt{5}+\sqrt{3}}{17}$ (vi) we have $\frac{\sqrt{3}+1}{2\sqrt{2}}$ to rationalize factor of $2\sqrt{2} - \sqrt{3}$ is $2\sqrt{2} + \sqrt{3}$ $=\frac{\sqrt{3}+1}{2\sqrt{2}-\sqrt{3}}\times\frac{2\sqrt{2}+\sqrt{3}}{2\sqrt{2}+\sqrt{3}}=\frac{(\sqrt{3}+1)(2\sqrt{2}+\sqrt{3})}{(2\sqrt{2})^2-(\sqrt{3})^2}$ $=\frac{\sqrt{3}\times 2\sqrt{2}+2\sqrt{2}+\sqrt{3}\times \sqrt{3}+\sqrt{3}}{4\times 2-3}$ $=\frac{2\sqrt{2\times3}+2\sqrt{2}+3+\sqrt{3}}{8-3}$ $= \frac{2\sqrt{6} + 2\sqrt{2} + 3 + \sqrt{3}}{5}$

(vii) we have
$$\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$$
 or rationalize factor of $6 + 4\sqrt{2}$ is $6 - 4\sqrt{2}$
 $\frac{6-4\sqrt{2}}{6+4\sqrt{2}} = \frac{6-4\sqrt{2}}{6+4\sqrt{2}} \times \frac{6-4\sqrt{2}}{6-4\sqrt{2}}$
 $= \frac{(6-4\sqrt{2})^2}{(6)^2-(4\sqrt{2})^2}$
Because; $(a+b)(a-b) = a^2 - b^2$
 $(a-b)(a+b) = (a-b)^2$
 $so, \frac{(6-4\sqrt{2})^2}{6^2-(4\sqrt{2})^2}$
 $= \frac{6^2 - 2\times 6\times 4\sqrt{2} + (4\sqrt{2})}{36-4^2(\sqrt{2})^2}$
 $= \frac{36-48\sqrt{2}+32}{36-32} = \frac{68-48\sqrt{2}}{4}$
 $= \frac{4(17-12\sqrt{2})}{4} = 17-12\sqrt{2}$
(viii) we have $\frac{3\sqrt{2}+1}{2\sqrt{5}-3}$ crationalize factor of $2\sqrt{5}-3$ is $2\sqrt{5}+3$
 $= \frac{3\sqrt{2}+1}{2\sqrt{5}-3} \times \frac{2\sqrt{5}+3}{2\sqrt{5}+3} = \frac{(3\sqrt{2}+1)(2\sqrt{5}+3)}{(2\sqrt{5}-3)(2\sqrt{5}+3)}$
 $= \frac{3\sqrt{2}\times 2\sqrt{5}+3\sqrt{2}\times 3+1\times 2\sqrt{5}+1\times 3}{(2\sqrt{2})^2-3^2}$
 $= \frac{6\sqrt{10}+9\sqrt{2}+2\sqrt{5}+3}{11}$
(ix) we have $\frac{b^2}{\sqrt{a^2+b^2+a}}$ to rationalize factor of $\sqrt{a^2+b^2}+a$ is $\sqrt{a^2+b^2}-a$
 $= \frac{b^2}{\sqrt{a^2+b^2+a}} \times \frac{\sqrt{a^2+b^2}-a}{\sqrt{a^2+b^2-a}} = \frac{b^2(\sqrt{a^2+b^2}-a)}{(\sqrt{a^2+b^2})^2-(a)^2}$

$$=\frac{b^2(\sqrt{a^2+b^2})}{a^2+b^2-a^2}=\frac{b^2(\sqrt{a^2+b^2}-a^2)}{b^2}$$

$$=(\sqrt{a^2+b^2}-a^2)$$

Rationalies the denominator and simplify :

(i)
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
 (ii) $\frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}}$ (iii) $\frac{1 + \sqrt{2}}{3 - 2\sqrt{2}}$
(iv) $\frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}}$ (v) $\frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{48} + \sqrt{18}}$
(vi) $\frac{2\sqrt{3} - \sqrt{5}}{2\sqrt{2} + 3\sqrt{3}}$

Answer

$$\begin{aligned} \text{i)} \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} &= \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} &= \frac{3 + 2 - 2\sqrt{6}}{3 - 2} = 5 - 2\sqrt{6}. \end{aligned}$$

$$\begin{aligned} \text{ii)} \frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} &= \frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} \times \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} &= \frac{35 + 14\sqrt{3} - 20\sqrt{3} - 24}{49 - 48} = 11 - 6\sqrt{3}. \end{aligned}$$

$$\begin{aligned} \text{iii)} \frac{1 + \sqrt{2}}{3 - 2\sqrt{2}} &= \frac{1 + \sqrt{2}}{3 - 2\sqrt{2}} \times \frac{3 + 2\sqrt{2}}{3 + 2\sqrt{2}} &= \frac{3 + 3\sqrt{2} + 2\sqrt{2} + 4}{9 - 8} = 7 + 5\sqrt{2}. \end{aligned}$$

$$\begin{aligned} \text{iv)} \frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}} &= \frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}} \times \frac{3\sqrt{5} + 2\sqrt{6}}{3\sqrt{5} + 2\sqrt{6}} &= \frac{6\sqrt{30} - 15 + 4\sqrt{36} - 2\sqrt{30}}{45 - 24} &= \frac{4\sqrt{30} + 9}{21}. \end{aligned}$$

