10. Polynomials

Questions Pg-239

1 A. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 - 7x + 12$

Answer

Given, $p(X) = x^2 - 7x + 12$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

 $\Rightarrow x^2 - 7x + 12 = 0$

 \Rightarrow The given equation can be written as follows

 $\Rightarrow (x-4)(x-3) = 0$

⇒ Since, we know that $x^2 - 7x + 12$ can be written as (x - a)(x - b)

 $\Rightarrow x^2 - 7x + 12 = x^2 - (a + b)x + ab$

 \therefore coefficient on either side of the polynomial is same and a + b = 7 and ab = 12

 \Rightarrow we must find two numbers that satisfy a + b and ab we get, 4 and 3 as the numbers

 \therefore (x – 4)(x – 3) are the product of first degree polynomial

 \Rightarrow Substitute x = 4 and x = 3, We get p(x) as 0

 $\Rightarrow x^2 - 7x + 12 = 4^2 - 7(4) + 12 = 16 - 28 + 12 = 0$

 $\Rightarrow x^2 - 7x + 12 = 3^2 - 7(3) + 12 = 9 - 21 + 12 = 0$

Hence, (x - 4)(x - 3) are the first degree factors of the polynomial and 4, 3 are the solutions of the given polynomial $x^2 - 7x + 12$

1 B. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 + 7x + 12$

Answer

Given, $p(X) = x^2 + 7x + 12$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

$$\Rightarrow x^{2} + 7x + 12 = 0$$

 \Rightarrow the given equation can be written as follows

$$\Rightarrow (x + 4)(x + 3) = 0$$

⇒ Since, we know that $x^2 + 7x + 12$ can be written as (x + a)(x + b)

 $\Rightarrow x^{2} + 7x + 12 = x^{2} + (a + b)x + ab$

 \therefore coefficient on either side of the polynomial is same and a + b = 7 and ab = 12

 \Rightarrow we must find two numbers that satisfy a + b and ab we get, 4 and 3 as the numbers

 \therefore (x + 4)(x + 3) are the product of first degree polynomial

⇒ P(x) = 0 if (x + 3) is 0 and (x + 4) is 0 ∴ x + 4 = 0 ⇒ x = -4 ⇒ x² + 7x + 12 = (-4)² + 7(-4) + 12 = 16 - 28 + 12 = 0 And x + 3 = 0 ⇒ x = -3 ⇒ x² + 7x + 12 = (-3)² + 7(-3) + 12 = 9 - 21 + 12 = 0

Hence, (x + 4)(x + 3) are the first degree factors of the polynomial and – 4, – 3 are the solutions of the given polynomial $x^2 + 7x + 12$

1 C. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 - 8x + 12$

Answer

Given, $p(X) = x^2 - 8x + 12$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

 $\Rightarrow x^2 - 8x + 12 = 0$

⇒ The given equation can be written as follows

 $\Rightarrow (x-6)(x-2) = 0$

 \Rightarrow Since, we know that $x^2 - 8x + 12$ can be written as (x - a)(x - b)

 $\Rightarrow x^2 - 8x + 12 = x^2 - (a + b)x + ab$

 \therefore coefficient on either side of the polynomial is same and a + b = 8 and ab = 12

 \Rightarrow we must find two numbers that satisfy a + b and ab we get, 6 and 2 as the numbers

 \therefore (x - 6)(x - 2) are the product of first degree polynomial

```
\Rightarrow P(x) = 0 if (x - 6) is 0 and (x - 2) is 0
```

 $\therefore x - 6 = 0$

⇒ x = 6

 $\Rightarrow x^2 - 8x + 12 = 6^2 - 8(6) + 12 = 36 - 48 + 12 = 0$

And x - 2 = 0

⇒ x = 2

 $\Rightarrow x^{2} - 8x + 12 = 2^{2} - 8(2) + 12 = 4 - 16 + 12 = 0$

Hence, (x - 6)(x - 2) are the first degree factors of the polynomial and 6, 2 are the solutions of the given polynomial $x^2 - 8x + 12$

1 D. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 + 13x + 12$

Answer

Given, $p(X) = x^2 + 13x + 12$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

⇒ $x^2 + 13x + 12 = 0$ ⇒ the given equation can be written as follows ⇒ (x + 12)(x + 1) = 0⇒ Since, we know that $x^2 + 12x + 13$ can be written as (x + a)(x + b)⇒ $x^2 + 13x + 12 = x^2 + (a + b)x + ab$ ∴ coefficient on either side of the polynomial is same and a + b = 7 and ab = 12⇒ we must find two numbers that satisfy a + b and ab we get, 12 and 1 as the numbers ∴ (x + 12)(x + 1) are the product of first degree polynomial ⇒ P(x) = 0 if (x + 12) is 0 and (x + 1) is 0 ∴ x + 1 = 0⇒ $x^2 + 13x + 12 = (-1)^2 + 13(-1) + 12 = 1 - 13 + 12 = 0$ And x + 12 = 0⇒ x = -12

