Practice set 3.1

Q. 1. Express the following numbers in index form.

(1) Fifth root of 13 (2) Sixth root of 9 (3) Square root of 256 (4) Cube root of 17 (5) Eighth root of 100 (6) Seventh root of 30 **Answer**: (1) Fifth root of 13 In general, nth root of 'a' is expressed as $a^{\overline{n}}$. So, the fifth root of 13 is expressed as $13\overline{5}$. Here, 13 is base, $\frac{1}{5}$ is the index and $13^{\frac{1}{5}}$ is the index form of the number. (2) Sixth root of 9 In general, nth root of 'a' is expressed as $a^{\overline{n}}$. So, the sixth root of 9 is expressed as $9\overline{6}$. Here, 9 is base, $\frac{1}{6}$ is the index and $9^{\frac{1}{6}}$ is the index form of the number. (3) Square root of 256 In general, nth root of 'a' is expressed as $a^{\overline{n}}$. So, the square root of 256 is expressed as $256^{\frac{1}{2}}$. Here, 256 is base, $\frac{1}{2}$ is the index and $256^{\frac{1}{2}}$ is the index form of the number. (4) Cube root of 17

In general, nth root of 'a' is expressed as $a^{\overline{n}}$. So, cube root of 17 is expressed as $17^{\frac{1}{2}}$. Here, 17 is base, $\frac{1}{3}$ is the index and $17^{\frac{1}{3}}$ is the index form of the number. (5) Eighth root of 100 In general, nth root of 'a' is expressed as $a\overline{n}$. So, the eighth root of 100 is expressed as $100^{\frac{1}{2}}$. Here, 100 is base, $\frac{1}{8}$ is the index and $100^{\frac{1}{8}}$ is the index form of the number. (6) Seventh root of 30 In general, nth root of 'a' is expressed as $a\overline{n}$. So, the seventh root of 30 is expressed as 30^{-7} . Here, 30 is base, $\frac{1}{7}$ is the index and $30^{\frac{1}{7}}$ is the index form of the number. Q. 2. Write in the form 'nth root of a' in each of the following numbers. 1. (81)^{1/4} 2. (49)^{1/2} 3. (15)^{1/5} 4. (512)^{1/9} 5. (100)^{1/19} 6. (6)^{1/7} Answer : 1. (81)^{1/4} In general, a^{1/n} is written as 'nth root of a'. So, $(81)^{1/4}$ is written as '4th root of 81'.

2. (49)^{1/2}

In general, $a^{1/n}$ is written as 'nth root of a'.

So, $(49)^{1/2}$ is written as 'square root of 49'.

3. (15)^{1/5}

In general, a^{1/n} is written as 'nth root of a'.

So, $(15)^{1/5}$ is written as '5th root of 15'.

4. (512)^{1/9}

In general, a^{1/n} is written as 'nth root of a'.

So, (512)^{1/9} is written as '9th root of 512'.

5. (100)^{1/19}

In general, $a^{1/n}$ is written as 'nth root of a'.

So, (100)^{1/19} is written as '19th root of 100'.

6. (6)^{1/7}

In general, $a^{1/n}$ is written as 'nth root of a'.

So, $(6)^{1/7}$ is written as '7th root of 6'.

Practice set 3.2

Q. 1. Complete the following table.

Sr. No.	Numbers	Power of the root	Root of the power
(1)	(225) ^{3/2}	Cube of square root of 225	Square root of cube of 225
(2)	(45)4/5		
(3)	(81)6/7		
(4)	(100)4/10		
(5)	(21) ^{3/7}		

Answer :

Sr. No.	Numbers	Power of the root	Root of the power
(1)	(225) ^{3/2}	Cube of square root of 225	Square root of cube of 225
(2)	(45)4/5	Fourth power of fifth root of 45	Fifth root of fourth power of 45
(3)	(81)6/7	Sixth power of seventh root of 81	Seventh root of sixth power of 81
(4)	(100)4/10	Fourth power of tenth root of 100	Tenth root of fourth power of 100
(5)	(21) ^{3/7}	Cube of seventh root of 21	Seventh root of cube of 21

Explanation of Table

Generally we can express two meaning of the number a^{m/n}.

 $a^{m/n} = (a^m)^{1/n}$ means 'nth root of mth power of a'.

 $a^{m/n} = (a^{\frac{1}{n}})^m$ means 'mth power of nth root of a'.

(1) (225)^{3/2}

 $(225^3)^{1/2}$ means 'Cube of square root of 225'.

 $(225^{1/2})^3$ means 'Square root of cube of 225'.

(2) (45)^{4/5}

 $(45^4)^{1/5}$ means 'Fourth power of fifth root of 45'.

 $(45^{1/5})^4$ means 'Fifth root of fourth power of 45'.

(3) (81)^{6/7}

(81⁶)^{1/7} means 'Sixth power of seventh root of 81'.

(81^{1/7})⁶ means 'Seventh root of sixth power of 81'.

(4) (100)^{4/10}

 $(100^4)^{1/10}$ means 'Fourth power of tenth root of 100'.

 $(100^{1/10})^4$ means 'Tenth root of fourth power of 100'.

(5) (21)^{3/7}

 $(21^3)^{1/7}$ means 'Cube of seventh root of 21'.

