Chapter 9

Sequence and Series

Exercise 9.4

Question 1: Find the sum to n terms of the series 1 x2+2 x3 +3 x4+
4 x5+ ..

Answer 1:

The given seriesis 1 x2+2x3+3x4+4 x5+ .. n"term, a,=n (n+
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Sn=Yk=1ak = Xk=1k(k +1)

:Z;{lzl kz +Z1l}=1k

_ n(n+1)(2n+1) + n(n+1)
6 2

_ n(n+1) [2n+1
2 3

+1]

. n(nz+ 1) (2n3+4)

_ nn+1)(n+2)

3
Question 2: Find the sum to n terms of the series 1 X2 x3+2 X3 x4+
3Ix4x5+ ..

Answer 2:

The given seriesis 1 X2 x3+2x3x4+3 x4 x5+ .. n'term
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Question 3: Find the sum to n terms of the series 3 x 12+ 5 x 22+ 7 x 32
+ ..

Answer 3:

The given series is 3 x 12+ 5 x 22+ 7 x 32+ n™term
an=(2n+ 1) n?>=2n’+n?
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Question 4: Find the sum to n terms of the series 5

Answer 4:
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Adding the above terms column wise, we obtain
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Question 5: Find the sum to n terms of the series 5% + 6> + 7% + ... + 20?

Answer 5:
The given series is 52 + 6% + 72 + ... + 20? nth term
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Question 6: Find the sum to n terms of the series3 x 8 +6 x 11 +9 x 14
+...

Answer 6:

The given seriesis 3 x 8+ 6 x 11 +9 x 14 +... an
= (" term 0of 3,6, 9 ...) x (n" term of 8, 11, 14...)
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Question 7: Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22
+32)+ ...

Answer 7:
The given series is 12+ (17 +22) + (12 + 22+ 3% + ... an
=(I>+2+ 3+ ... +n?)
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Question 8: Find the sum to n terms of the series whose n'" term is given
byn(n+1)(n+4).

Answer 8:
an=n(n+1)(n+4)=n >+ 5n+4)=n’+5n*+4n
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Question 9: Find the sum to n terms of the series whose nth terms is
given by n?+ 2"

Answer 9:

an =n*+ 2"
Su=Yr_ k?+2k= Y0 _kZ+ X0 2F (1)
Consider Y _, 28 =21+ 22+ 23 + .

The above series 2, 22, 23, ... is a G.P. with both the first term and
common ratio equal to 2.
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Question 10: Find the sum to n terms of the series whose n™ terms is
given by

(2n—1)?

Answer 10:
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