 $\Rightarrow x^{2} + 13x + 12 = (-12)^{2} + 13(-12) + 12 = 144 - 156 + 12 = 0$

Hence, (x + 12)(x + 1) are the first degree factors of the polynomial and – 12, – 1 are the solutions of the given polynomial $x^2 + 13x + 12$

1 E. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 - 2x + 1$

Answer

Given, $p(X) = x^2 - 2x + 1$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

 $\Rightarrow x^2 - 2x + 1 = 0$

 \Rightarrow The given equation can be written as follows

 $\Rightarrow (x - 1)(x - 1) = 0$

⇒ Since, we know that $x^2 - 2x + 1$ can be written as (x - a)(x - b)

$$\Rightarrow x^2 - 2x + 1 = x^2 - (a + b)x + ab$$

 \therefore coefficient on either side of the polynomial is same and a + b = 2 and ab = 1

 \Rightarrow we must find two numbers that satisfy a + b and ab we get, 1 and 1 as the numbers

 \therefore (x – 1)(x – 1) are the product of first degree polynomial

 \Rightarrow p(x) is 0 if (x - 1) is 0

 $\therefore x - 1 = 0$

 $\Rightarrow x^2 - 2x + 1 = 1^2 - 2(1) + 1 = 1 - 2 + 1 = 0$

Hence, (x - 1)(x - 1) are the first degree factors of the polynomial and 1 is the solution of the given polynomial $x^2 - 2x + 1$

1 F. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = x^2 + x - 1$

Answer

Given, $p(x) = x^2 + x - 1$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

⇒ The given equation can be written as = $x^2 + x + (-1)$ which is of the form $x^2 + (a + b)x + ab$

 \therefore a + b = 1 and ab = -1

 \Rightarrow we know that $(a + b)^2 - (a - b)^2 = 4ab$

$$(a + b)^2 - 4ab = (a - b)^2$$

 \Rightarrow we know a + b = 1 and ab = -1

 $\Rightarrow 1 - 4(-1) = (a - b)^2$

$$\Rightarrow$$
 (a – b)² = 5

 \Rightarrow Solving the equation both equation a + b and a - b we get as follows

⇒ a + b + a - b = 1 + √5
⇒ a =
$$\frac{1}{2}(1 + \sqrt{5})$$

⇒ (a + b) - (a - b) = 1 + √5
⇒ b = $\frac{1}{2}(1 - \sqrt{5})$
∴ x² + x + (- 1) has factors (x + $\frac{1}{2}(1 + \sqrt{5}))(x + \frac{1}{2}(1 - \sqrt{5}))$
⇒ p(x) = 0 if (x + $\frac{1}{2}(1 + \sqrt{5}))$ is 0 and (x + $\frac{1}{2}(1 - \sqrt{5}))$ is 0
⇒ (x + $\frac{1}{2}(1 + \sqrt{5})) = 0$
⇒ x = $-\frac{1}{2}(1 + \sqrt{5})$
⇒ ($-\frac{1}{2}(1 + \sqrt{5}))^2$ + ($-\frac{1}{2}(1 + \sqrt{5})$) + (- 1) = 0
And
⇒ (x + $\frac{1}{2}(1 - \sqrt{5})) = 0$
⇒ x = $-\frac{1}{2}(1 - \sqrt{5})$

$$\Rightarrow (-\frac{1}{2}(1-\sqrt{5}))^2 + (-\frac{1}{2}(1-\sqrt{5})) + (-1) = 0$$

Hence, $(x + \frac{1}{2}(1 + \sqrt{5}))(x + \frac{1}{2}(1 - \sqrt{5}))$ are the first degree factors of the polynomial and $-\frac{1}{2}(1 + \sqrt{5})$ and $-\frac{1}{2}(1 - \sqrt{5})$ are the solution of the given polynomial $x^2 + x - 1$

1 G. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

$$p(x) = 2x^2 - 5x + 2$$

Answer

Given, $p(x) = 2x^2 - 5x + 2$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

 $\Rightarrow 2x^2 - 5x + 2 \text{ can be written as } 2(x^2 - \frac{5}{2}x + 1)$

⇒ Now, we will find out the factors for $x^2 - \frac{5}{2}x + 1$

$$\Rightarrow x^2 - \frac{5}{2}x + 1$$
 is in the form $x^2 - (a + b)x + ab$ and $(x - a)(x - b)$ are the factors

 \therefore coefficient on either side of the polynomial is same and a + b = $\frac{5}{2}$

and ab = 1

 \Rightarrow we know that $(a + b)^2 - (a - b)^2 = 4ab$

$$(a + b)^2 - 4ab = (a - b)^2$$

$$\Rightarrow \left(\frac{5}{2}\right)^2 - 4(1) = (a - b)^2$$

$$\Rightarrow \frac{25}{4} - 4 = (a - b)^2$$

$$\Rightarrow \frac{25-16}{4} = (a - b)^2$$

$$\Rightarrow \frac{9}{4} = (a - b)^2$$

$$\Rightarrow a - b = \pm \sqrt{\frac{9}{4}}$$

$$\Rightarrow$$
 a - b = $\pm \frac{3}{2}$

 \Rightarrow We need to find out the values of a and b by solving (a + b) + (a - b) and (a + b) - (a - b)

