Class XI Session 2024-25 Subject - Mathematics Sample Question Paper - 2

Time Allowed: 3 hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

		Section A	
1.	$\cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ =$		[1]
	a) $\frac{1}{2}$	b) $\frac{-1}{2}$	
	c) 1	d) 0	
2.	if $f\left(x+rac{1}{x} ight)=x^2+rac{1}{x^2}$ then $f(x)$ = ?		[1]
	a) (x ² - 2)	b) $(x^2 + 1)$	
	c) $(x^2 - 1)$	d) _x ²	
3.	The mean and S.D. of 1, 2, 3, 4, 5, 6 is		[1]
	a) 3, $\frac{35}{12}$	b) 3, 3	
	c) $\frac{7}{2}, \sqrt{\frac{35}{12}}$	d) $\frac{7}{2}, \sqrt{3}$	
4.	$\lim_{x \to 0} rac{\sin x^n}{(\sin x)^m}$, $n > m > 0$ is equal to		[1]
	a) <u>m</u>	b) 0	
	c) 1	d) $\frac{n}{m}$	
5.	The lines $8x + 4y = 1$, $8x + 4y = 5$, $4x + 8y = 3$,	4x + 8y = 7 form a	[1]
	a) Trapezium	b) Rhombus	
	c) Rectangle	d) Square	
6.	The reflection of the point (α , β , γ) in the xy- p	ane is	[1]
	a) (α , β , - γ)	b) (0, 0, γ)	

	c) (α , β , 0)	d) $(-\alpha, -\beta, \gamma)$	
7.	If $z = (3 + \sqrt{2}i)$ then $z \times z = ?$		[1]
	a) 11	b) 7	
	c) $\sqrt{11}$	d) 5	
8.	The number of ways in which 5 + and 5 – signs can b	e arranged in a line such that no two – signs occur together	[1]
	is		
	a) P(5, 5)	b) C(5, 5)	
	c) P(6, 5)	d) C(6, 5)	
9.	$\lim_{x o \pi} rac{\sin x}{x - \pi}$ is equal to		[1]
	a) 1	b) -1	
	c) 2	d) -2	
10.	If A - B = $\frac{\pi}{4}$, then (1 + tan A)(1 - tan B) is equal to		[1]
	a) 2	b) 0	
	c) 1	d) 3	
11.	Let S = {x x is a positive multiple of 3 less than 100}	}	[1]
	$P = \{x \mid x \text{ is a prime number less than 20}\}.$ Then n(S)	+ n(P) is	
	a) 41	b) 30	
	c) 34	d) 33	
12.	$\left(\sqrt{5}+1 ight)^4+\left(\sqrt{5}-1 ight)^4$ is		[1]
	a) an irrational number	b) a negative real number	
	c) a rational number	d) a negative integer	
13.	If $x = 99^{50} + 100^{50}$ and $y = (101)^{50}$ then		[1]
	a) x < y	b) x > y	
	c) x = y	d) $x \ge y$	
14.	Solve the system of inequalities $(x + 5) - 7(x - 2) \ge 4$	$x + 9, 2(x - 3) - 7(x + 5) \le 3x - 9$	[1]
	a) $\frac{-9}{4} \leq x \leq 1$	b) $-4 \leq x \leq 1$	
	c) $-1 \leq x \leq 1$	d) $-4 \leq x \leq 4$	
15.	Which of the following is a null set?		[1]
	a) C = ϕ	b) B = {x : $x + 3 = 3$ }	
	c) D = {0}	d) A = { $x : x > 1$ and $x < 3$ }	
16.	sin 18° = ?		[1]
	a) $\frac{(\sqrt{3}+1)}{2}$	b) $\frac{(\sqrt{3}-1)}{2}$	
	c) $\frac{\frac{2}{(\sqrt{5}+1)}}{4}$	d) $\frac{(\sqrt{5}-1)}{4}$	
17.	$\lim_{x \to a} \frac{x^n - a^n}{x - a}$ is equal to:	· 4	[1]
-	$x \! ightarrow \! a$ $x \! ightarrow$ $x \! ightarrow$		

	a) _{na} n-1	b) 1				
	c) _{na} n	d) na				
18.	In an examination, a candidate has to pass in each of	the five subjects. In how many ways can he fail?	[1]			
	a) 31	b) 10				
	c) 21	d) 5				
19.	Assertion (A): Let A = {1, 2, 3} and B = {1, 2, 3, 4	}. Then, $A \subset B$.	[1]			
	Reason (R): If every element of X is also an element	t of Y, then X is a subset of Y.				
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the				
	explanation of A.	correct explanation of A.				
	c) A is true but R is false.	d) A is false but R is true.				
20.		etric progression is given by $S_{\infty} = rac{a}{1-r}$, provided $ \mathbf{r} < 1$.	[1]			
	Reason (R): The sum of n terms of Geometric progr	ression is $S_n = \frac{a(r^n-1)}{r-1}$.				
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the				
	explanation of A.	correct explanation of A.				
	c) A is true but R is false.	d) A is false but R is true.				
	Se	ection B				
21.	f, g and h are three functions defined from R to R as	follows:	[2]			
	i. $f(x) = x^2$					
	ii. $g(x) = x^2 + 1$					
	iii. $h(x) = \sin x$					
	Then, find the range of each function.					
		OR				
	Find the domain and range of the function $f(x) = 1- x ^2$		[0]			
22.	Differentiate the function with respect to x: ($3x^2 - x$		[2]			
23.	One card is drawn from a well shuffled deck of 52 c		[2]			
	probability that the card will be a black card (i.e., a c	OR				
	An integer is chosen at random from the numbers ra	nging from 1 to 50. What is the probability that the integer				
	chosen is a multiple of 2 or 3 or 10?	5 5 · · · · · · · · · · · · · · · · · ·				
24.	If A = $\{a, b, c, d, e\}$, B = $\{a, c, e, g\}$ and C = $\{b, e, f\}$, g}, verify that: (A \cap B) \cap C = A \cap (B \cap C)	[2]			
25.	In what ratio is the line joining the points (2, 3) and	(4, -5) divided by the line passing through the points (6, 8)	[2]			
	and (-3, -2).					
		ection C				
26.	The letters of the word SURITI are written in all po	ssible orders and these words are written out as in a	[3]			
27.	dictionary. Find the rank of the word SURITI . If the origin is the centroid of the triangle POR with	vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then	[3]			
<i>∠1</i> .	find the values of a, b and c.	vertices 1 (20, 2, 0), Q(-7, 50, -10) and N(0, 14, 20), fifth	[0]			
28.		xpansion of $(1 + x)^{2n}$ is equal to the sum of the coefficients	[3]			
_ •						

of middle terms in the expansion of $(1 + x)^{2n-1}$.