 $(21^{\frac{1}{7}})^3$ means 'Seventh root of cube of 21'.

Q. 2. Write the following number in the form of rational indices.

- (1) Square root of 5th power of 121.
- (2) Cube of 4^{th} root of 324.
- (3) 5^{th} root of square of 264.
- (4) Cube of cube root of 3.

Answer : We know that 'nth root of mth power of a' is expressed as (a^m)^{1/n}

And 'mth power of nth root of a' is expressed as $(a^{\overline{n}})^m$.

(1) Square root of 5th power of 121.

We know that,

'nth root of mth power of a' is expressed as (a^m)^{1/n}

So, 'Square root of 5th power of 121' is expressed as $(121^5)^{1/2}$ or $(121)^{5/2}$.

(2) Cube of 4^{th} root of 324.

We know that,

'nth root of mth power of a' is expressed as (a^m)^{1/n}

So, 'Cube of 4^{th} root of 324' is written as $(324^{1/4})^3$ or $(324)^{3/4}$.

(3) 5^{th} root of square of 264.

We know that,

'nth root of mth power of a' is expressed as (a^m)^{1/n}

So, '5th root of square of 264' is written as $(264^2)^{1/5}$ or

(264)^{2/5}.

(4) Cube of cube root of 3.

We know that,

'mth power of nth root of a' is expressed as $(a^{\frac{1}{n}})^m$

So, 'Cube of cube root of 3' is written as $(3^{1/3})^3$ or $(31)^{3/3}$.

Practice set 3.3

Q. 1 A. Find the cube root of the following numbers.

8000

Answer : First find the factor of 8000

 $8000 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$

For finding the cube root, we pair the prime factors in 3's.

$$= (2 \times 2 \times 5)^3$$

 $= (2 \times 10)^3$

i.e. cube root of $8000 = (8000)^{1/3} = (20^3)^{1/3} = 20$ (answer).

Q. 1. B. Find the cube root of the following numbers.

729

Answer : First find factors of 729

 $729 = 9 \times 9 \times 9$

For finding the cube root, we pair the prime factors in 3's.

$= 9^{3}$

i.e. cube root of $729 = (729)^{1/3} = (9^3)^{1/3} = 9$ (answer).

Q. 1. C. Find the cube root of the following numbers.

343

Answer : First find the factor of 343

$$343 = 7 \times 7 \times 7$$

For finding the cube root, we pair the prime factors in 3's.

 $= 7^{3}$

i.e. cube root of $343 = (343)^{1/3} = (7^3)^{1/3} = 7$ (answer).

Q. 1. D. Find the cube root of the following numbers.

-512

Answer : First find factors of - 512

 $-512 = (-8) \times (-8) \times (-8)$

For finding the cube root, we pair the prime factors in 3's.

i.e. cube root of $-512 = (-512)^{1/3} = (-8^3)^{1/3} = -8$ (answer).

Q. 1. E. Find the cube root of the following numbers.

-2744

Answer : First find factors of -2744

 $-2744 = (-14) \times (-14) \times (-14)$

For finding the cube root, we pair the prime factors in 3's.

 $= (-14)^3$

i.e. cube root of $-2744 = (-2744)^{1/3} = (-14^3)^{1/3} = -14$ (answer).

Q. 1. F. Find the cube root of the following numbers.

32768

Answer : First find factor of 32768

32768 = 32 × 32 × 32

For finding the cube root, we pair the prime factors in 3's.

= 323

i.e. cube root of $32768 = \sqrt[3]{32768} = (32^3)^{1/3} = 32$ (answer).

Q. 2. Simplify:

(1)
$$\sqrt[3]{\frac{27}{125}}$$

(2) $\sqrt[3]{\frac{16}{54}}$
(3) If $\sqrt[3]{729} = 9$ then $\sqrt[3]{0.000729} = ?$

Answer :

(1)
$$\sqrt[3]{\frac{27}{125}}$$

$$\sqrt[3]{\frac{27}{125}} = \frac{\sqrt[3]{27}}{\sqrt[3]{125}} = \frac{\sqrt[3]{3\times3\times3}}{\sqrt[3]{5\times5\times5}} = \frac{\sqrt[3]{3^3}}{\sqrt[3]{5^3}} = \frac{3}{5} \text{ (answer)}.$$

$$(2) \sqrt[3]{\frac{16}{54}}$$

$$\sqrt[3]{\frac{16}{54}} = \frac{\sqrt[3]{8}}{\sqrt[3]{27}} = \frac{\sqrt[3]{2 \times 2 \times 2}}{\sqrt[3]{3 \times 3 \times 3}} = \frac{\sqrt[3]{2^3}}{\sqrt[3]{3^3}} = \frac{2}{3} \text{ (answer).}$$

3) If ∛729 = 9 then ∛0.000729 = ?

$$\sqrt[3]{0.000729} = \sqrt[3]{\frac{729}{1000000}} = \frac{\sqrt[3]{729}}{\sqrt[3]{100 \times 100 \times 100}} = \frac{\sqrt[3]{729}}{\sqrt[3]{100^3}}$$

We know that $\sqrt[3]{729} = 9$

S0, $\sqrt[3]{0.000729} = \frac{9}{100} = 0.09$ (answer).