 $\Rightarrow \text{ we take a - b = <math>\frac{3}{2}$ $\Rightarrow (a + b) + (a - b) = \frac{5}{2} + \frac{3}{2}$ $\Rightarrow 2a = \frac{8}{2}$ $\Rightarrow a = 2$ $\Rightarrow (a + b) - (a - b) = \frac{5}{2} - \frac{3}{2}$ $\Rightarrow 2b = \frac{2}{2}$ $\Rightarrow b = \frac{1}{2}$ $\therefore \text{ we get a = 2 and b = <math>\frac{1}{2}$

And if we take a - b = $-\frac{3}{2}$ we get as follows \Rightarrow (a + b) + (a - b) = $\frac{5}{2}$ + (- $\frac{3}{2}$) $\Rightarrow 2a = \frac{2}{3}$ $\Rightarrow a = \frac{1}{2}$ \Rightarrow (a + b) - (a - b) = $\frac{5}{2}$ - $\left(-\frac{3}{2}\right)$ $\Rightarrow 2b = \frac{8}{2}$ $\Rightarrow b = 2$ \therefore a = $\frac{1}{2}$ and b = 2 \Rightarrow So, we have $2(x - \frac{1}{2})(x - 2)$ $\Rightarrow (2x - 1)(x - 2)$ \therefore (2x - 1)(x - 2) are the factors $\Rightarrow p(x) = 0$ if (2x - 1) is 0 and (x - 2) is 0 \Rightarrow (2x - 1) = 0 $\Rightarrow 2x = 1$ $\Rightarrow x = \frac{1}{2}$ ⇒ Substitute, $x = \frac{1}{2}$ in $2x^2 - 5x + 2 = 2(\frac{1}{2})^2 - 5(\frac{1}{2}) + 2 = \frac{1}{2} - \frac{5}{2} + 2 = 0$ \Rightarrow (x - 2) = 0 ⇒ x = 2 substitute, $2x^2 - 5x + 2 = 2(2)^2 - 5(2) + 2 = 8 - 10 + 2 = 0$

Hence, (2x - 1)(x - 2) are the first degree factors of the polynomial and $\frac{1}{2}$ and 2 are the solution of the given polynomial $2x^2 - 5x + 2$

1 H. Question

Write each polynomial below as a product of first degree polynomials. Write also the solutions of the equation p(x) = 0 in each.

 $p(x) = 6x^2 - 7x + 2$

Answer

Given, $p(x) = 6x^2 - 7x + 2$

Now, we need to write the given polynomial as a product of first degree polynomial and p(x) = 0

⇒ $6x^2 - 7x + 2$ can be written as $6(x^2 - \frac{7}{6}x + \frac{2}{6}) = 6(x^2 - \frac{7}{6}x + \frac{1}{3})$

 \Rightarrow Now, we will find out the factors for $x^2 - \frac{7}{6}x + \frac{1}{3}$

$$\Rightarrow x^2 - \frac{7}{6}x + \frac{1}{3}$$
 is in the form $x^2 - (a + b)x + ab$ and $(x - a)(x - b)$ are the factors

 \therefore coefficient on either side of the polynomial is same and a + b = $\frac{7}{6}$

and $ab = \frac{1}{3}$ \Rightarrow we know that $(a + b)^2 - (a - b)^2 = 4ab$ $(a + b)^2 - 4ab = (a - b)^2$ $\Rightarrow \left(\frac{7}{c}\right)^2 - 4\left(\frac{1}{3}\right) = (a - b)^2$ $\Rightarrow \frac{49}{26} - \frac{4}{2} = (a - b)^2$ $\Rightarrow \frac{(49-48)}{36} = (a - b)^2$ $\Rightarrow \frac{1}{36} = (a - b)^2$ $\Rightarrow a - b = \pm \sqrt{\frac{1}{36}}$ $\Rightarrow a - b = \pm \frac{1}{6}$ \Rightarrow We need to find out the values of a and b by solving (a + b) + (a - b) and (a + b) - (a - b) \Rightarrow we take a - b = $\frac{1}{6}$ \Rightarrow (a + b) + (a - b) = $\frac{7}{6} + \frac{1}{6}$ $\Rightarrow 2a = \frac{a}{c}$ $\Rightarrow a = \frac{4}{6} = \frac{2}{3}$ \Rightarrow (a + b) - (a - b) = $\frac{7}{6} - \frac{1}{6}$ $\Rightarrow 2b = \frac{6}{6}$ $\Rightarrow b = \frac{1}{2}$ \therefore we get a = $\frac{2}{3}$ and b = $\frac{1}{2}$ And if we take a – b = $-\frac{1}{6}$ we get as follows \Rightarrow (a + b) + (a - b) = $\frac{7}{6}$ + (- $\frac{1}{6}$) $\Rightarrow 2a = \frac{6}{6}$ $\Rightarrow a = \frac{1}{2}$ \Rightarrow (a + b) - (a - b) = $\frac{7}{6}$ - (- $\frac{1}{6}$) $\Rightarrow 2b = \frac{8}{6}$ $\Rightarrow b = \frac{2}{3}$ \therefore a = $\frac{1}{2}$ and b = $\frac{2}{3}$