OR

Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375 respectively.

29. Differentiate $\frac{x^2-1}{x}$ from first principle.

OR

Find the derivative of function $\frac{ax+b}{cx+d}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).

30. If the pth and qth terms of a GP are q and p respectively, then show that $(p + q)^{th}$ term is $\left(\frac{q^p}{p^q}\right)^{\frac{1}{p-q}}$.

OR

Find a G.P. for which sum of the first two term is -4 and the fifth term is 4 times the third term.

- Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English andMathematics, 7 in Mathematics and Science, 4 in English and Science, 4 in all the three. Find how many passed
 - i. in English and Mathematics but not in Science
 - ii. in Mathematics and Science but not in English
 - iii. in Mathematics only

iv. in more than one subject only

Section D

32. Calculate the mean, median and standard deviation of the following distribution:

Class-interval:	31-35	36-40	41-45	46-50	51-55	56-60	61-65	66-70
Frequency:	2	3	8	12	16	5	2	3

33. Draw the shape of the ellipse $4x^2 + 9y^2 = 36$ and find its major axis, minor axis, value of c, vertices, directrices, [5] foci, eccentricity and length of latusrectum.

OR

Find the equation of the parabola whose focus is (1, -1) and whose vertex is (2, 1). Also find its axis and latus - rectum.

34. Solve the following system of linear inequalities

$$-2 - \frac{x}{4} \ge \frac{1+x}{3}$$
 and $3 - x < 4(x-3)$

35. Prove that:
$$\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \frac{3}{16}$$
.

OR

Prove that: $\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x$.

Section E

36.Read the following text carefully and answer the questions that follow:[4]

Consider the graphs of the functions f(x), h(x) and g(x).

[5]

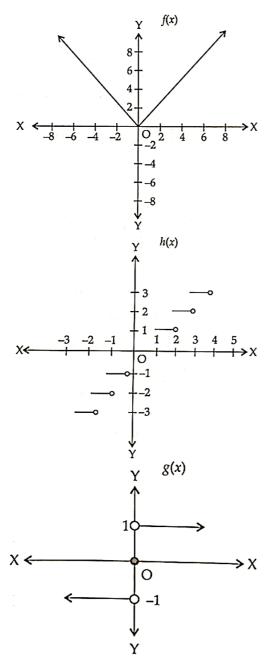
[5]

[5]

[3]

[3]

[3]



i. Find the range of h(x). (1)

- ii. Find the domain of f(x). (1)
- iii. Find the value of f(10). (2)

OR

Find the range of g(x). (2)

37. **Read the following text carefully and answer the questions that follow:**

Four friends Dinesh, Yuvraj, Sonu, and Rajeev are playing cards. Dinesh, shuffling a cards and told to Rajeev choose any four cards.

[4]

i. What is the probability that Rajeev getting all face card. (1)

- ii. What is the probability that Rajeev getting two red cards and two black card. (1)
- iii. What is the probability that Rajeev getting one card from each suit. (2)

OR

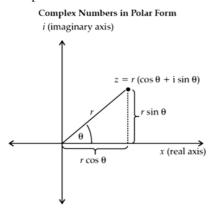
What is the probability that Rajeev getting two king and two Jack cards. (2)

[4]

38. **Read the following text carefully and answer the questions that follow:**

Consider the complex number Z = 2 - 2i.

Complex Number in Polar Form



- i. Find the principal argument of Z. (1)
- ii. Find the value of $z\bar{z}$? (1)
- iii. Find the value of |Z|. (2)

OR

Find the real part of Z. (2)

Solution

Section A

1.

(b) $\frac{-1}{2}$

Explanation: $\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} + \cos 240^{\circ}$ $= 2 \cos \left(\frac{40^{\circ} + 80^{\circ}}{2}\right) \cos \left(\frac{40^{\circ} - 80^{\circ}}{2}\right) + \cos 160^{\circ} + \cos (180^{\circ} + 60^{\circ}) \quad [\because \cos A + \cos B = 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)]$ $= 2 \cos 60^{\circ} \cos (-20^{\circ}) + \cos 160^{\circ} - \frac{1}{2}$ $= 2 \times \frac{1}{2} \cos 20^{\circ} + \cos 160^{\circ} - \frac{1}{2}$ $= \cos (180^{\circ} - 20^{\circ}) + \cos 20^{\circ} - \frac{1}{2}$ $= -\cos 20^{\circ} + \cos 20^{\circ} - \frac{1}{2}$ $= -\frac{1}{2}$

2. (a)
$$(x^2 - 2)$$

Explanation: $f(x + \frac{1}{x}) = x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$
Put, $(x + \frac{1}{x}) = t$
 $\Rightarrow f(t) = t^2 - 2$
 $\therefore f(x) = x^2 - 2$

3.

(c)
$$\frac{7}{2}, \sqrt{\frac{35}{12}}$$

Explanation: Mean = $\frac{1+2+3+4+5+6}{6} = \frac{21}{6} = \frac{7}{2}$
S.D = $\sqrt{\frac{n^2-1}{12}} = \sqrt{\frac{36-1}{12}} = \sqrt{\frac{35}{12}}$

4.

(b) 0

Explanation:
$$\lim_{x \to 0} \frac{\sin x^n}{(\sin x)^m} \cdot \frac{x^{m+n}}{x^{m+n}}$$
$$\Rightarrow \lim_{x \to 0} \frac{\sin x^n}{x^n} \cdot \frac{x^m}{(\sin x)^m} \cdot \frac{x^n}{x^m}$$
$$\Rightarrow 1.1^m \cdot x^{n-m}$$
$$\Rightarrow 1(0) = 0$$

5.