$$\begin{aligned} \text{v)} \frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} &= \frac{4\sqrt{3} + 5\sqrt{2}}{4\sqrt{3} + 3\sqrt{2}} \times \frac{4\sqrt{3} - 3\sqrt{2}}{4\sqrt{3} - 3\sqrt{2}} &= \frac{48 + 20\sqrt{6} - 12\sqrt{6} - 30}{48 - 18} &= \frac{18 + 8\sqrt{6}}{30} &= \frac{9 + 4\sqrt{6}}{15}. \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \text{vi)} \frac{2\sqrt{3} - \sqrt{5}}{2\sqrt{2} + 3\sqrt{3}} &= \frac{2\sqrt{3} - \sqrt{5}}{2\sqrt{2} - 3\sqrt{3}} \times \frac{2\sqrt{2} - 3\sqrt{3}}{2\sqrt{2} - 3\sqrt{3}} &= \frac{4\sqrt{6} - 2\sqrt{10} - 18 + 3\sqrt{15}}{8 - 27} &= \frac{18 + 2\sqrt{10} - 4\sqrt{6} - 3\sqrt{15}}{19} \end{aligned}$$

5. Question

Simplify :

(i)
$$\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}$$
 (ii) $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$
(iii) $\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}$
(iv) $\frac{1}{2 + \sqrt{3}} + \frac{2}{\sqrt{5} - \sqrt{3}} + \frac{1}{2 - \sqrt{5}}$
(v) $\frac{2}{\sqrt{5} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{2}} - \frac{3}{\sqrt{5} + \sqrt{2}}$

Answer

i)
$$\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}} = \frac{(3\sqrt{2}-2\sqrt{3})(3\sqrt{2}-2\sqrt{3})}{18-12} + \frac{2\sqrt{3}(\sqrt{3}+\sqrt{2})}{3-2}$$

= $\frac{30-12\sqrt{6}}{6} + (6+2\sqrt{6}) = (5-2\sqrt{6}+6+2\sqrt{6}=11)$

$$\begin{split} &\text{ii} \right) \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} + \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{\left[\sqrt{5}+\sqrt{3}\right]\sqrt{5}+\sqrt{3}+(\sqrt{5}-\sqrt{3})\right]}{5-3} = \frac{8+2\sqrt{15}+8-2\sqrt{15}}{2} = 8. \\ &\text{iii} \right) \frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}} = \frac{7-3\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\ &= \frac{7+3\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\ &= \frac{(7+3\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} - \frac{(7-3\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} \\ \hline \frac{7\times3+7\times(-\sqrt{5})+3\sqrt{5}+3+3\sqrt{5}\times(-\sqrt{5})}{3^2-(\sqrt{5})^2} - \frac{7\times3+7\times\sqrt{5}+(-3\sqrt{5})\times3+(-3\sqrt{5})\times\sqrt{5}}{3^2-(\sqrt{5})^2} \\ &= \frac{21-7\sqrt{5}+9\sqrt{5}-3\times5}{9-5} - \frac{21+7\sqrt{5}-9\sqrt{5}-3\times5}{9-5} \\ &= \frac{21-15+2\sqrt{5}}{4} - \frac{21-15-2\sqrt{5}}{4} \\ &= \frac{6+2\sqrt{5}}{4} - \frac{6-2\sqrt{5}}{4} \\ &= \frac{6+2\sqrt{5}-(6-2\sqrt{5})}{4} \\ &= \frac{6+2\sqrt{5}-(6-2\sqrt{5})}{4} \\ &= \frac{4\sqrt{5}}{4} = \sqrt{5} \\ (\text{iv}) \frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} + \frac{1}{2-\sqrt{5}} \\ \text{Rationalising factor for } 2+\sqrt{3} \text{ is } 2-\sqrt{3} \\ \text{For } \sqrt{5} - \sqrt{3} \text{ is } \sqrt{5} + \sqrt{3} \text{ and} \\ \text{For } 2-\sqrt{5} \text{ is } 2+\sqrt{5} \\ &= \frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2} + \frac{2(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^2-(\sqrt{3})^2} + \frac{2+\sqrt{5}}{2^2-(\sqrt{5})^2} \\ \end{split}$$

$$= \frac{2-\sqrt{3}}{4-3} + \frac{2\sqrt{5}+2\sqrt{3}}{5-3} + \frac{2+\sqrt{5}}{4-5}$$
$$= \frac{2-\sqrt{3}}{1} + \frac{2\sqrt{5}+2\sqrt{3}}{2} + \frac{2+\sqrt{5}}{-1}$$
$$= 2-\sqrt{3} + 2\frac{(\sqrt{5}+\sqrt{3})}{2} - (2+\sqrt{3})$$
$$= 2-\sqrt{3} + \sqrt{5} + \sqrt{3} - 2 - \sqrt{3} = 0$$
$$(v) \frac{2}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{2}} - \frac{3}{\sqrt{5}+\sqrt{2}}$$