⇒ So, we have $6(x - \frac{1}{2})(x - \frac{2}{3})$

 $\Rightarrow (6x - \frac{6}{2})(x - \frac{2}{3})$ $\Rightarrow (6x - 3)(x - \frac{2}{3})$ $\therefore (6x - 3)(x - \frac{2}{3}) \text{ are the factors}$ $\Rightarrow p(x) = 0 \text{ if } (6x - 3) \text{ is } 0 \text{ and } (x - \frac{2}{3}) \text{ is } 0$ $\Rightarrow (6x - 3) = 0$ $\Rightarrow 6x = 3$ $\Rightarrow x = \frac{3}{6} = \frac{1}{2}$ $\Rightarrow \text{ Substitute, } x = \frac{1}{2} \text{ in } 6x^2 - 7x + 2 = 6(\frac{1}{2})^2 - 7(\frac{1}{2}) + 2 = \frac{3}{2} - \frac{7}{2} + 2 = 0$ $\Rightarrow (x - \frac{2}{3}) = 0$ $\Rightarrow x = \frac{2}{3} \text{ substitute, } 6x^2 - 7x + 2 = 6(\frac{2}{3})^2 - 7(\frac{2}{3}) + 2 = \frac{8}{3} - \frac{14}{3} + 2 = 0$

Hence, $(6x - 3)(x - \frac{2}{3})$ are the first degree factors of the polynomial and $\frac{1}{2}$ and $\frac{2}{3}$ are the solution of the given polynomial $6x^2 - 7x + 2$

2. Question

Find a second degree polynomial p(x) such that p(1) = 0 and p(-2) = 0.

Answer

Given, p(1) = 0, p(-2) = 0

Need to find a polynomial p(x) of second degree

 \Rightarrow since we know that p(1) = 0

 \therefore if x = 1 is substituted in p(x) then it satisfies the equation

 \Rightarrow x - 1 = 0 , and x - 1 is one factor of p(x)

And p(-2) = 0 is given

 \Rightarrow if x = - 2 is substituted in p(x) then it satisfies the equation

 \Rightarrow x + 2 = 0, and x + 2 is one factor of p(x)

 \Rightarrow since, x - 1 and x + 2 are the factors of p(x), it can be written as follows

 $\Rightarrow p(x) = (x - 1)(x + 2)$

 $\Rightarrow p(x) = x^2 - x + 2x - 2$

 $\Rightarrow p(x) = x^2 + x - 2$

 $\therefore x^2 + x - 2$ is the second degree polynomial which satisfies p(1) = 0 and p(-2) = 0.

3. Question

Find a second degree polynomial p(x) such that $p(1+\sqrt{3})=0$ and $p(1-\sqrt{3})=0$.

Answer

Given, $p(1 + \sqrt{3}) = 0$, $p(1 - \sqrt{3}) = 0$

Need to find a polynomial p(x) of second degree

 \Rightarrow since we know that p(1 + $\sqrt{3}$) = 0

 \therefore if x = 1 + $\sqrt{3}$ is substituted in p(x) then it satisfies the equation

 \Rightarrow x - (1 + $\sqrt{3}$) = 0 , and ((x - 1) - $\sqrt{3}$) is one factor of p(x)

And $p(1 - \sqrt{3}) = 0$ is given

 \Rightarrow if x = 1 - $\sqrt{3}$ is substituted in p(x) then it satisfies the equation

 \Rightarrow x - (1 - $\sqrt{3}$) = 0, and ((x - 1) + $\sqrt{3}$) is one factor of p(x)

 \Rightarrow since, ((x - 1) - $\sqrt{3}$) and ((x - 1) + $\sqrt{3}$) are the factors of p(x), it can be written as follows

 $\Rightarrow p(x) = ((x - 1) - \sqrt{3})((x - 1) + \sqrt{3})$ $\Rightarrow p(x) = (x - 1 - \sqrt{3})(x - 1 + \sqrt{3})$

 $\Rightarrow p(x) = x^2 - x + \sqrt{3}x - x + 1 - \sqrt{3} - \sqrt{3}x + \sqrt{3} - 3$

 $\Rightarrow p(x) = x^2 - 2x - 2$

 $\therefore x^2 - 2x - 2$ is the second degree polynomial which satisfies $p(1 + \sqrt{3}) = 0$ and $p(1 - \sqrt{3}) = 0$.

4. Question

Find a third degree polynomial p(x) such that p(1) = 0, $p(\sqrt{2}) = 0$ and $p(-\sqrt{2}) = 0$.