(b) Rhombus

Explanation: On solving the equations 8x + 4y = 1 and 4x + 8y = 3, we get the point of intersection as $(\frac{-1}{2}, \frac{5}{12})$ On solving the equations 8x + 4y = 5 and 4x + 8y = 7, we get the point of intersection as $(\frac{1}{4}, \frac{3}{4})$ On solving the equations 8x + 4y = 1 and 4x + 8y = 7, we get the point of intersection as $(\frac{-5}{12}, \frac{13}{12})$ On solving the equations 8x + 4y = 5 and 4x + 8y = 3, we the point of intersection as $(\frac{7}{12}, \frac{1}{12})$ Let the points $A((\frac{-1}{2}, \frac{5}{12}), B(\frac{7}{12}, \frac{1}{12}) C(\frac{1}{4}, \frac{3}{4})$ and $D(\frac{-5}{12}, \frac{13}{12})$ be the vertices of the quadrilateral Since the slopes of the opposite sides are equal the quadrilateral is a parallelogram The slope of the diagonal AC is $\frac{5/12-3/4}{-1/2-1/4} = 1$ The slope of the diagonal BD is $\frac{1/2-13/12}{7/12-(-5/12)} = -1$

Since the product of the slopes is -1, the diagonals are perpendicular to each other.

Hence the parallelogram is a rhombus.

6. (a) $(\alpha, \beta, -\gamma)$

Explanation: In xy-plane, the reflection of the point (α , β , γ) is (α , β , - γ)

7. (a) 11

Explanation: $zz = |z|^2 = \{3^2 + (\sqrt{2})^2\} = (9 + 2) = 11$

8.

(d) C(6, 5)

Explanation: Since all the plus signs are identical, we have number of ways in which 5 plus signs can be arranged = 1. Now we will have 6 empty slots between these 5 identical + signs

Hence the number of possible places of - sign = 6

Therefore the number of ways in which the 5 minus sign can take any of the possible 6 places = C(6, 5)

9.

(b) -1 Explanation: Given, $\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{x \to \pi} \frac{\sin(\pi - x)}{-(\pi - x)}$ $= -1 \left[\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ and } \pi - x \to 0 \Rightarrow x \to \pi \right]$

10. (a) 2

Explanation: $\tan(A - B) = \tan \frac{\pi}{4}$ $\Rightarrow \frac{\tan A - \tan B}{1 + \tan A \tan B} = 1$ $\Rightarrow \tan A - \tan B = 1 + \tan A \tan B \dots$ (i) Now, $(1 + \tan A)(1 - \tan B) = 1 + \tan A - \tan B - \tan A \tan B$ $= 1 + 1 + \tan A \tan B - \tan A \tan B$ (Using eq. (i)) = 2

11. **(a)** 41

Explanation: We have to find ,n(S) + n(P) S = {x | x is a positive multiple of 3 less than 100} \Rightarrow S = {3, 6, 9, 12, 15,...., 99} $\Rightarrow n(S) = \frac{99}{3} = 33$ P = {x | x is a prime number less than 20} \Rightarrow P = {2, 3, 5, 7, 11, 13, 17, 19} \Rightarrow n(P) = 8 n(S) + n(P) = 33 + 8 = 41 Therefore, answer is 41

12.

(c) a rational number

Explanation: We have
$$(a + b)^n + (a - b)^n$$

= $\begin{bmatrix} {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + {}^nC_3 \quad a^{n-3}b^3 + \dots + {}^nC_nb^n \end{bmatrix} + \begin{bmatrix} {}^nC_0a^n - {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 - {}^nC_3a^{n-3}b^3 + \dots + (-1)^n \cdot {}^nC_n \quad b^n \end{bmatrix}$
= $2 \begin{bmatrix} {}^nC_0 \quad a^n + {}^nC_2 \quad a^{n-2}b^2 + \dots \end{bmatrix}$
Let $a = \sqrt{5}$ and $b = 1$ and $n = 4$
Now we get $(\sqrt{5} + 1)^4 + (\sqrt{5} - 1)^4 = 2 \begin{bmatrix} {}^4C_0(\sqrt{5})^4 + {}^4C_2(\sqrt{5})^21^2 + {}^4C_4(\sqrt{5})^01^4 \end{bmatrix}$
= $2 \begin{bmatrix} 25 + 30 + 1 \end{bmatrix} = 112$

Explanation: Given $x = 99^{50} + 100^{50}$ and $y = (101)^{50}$ Now $y = (101)^{50} = (100 + 1)^{50} = {}^{50}C_0(100)^{50} + {}^{50}C_1(100)^{49} + {}^{50}C_2(100)^{48} + + {}^{50}C_{50}(i)$ Also $(99)^{50} = (100 - 1)^{50} = ={}^{50}C_0(100)^{50} - {}^{50}C_1(100)^{49} + {}^{50}C_2(100)^{48} - + {}^{50}C_{50}(ii)$ Now subtract equation (ii) from equation (i), we get $(101)^{50} - (99)^{50} = 2 [{}^{50}C_1 (100)^{49} + {}^{50}C_3 (100)^{47} + ...]$ $= 2 [50(100)^{49} + \frac{50 \times 49 \times 48}{3 \times 2 \times 1}(100)^{47} + ...]$ $= (100)^{50} + 2 (\frac{50 \times 49 \times 48}{3 \times 2 \times 1}(100)^{47})$ $\Rightarrow (101)^{50} - (99)^{50} > (100)^{50}$ $\Rightarrow (101)^{50} > (100)^{50} + (99)^{50}$ $\Rightarrow y > x$

14.

(b) $-4 \leq x \leq 1$ **Explanation:** $(x + 5) - 7(x - 2) \ge 4x + 9$ \Rightarrow x + 5 - 7x + 14 \ge 4x + 9 \Rightarrow -6x + 19 \geq 4x + 9 \Rightarrow -6x - 4x \geq 9 - 19 \Rightarrow -10x \geq -10 $\Rightarrow x \leq 1$ $\Rightarrow x \in (-\infty, 1]$ $2(x - 3) - 7(x + 5) \le 3x - 9$ \Rightarrow 2x - 6 - 7x - 35 \leq 3x < 9 \Rightarrow -5x - 41 \leq 3x - 9 \Rightarrow -5x - 3x \leq 41 - 9 $\Rightarrow -8x \leq 32$ $\Rightarrow -x \leq \frac{32}{8} = 4$ $\Rightarrow x \ge -4$ $\Rightarrow x \epsilon[-4,\infty)$ Hence the solution set is $[-4,\infty) \cap (-\infty,1]$ = [-4, 1] Which means $-\,4~\leq~x~\leq~1$

15. **(a)** C = φ

Explanation: ϕ is denoted as null set.

16.