Rationalising factors for denominators are,

For
$$\sqrt{5} + \sqrt{3} is \sqrt{5} - \sqrt{3}$$

For $\sqrt{3} + \sqrt{2} is \sqrt{3} - \sqrt{2}$ and
For $\sqrt{5} + \sqrt{2} is \sqrt{5} - \sqrt{2}$

$$= \frac{2}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \frac{3}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

$$= \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2} + \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} - \frac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2}$$

$$= \frac{2(\sqrt{5} - \sqrt{3})}{5 - 3} + \frac{\sqrt{3} - \sqrt{2}}{3 - 2} - \frac{3(\sqrt{5} - \sqrt{2})}{5 - 2}$$

$$= \frac{2(\sqrt{5} - \sqrt{3})}{2} + \frac{\sqrt{3} - \sqrt{2}}{1} - \frac{3(\sqrt{5} - \sqrt{2})}{3}$$

$$= \sqrt{5} - \sqrt{3} + \sqrt{3} - \sqrt{2} - \sqrt{5} + \sqrt{2} = 0$$

6. Question

In each of the following determine rational numbers *a* and *b*.

(i)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = a - b \sqrt{3}$$
 (ii) $\frac{4+\sqrt{2}}{2+\sqrt{2}} = a - \sqrt{b}$
(iii) $\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b \sqrt{2}$ (iv) $\frac{5+3\sqrt{3}}{7+4\sqrt{3}} = a + b \sqrt{3}$
(v) $\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}} = a - b \sqrt{77}$
(vi) $\frac{4+3\sqrt{5}}{4-3\sqrt{5}} = a + b \sqrt{5}$

Answer

(i)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = a - b\sqrt{3}$$

Given,

$$\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = a - b\sqrt{3}$$

Rationalising factor for denominator is $\sqrt{3}-1$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{\left(\sqrt{3} - 1\right)^2}{\left(\sqrt{3}\right)^2 - (1)^2}$$
$$= \frac{\left(\sqrt{3}\right)^2 - 2\sqrt{3} \times 1 + (1)^2}{3 - 2} = \frac{3 - 2\sqrt{3} + 1}{2}$$
$$= \frac{4 - 2\sqrt{3}}{2} = \frac{2\left(2 - \sqrt{3}\right)}{2} = 2 - \sqrt{3}$$
we have, $\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = a - b\sqrt{3}$

$$= 2 - \sqrt{3} = a - b\sqrt{3} = 2 - (1)\sqrt{3} = a - b\sqrt{3}$$

On equating rational and irrational parts,

We get a = 2 and b = 1

(ii)
$$\frac{4+\sqrt{2}}{2+\sqrt{2}} = a - \sqrt{b}$$
 rationalising factor for the denominator is $2 - \sqrt{2}$

$$= \frac{4+\sqrt{2}}{2+\sqrt{2}} \times \frac{2-\sqrt{2}}{2-\sqrt{2}} = \frac{4\times 2 + \sqrt{2}\times 2 + 4\times(-\sqrt{2}) + \sqrt{2}\times(-\sqrt{2})}{2^2 - (\sqrt{2})^2}$$

$$= \frac{8+2\sqrt{2}-4\sqrt{2}-\sqrt{2}}{4-2} = \frac{6-2\sqrt{2}}{2}$$

$$= \frac{2(3-\sqrt{2})}{2} = 3 - \sqrt{2}$$

We have $\frac{4+\sqrt{2}}{2+\sqrt{2}} = a - \sqrt{b} = 3 - \sqrt{2} = a - \sqrt{b}$

On equating rational and irrational parts we get,

a=3 and b=2
(iii)
$$\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$$

Rationalising factor for the denominator is $3 + \sqrt{2}$

$$\frac{3+\sqrt{2}}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{\left(3+\sqrt{2}\right)^2}{3^2-\left(\sqrt{2}\right)^2}$$
$$= \frac{3^2+2\times3\times\sqrt{2}+\left(\sqrt{2}\right)^2}{9-2} = \frac{9+6\sqrt{2}+2}{7}$$
$$= \frac{11+6\sqrt{2}}{7} = \frac{11}{7} + \frac{6}{7}\sqrt{2}$$
we have $\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$

On equating rational and irrational parts we get,

$$a = \frac{11}{7}$$
, and $b = \frac{6}{7}$

(iv) $\frac{5+3\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$ given,

Rationalising factor for denominator is $7-4\sqrt{3}$

$$= \frac{5+3\sqrt{3}}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$$

$$= \frac{5\times7+5\times(-4\sqrt{3})+3\sqrt{3}\times7+3\sqrt{3}\times(-4\sqrt{3})}{(7)^2-(4\sqrt{3})^2}$$

$$= \frac{35-20\sqrt{3}+21\sqrt{3}-12\times3}{49-48}$$

$$= \frac{35-36+\sqrt{3}}{1} = \frac{\sqrt{3}-1}{1} = \sqrt{3}-1$$
We have $\frac{5+3\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$
 $\sqrt{3}-1 = a + b\sqrt{3}$