Answer

Given, p(1) = 0, $p(\sqrt{2}) = 0$ and $p(-\sqrt{2}) = 0$ Need to find the third degree polynomial p(x) \Rightarrow p(1) = 0 is given which satisfy p(x) \therefore if x = 1 is substituted in p(x) then it satisfies the equation \Rightarrow x - 1 is one factor of p(x) \Rightarrow p($\sqrt{2}$) = 0 is given \therefore if x = $\sqrt{2}$ is substituted in p(x) then it satisfies the equation \Rightarrow x – $\sqrt{2}$ is another factor \Rightarrow p(- $\sqrt{2}$) = 0 is given \therefore if x = - $\sqrt{2}$ is substituted in p(x) then it satisfies the equation \Rightarrow x + $\sqrt{2}$ is third factor of the p(x) \Rightarrow Since, $(x - 1)(x - \sqrt{2})(x + \sqrt{2})$ are the factors of the third degree polynomials $\therefore p(x) = (x - 1)(x - \sqrt{2})(x + \sqrt{2})$ $\Rightarrow p(x) = (x^2 - x - \sqrt{2x} + \sqrt{2})(x + \sqrt{2})$ $\Rightarrow p(x) = (x^{3} + \sqrt{2x^{2} - x^{2}} - \sqrt{2x} - \sqrt{2x^{2} - 2x} + \sqrt{2x + 2})$ $\Rightarrow p(x) = (x^3 - x^2 - 2x + 2)$ Hence, $x^3 - x^2 - 2x + 2$ is the third degree polynomial which satisfies p(1) = 0, $p(\sqrt{2}) = 0$ and $p(-\sqrt{2}) = 0$

5. Question

Prove that the polynomial $x^2 + x + 1$ cannot be written as a product of first degree polynomials.

Answer

Given, a second degree polynomial $x^2 + x + 1$

Need to prove the given equation cannot be written as product of first degree polynomial

 \Rightarrow we know that a polynomial equation of degree 2, $x^2 + (a + b)x + ab$ can be written as (x + a)(x + b)

 \Rightarrow Here, $x^2 + x + 1$ is written as $x^2 + (a + b)x + ab$

 \Rightarrow coefficient on either side are equal, we get

 \Rightarrow a + b = 1 and ab = 1

 \Rightarrow We need to find the values of a, b such that it satisfies the given equation to get the factors of first degree polynomial

⇒ Since, a + b = 1 and ab = 1 it is not possible to find out the values of a, b which satisfy the equation $x^2 + x + 1$

Hence, $x^2 + x + 1$ cannot be splited into factors of first degree polynomial

Questions Pg-245

1 A. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

x - 1, $x^3 + 4x^2 - 3x - 6$

Answer

Given, a pair of polynomial as x - 1, $x^3 + 4x^2 - 3x - 6$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

 \Rightarrow To check x – 1 is a factor of x³ + 4x² – 3x – 6 we must substitute x = 1 in the second polynomial, we get as follows

 \Rightarrow 1 + 4 - 3 - 6 = - 4 \neq not equal to 0

 \therefore x - 1 is not a factor of x³ + 4x² - 3x - 6

 \Rightarrow To find the remainder by using divide second polynomial by first polynomial

 \Rightarrow so, we can subtract a number from the second polynomial to get the remainder

$$\therefore x^3 + 4x^2 - 3x - 6 = (x - 1)q(x) + c$$

 $\Rightarrow x^{3} + 4x^{2} - 3x - 6 - c = (x - 1)q(x)$

 $\Rightarrow c = ((x^3 + 4x^2 - 3x - 6) - (x - 1)) \times q(x)$

 \Rightarrow Now, substitute x = 1 in the above equation we get

 $\Rightarrow c = (1 + 4 - 3 - 6 - 1 + 1) \times q(1)$

- 4 is the remainder

1 B. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

x + 1, $x^3 + 4x^2 - 3x - 6$

Answer

Given, a pair of polynomial as x + 1, $x^3 + 4x^2 - 3x - 6$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

⇒ To check x + 1 is a factor of $x^3 + 4x^2 - 3x - 6$ we must substitute x = -1 in the second polynomial, we get as follows

 $\Rightarrow -1 + 4 + 3 - 6 = 0$

 $\therefore x + 1$ is a factor

1 C. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

x - 2, $x^3 + 3x^2 - 4x - 12$

Answer

Given, a pair of polynomial as x - 2, $x^3 + 3x^2 - 4x - 12$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

⇒ To check x – 2 is a factor of $x^3 + 3x^2 - 4x - 12$ we must substitute x = 2 in the second polynomial, we get as follows

 $\Rightarrow 2^3 + 3(2)^2 - 4(2) - 12 = 8 + 12 - 8 - 12 = 0$

 $\therefore x - 2$ is a factor

1 D. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

 $x + 2, x^3 + 3x^2 - 4x - 12$

Answer

Given, a pair of polynomial as x + 2, $x^3 + 3x^2 - 4x - 12$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

⇒ To check x + 2 is a factor of $x^3 + 3x^2 - 4x - 12$ we must substitute x = -2 in the second polynomial, we get as follows

 $\Rightarrow (-2)^3 + 3(-2)^2 - 4(-2) - 12 = -8 + 12 + 8 - 12 = 0$

 $\therefore x + 2$ is a factor

1 E. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

2x - 1, $3x^3 - x^2 - 8x + 6$

Answer

Given, a pair of polynomial as 2x - 1, $3x^3 - x^2 - 8x + 6$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