(d) $\frac{(\sqrt{5}-1)}{4}$ Explanation: Remember sin $18^\circ = \frac{(\sqrt{5}-1)}{4}$

17. **(a)** naⁿ⁻¹

Explanation:
$$\lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$= \lim_{x \to a^+} \frac{x^n - a^n}{x - a} [\because f(x) \text{ exists, } \lim_{x \to a} f(x) = \lim_{x \to a^+} f(x)]$$

$$= \lim_{h \to 0} \frac{(a + h)^n - a^n}{a + h - a}$$

$$= \lim_{h \to 0} a^n \frac{\left[\left(1 + \frac{h}{a} \right)^n - 1 \right]}{h}$$

$$= a^n \lim_{h \to 0} [1 + n \cdot \frac{h}{a} + \frac{n(n-1)}{2!} \frac{h^2}{a^2} \dots + \dots - 1]$$

$$= a^n \lim_{h \to 0} \left[\frac{n}{a} + \frac{h(h-1)}{2!} \frac{h}{a^2} + \dots \right]$$

$$= a^n \frac{n}{a}$$

$$= na^{n-1}$$

18. **(a)** 31

Explanation: The candidate can fail by failing in 1 or 2 or 3 or 4 or 5 subjects out of 5 in each case.

: required number of ways = ${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5}$

$$= {}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{(5-3)} + {}^{5}C_{(5-4)} + 1$$

$$= {}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{2} + {}^{5}C_{1} + 1$$

$$= 2({}^{5}C_{1} + {}^{5}C_{2}) + 1$$

$$= 2\left(5 + \frac{5 \times 4}{2 \times 1}\right) + 1 = (30 + 1) = 31.$$

19. **(a)** Both A and R are true and R is the correct explanation of A. **Explanation:** Assertion Since, every element of A is in B, so $A \subset B$. 20.

(b) Both A and R are true but R is not the correct explanation of A. **Explanation:** Both A and R are true but R is not the correct explanation of A.

Section B

- 21. i. Given: f : R → R such that f(x) = x²
 since the value of x is squared, f(x) will always be equal or greater than 0
 ∴ the range is [0, ∞)
 - ii. Given: g : R → R such that g(x) = x² + 1
 since, the value of x is squared and also adding with 1, g(x) will always be equal or greater than 1
 ∴ Range of g(x) = [1, ∞)
 - iii. Given: h : R → R such that $h(x) = \sin x$ We know that, sin (x) always lies between -1 to 1 ∴ Range of h(x) = (-1,1)

OR

According to the question, f(x) = 1 - |x - 2|We observe that f(x) is defined for all $x \in \mathbb{R}$. Therefore, Domain(f) = \mathbb{R} $\therefore 0 \le |x-2| < \infty$ for all $x \in \mathbb{R}$ $\Rightarrow -\infty < -|x - 2| \le 0$ for all $x \in \mathbb{R}$ $\Rightarrow -\infty < 1 - |x - 2| \le 1$ for all $x \in \mathbb{R}$ $\Rightarrow -\infty < f(x) \le 1$ for all $x \in \mathbb{R}$ \therefore Range(f) = (- ∞ , 1] 22. To Find : $\frac{d}{dx}(3x^2-x+1)^4$ Formula used: $\frac{d}{dx}(y^n) = ny^{n-1} \times \frac{dy}{dx}$ Let $y = (3x^2 - x + 1)^4$

So, by using the above formula, we have

$$\frac{d}{dx} (3x^2 - x + 1)^4 = 4(3x^2 - x + 1)^3 \times \frac{d}{dx}(3x^2 - x + 1) = 4(3x^2 - x + 1)^3 (6x - 1)$$

Differentiation of $y = (3x^2 - x + 1)^4$ is $4(3x^2 - x + 1)^3(6x - 1)$

23. When a card is drawn from a well shuffled deck of 52 cards, the number of possible outcomes is 52. Let C be the event 'card drawn is black card'.

Since total number of black cards = 26 So, P(C) = $\frac{26}{52} = \frac{1}{2}$ Thus, probability of a black card = $\frac{1}{2}$

OR

We have to find the probability that the integer is chosen is a multiple of 2 or 3 or 10

Out of 50 integers an integer can be chosen in ${}^{50}C_1$ ways.

Total number of elementary events = ${}^{50}C_1 = 50$

Consider the following events:

A = Getting a multiple of 2, B = Getting a multiple of 3 and, C = Getting a multiple of 10 Clearly, A = {2, 4,..., 50}, B = {3, 6,..., 48}, C = {10, 20,..., 50} A n B = {6,12,..., 48}, B n C = {30}, A n C = {10, 20,..., 50} and, A n B n C = {30} ∴ $P(A) = \frac{25}{50}, P(B) = \frac{16}{50}, P(C) = \frac{5}{50}, P(A \cap B) = \frac{8}{50}, P(B \cap C) = \frac{1}{50}$ $P(A \cap C) = \frac{5}{50}$ and $P(A \cap B \cap C) = \frac{1}{50}$ Required probability = P(A ∩ B ∩ C) = P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ A) + P(A ∩ B ∩ C) $= \frac{25}{50} + \frac{16}{50} + \frac{5}{50} - \frac{8}{50} - \frac{1}{50} - \frac{5}{50} + \frac{1}{50} = \frac{33}{50}$ 24. Suppose x be any element of $(A \cap B) \cap C$ $\Rightarrow x \in (A \cap B)$ and $x \in C$ $\Rightarrow x \in A$ and $x \in B$ and $x \in C$ $\Rightarrow x \in A$ and $x \in B$ and $x \in C$

 $\Rightarrow x \in A \cap (B \cap C)$

 \Rightarrow (A \cap B) \cap C \subset A \cap (B \cap C)(i) Now, suppose x be an element of $A \cap (B \cap C)$ Then, $x \in A$ and $(B \cap C)$ $\Rightarrow x \in A$ and $x \in B$ and $x \in C$ \Rightarrow x \in (A \cap B) and x \in C $\Rightarrow x \in (A \cap B) \cap C$ \Rightarrow A \cap (B \cap C) \subset (A \cap B) \cap C(ii) Using (i) and (ii), we have $(A \cap B) \cap C = A \cap (B \cap C)$ [every set is a subset of itself] Hence, proved. 25. Therefore required equation of the line joining the points (6, 8) and (-3, -2) is y - 8 = $\frac{-2-8}{-3-6}(x-6)$ $\Rightarrow 10x - 9y + 12 = 0$ Suppose 10x - 9y + 12 = 0 divide the line joining the points (2, 3) and (4, -5) at point P in the ratio k : 1 \therefore P $\equiv \left(\frac{4k+2}{k+1}, \frac{-5k+3}{k+1}\right)$ P lies on the line 10x - 9y + 12 = 0 $\therefore 10\left(rac{4k+2}{k+1}
ight) - 9\left(rac{-5k+3}{k+1}
ight) + 12$ = 0 $\Rightarrow 40k + 20 + 45k - 27 + 12k + 12 = 0$ \Rightarrow 97k + 5 = 0 \Rightarrow k = $\frac{-5}{97}$

Therefore, the line joining the points (2, 3) and (4, -5) is divided by the line passing through the points (6, 8) and (-3, -2) in the ratio -5 : 97 externally.