On equating rational and irrational parts we get,

a = -1 and b = 1

(v)
$$\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}} = a - b\sqrt{77}$$
 given,

$$= \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} \times \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} - \sqrt{7}} = \frac{(\sqrt{11} - \sqrt{7})^2}{(\sqrt{11})^2 - (\sqrt{7})^2}$$

$$= \frac{(\sqrt{11})^2 - 2\sqrt{11} \times \sqrt{7} + (\sqrt{7})^2}{11 - 7} = \frac{11 - 2\sqrt{11} \times 7 + 7}{4}$$

$$= \frac{18 - 2\sqrt{77}}{4} = \frac{2(9 - \sqrt{77})}{4}$$

$$= \frac{9 - \sqrt{77}}{2} = \frac{9}{2} - \frac{\sqrt{77}}{2}$$
We have $\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} = a - b\sqrt{77}$

$$= \frac{9}{2} - \frac{\sqrt{77}}{2} = a - b\sqrt{77}$$

$$= \frac{9}{2} - \frac{1}{2}\sqrt{77} = a - b\sqrt{77}$$

On equating rational and irrational parts we get

$$a = \frac{9}{2}, b = \frac{1}{2}$$
(vi) $\frac{4+3\sqrt{5}}{4-3\sqrt{5}} = a + b\sqrt{5}$ given,

$$= \frac{4+3\sqrt{5}}{4-3\sqrt{5}} = \frac{4+3\sqrt{5}}{4-3\sqrt{5}} \times \frac{4+3\sqrt{5}}{4+3\sqrt{5}}$$

$$= \frac{(4+3\sqrt{5})^2}{4^2 - (3\sqrt{5})^2} = \frac{4^2 + 2 \times 4 \times 3\sqrt{5} + (3\sqrt{5})^2}{16 - 3^2 (\sqrt{5})^2}$$

$$= \frac{16+24\sqrt{5}+45}{16-45} = \frac{61+24\sqrt{5}}{-29} = \frac{-(61+24\sqrt{5})}{29}$$

$$= \frac{-61}{29} - \frac{24}{29}\sqrt{5}$$

We have $\frac{4+3\sqrt{5}}{4-3\sqrt{5}} = a + b\sqrt{5}$

On equating rational and irrational parts we have,

$$a = \frac{-61}{29}$$
 and $b = \frac{-24}{29}$

7. Question

If
$$x = 2 + \sqrt{3}$$
, find the value of $x^3 + \frac{1}{x^3}$.

Answer

Given $\chi = 2 + \sqrt{3}$ and given to find the value of $\chi^3 + \frac{1}{x^3}$

We have $\chi = 2 + \sqrt{3}$

$$=\frac{1}{x}=\frac{1}{2+\sqrt{3}}$$

rationalising factor for denominator is $2-\sqrt{3}$

$$\frac{1}{x} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{2^2 - (\sqrt{3})^2}$$
$$= \frac{2 - \sqrt{3}}{4 - 3} = \frac{2 - \sqrt{3}}{1} = 2 - \sqrt{3}$$
$$\therefore \frac{1}{x} = 2 - \sqrt{3}$$
and also, $\left(x + \frac{1}{x}\right) = 2 + \sqrt{3} + 2 - \sqrt{3}$
$$= 2 + 2 = 4$$
$$\therefore \left(x + \frac{1}{x}\right) = 4 \text{ equation } (i)$$

We know that ,

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right) \left(x^{2} - x \times \frac{1}{x} + \frac{1}{x^{2}}\right)$$

$$= \left(x + \frac{1}{x}\right) \left(x^{2} + \frac{1}{x^{2}} - 1\right)$$

$$= \left(x + \frac{1}{x}\right) \left(x^{2} + \frac{1}{x^{2}} + 2 - 2 - 1\right)$$

$$= \left(x + \frac{1}{x}\right) \left(x^{2} + \frac{1}{x^{2}} + 2 \times x \times \frac{1}{x} - 3\right)$$

$$= x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right) \left(x^{2} + \frac{1}{x^{2}} + 2 \times x \times \frac{1}{x} - 3\right)$$

$$= \left(x + \frac{1}{x}\right) \left(\left(x + \frac{1}{x}\right)^{2} - 3\right)$$

By putting
$$\left(x + \frac{1}{x}\right) = 4$$
 we get
 $= x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right) \left(\left(x + \frac{1}{x}\right)^{2} - 3\right)$
 $= (4)(4^{2} - 3)$
 $= 4(16 - 3)$
 $= 4(13) = 52$
 \therefore The value of $x^{3} + \frac{1}{x^{3}}$ is 52.

If $x = 3 + \sqrt{8}$, find the value of $x^2 + \frac{1}{x^2}$.

Answer

Given that $\chi = 3 + \sqrt{8}$

And given to find the value of $x^2 + \frac{1}{x^2}$

We have $x = 3 + \sqrt{8}$

The rationalising factor for denominator is $3 - \sqrt{8}$

$$= \frac{1}{x} = \frac{1}{3+\sqrt{8}} \times \frac{3-\sqrt{8}}{3-\sqrt{8}}$$

= $\frac{3-\sqrt{8}}{3^2-(\sqrt{8})^2} = \frac{3-\sqrt{8}}{9-8} = \frac{3-\sqrt{8}}{1} = 3-\sqrt{8}$
 $\therefore \frac{1}{x} = 3-\sqrt{8}$
Also, $\left(x+\frac{1}{x}\right) = 3+\sqrt{8}+3-\sqrt{8}=3+3=6$
 $\therefore \left(x+\frac{1}{x}\right) = 6$

We know that,

$$= x^{2} + \frac{1}{x^{2}} = \left(x^{2} + \frac{1}{x^{2}}\right)^{2} - 2$$

by putting $x + \frac{1}{x} = 6$ in the above we get, $x^{2} + \frac{1}{x^{2}} = (6)^{2} - 2$ = 36 - 2 = 34

 \therefore The value of $\chi^2 + \frac{1}{x^2}$ is 34.