⇒ To check 2x - 1 is a factor of $3x^3 - x^2 - 8x + 6$ we must substitute $x = \frac{1}{2}$ in the second polynomial, we get as follows

$$\Rightarrow 3(\frac{1}{2})^3 - (\frac{1}{2})^2 - 8(\frac{1}{2}) + 6 = \frac{3}{8} - \frac{1}{4} - \frac{8}{2} + 6 = \frac{3}{8} - \frac{1}{4} - 4 + 6 = \frac{1}{8} + 2 = \frac{17}{8} \neq 0$$

 \therefore 2x – 1 is not a factor

 \Rightarrow To find the remainder divide second polynomial by first polynomial

 \Rightarrow so, we can subtract a number from the second polynomial to get the remainder

$$\therefore 3x^{3} - x^{2} - 8x + 6 = (2x - 1)q(x) + c$$

$$\Rightarrow 3x^{3} - x^{2} - 8x + 6 - c = (2x - 1)q(x)$$

$$\Rightarrow c = ((3x^{3} - x^{2} - 8x + 6) - (2x - 1)) \times q(x)$$

$$\Rightarrow \text{Now, substitute } x = \frac{1}{2} \text{ in the above equation we get}$$

$$\Rightarrow c = (3(\frac{1}{2})^{3} - (\frac{1}{2})^{2} - 8(\frac{1}{2}) + 6 - 2(\frac{1}{2}) + 1) \times q(1)$$

$$= \frac{3}{8} - \frac{1}{4} - 4 + 6$$

$$\therefore c = \frac{17}{8}$$

 $\frac{17}{9}$ is the remainder

1 F. Question

For each pair of polynomial is below, check whether the first is a factor of the second. If not a factor, find the remainder on dividing the second by the first.

3x - 1, $3x^3 - 10x^2 + 9x - 2$

Answer

Given, a pair of polynomial as 3x - 1, $3x^3 - 10x^2 + 9x - 2$

Need to find out the first polynomial is factor of second and if not a factor need to find the remainder

⇒ To check 3x - 1 is a factor of $3x^3 - 10x^2 + 9x - 2$ we must substitute $x = \frac{1}{3}$ in the second polynomial, we get as follows

$$\Rightarrow 3(\frac{1}{3})^3 - 10(\frac{1}{3})^2 + 9(\frac{1}{3}) - 2 = \frac{3}{27} - \frac{10}{9} - \frac{9}{3} - 2$$
$$= \frac{1}{9} - \frac{10}{9} - 3 - 2$$
$$= -\frac{1}{9} - 5$$
$$= -\frac{46}{9} \neq 0$$
$$\therefore 3x - 1 \text{ is not a factor}$$

 \Rightarrow To find the remainder divide second polynomial by first polynomial

 \Rightarrow so, we can subtract a number from the second polynomial to get the remainder

$$\therefore 3x^{3} - 10x^{2} + 9x - 2 = (3x - 1)q(x) + c$$

$$\Rightarrow 3x^{3} - 10x^{2} + 9x - 2 - c = (3x - 1)q(x)$$

$$\Rightarrow c = ((3x^3 - 10x^2 + 9x - 2) - (3x - 1)) \times q(x)$$

 \Rightarrow Now, substitute x = $\frac{1}{3}$ in the above equation we get

$$\stackrel{\Rightarrow}{=} c = \left(3\left(\frac{1}{3}\right)^3 - 10\left(\frac{1}{3}\right)^2 + 9\left(\frac{1}{3}\right) - 2 - 3\left(\frac{1}{3}\right) + 1\right) \times q(1)$$
$$= \frac{3}{27} - \frac{10}{9} - \frac{9}{3} - 2 - 0$$
$$\therefore c = -\frac{46}{9}$$

 $-\frac{46}{9}$ is the remainder

2 A. Question

For each pair of polynomials below, find the quotient and remainder on dividing the first by the second.

x³ - 1, x - 1

Answer

Given, $x^3 - 1$, x - 1 as pair of polynomials

Need to find the quotient and remainder

 \Rightarrow To find the quotient and remainder the given equation can be written as p(x) = (x - a)q(x) + b

 \Rightarrow since, the polynomial is of third degree we can write the q(x) as x² + ax + b

$$\therefore p(x) = (x - a)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} - 1 = (x - 1)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} - 1 = (x^{3} - x^{2} + ax^{2} - ax + bx - b) + c$$

$$\Rightarrow x^{3} - 1 = x^{3} + (a - 1)x^{2} + (b - a)x + (c - b)$$

$$\therefore a - 1 = 0, b - a = 0, c - b = -1$$

$$\Rightarrow a = 1, b = 1$$

$$\Rightarrow c = b - 1 = 0$$

Quotient = x^{2} + ax + b = x^{2} + x + 1
Remainder = 0

2 B. Question

For each pair of polynomials below, find the quotient and remainder on dividing the first by the second.

x³ - 1, x + 1

Answer

Given, $x^3 - 1$, x - 1 as pair of polynomials

Need to find the quotient and remainder

 \Rightarrow To find the quotient and remainder the given equation can be written as p(x) = (x - a)q(x) + b