Section C

26. Given the word SURITI.

Arranging the permutations of the letters of the word SURITI in a dictionary:

To find: Rank of word SURITI in dictionary.

First comes, words starting with letter I = 5! = 120 words starting from letter R = $\frac{5!}{2!}$ = 60 words starting from SI = 4! = 24 (4 letters no repetation) words starting from SR = $\frac{4!}{2!}$ = 12 (4 letters, one repetation of I) words starting from ST = $\frac{4!}{2!}$ = 12 (4 letters, one repetation of I) words starting from SUI = 3! = 6 (3 letters no repetation) words starting from SUR; SURIIT = 1 SURITI = 1

Rank of the word SURITI = 120 + 60 + 24 + 12 + 12 + 6 + 1 + 1 = 236

27. Here P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c) are vertices of triangle PQR.

$$\therefore \text{ Coordinates of centriod of } \Delta PQR \text{ is } \left(\frac{2a-4+8}{3}, \frac{2+3b+14}{3}, \frac{6-10+2c}{3}\right)$$
$$= \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)$$
But is it given that coordinates of centroid is (0, 0, 0)

 $\frac{\frac{2a+4}{3}}{\frac{3b+16}{3}} = 0 \Rightarrow 2a+4=0 \therefore a=-2$ $\frac{\frac{3b+16}{3}}{\frac{2c-4}{3}} = 0 \Rightarrow 3b+16=0 \Rightarrow b=\frac{-16}{3}$ $\frac{2c-4}{3} = 0 \Rightarrow 2c-4=0 \Rightarrow c=2$

28. As discussed in the previous example, the middle term in the expansion of $(1 + x)^{2n}$ is given by $T_{n+1} = {}^{2n}C_n x^n$

So, the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is ${}^{2n}C_n$.

Now, consider the expansion of $(1 + x)^{2n-1}$ Here, the index (2n-1) is odd.

So,
$$\left(\frac{(2n-1)+1}{2}\right)^{th}$$
 and $\left(\frac{(2n-1)+1}{2}+1\right)^{th}$ i.e., nth and $(n+1)^{th}$ terms are middle terms.
Now, $T_n = T_{(n-1)+1} = {}^{2n-1}C_{n-1}(1)^{(2n-1)-(n-1)}x^{n-1} = {}^{2n-1}C_{n-1}x^{n-1}$
and, $T_{n+1} = {}^{2n-1}C_n(1)^{(2n-1)-n}x^n = {}^{2n-1}C_nx^n$

So, the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$ are ${}^{2n-1}C_{n-1}$ and ${}^{2n-1}C_n$.

OR

 $\therefore \text{ Sum of these coefficients} = {}^{2n-1}C_{n-1} + {}^{2n-1}C_n$ $= {}^{(2n-1)+1}C_n [:: {}^nC_{r-1} + {}^nC_r = {}^{n+1}C_r]$ $= {}^{2n}C_n$

= Coefficient of middle term in the expansion of $(1 + x)^{2n}$.

We have $T_1 = {}^n C_0 a^n b^0 = 729 \dots$ (i) $T_2 = {}^n C_1 a^{n-1} b = 7290 \dots$ (ii) $T_3 = {}^n C_2 a^{n-2} b^2 = 30375 \dots$ (iii) From (i) $a^n = 729 \dots (iv)$ From (ii) $na^{n-1}b = 7290...(v)$ From (iii) $\frac{n(n-1)}{2}a^{n-2}b^2 = 30375...$ (vi) Multiplying (iv) and (vi), we get $\frac{n(n-1)}{2}a^{2n-2}b^2 = 729 \times 30375 \dots$ (vii) Squaring both sides of (v) we get $n^2 a^{2n-2} b^2 = (7290)(7290)(viii)$ Dividing (vii) by (viii), we get $\frac{n(n-1)a^{2n-2}b^2}{2n^2a^{2n-2}b^2} = \frac{729 \times 30375}{7290 \times 7290}$ $\Rightarrow \frac{(n-1)}{2n} = \frac{30375}{72900} \Rightarrow \frac{n-1}{2n} = \frac{5}{12} \Rightarrow 12n - 12 = 10n$ $\Rightarrow 2n = 12 \Rightarrow n = 6$ From (iv) $a^6 = 729 \Rightarrow a^6 = (3)^6 \Rightarrow a = 3$ From (v) $6 \times 3^5 \times b = 7290 \Rightarrow b = 5$ Thus a = 3, b = 5 and n = 6. 29. We need to find derivative of $f(x) = \frac{x^2 - 1}{x}$ Derivative of a function f(x) from first principle is given by $f'(x) = \lim_{h \to 0} = \frac{f(x+h) - f(x)}{h}$ {where h is a very small positive number} :. Derivative of $f(x) = \frac{x^2 - 1}{x}$ is given as $f'(x) = \lim_{h \to 0} = \frac{f(x+h) - f(x)}{h}$ $\Rightarrow \mathbf{f}'(\mathbf{x}) = \lim_{\mathbf{h} \to \mathbf{0}} \frac{\frac{(x+h)^2 - 1}{x+h} - \frac{x^2 - 1}{x}}{h}$ $\Rightarrow \mathbf{f}'(\mathbf{x}) = \lim_{h \to 0} \frac{\left\{ (x+h)^2 - 1 \right\} x - (x+h) \left(x^2 - 1 \right)}{hx(x+h)}$ $\Rightarrow \mathbf{f}'(\mathbf{x}) = \lim_{\mathbf{h} \to 0} \frac{\left\{ (x+h)^2 - 1 \right\} x - (x+h)(x^2 - 1)}{h} \times \lim_{\mathbf{h} \to 0} \frac{1}{x(x+h)}$ $\Rightarrow \mathrm{f}'(\mathrm{x}) = rac{1}{\mathrm{x}^2} \lim_{\mathrm{h}
ightarrow 0} rac{\left\{ (x+h)^2 - 1
ight\} x - (x+h) \left(x^2 - 1
ight)}{h}$ $\Rightarrow f'(\mathbf{x}) = \frac{1}{\mathbf{x}^2} \lim_{h \to 0} \frac{x^3 + h^2 + 2xh - 1}{h^2 + 2xh - 1} x - \{x^3 + hx^2 - x - h\}}$ $\Rightarrow f'(\mathbf{x}) = \frac{1}{\mathbf{x}^2} \lim_{h \to 0} \frac{x^3 + h^2 x + 2x^2 h - x - x^3 - hx^2 + x + h}{h}$ $\Rightarrow f'(\mathbf{x}) = \frac{1}{\mathbf{x}^2} \lim_{h \to 0} \frac{h^2 x + x^2 h + h}{h}$ $\Rightarrow f'(\mathbf{x}) = \frac{1}{\mathbf{x}^2} \lim_{h \to 0} \frac{h(hx + x^2 + 1)}{h}$ $\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0}$ (hx + x^2 + 1) \Rightarrow f'(x) = $\frac{1}{x^2}$ (0 × x + x^2 + 1) = $\frac{x^2+1}{x^2}$ = 1 + $\frac{1}{x^2}$ $\therefore f'(x) = 1 + \frac{1}{r^2}$ Hence, Derivative of $f(x) = \frac{x^2 - 1}{x^2} = 1 + \frac{1}{x^2}$