9. Question

Find the value of $\frac{6}{\sqrt{5}-\sqrt{3}}$, it being given that $\sqrt{3} = 1.732$ and $\sqrt{5} = 2.236$

Answer

 $\frac{6}{\sqrt{5}+\sqrt{3}}$ Rationalising factor for the denominator is $\sqrt{5} + \sqrt{3}$ $= \frac{6}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{6(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2}$ $= \frac{6(\sqrt{5}+\sqrt{3})}{5-3} = \frac{6(\sqrt{5}+\sqrt{3})}{2} = 3(\sqrt{5}+\sqrt{3})$ We have $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$ $\frac{6}{\sqrt{5}-\sqrt{3}} = 3(2.236+1.732)$ = 3(3.968) = 11.904 \therefore value of $\frac{6}{\sqrt{5}-\sqrt{3}}$ is 11.904

10. Question

Find the values of each of the following correct to three places of decimals, it being given that $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$, $\sqrt{6} = 2.4495$ and $\sqrt{10} = 3.162$.

(i)
$$\frac{3-\sqrt{5}}{3+2\sqrt{5}}$$
 (ii) $\frac{1+\sqrt{2}}{3-2\sqrt{2}}$

Answer

(i) We have $\frac{3-\sqrt{5}}{3+2\sqrt{5}}$ rationalising factor for denominator is $3 - 2\sqrt{5}$ $= \frac{3-\sqrt{5}}{3+2\sqrt{5}} \times \frac{3-2\sqrt{5}}{3-2\sqrt{5}}$ $= \frac{3\times3+3\times(-2\sqrt{5})+(-\sqrt{5})(3)+(-\sqrt{5})(-2\sqrt{5})}{3^2-(2\sqrt{5})^2}$ $= \frac{9-6\sqrt{5}-3\sqrt{5}+2\times5}{9-20} = \frac{9+10-9\sqrt{5}}{-11}$

$$= \frac{19 - 9\sqrt{5}}{-11} = \frac{9\sqrt{5} - 19}{11}$$

We have $\sqrt{5} = 2.236$
$$= \frac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = \frac{9(2.236) - 19}{11} = \frac{20.124 - 19}{11}$$
$$= \frac{1.124}{11} = 0.102181818$$
$$= 0.102$$

$$= the \ value \ of \ \frac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = 0.102$$

(ii) $\frac{1+\sqrt{2}}{3-2\sqrt{2}}$ by putting the value of $\sqrt{2}$ in the equation we get,

$$= \frac{1+\sqrt{2}}{3-2\sqrt{2}} = \frac{1+1.414.}{3-2\times1.414} = \frac{2.414}{3-2.8284}$$
$$= \frac{2.4142}{0.1716} = 14.0687$$
$$= 14.068$$
$$= 14.070$$

11. Question

If $x = \frac{\sqrt{3} + 1}{2}$, find the value of $4x^3 + 2x^2 - 8x + 7$.

Answer

Given $x = \frac{\sqrt{3}+1}{2}$ and given to find the value of $4x^3 + 2x^2 - 8x + 7$ $x = \frac{\sqrt{3}+1}{2}$ $= 2x = \sqrt{3} + 1$ $= (2x - 1) = \sqrt{3}$ Squaring on both the sides we get,

$$= (2x - 1)^{2} = (\sqrt{3})^{2}$$
$$= (2x)^{2} - 2 \times 2x \times 1 + (1)^{2} = 3$$

$$= 4x^{2} - 4x + 1 = 3$$

$$= 4x^{2} - 4x + 1 - 3 = 0$$

$$= 4x^{2} - 4x - 2 = 0$$

$$= 2(2x^{2} - 2x - 1) = 0$$

$$= 2x^{2} - 2x - 1 = 0$$

Now take $4x^{3} + 2x^{2} - 8x + 7$

$$= 2x (2x^{2} - 2x - 1) + 4x^{2} + 2x + 2x^{2} - 8x + 7$$

$$= 2x (2x^{2} - 2x - 1) + 6x^{2} - 6x + 7$$

$$= 2x (0) + 3(2x^{2} - 2x - 1) + 7 + 3$$

$$= 0 + 3(0) + 10 = 10$$

The value of $4x^3 + 2x^2 - 8x + 7$ is 10.

CCE - Formative Assessment

1. Question

Write the value of $(2+\sqrt{3})$ $(2-\sqrt{3})$.

Answer

 $(2+\sqrt{3}) (2-\sqrt{3})$ = $(2)^2 - (\sqrt{3})^2 [(a+b) (a-b) = a^2 - b^2]$ = 4 - 3 = 1.

2. Question

Write the reciprocal of 5 $+\sqrt{2}$.

Answer

Reciprocal of 5 + $\sqrt{2}$ = 1/ (5 + $\sqrt{2}$)

$$=\frac{1}{5+\sqrt{2}}=\frac{1}{5+\sqrt{2}}\times\frac{5-\sqrt{2}}{5-\sqrt{2}}=\frac{5-\sqrt{2}}{25-2}=\frac{5-\sqrt{2}}{23}$$

3. Question

Write the rationalisation factor of 7-3 $\sqrt{5}$.

