DESIGN OF STABLE CHANNELS

KENNEDY'S THEORY

Design Steps

 $v_0 = 0.55 \, \text{my}^{0.64}$

where, vo = Critical velocity

y = Trial depth

m = Critical velocity ratio

where, v = Actual mean velocity.

 $m = 1 \rightarrow$ For standard particles of upper Baridoab.

m = 1 to 1.2 → For Coarser Sediments.

m = 0.7 to $1.0 \rightarrow$ For finner particles.

 $y = 1 \text{ m} \rightarrow \text{when } 0 \le Q \le 20 \text{ m}^3/\text{sec}$

 $y = 2 \text{ m} \rightarrow \text{when } 20 \le Q \le 40 \text{ m}^3/\text{sec.}$

 $y = 2.5 \text{ m} \rightarrow \text{when } 40 \le Q \le 80 \text{ m}^3/\text{sec.}$

 $y = 3.0 \text{ m} \rightarrow \text{when } 80 \le Q \le 100 \text{ m}^3/\text{sec}$

where,

Q = Discharge (m³/sec)

V_o = Critical velocity.

(iii)
$$P = B + 2y\sqrt{n^2 + 1}$$

where, R = Hydraulic mean depth.

V = C√RS

(a)
$$C = \frac{23 + \frac{0.00155}{s} + \frac{1}{N}}{1 + \left(23 + \frac{0.00155}{s}\right) \frac{N}{\sqrt{R}}}$$

(b)
$$\frac{1}{3500} \le S \le \frac{1}{5000}$$

(vi) If $V \simeq V_0$ then O.K.

LACEY'S THEORY

Design Steps:

Qf²]^{1/6} where, V = Velocity in m/s Q = Discharge in cumec (m³/sec) f = Silt factor

 $f = 1.76\sqrt{d_{mm}}$ where $d_{mm} = dia in 'mm'$

(ii)
$$R = \frac{5}{2} \cdot \frac{V^2}{f}$$

Solve equation (i) and (ii) get B and y.

(v)
$$S = \frac{f^{5/3}}{3340 \cdot O^{1/6}}$$
 where S = bed slope.

Lacey regime scour depth = 1.35

LINDLEY'S THEORY

$$V = 0.567 \cdot y^{0.57}$$
, $V = 0.274 \cdot B^{0.355}$ and $B = 7.76y^{1.61}$

LINING OF CANALS

(a) Annual Benefits

Total annual benefits = $mR_1 + PR_2$

where R_1 = Irrigation water sold to the cultivator at a rate \mathbb{R}_1 /cumec.

m = Cumec of water is saved by lining the canal annually.

 R_2 = Rate of maintenance cost in rupees per year.

P=% (fraction) of saving achieved in maintenance cost by lining the canal.

 $\simeq 0.4$.

(b) Annual Costs

Total annual cost of lining = $\frac{C}{y} + \frac{C}{2} \left(\frac{r}{100} \right)$

where, C = Capital expenditure required on lining

y = Life of lining

 $\frac{C}{y}$ = Annual depreciation charge in rupees

r = Rate of interest (%)

 $\frac{C}{2}\left(\frac{r}{100}\right)$ = Annual Interest

Benifit cost ratio = $\frac{mR_1 + PR_2}{\frac{C}{y} + \frac{C}{2} \left(\frac{r}{100}\right)}$

DESIGN OF LINED CANALS

A. Triangular Section

Used when

(i)
$$A = y^2(\theta + \cot \theta)$$

(ii)
$$P = 2y(\theta + \cot \theta)$$

(iii)
$$R = \frac{A}{R} = \frac{y}{2}$$
 where

where, $A = Area (m^2)$

y = Central depth = Radius of circle

 θ = Angle

R = Hydraulic mean depth.

B. Trapezoidal Section

$$A = By + y^2(\theta + \cot \theta)$$

$$P = B + 2y(\theta + \cot \theta)$$

$$R = \frac{A}{P}$$

SEDIMENT TRANSPORT MECHANICS

(i) Du-Bois Formula

$$q_b = k_b \cdot \tau_0 (\tau_0 - \tau_c)$$

where,

q_b = Bed load (volume) transported in m³ per second per unit width of channel.

 $\tau_{\rm o}$ = Average shear stress on the channel boundary. (N/m²)

 τ_c = Minimum shear stress required to move the grain called shear stress. (N/m²)

k_b = A constant depending upon the grain size & given

$$k_b = \frac{0.178}{(d)^{3/4}}$$
 where d is effective grain dia in mm

(ii) Shield's Formula

$$\frac{q_b}{q} = \frac{\gamma \cdot d(S_s - 1)}{10(\tau_0 - \tau_c)}$$
 where, $\frac{q_b}{q}$ = Load carrying capacity.

 $q_h = Bed load transported in m³/sec.$

 $S_s = Specific gravity of the bed grain.$

q = Discharge per unit width in m²/s

 γ = Unit weight of fluid in kN/m³.

d = Dia of bed grain in meter.

DESIGN OF UNLINED CANAL

(i)
$$\tau_0 = \gamma_w RS$$

where,

S = Channel longitudinal slope

R = Hydraulic mean depth

 τ_0 = Tractive stress (shear stress) at the channel bottom when water flows through the channel.

(ii)
$$\tau'_0 = 0.75 \gamma_w RS$$

where, τ'_0 = Average tractive stress at the channel side. γ_w = Unit weight of water in kN/m³.

(iii) For No Sediment Movement

 $\boxed{\tau_{\rm 0} \leq \tau_{\rm c}} \quad \text{where, } \tau_{\rm c} = \text{Critical tractive stress.}$

(iv) At Channel Bottom

$$\tau_{c} = 0.056\gamma_{w} \cdot d(S_{s} - 1)$$

where, $\gamma_w = \text{Unit weight of water (kN/m}^3)$

d = Dia of sediments.

 $S_s = Specific gravity of sediments \simeq 2.65$

$$\tau_{c} = \frac{\gamma_{w} \cdot d}{11}$$
 at G = 2.67.

(v) At Channel Side

$$\tau_{c}^{'} = \tau_{c} \sqrt{1 - \frac{\sin^{2} \theta}{\sin^{2} \phi}} \qquad \text{where, } \theta = \text{Sides slope angle} \\ \phi = \text{Angle of repose of soil.}$$

(vi) For No Scouring

 $|\tau_0 \le \tau_c| \to \text{For no scouring from channel bottom.}$

→ d ≥ 11RS

 $\tau_0' \leq \tau_c' \rightarrow$ For no scouring from channel sides.