Here
$$f(x) = \frac{ax+b}{cx+d}$$

 $\therefore f'(x) = \frac{d}{dx} \left[\frac{ax+b}{cx+d} \right]$
 $= \frac{(cx+d)\frac{d}{dx}(ax+b)-(ax+b)\frac{d}{dx}(cx+d)}{(cx+d)^2}$
 $= \frac{(cx+d)(a)-(ax+b)(c)}{(cx+d)^2}$
 $= \frac{acx+ad-acx-bc}{(cx+d)^2} = \frac{ad-bc}{(cx+d)^2}$

30. Let first term be A and common ratio be R of a GP.

Given, p^{th} term, T_p = q and q^{th} term, T_q = p

Then,
$$AR^{p-1} = q$$
 and $AR^{q-1} = p$...(i)
 $\therefore \frac{AR^{p-1}}{AR^{q-1}} = \frac{q}{p}$
 $\Rightarrow R^{p-q} = \frac{q}{p} \Rightarrow R = \left(\frac{q}{p}\right)^{\frac{1}{p-q}}$ [:: rasisint power $\frac{1}{p-q}$ on both sides]
On putting the value of R in Eq. (i), we get

$$A \cdot \left(\frac{q}{p}\right)^{p-q} = q$$
$$\Rightarrow A = q \cdot \left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}$$

Now, $(p + q)^{th}$ term,

$$T_{p+q} = AR^{p+q-1} = q \cdot \left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \times \left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}} = \frac{q^{1-\frac{p-1}{p-q}} + \frac{p+q-1}{p-q}}{\frac{p+q-1}{p-q} - \frac{p-1}{p-q}} = \frac{\frac{p-q-p+1+p+q-1}{p-q}}{\frac{p+q-1-p+1}{p-q}} = \frac{q^{\frac{p}{p-q}}}{\frac{p+q-1-p+1}{p-q}} = \left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$$

Hence proved.

OR

$$S_{2} = -4, a_{5} = 4 a_{3}$$

$$\frac{a(1-r^{2})}{1-r} = -4$$

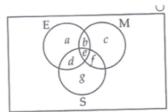
$$a(1 + r) = -4$$

$$ar^{4} = 4ar^{2}$$

$$r = \pm 2$$
when r = 2
$$a = -4/3$$
sequence is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \dots$
when r = -2
$$a = 4$$
sequence is
$$4, 8, 16, 32, 64$$

31. Let the set of students who passed in Mathematics be M, the set of students who passed in English be E and the set of students who passed in Science be S.

Then n(U) = 100, n(M) = 12, n(E) = 15, n(S) = 8, $n(E \cap M) = 6$, $n(M \cap S) = 7$, $n(E \cap S) = 4$ and $n(E \cap M \cap S) = 4$ Let us draw a Venn diagram



According to the Venn diagram,

 $n(E \cap S) = 4 \Rightarrow e = 4$ $n(E \cap M) = 6 \Rightarrow b + e = 6 \Rightarrow b + 4 = 6 \Rightarrow b = 2$ $n(M \cap S) = 7 \Rightarrow e + f = 7 \Rightarrow 4 + f = 7 \Rightarrow f = 3$ $n(E \cap S) = 4 \Rightarrow d + e = 4 \Rightarrow d + 4 = 4 \Rightarrow d = 0$ $n(E) = 15 \Rightarrow a + b + d + e = 15 \Rightarrow a + 2 + 0 + 4 = 15 \Rightarrow a = 9$ $n(M) = 12 \Rightarrow b + c + e + f = 12 \Rightarrow 2 + c + 4 + 3 = 12 \Rightarrow c = 3$ $n(S) = 8 \Rightarrow d + e + f + g = 8 \Rightarrow 0 + 4 + 3 + g = 8 \Rightarrow g = 1$

Hence we get,

i. Number of students who passed in English and Mathematics but not in Science, b = 2.

ii. Number of students who passed in Mathematics and Science but not in English, f = 3.

iii. Number of students who passed in Mathematics only, c = 3.

iv. Number of students who passed in more than one subject = b + e + d + f = 2 + 4 + 0 + 3 = 9.

Section D

32. 1st of all we will	prepare the below table	with the help of given information.