Answer

Rationalizing factor of 7- $3\sqrt{5}$

$$=\frac{1}{7-3\sqrt{5}}=7+3\sqrt{5}.$$

If $\frac{\sqrt{3}-1}{\sqrt{3}+1} = x + y \sqrt{3}$, find the values of x and y.

Answer

Given,
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = x + y\sqrt{3}$$

= $\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{3-1} = \frac{4-2\sqrt{3}}{2} = 2 - \sqrt{3}.$
So, x= 2, y = -1

5. Question

If $x = \sqrt{2} - 1$, then write the value of $\frac{1}{x}$.

Answer

Given . x = $\sqrt{2-1}$

$$=\frac{1}{x} = \frac{1}{\sqrt{2}-1} = \frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1.$$

6. Question

Simplify $\sqrt{3+2\sqrt{2}}$.

Answer

Consider
$$\sqrt{(3+2\sqrt{2})}$$
,
 $\sqrt{(3+2\sqrt{2})} = \sqrt{(2+1+2\sqrt{2})}$
 $= \sqrt{((\sqrt{2})^2 + (1)^2 + 2 \times 1 \times \sqrt{2})}$

As we know, $(a+b)^2 = a^2 + b^2 + 2ab$

$$=\sqrt{\left(\sqrt{2}+1\right)^2}$$
$$=\sqrt{2}+1$$

7. Question

Simplify $\sqrt{3-2\sqrt{2}}$.

Answer

$$\sqrt{(3-2\sqrt{2})} = \sqrt{(\sqrt{2})^2 + (1)^2} - 2 \times \sqrt{2} \times 1 = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2} - 1.$$

If $a = \sqrt{2} + 1$, then find the value of $a - \frac{1}{a}$.

Answer

Given , a = $\sqrt{2}$ +1

$$= \frac{1}{a} = \frac{1}{\sqrt{2}+1} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = (\sqrt{2}-1)$$
$$= a - (\frac{1}{a}) = \sqrt{2} + 1 - (\sqrt{2}-1) = 2.$$

9. Question

If $x = 2 + \sqrt{3}$, find the value of $x + \frac{1}{x}$.

Answer

Given, $x = 2 + \sqrt{3}$

$$= \frac{1}{x} = \frac{1}{2+\sqrt{3}} = \frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{4-3} = 2 - \sqrt{3}$$
$$= x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4.$$

10. Question

Write the rationalisation factor of $\sqrt{5}$ -2.

Answer

Rationalizing factor of $\sqrt{5}$ – 2

$$=\frac{1}{\sqrt{5}-2}=\sqrt{5}+2$$

11. Question

If $x = 3 + 2\sqrt{2}$, then find the value of $\sqrt{x} - \frac{1}{\sqrt{x}}$.

Answer

Given x = $3 + 2\sqrt{2}$

$$=\sqrt{x} = \sqrt{3 + 2\sqrt{2}} = \sqrt{(\sqrt{2} + 1)^2}$$
$$= \sqrt{x} = \sqrt{2} + 1$$
$$= \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = \frac{\sqrt{2} - 1}{1} = \sqrt{2} - 1$$

So, $\sqrt{x} - 1 / \sqrt{x} = \sqrt{2} + 1 - (\sqrt{2} - 1)$

= 1 + 1 = 2.

1. Question

 $\sqrt{10} \times \sqrt{15}$ is equal to

A. 5,√6

B. 6,√5

C. √30

D. √25

Answer

 $\sqrt{10} \times \sqrt{15} = (\sqrt{5} \times \sqrt{2}) \times (\sqrt{5} \times \sqrt{3})$

= 5 (√6)

2. Question

∜6×∜6 is equal to

- A. *‡*√36
- B. *∜*6×0
- C. ∜6
- D. *∜*12

Answer

 ${}^{5}\sqrt{6} \times {}^{5}\sqrt{6} = (6)^{1/5} \times (6)^{1/5} = (36)^{1/5}$

 $= 5\sqrt{36}$

3. Question

The rationalisation factor of $\sqrt{3}$ is

A. -√3

B. $\frac{1}{\sqrt{3}}$

C. 2 √ 3

D. -2 √3

Answer

Rationalisation factor of $\sqrt{3} = 1/\sqrt{3}$

4. Question

The rationalisation factor of 2+ $\sqrt{3}\,$ is

A. 2-√3

B. 2+√3

C. √2-3

D. √3 -2

Answer

Rationalisation factor of $2+\sqrt{3} = 1/2+\sqrt{3} = 2-\sqrt{3}$

5. Question

If $x = \sqrt{5} + 2$, then $x - \frac{1}{x}$ equals

A. 2,√5

B. 4

C. 2

D. √5

Answer

Given $x = \sqrt{5+2}$

$$= \frac{1}{x} = \frac{1}{\sqrt{5}+2} = \frac{1}{\sqrt{5}+2} \times \frac{\sqrt{5}-2}{\sqrt{5}-2} = \frac{\sqrt{5}-2}{5-4} = \sqrt{5}-2$$

so, $x - \frac{1}{x} = \sqrt{5} + 2 - (\sqrt{5}-2) = 4$

6. Question

If $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a - b\sqrt{3}$, then A. a = 2, b = 1B. a = 2, b = -1C. a = -2, b = 1

D. a = b = 1

Answer

Given
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = a - b\sqrt{3}$$

= $\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{4-2\sqrt{3}}{2} = 2 - \sqrt{3}$
So, a = 2, b = 1.