 \Rightarrow Since, the polynomial is of third degree we can write the q(x) as $x^2 + ax + b$

$$\therefore p(x) = (x - a)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} - 1 = (x + 1)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} - 1 = (x^{3} + x^{2} + ax^{2} + ax + bx + b) + c$$

$$\Rightarrow x^{3} - 1 = x^{3} + (a + 1)x^{2} + (a + b)x + (c + b)$$

$$\therefore a + 1 = 0, a + b = 0, c + b = -1$$

$$\Rightarrow a = -1$$

$$\Rightarrow a + b = 0$$

$$\Rightarrow -1 + b = 0$$

$$\Rightarrow b = 1$$

$$\Rightarrow c + b = -1$$

 $\Rightarrow c + 1 = -1$ $\Rightarrow c = -2$ Quotient = x^{2} + ax + b = x^{2} - x + 1 Remainder = -2

2 C. Question

For each pair of polynomials below, find the quotient and remainder on dividing the first by the second.

x³ + 1, x - 1

Answer

Given, $x^3 - 1$, x - 1 as pair of polynomials

Need to find the quotient and remainder

 \Rightarrow To find the quotient and remainder the given equation can be written as p(x) = (x - a)q(x) + b

⇒ Since, the polynomial is of third degree we can write the q(x) as $x^2 + ax + b$

$$\therefore p(x) = (x - a)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} + 1 = (x - 1)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} + 1 = (x^{3} - x^{2} + ax^{2} - ax + bx - b) + c$$

$$\Rightarrow x^{3} + 1 = x^{3} + (a - 1)x^{2} + (b - a)x + (c - b)$$

$$\therefore a - 1 = 0, b - a = 0, c - b = 1$$

$$\Rightarrow a = 1, b = 1$$

$$\Rightarrow c - b = 1$$

$$\Rightarrow c = 2$$

Quotient = x^{2} + ax + b = x^{2} + x + 1
Remainder = 2

2 D. Question

For each pair of polynomials below, find the quotient and remainder on dividing the first by the second.

 $x^3 + 1, x + 1$

Answer

Given, $x^3 - 1$, x - 1 as pair of polynomials

Need to find the quotient and remainder

 \Rightarrow To find the quotient and remainder the given equation can be written as p(x) = (x - a)q(x) + b

 \Rightarrow Since, the polynomial is of third degree we can write the q(x) as x² + ax + b

$$\therefore p(x) = (x - a)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} + 1 = (x + 1)(x^{2} + ax + b) + c$$

$$\Rightarrow x^{3} + 1 = (x^{3} + x^{2} + ax^{2} + ax + bx + b) + c$$

$$\Rightarrow x^{3} + 1 = x^{3} + (a + 1)x^{2} + (b + a)x + (c + b)$$

$$\therefore a + 1 = 0, b + a = 0, c + b = 1$$

$$\Rightarrow a = -1, b = 1$$

⇒ c + b = 1 ⇒ c = 0 Quotient = x^2 + ax + b = x^2 - x + 1 Remainder = 0

3 A. Question

By adding a number to $p(x) = x^3 + x^2 + x$, a new polynomial q(x) is to be formed.

What number should be added, so that x - 1 is a factor of q(x)?

Answer

Given $p(x) = x^3 + x^2 + x$

Let the number to be added be "k".

Then, the new polynomial $q(x) = x^3 + x^2 + x + k$

Now, (x - 1) is a factor of $x^3 + x^2 + x + k$.

i.e. x = 1 is the root of the polynomial.

Then, put the polynomial to zero we get,

$$x^{3} + x^{2} + x + k = 0$$

 $\Rightarrow (1)^{3} + (1)^{2} + 1 + k = 0$
 $\Rightarrow 1 + 1 + 1 + k = 0$
 $\Rightarrow k = -3$

Hence, " – 3" should be added to the polynomial such that (x - 1) is a factor of q(x).

3 B. Question

By adding a number to $p(x) = x^3 + x^2 + x$, a new polynomial q(x) is to be formed.

What number should be added, so that x + 1 is a factor of q(x)?

Answer

Given $p(x) = x^3 + x^2 + x$

Let the number to be added be "k".

Then, the new polynomial $q(x) = x^3 + x^2 + x + k$

Now, (x+1) is a factor of $x^3 + x^2 + x + k$.

i.e. x = -1 is the root of the polynomial.

Then, put the polynomial to zero we get,

$$x^{3} + x^{2} + x + k = 0$$

$$\Rightarrow (-1)^{3} + (-1)^{2} + (-1) + k = 0$$

$$\Rightarrow -1 + 1 - 1 + k = 0$$

$$\Rightarrow k = -1$$

Hence, " – 1" should be added to the polynomial such that (x - 1) is a factor of q(x).