Class Interval	fi	Mid point x _i	$u_i = \frac{x_i - 53}{4}$	u_i^2	f _i u _i	${ m f_i}u_i^2$
31-35	2	33	-5	25	-10	50
36-40	3	38	-3.75	14.06	-11.25	42.18
41-45	8	43	-2.5	6.25	-20	50
46-50	12	48	-1.25	1.56	-15	18.72
51-55	16	53	0	0	0	0
56-60	5	58	1.25	1.56	6.25	7.8
61-65	2	63	2.5	6.25	5	12.5
66-70	3	68	3.75	14.06	11.25	42.18
	N = 51					$\sum\limits_{i=1}^n f_i u_i^2$ = 223.38

$$\overline{\mathbf{X} = \mathbf{a} + \mathbf{h}\left(\frac{\sum_{i=1}^{n} f_{i} u_{i}}{N}\right)}$$

= 53 + 4 $\left(\frac{-33.75}{51}\right)$
= 50.36
 $\sigma^{2} = h^{2} \left(\frac{\sum_{i=1}^{n} f_{i} u_{i}^{2}}{N} - \left(\frac{\sum_{i=1}^{n} f_{i} u_{i}}{N}\right)^{2}\right)$
= 16 $\left(\frac{223.38}{51} - \frac{1139.06}{2601}\right)$
= 63.07
 $\sigma = \sqrt{63.07}$

= 7.94

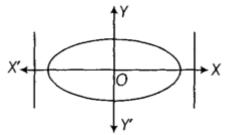
f _i	Cumulative frequency
2	2
3	5
8	13
12	25
16	41
5	46
2	48
3	51

 $\sum_{i=1}^{N} f_{i} = 51 = N$ $\frac{N}{2} = 25.5$ Median class interval is 51 - 55 L = 51 F = 25 f = 16 h = 4Median = L + $\frac{\frac{N}{2} - F}{f} \times h$ $= 51 + \frac{25.5 - 25}{16} \times 4$ $= 51 + \frac{0.5}{4}$ = 51.125

33. We have, equation of ellipse is $4x^2 + 9y^2 = 36$

or
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Since, the denominator of $\frac{x^2}{9}$ is greater than denominator of $\frac{y^2}{4}$ So, the major axis lies along X-axis.



- i. Shape is shown above.
- ii. Major axis, $2a = 2 \times 3 = 6$
- iii. Minor axis, $2b = 2 \times 2 = 4$
- iv. Value of c = $\sqrt{a^2 b^2} = \sqrt{9 4} = \sqrt{5}$
- v. Vertices = (a, 0) and (a, 0) i.e., (- 3, 0) and (3, 0)
- vi. Directrices, $x = \pm \frac{a^2}{c} = \pm \frac{9}{\sqrt{5}}$

vii. Foci = (- c, 0) and (c, 0) i.e., (-
$$\sqrt{5}$$
, 0) and ($\sqrt{5}$, 0)

- viii. Eccentricity, e = $\frac{c}{a} = \frac{\sqrt{5}}{3}$
- ix. Length of latusrectum, $2l = \frac{2b^2}{a} = \frac{2 \times 4}{3} = \frac{8}{3}$

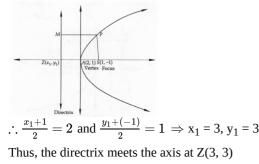
OR

Here, we are given the coordinates of the focus and vertex.

So, we require the equation of the directrix.

Let $Z(x_1, y_1)$ be the coordinates of the point of intersection of the axis and the directrix.

Then, the vertex A(2, 1) is the mid-point of the line segment joining $Z(x_1, y_1)$ and the focus S(1, -1)



Let m_1 be the slope of the axis. Then,

 m_1 = (Slope of the line joining the focus S and the vertex A) = $\frac{1+1}{2-1}$ = 2 (i)

: Slope of the directrix = $-\frac{1}{2}$ [: Directrix is perpendicular to the axis]

Thus, the directrix passes through (3, 3) and has slope - 1/2.

So its equation is

y - 3 = $-\frac{1}{2}$ (x - 3) or, x + 2y - 9 = 0 Let P (x, y) be a point on the parabola.

Then,

I

Distance of P from the focus = Distance of P from the directrix

$$\Rightarrow \sqrt{(x-1)^2 + (y+1)^2} = \left| \frac{x+2y-9}{\sqrt{x^2+2^2}} \right|$$

$$\Rightarrow (x-1)^2 + (y+1)^2 = \frac{(x+2y-9)^2}{5}$$

$$\Rightarrow 5x^2 + 5y^2 - 10x + 10y + 10 = x^2 + 4y^2 + 81 + 4xy - 18x - 36y$$

$$\Rightarrow 4x^2 + y^2 - 4xy + 8x + 46y - 71 = 0, which is the required equation of the parabola. The axis passes through the focus (1, -1), and its slope is m1 = 2
Therefore, equation of the axis is y +1 = 2(x, -1) or, 2x - y - 3 = 0
Now,
Latus-rectum = 2 (Length of the perpendicular from the focus on the directrix)
= 2 [Length of the perpendicular from (1, -1) on x + 2y - 9 = 0]
= 2 $\left| \frac{1-2-9}{\sqrt{1+4}} \right| = 2 \times \frac{10}{5} = 4\sqrt{5}$
34. The given system of linear inequalities is
 $-2 - \frac{x}{4} \ge \frac{1+x}{3} \dots (1)$
and 3 - x < 4(x - 3)... (ii)
From inequality (i), we get
 $-2 - \frac{x}{4} \ge \frac{1+x}{3}$
 $\Rightarrow -24 - 3x \ge 4 + 4x$ [multiplying both sides by 12]
 $\Rightarrow -24 - 3x \ge 4 + 4x = 4$ [subtracting 4 from both sides]
 $\Rightarrow -28 - 3x \ge 4x$
 $\Rightarrow -28 - 3x \ge 4x + 3x$ [adding 3x on both sides]
 $\Rightarrow -28 \ge 7x$
 $\Rightarrow \frac{2}{7} = \frac{7x}{7}$ [dividing both sides by 7]
 $\Rightarrow -4 \ge x \text{ or } x \le -4 \dots (iii)$
Thus, any value of x less than or equal to -4 satisfied the inequality.
So, solution set is $x \in (-\infty, -4]$
 $= \frac{x \le -4}{-4} = \frac{-4}{-4} = 0$
From inequality (ii), we get
 $3 - x < 4(x - 3)$
 $\Rightarrow 3 - x < 4x - 12$
 $\Rightarrow 3 - x < 4x + 12$ [adding 12 on both sides]
 $\Rightarrow 15 - x < 4x$
 $\Rightarrow 15 - x + 4x$
 $\Rightarrow 15 - x + 4x + x$ [adding x on both sides]
 $\Rightarrow 15 - 5x$
 $\Rightarrow 3 < x$ [dividing both sides by 3]
 $or x > 3 \dots (iv)$
Thus, any value of x greater than 3 satisfies the inequality.
So, the solution set is $x \in (3, \infty)$
 $\xrightarrow{x > 3}$$$

The solution set of inequalities (i) and (ii) are represented graphically on number line as given below:

$$\xrightarrow{x \leq -4} \xrightarrow{x > 3}$$

As no region is common, hence the given system has no solution.