The simplest rationalising of $\sqrt[3]{500}$ is

A. ∛2

В. ∜5

C. √3

D. none of these

Answer

 $\sqrt[3]{500} = \sqrt[3]{(125 \times 4)} = 5 \times \sqrt[3]{4}$

8. Question

The simplest rationalising factor of $\sqrt{3} + \sqrt{5}$ is

A. √3-5

В. 3-√5

C. √3 - √5

D. $\sqrt{3} + \sqrt{5}$

Answer

Simplest rationalizing factor of $\sqrt{3} + \sqrt{5}$

 $1/(\sqrt{3}+\sqrt{5}) = \sqrt{3}-\sqrt{5}$

9. Question

The simplest rationalising factor of $2\sqrt{5} - \sqrt{3}$ is

A. 2√5 +3

B. 2√5 +

- C. $\sqrt{5} + \sqrt{3}$
- D. √5 √3

Answer

Simplest rationalizing factor of 2 $\sqrt{5}$ - $\sqrt{3}$

$$= 1/(2\sqrt{5} - \sqrt{3})$$

$$= 2\sqrt{5} + \sqrt{3}$$

10. Question

If
$$x = \frac{2}{3 + \sqrt{7}}$$
, then $(x - 3)^2 =$

- A. 1
- В. З
- C. 6
- D. 7

Answer

Given X = 2/(3+ $\sqrt{7}$) = $\left(\frac{2}{3+\sqrt{7}} \times \frac{3-\sqrt{7}}{3-\sqrt{7}}\right) = \frac{2(3-\sqrt{7})}{9-7} = 3 - \sqrt{7}$ = (x -3)² = (3 - $\sqrt{7}$ -3)² = $\sqrt{7^2}$ = 7

11. Question

If x = 7+4 $\sqrt{3}$ and xy=1, then $=\frac{1}{x^2} + \frac{1}{y^2}$

A. 64

B. 134

- C. 194
- D. 1/49

Answer

Given $x = 7+4\sqrt{3}$, xy = 1 $Y = 1/x = 1/7 + 4\sqrt{3} = 7-4\sqrt{3}$ $Y^2 = 1/x^2 = 49 + 48 - 56\sqrt{3} = 97 - 56\sqrt{3}$ Similarly, x = 1/y $= x^2 = 1/y^2 = (7 + 4\sqrt{3})^2 = 49 + 48 + 56\sqrt{3} = 97 + 56\sqrt{3}$ So, $1/x^2 + 1/y^2 = 97 + 56\sqrt{3} + 97 - 56\sqrt{3} = 194$

12. Question

If $x + \sqrt{15} = 4$, then $x + \frac{1}{x} =$ A. 2 B. 4 C. 8 D. 1 **Answer**

Given x + $\sqrt{15}$ = 4

$$X = 4 - \sqrt{15}$$

1/x = 1/(4 - \sqrt{15}) = (4 + \sqrt{15}) / 16 - 15 = 4 + \sqrt{15}
So, x + 1/x = 4 - \sqrt{15} + 4 + \sqrt{15} = 8

If $x = \sqrt[3]{2 + \sqrt{3}}$, then $x^3 + \frac{1}{x^3} =$ A. 2 B. 4 C. 8

D. 9

Answer

Given x = $\sqrt[3]{2 + \sqrt{3}}$ = x³ = 2 + $\sqrt{3}$

Similarly, $1/x^3 = 2 - \sqrt{3}$

 $X^3 + 1/x^3 = 2 + \sqrt{3} + 2 - \sqrt{3} = 4.$

14. Question

If
$$x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$
 and $y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$, then $x + y + xy =$
A. 9
B. 5
C. 17
D. 7
Answer

Given x = $\sqrt{5} + \sqrt{3} / \sqrt{5} - \sqrt{3}$, y = $\sqrt{5} - \sqrt{3} / \sqrt{5} + \sqrt{3}$

$$X = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15}$$

$$Y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{8 - 2\sqrt{15}}{2} = 4 - \sqrt{15}$$

$$Xy = 4^{2} - \sqrt{15^{2}} = 16 - 15 = 1$$
So,
$$X + y + xy = 4 + \sqrt{15} + 4 - \sqrt{15} + 1 = 9.$$

15. Question

If
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
 and $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then $x^2 + xy + y^2 = \sqrt{3} - \sqrt{2}$

A. 101

- B. 99
- C. 98
- D. 102

Answer

Given $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ $X = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 5 - 2\sqrt{6}$ $X^2 = (5 - 2\sqrt{6})^2 = 25 + 24 - 20\sqrt{6}) = 49 - 20\sqrt{6}$ Similarily $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 5 + 2\sqrt{6}$ $Y^2 = (5 + 2\sqrt{6})^2 = 49 + 20\sqrt{6}$ $Xy = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - 24 = 1$ So, $x^2 + xy + y^2 = 49 - 20\sqrt{6} + 1 + 49 + 20\sqrt{6} = 99$.

16. Question

The value of $\sqrt{3-2\sqrt{2}}$ is

- A. √2 -1
- B. √2 +1
- C. √3 √2
- D. √3 + √2

Answer

$$\sqrt{3-2\sqrt{2}}$$

(try to break the terms in form of $(a+b)^2$ or $(a - b)^2$)

 $\sqrt{(\sqrt{2})^2 + 1^2 - 2 \times \sqrt{2} \times 1} = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1$.