4 A. Question

In each pair of polynomials below find what kind of natural number n must be, so that the first is a factor of the second.

x - 1, xⁿ - 1

Answer

Given, x - 1, $x^n - 1$ pair of polynomials

Need to find out n such as first polynomial is factor of second

 \Rightarrow To check x - 1 is factor of xⁿ - 1 we must get xⁿ - 1 = 0 when substituted x with 1 from the first polynomial

 \Rightarrow since, when x is substituted with 1 it will satisfy irrespective of n in the given polynomial

Consider n as 1 then the polynomial equation itself will be x - 1 and x - 1 will be the factor

Hence, n is 1

4 B. Question

In each pair of polynomials below find what kind of natural number n must be, so that the first is a factor of the second.

x - 1, xⁿ + 1

Answer

Given, x - 1, x^n + 1 pair of polynomials

Need to find out n such as first polynomial is factor of second

 \Rightarrow To check x – 1 is factor of xⁿ + 1 we must get xⁿ + 1 = 0 when substituted x with 1 from the first polynomial

 \Rightarrow Consider n as 1 then the polynomial equation will be x + 1 which is not equal to zero and x - 1 will not be the factor.

 \Rightarrow For any n value x – 1 cannot be a factor

4 C. Question

In each pair of polynomials below find what kind of natural number n must be, so that the first is a factor of the second.

x + 1, xⁿ - 1

Answer

Given, x + 1, $x^n - 1$ pair of polynomials

Need to find out n such as first polynomial is factor of second

⇒ To check x + 1 is factor of $x^n - 1$ we must get $x^n - 1 = 0$ when substituted x with -1 from the first polynomial

 \Rightarrow Consider n as 1 then the polynomial equation will be x – 1 which is not equal to zero and x + 1 will not be the factor.

⇒ Then consider n as 2 then x^2 – 1 be the polynomial equation substitute x = – 1 in the equation

We get, $(-1)^2 - 1 = 0$

 $\therefore x + 1$ is the factor of $x^n - 1$

Hence, n = 2

4 D. Question

In each pair of polynomials below find what kind of natural number n must be, so that the first is a factor of the second.

x + 1, xⁿ + 1

Answer

Given, x + 1, $x^n + 1$ pair of polynomials

Need to find out n such as first polynomial is factor of second

 \Rightarrow To check x + 1 is factor of xⁿ + 1 we must get xⁿ + 1 = 0 when substituted x with - 1 from the first polynomial

 \Rightarrow Consider n as 1 then the polynomial equation will be x + 1 which is equal to zero and x + 1 will is the factor.

We get, (-1) + 1 = 0

 $\therefore x + 1$ is the factor of $x^n + 1$

Hence, n = 1

4 E. Question

In each pair of polynomials below find what kind of natural number n must be, so that the first is a factor of the second.

x² - 1, xⁿ - 1

Answer

Given, $x^2 - 1$, $x^n - 1$ pair of polynomials

Need to find out n such as first polynomial is factor of second

⇒ To check $x^2 - 1$ is factor of $x^n - 1$ we must get $x^n - 1 = 0$ when substituted with x values from the first polynomial

 \Rightarrow Here, x² - 1 so, x = $\sqrt{1}$ = 1

 \Rightarrow Consider n as 1 then the polynomial equation will be x¹ - 1 which is equal to zero and x² - 1 is the factor.

We get, 1 - 1 = 0

 $\therefore x^2$ – 1 is the factor of x^n – 1

Hence, n = 1

5. Question

Prove that if $x^2 - 1$ is a factor of $ax^3 + bx^3 + cx + d$, then a = -c and b = -d.

Answer

Given, $ax^3 + bx^2 + cx + d$ Need to show a = -c and b = -d if $x^2 - 1$ is a factor \Rightarrow consider, $x^2 - 1$ is a factor of $ax^3 + bx^2 + cx + d$ \Rightarrow then x = +1, x = -1 \Rightarrow substitute x value in the equation $ax^3 + bx^2 + cx + d$ We get as follows \Rightarrow for x = 1 we get $a(1)^3 + b(1)^2 + c(1) + d$ = a + b + c + deq(1) \Rightarrow for x = -1 we get $a(-1)^3 + b(-1)^2 + c(-1) + d$ = -a + b - c + deq(2) \Rightarrow Solving the two equations we get $\Rightarrow (a + b + c + d) + (-a + b - c + d) = 0$ $\Rightarrow b + d = 0$ $\therefore b = -d$ And if (a + b + c + d) - (-a + b - c + d) = 0 $\Rightarrow a + c = 0$ $\therefore a = -c$

6. Question

What first degree polynomial added to $2x^3 - 3x^2 + 5x + 1$ gives a multiple of $x^2 - 1$?

Answer

Given, $2x^3 - 3x^2 + 5x + 1$

Need to find the first degree polynomial if added to the equation gets the multiple of x^2 – 1

⇒
$$2x^3 - 3x^2 + 5x + 1$$
 can be written as $2(x^3 - \frac{3}{2}x^2 + \frac{5}{2}x + \frac{1}{2})$
⇒ $x^3 - \frac{3}{2}x^2 + \frac{5}{2}x + \frac{1}{2} = (x^2 - 1)(x - a) + b$
= $x^3 - ax^2 - x + a + b$
∴ $a = \frac{3}{2}$ and $a + b = \frac{1}{2}$
⇒ $b = -1$