35. cos 10° cos 30° cos 50° cos 70° = $\frac{3}{16}$ LHS = $\cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ$ $= \cos 30^{\circ} \cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ}$ $=\frac{\sqrt{3}}{2}$ (cos 10° cos 50° cos 70°) $=\frac{\sqrt{3}}{2}$ (cos 10° cos 50°) cos 70° (2 cos 10° cos 50°) cos 70° [Multiplying and dividing by 2] $\frac{\sqrt{3}}{4} \cos 70^{\circ} \{\cos (50^{\circ} + 10^{\circ}) + \cos (10^{\circ} - 50^{\circ})\} [\text{Using } 2 \cos A \cos B = \cos (A + B) + \cos (A - B)]$ $=\frac{\sqrt{3}}{4}\cos 70^{\circ} \left\{\cos 60^{\circ} + \cos \left(-40^{\circ}\right)\right\}$ $\frac{\sqrt{3}}{4}$ cos 70° [$\frac{1}{2}$ + cos 40°] [\therefore cos 60° = $\frac{1}{2}$ and cos (-x) = cos x] $= \frac{\frac{\sqrt{3}}{8}}{\frac{\sqrt{3}}{8}} \cos 70^\circ + \frac{\sqrt{3}}{\frac{4}{4}} \cos 70^\circ \cos 40^\circ$ $= \frac{\sqrt{3}}{\frac{\sqrt{3}}{8}} \cos 70^\circ + \frac{\sqrt{3}}{\frac{\sqrt{3}}{8}} (2 \cos 70^\circ \cos 40^\circ)$ $=\frac{\sqrt{3}}{8} \left[\cos 70^\circ + \cos (70^\circ + 40^\circ) + \cos (70^\circ - 40^\circ)\right]$ $= \frac{\frac{\sqrt{3}}{8}}{\frac{8}{8}} [\cos 70^\circ + \cos 110^\circ + \cos 30^\circ]$ = $\frac{\sqrt{3}}{\frac{8}{8}} [\cos 70^\circ + \cos (180^\circ - 70^\circ) + \frac{\sqrt{3}}{2}] [\because \cos 30^\circ = \frac{\sqrt{3}}{2}]$ $= \frac{\frac{8}{\sqrt{3}}}{\frac{8}{8}} \left[\cos 70^\circ - \cos 70^\circ + \frac{\sqrt{3}}{2} \right] \left[\because \cos (180^\circ - x) = -\cos x \right]$ $= \frac{\sqrt{3}}{\frac{8}{8}} \times \frac{\sqrt{3}}{2} = \frac{3}{16}$ = RHS

Hence proved.

OR

We have to prove that $\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x$. We know that, $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$ $\Rightarrow 4\cos^3\theta = \cos^3\theta + 3\cos^2\theta$ $\Rightarrow \cos^3\theta = \frac{\cos 3\theta + 3\cos \theta}{4} \dots$ (i) And similarly $\Rightarrow \sin 3\theta = 3\sin\theta - 4\sin^3\theta$ $\Rightarrow 4 \sin^3 \theta = 3 \sin \theta - \sin 3 \theta$

$$\Rightarrow \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \dots \text{(ii)}$$

Now,

LHS = $\cos^3 x \sin 3x + \sin^3 x \cos 3x$ Substituting the values from equation (i) and (ii), we get $\Rightarrow \left(\frac{\cos 3x + 3\cos x}{4}\right) \sin 3x + \left(\frac{\cos 3x - 3\cos x}{4}\right) \cos 3x$ $=\frac{1}{4}(\sin 3x \cos 3x + 3 \sin 3x \cos x + 3 \sin x \cos 3x - \sin 3x \cos 3x)$ $=\frac{1}{4}[3(\sin 3x \cos x + \sin x \cos 3x) + 0]$ $=\frac{1}{4}(3\sin(3x+x))$ (as sin(x+y) = sin x cos y+cos x sin y) $\Rightarrow \frac{3}{4} \sin 4x$ LHS = RHS Hence Proved

Section E

36. i. h(x) = [x] is the greatest integer function. Its range is Z (set of integers) ii. f(x) = |x|. The domain of f(x) is R.

iii. Since 10 > 0, f(10) = 1.

OR

g(x) is the signum function. Its range is {-1, 0, 1}.

- 37. i. Total number of possible outcomes = ${}^{52}C_4$
 - We know that there are 12 face cards
 - ∴ Number of favourable outcomes = ${}^{12}C_4$
 - \therefore Required probability = $\frac{{}^{12}C_4}{{}^{52}C_4}$
 - ii. Total number of possible outcomes = ${}^{52}C_4$
 - We know that there are 26 red and 26 black cards.
 - \therefore Number of favourable outcomes = ${}^{26}C_2 \times {}^{26}C_2$
 - \therefore Required probability = $\frac{\binom{2^6C_2}{2}}{\frac{5^2C_4}{2}}$

iii. Total number of possible outcomes = ${}^{52}C_4$

- \therefore Number of favourable outcomes = $({}^{13}C_1)^4$
- \therefore Required probability = $\frac{(13)^4}{{}^{52}C_4}$

OR

Total number of possible outcomes = ${}^{52}C_4$ In playing cards there are 4 king and 4 jack cards.

- : Number of favourable outcomes = $({}^4C_2 \times {}^4C_2)$
- $= 6 \times 6 = 36$

$$\therefore$$
 Required probability = $\frac{30}{52C}$

38. i.
$$r = |Z| = 2\sqrt{2}$$

 $x = 2, y = -2$
 $\cos\theta = \frac{x}{r} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$
 $\sin\theta = \frac{y}{r} = \frac{-2}{2\sqrt{2}} = \frac{-1}{\sqrt{2}}$
 $\operatorname{Arg}(Z) = \frac{-\pi}{4}$
ii. $z\overline{z} = |z|^2 = (2\sqrt{2})^2 = 8$

iii.
$$|Z| = \sqrt{2^2 + (-2)^2}$$

= $\sqrt{8} = 2\sqrt{2}$

OR

Real part of 2 - 2i = 2