17. Question

The value of $\sqrt{3-2\sqrt{2}}$ is

A. √3-√2

- B. √3 + √2
- C. √5 + √6
- D. none of these

Answer

$$\sqrt{3-2\sqrt{2}}$$

(try to break the terms in form of $(a+b)^2$ or $(a - b)^2$)

$$\sqrt{(\sqrt{2})^2 + 1^2} - 2 \times \sqrt{2} \times 1) = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1$$
.

18. Question

If
$$\sqrt{2} = 1.4142$$
, then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal to

- A. 0.1718
- B. 5.8282
- C. 0.4142
- D. 2.4142

Answer

Given $\sqrt{2} = 1.4142$

 $\sqrt{(\sqrt{2}-1)}/{\sqrt{2}+1} = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2} - 1 = 1.4142 - 1 = 0.4142$

19. Question

If $\sqrt{2} = 1.414$, then the value of $\sqrt{6} - \sqrt{3}$ upto three place of decimal is

- A. 0.235
- B. 0.707
- C. 1.414
- D. 0.471

Answer

Given , $\sqrt{2}$ = 1.414

 $\sqrt{6} - \sqrt{3} = \sqrt{2} \times \sqrt{3} - \sqrt{3} = \sqrt{3}(\sqrt{2} - 1) = 1.732 (1.414 - 1) = 1.732 \times 0.414 = 0.707$

20. Question

The positive square of 7 + $\sqrt{48}$ is

A. 7 + 2 √3

B. 7+ √3

C. 2+ √3

D. 3+ √2

Answer

7 + √48

= 7 + $\sqrt{(16 \times 3)}$ = 7 + 4 $\sqrt{3}$ (try to break it in form of (a+b)²)

$$= (2)^{2} + (\sqrt{3})^{2} + 2 \times 2 \times \sqrt{3} = (2 + \sqrt{3})^{2} = (2 + \sqrt{3})(2 + \sqrt{3}).$$

21. Question

 $\frac{1}{\sqrt{9} - \sqrt{8}}$ is equal to A. 3 + 2 $\sqrt{2}$

B.
$$\frac{1}{3+2\sqrt{2}}$$

C. 3-2 $\sqrt{2}$
D. $\frac{3}{2}$ - $\sqrt{2}$

Answer

 $\frac{1}{\sqrt{9} - \sqrt{8}} = \frac{1}{(\sqrt{9} - \sqrt{8})} \times (\sqrt{9} + \sqrt{8}) / (\sqrt{9} + \sqrt{8})$ $= \sqrt{9} + \sqrt{8} = \frac{3}{2} + \frac{2}{2}$

22. Question

The value of $\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}$ is A. $\frac{4}{3}$ B. 4 C. 3 D. $\frac{3}{4}$

Answer

 $\sqrt{48} + \sqrt{32} / \sqrt{27} + \sqrt{18}$ $= 4\sqrt{3} + 4\sqrt{2} / 3\sqrt{3} + 3\sqrt{2} = (4\sqrt{3} + 4\sqrt{2})/(3\sqrt{3} + 3\sqrt{2}) \times (3\sqrt{3} - 3\sqrt{2})/(3\sqrt{3} - 3\sqrt{2})$ $= (36 + 12\sqrt{6} - 12\sqrt{6} - 24) / (27 - 18) = 12/9 = 4/3$

If $x = \sqrt{6} + \sqrt{5}$, then $x^2 + \frac{1}{x^2} - 2 =$ A. $2\sqrt{6}$ B. $2\sqrt{5}$ C. 24 D. 20 **Answer** Given $x = \sqrt{6} + \sqrt{5}$

 $X^2 = 11 + 2\sqrt{11}$

 $1/x^2 = 11 - 2\sqrt{11}$

So, $x^2 + 1/x^2 - 2 = 11 + 2\sqrt{11} + 11 - 2\sqrt{11} - 2 = 22 - 2 = 20$.

24. Question

If $\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}$, then a =

- A. -5
- B. -6

C. -4

D. -2

Answer

 $\sqrt{(13-a\sqrt{10})} = \sqrt{8} + \sqrt{5}$

Squaring both side,...

 $= 13 - a\sqrt{10} = 8 + 5 + 2 \times \sqrt{8} \times \sqrt{5}$

- $= 13 a\sqrt{10} = 13 + 2\sqrt{40}$
- $= -a\sqrt{10} = 4\sqrt{10}$
- = a = -4

25. Question

If $=\frac{5-\sqrt{3}}{2+\sqrt{3}} = x+y\sqrt{3}$, then A. x = 13, y = -7B. x = -13, y = 7C. x = -13, y = -7 D. *x* = 13, *y* = 7

Answer

 $5 - \sqrt{3}/2 + \sqrt{3} = x + y\sqrt{3}$ = (5-\sqrt{3}) / (2+\sqrt{3}) × (2-\sqrt{3}) / (2-\sqrt{3}) = (10 - 5\sqrt{3} - 2\sqrt{3} + 3)/(4-3) = 10 - 7\sqrt{3} + 3 = 13 - 7\sqrt{3} = x + y\sqrt{3} So , x= 13 , y = -7